1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * Authors: Jérôme Glisse <jglisse@redhat.com> 15 */ 16 /* 17 * Refer to include/linux/hmm.h for information about heterogeneous memory 18 * management or HMM for short. 19 */ 20 #include <linux/mm.h> 21 #include <linux/hmm.h> 22 #include <linux/init.h> 23 #include <linux/rmap.h> 24 #include <linux/swap.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/mmzone.h> 28 #include <linux/pagemap.h> 29 #include <linux/swapops.h> 30 #include <linux/hugetlb.h> 31 #include <linux/memremap.h> 32 #include <linux/jump_label.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/memory_hotplug.h> 35 36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) 37 38 #if IS_ENABLED(CONFIG_HMM_MIRROR) 39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops; 40 41 /* 42 * struct hmm - HMM per mm struct 43 * 44 * @mm: mm struct this HMM struct is bound to 45 * @lock: lock protecting ranges list 46 * @ranges: list of range being snapshotted 47 * @mirrors: list of mirrors for this mm 48 * @mmu_notifier: mmu notifier to track updates to CPU page table 49 * @mirrors_sem: read/write semaphore protecting the mirrors list 50 */ 51 struct hmm { 52 struct mm_struct *mm; 53 spinlock_t lock; 54 struct list_head ranges; 55 struct list_head mirrors; 56 struct mmu_notifier mmu_notifier; 57 struct rw_semaphore mirrors_sem; 58 }; 59 60 /* 61 * hmm_register - register HMM against an mm (HMM internal) 62 * 63 * @mm: mm struct to attach to 64 * 65 * This is not intended to be used directly by device drivers. It allocates an 66 * HMM struct if mm does not have one, and initializes it. 67 */ 68 static struct hmm *hmm_register(struct mm_struct *mm) 69 { 70 struct hmm *hmm = READ_ONCE(mm->hmm); 71 bool cleanup = false; 72 73 /* 74 * The hmm struct can only be freed once the mm_struct goes away, 75 * hence we should always have pre-allocated an new hmm struct 76 * above. 77 */ 78 if (hmm) 79 return hmm; 80 81 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); 82 if (!hmm) 83 return NULL; 84 INIT_LIST_HEAD(&hmm->mirrors); 85 init_rwsem(&hmm->mirrors_sem); 86 hmm->mmu_notifier.ops = NULL; 87 INIT_LIST_HEAD(&hmm->ranges); 88 spin_lock_init(&hmm->lock); 89 hmm->mm = mm; 90 91 spin_lock(&mm->page_table_lock); 92 if (!mm->hmm) 93 mm->hmm = hmm; 94 else 95 cleanup = true; 96 spin_unlock(&mm->page_table_lock); 97 98 if (cleanup) 99 goto error; 100 101 /* 102 * We should only get here if hold the mmap_sem in write mode ie on 103 * registration of first mirror through hmm_mirror_register() 104 */ 105 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; 106 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) 107 goto error_mm; 108 109 return mm->hmm; 110 111 error_mm: 112 spin_lock(&mm->page_table_lock); 113 if (mm->hmm == hmm) 114 mm->hmm = NULL; 115 spin_unlock(&mm->page_table_lock); 116 error: 117 kfree(hmm); 118 return NULL; 119 } 120 121 void hmm_mm_destroy(struct mm_struct *mm) 122 { 123 kfree(mm->hmm); 124 } 125 126 static int hmm_invalidate_range(struct hmm *hmm, bool device, 127 const struct hmm_update *update) 128 { 129 struct hmm_mirror *mirror; 130 struct hmm_range *range; 131 132 spin_lock(&hmm->lock); 133 list_for_each_entry(range, &hmm->ranges, list) { 134 unsigned long addr, idx, npages; 135 136 if (update->end < range->start || update->start >= range->end) 137 continue; 138 139 range->valid = false; 140 addr = max(update->start, range->start); 141 idx = (addr - range->start) >> PAGE_SHIFT; 142 npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT; 143 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages); 144 } 145 spin_unlock(&hmm->lock); 146 147 if (!device) 148 return 0; 149 150 down_read(&hmm->mirrors_sem); 151 list_for_each_entry(mirror, &hmm->mirrors, list) { 152 int ret; 153 154 ret = mirror->ops->sync_cpu_device_pagetables(mirror, update); 155 if (!update->blockable && ret == -EAGAIN) { 156 up_read(&hmm->mirrors_sem); 157 return -EAGAIN; 158 } 159 } 160 up_read(&hmm->mirrors_sem); 161 162 return 0; 163 } 164 165 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm) 166 { 167 struct hmm_mirror *mirror; 168 struct hmm *hmm = mm->hmm; 169 170 down_write(&hmm->mirrors_sem); 171 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, 172 list); 173 while (mirror) { 174 list_del_init(&mirror->list); 175 if (mirror->ops->release) { 176 /* 177 * Drop mirrors_sem so callback can wait on any pending 178 * work that might itself trigger mmu_notifier callback 179 * and thus would deadlock with us. 180 */ 181 up_write(&hmm->mirrors_sem); 182 mirror->ops->release(mirror); 183 down_write(&hmm->mirrors_sem); 184 } 185 mirror = list_first_entry_or_null(&hmm->mirrors, 186 struct hmm_mirror, list); 187 } 188 up_write(&hmm->mirrors_sem); 189 } 190 191 static int hmm_invalidate_range_start(struct mmu_notifier *mn, 192 const struct mmu_notifier_range *range) 193 { 194 struct hmm_update update; 195 struct hmm *hmm = range->mm->hmm; 196 197 VM_BUG_ON(!hmm); 198 199 update.start = range->start; 200 update.end = range->end; 201 update.event = HMM_UPDATE_INVALIDATE; 202 update.blockable = range->blockable; 203 return hmm_invalidate_range(hmm, true, &update); 204 } 205 206 static void hmm_invalidate_range_end(struct mmu_notifier *mn, 207 const struct mmu_notifier_range *range) 208 { 209 struct hmm_update update; 210 struct hmm *hmm = range->mm->hmm; 211 212 VM_BUG_ON(!hmm); 213 214 update.start = range->start; 215 update.end = range->end; 216 update.event = HMM_UPDATE_INVALIDATE; 217 update.blockable = true; 218 hmm_invalidate_range(hmm, false, &update); 219 } 220 221 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { 222 .release = hmm_release, 223 .invalidate_range_start = hmm_invalidate_range_start, 224 .invalidate_range_end = hmm_invalidate_range_end, 225 }; 226 227 /* 228 * hmm_mirror_register() - register a mirror against an mm 229 * 230 * @mirror: new mirror struct to register 231 * @mm: mm to register against 232 * 233 * To start mirroring a process address space, the device driver must register 234 * an HMM mirror struct. 235 * 236 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! 237 */ 238 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) 239 { 240 /* Sanity check */ 241 if (!mm || !mirror || !mirror->ops) 242 return -EINVAL; 243 244 again: 245 mirror->hmm = hmm_register(mm); 246 if (!mirror->hmm) 247 return -ENOMEM; 248 249 down_write(&mirror->hmm->mirrors_sem); 250 if (mirror->hmm->mm == NULL) { 251 /* 252 * A racing hmm_mirror_unregister() is about to destroy the hmm 253 * struct. Try again to allocate a new one. 254 */ 255 up_write(&mirror->hmm->mirrors_sem); 256 mirror->hmm = NULL; 257 goto again; 258 } else { 259 list_add(&mirror->list, &mirror->hmm->mirrors); 260 up_write(&mirror->hmm->mirrors_sem); 261 } 262 263 return 0; 264 } 265 EXPORT_SYMBOL(hmm_mirror_register); 266 267 /* 268 * hmm_mirror_unregister() - unregister a mirror 269 * 270 * @mirror: new mirror struct to register 271 * 272 * Stop mirroring a process address space, and cleanup. 273 */ 274 void hmm_mirror_unregister(struct hmm_mirror *mirror) 275 { 276 bool should_unregister = false; 277 struct mm_struct *mm; 278 struct hmm *hmm; 279 280 if (mirror->hmm == NULL) 281 return; 282 283 hmm = mirror->hmm; 284 down_write(&hmm->mirrors_sem); 285 list_del_init(&mirror->list); 286 should_unregister = list_empty(&hmm->mirrors); 287 mirror->hmm = NULL; 288 mm = hmm->mm; 289 hmm->mm = NULL; 290 up_write(&hmm->mirrors_sem); 291 292 if (!should_unregister || mm == NULL) 293 return; 294 295 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm); 296 297 spin_lock(&mm->page_table_lock); 298 if (mm->hmm == hmm) 299 mm->hmm = NULL; 300 spin_unlock(&mm->page_table_lock); 301 302 kfree(hmm); 303 } 304 EXPORT_SYMBOL(hmm_mirror_unregister); 305 306 struct hmm_vma_walk { 307 struct hmm_range *range; 308 unsigned long last; 309 bool fault; 310 bool block; 311 }; 312 313 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, 314 bool write_fault, uint64_t *pfn) 315 { 316 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE; 317 struct hmm_vma_walk *hmm_vma_walk = walk->private; 318 struct hmm_range *range = hmm_vma_walk->range; 319 struct vm_area_struct *vma = walk->vma; 320 vm_fault_t ret; 321 322 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; 323 flags |= write_fault ? FAULT_FLAG_WRITE : 0; 324 ret = handle_mm_fault(vma, addr, flags); 325 if (ret & VM_FAULT_RETRY) 326 return -EBUSY; 327 if (ret & VM_FAULT_ERROR) { 328 *pfn = range->values[HMM_PFN_ERROR]; 329 return -EFAULT; 330 } 331 332 return -EAGAIN; 333 } 334 335 static int hmm_pfns_bad(unsigned long addr, 336 unsigned long end, 337 struct mm_walk *walk) 338 { 339 struct hmm_vma_walk *hmm_vma_walk = walk->private; 340 struct hmm_range *range = hmm_vma_walk->range; 341 uint64_t *pfns = range->pfns; 342 unsigned long i; 343 344 i = (addr - range->start) >> PAGE_SHIFT; 345 for (; addr < end; addr += PAGE_SIZE, i++) 346 pfns[i] = range->values[HMM_PFN_ERROR]; 347 348 return 0; 349 } 350 351 /* 352 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s) 353 * @start: range virtual start address (inclusive) 354 * @end: range virtual end address (exclusive) 355 * @fault: should we fault or not ? 356 * @write_fault: write fault ? 357 * @walk: mm_walk structure 358 * Returns: 0 on success, -EAGAIN after page fault, or page fault error 359 * 360 * This function will be called whenever pmd_none() or pte_none() returns true, 361 * or whenever there is no page directory covering the virtual address range. 362 */ 363 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, 364 bool fault, bool write_fault, 365 struct mm_walk *walk) 366 { 367 struct hmm_vma_walk *hmm_vma_walk = walk->private; 368 struct hmm_range *range = hmm_vma_walk->range; 369 uint64_t *pfns = range->pfns; 370 unsigned long i; 371 372 hmm_vma_walk->last = addr; 373 i = (addr - range->start) >> PAGE_SHIFT; 374 for (; addr < end; addr += PAGE_SIZE, i++) { 375 pfns[i] = range->values[HMM_PFN_NONE]; 376 if (fault || write_fault) { 377 int ret; 378 379 ret = hmm_vma_do_fault(walk, addr, write_fault, 380 &pfns[i]); 381 if (ret != -EAGAIN) 382 return ret; 383 } 384 } 385 386 return (fault || write_fault) ? -EAGAIN : 0; 387 } 388 389 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 390 uint64_t pfns, uint64_t cpu_flags, 391 bool *fault, bool *write_fault) 392 { 393 struct hmm_range *range = hmm_vma_walk->range; 394 395 *fault = *write_fault = false; 396 if (!hmm_vma_walk->fault) 397 return; 398 399 /* We aren't ask to do anything ... */ 400 if (!(pfns & range->flags[HMM_PFN_VALID])) 401 return; 402 /* If this is device memory than only fault if explicitly requested */ 403 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { 404 /* Do we fault on device memory ? */ 405 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { 406 *write_fault = pfns & range->flags[HMM_PFN_WRITE]; 407 *fault = true; 408 } 409 return; 410 } 411 412 /* If CPU page table is not valid then we need to fault */ 413 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); 414 /* Need to write fault ? */ 415 if ((pfns & range->flags[HMM_PFN_WRITE]) && 416 !(cpu_flags & range->flags[HMM_PFN_WRITE])) { 417 *write_fault = true; 418 *fault = true; 419 } 420 } 421 422 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 423 const uint64_t *pfns, unsigned long npages, 424 uint64_t cpu_flags, bool *fault, 425 bool *write_fault) 426 { 427 unsigned long i; 428 429 if (!hmm_vma_walk->fault) { 430 *fault = *write_fault = false; 431 return; 432 } 433 434 for (i = 0; i < npages; ++i) { 435 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, 436 fault, write_fault); 437 if ((*fault) || (*write_fault)) 438 return; 439 } 440 } 441 442 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 443 struct mm_walk *walk) 444 { 445 struct hmm_vma_walk *hmm_vma_walk = walk->private; 446 struct hmm_range *range = hmm_vma_walk->range; 447 bool fault, write_fault; 448 unsigned long i, npages; 449 uint64_t *pfns; 450 451 i = (addr - range->start) >> PAGE_SHIFT; 452 npages = (end - addr) >> PAGE_SHIFT; 453 pfns = &range->pfns[i]; 454 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 455 0, &fault, &write_fault); 456 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 457 } 458 459 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) 460 { 461 if (pmd_protnone(pmd)) 462 return 0; 463 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | 464 range->flags[HMM_PFN_WRITE] : 465 range->flags[HMM_PFN_VALID]; 466 } 467 468 static int hmm_vma_handle_pmd(struct mm_walk *walk, 469 unsigned long addr, 470 unsigned long end, 471 uint64_t *pfns, 472 pmd_t pmd) 473 { 474 struct hmm_vma_walk *hmm_vma_walk = walk->private; 475 struct hmm_range *range = hmm_vma_walk->range; 476 unsigned long pfn, npages, i; 477 bool fault, write_fault; 478 uint64_t cpu_flags; 479 480 npages = (end - addr) >> PAGE_SHIFT; 481 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 482 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, 483 &fault, &write_fault); 484 485 if (pmd_protnone(pmd) || fault || write_fault) 486 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 487 488 pfn = pmd_pfn(pmd) + pte_index(addr); 489 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 490 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags; 491 hmm_vma_walk->last = end; 492 return 0; 493 } 494 495 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) 496 { 497 if (pte_none(pte) || !pte_present(pte)) 498 return 0; 499 return pte_write(pte) ? range->flags[HMM_PFN_VALID] | 500 range->flags[HMM_PFN_WRITE] : 501 range->flags[HMM_PFN_VALID]; 502 } 503 504 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 505 unsigned long end, pmd_t *pmdp, pte_t *ptep, 506 uint64_t *pfn) 507 { 508 struct hmm_vma_walk *hmm_vma_walk = walk->private; 509 struct hmm_range *range = hmm_vma_walk->range; 510 struct vm_area_struct *vma = walk->vma; 511 bool fault, write_fault; 512 uint64_t cpu_flags; 513 pte_t pte = *ptep; 514 uint64_t orig_pfn = *pfn; 515 516 *pfn = range->values[HMM_PFN_NONE]; 517 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 518 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 519 &fault, &write_fault); 520 521 if (pte_none(pte)) { 522 if (fault || write_fault) 523 goto fault; 524 return 0; 525 } 526 527 if (!pte_present(pte)) { 528 swp_entry_t entry = pte_to_swp_entry(pte); 529 530 if (!non_swap_entry(entry)) { 531 if (fault || write_fault) 532 goto fault; 533 return 0; 534 } 535 536 /* 537 * This is a special swap entry, ignore migration, use 538 * device and report anything else as error. 539 */ 540 if (is_device_private_entry(entry)) { 541 cpu_flags = range->flags[HMM_PFN_VALID] | 542 range->flags[HMM_PFN_DEVICE_PRIVATE]; 543 cpu_flags |= is_write_device_private_entry(entry) ? 544 range->flags[HMM_PFN_WRITE] : 0; 545 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 546 &fault, &write_fault); 547 if (fault || write_fault) 548 goto fault; 549 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry)); 550 *pfn |= cpu_flags; 551 return 0; 552 } 553 554 if (is_migration_entry(entry)) { 555 if (fault || write_fault) { 556 pte_unmap(ptep); 557 hmm_vma_walk->last = addr; 558 migration_entry_wait(vma->vm_mm, 559 pmdp, addr); 560 return -EAGAIN; 561 } 562 return 0; 563 } 564 565 /* Report error for everything else */ 566 *pfn = range->values[HMM_PFN_ERROR]; 567 return -EFAULT; 568 } 569 570 if (fault || write_fault) 571 goto fault; 572 573 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags; 574 return 0; 575 576 fault: 577 pte_unmap(ptep); 578 /* Fault any virtual address we were asked to fault */ 579 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 580 } 581 582 static int hmm_vma_walk_pmd(pmd_t *pmdp, 583 unsigned long start, 584 unsigned long end, 585 struct mm_walk *walk) 586 { 587 struct hmm_vma_walk *hmm_vma_walk = walk->private; 588 struct hmm_range *range = hmm_vma_walk->range; 589 struct vm_area_struct *vma = walk->vma; 590 uint64_t *pfns = range->pfns; 591 unsigned long addr = start, i; 592 pte_t *ptep; 593 pmd_t pmd; 594 595 596 again: 597 pmd = READ_ONCE(*pmdp); 598 if (pmd_none(pmd)) 599 return hmm_vma_walk_hole(start, end, walk); 600 601 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB)) 602 return hmm_pfns_bad(start, end, walk); 603 604 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 605 bool fault, write_fault; 606 unsigned long npages; 607 uint64_t *pfns; 608 609 i = (addr - range->start) >> PAGE_SHIFT; 610 npages = (end - addr) >> PAGE_SHIFT; 611 pfns = &range->pfns[i]; 612 613 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 614 0, &fault, &write_fault); 615 if (fault || write_fault) { 616 hmm_vma_walk->last = addr; 617 pmd_migration_entry_wait(vma->vm_mm, pmdp); 618 return -EAGAIN; 619 } 620 return 0; 621 } else if (!pmd_present(pmd)) 622 return hmm_pfns_bad(start, end, walk); 623 624 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 625 /* 626 * No need to take pmd_lock here, even if some other threads 627 * is splitting the huge pmd we will get that event through 628 * mmu_notifier callback. 629 * 630 * So just read pmd value and check again its a transparent 631 * huge or device mapping one and compute corresponding pfn 632 * values. 633 */ 634 pmd = pmd_read_atomic(pmdp); 635 barrier(); 636 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 637 goto again; 638 639 i = (addr - range->start) >> PAGE_SHIFT; 640 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); 641 } 642 643 /* 644 * We have handled all the valid case above ie either none, migration, 645 * huge or transparent huge. At this point either it is a valid pmd 646 * entry pointing to pte directory or it is a bad pmd that will not 647 * recover. 648 */ 649 if (pmd_bad(pmd)) 650 return hmm_pfns_bad(start, end, walk); 651 652 ptep = pte_offset_map(pmdp, addr); 653 i = (addr - range->start) >> PAGE_SHIFT; 654 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { 655 int r; 656 657 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); 658 if (r) { 659 /* hmm_vma_handle_pte() did unmap pte directory */ 660 hmm_vma_walk->last = addr; 661 return r; 662 } 663 } 664 pte_unmap(ptep - 1); 665 666 hmm_vma_walk->last = addr; 667 return 0; 668 } 669 670 static void hmm_pfns_clear(struct hmm_range *range, 671 uint64_t *pfns, 672 unsigned long addr, 673 unsigned long end) 674 { 675 for (; addr < end; addr += PAGE_SIZE, pfns++) 676 *pfns = range->values[HMM_PFN_NONE]; 677 } 678 679 static void hmm_pfns_special(struct hmm_range *range) 680 { 681 unsigned long addr = range->start, i = 0; 682 683 for (; addr < range->end; addr += PAGE_SIZE, i++) 684 range->pfns[i] = range->values[HMM_PFN_SPECIAL]; 685 } 686 687 /* 688 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses 689 * @range: range being snapshotted 690 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid 691 * vma permission, 0 success 692 * 693 * This snapshots the CPU page table for a range of virtual addresses. Snapshot 694 * validity is tracked by range struct. See hmm_vma_range_done() for further 695 * information. 696 * 697 * The range struct is initialized here. It tracks the CPU page table, but only 698 * if the function returns success (0), in which case the caller must then call 699 * hmm_vma_range_done() to stop CPU page table update tracking on this range. 700 * 701 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS 702 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED ! 703 */ 704 int hmm_vma_get_pfns(struct hmm_range *range) 705 { 706 struct vm_area_struct *vma = range->vma; 707 struct hmm_vma_walk hmm_vma_walk; 708 struct mm_walk mm_walk; 709 struct hmm *hmm; 710 711 /* Sanity check, this really should not happen ! */ 712 if (range->start < vma->vm_start || range->start >= vma->vm_end) 713 return -EINVAL; 714 if (range->end < vma->vm_start || range->end > vma->vm_end) 715 return -EINVAL; 716 717 hmm = hmm_register(vma->vm_mm); 718 if (!hmm) 719 return -ENOMEM; 720 /* Caller must have registered a mirror, via hmm_mirror_register() ! */ 721 if (!hmm->mmu_notifier.ops) 722 return -EINVAL; 723 724 /* FIXME support hugetlb fs */ 725 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 726 vma_is_dax(vma)) { 727 hmm_pfns_special(range); 728 return -EINVAL; 729 } 730 731 if (!(vma->vm_flags & VM_READ)) { 732 /* 733 * If vma do not allow read access, then assume that it does 734 * not allow write access, either. Architecture that allow 735 * write without read access are not supported by HMM, because 736 * operations such has atomic access would not work. 737 */ 738 hmm_pfns_clear(range, range->pfns, range->start, range->end); 739 return -EPERM; 740 } 741 742 /* Initialize range to track CPU page table update */ 743 spin_lock(&hmm->lock); 744 range->valid = true; 745 list_add_rcu(&range->list, &hmm->ranges); 746 spin_unlock(&hmm->lock); 747 748 hmm_vma_walk.fault = false; 749 hmm_vma_walk.range = range; 750 mm_walk.private = &hmm_vma_walk; 751 752 mm_walk.vma = vma; 753 mm_walk.mm = vma->vm_mm; 754 mm_walk.pte_entry = NULL; 755 mm_walk.test_walk = NULL; 756 mm_walk.hugetlb_entry = NULL; 757 mm_walk.pmd_entry = hmm_vma_walk_pmd; 758 mm_walk.pte_hole = hmm_vma_walk_hole; 759 760 walk_page_range(range->start, range->end, &mm_walk); 761 return 0; 762 } 763 EXPORT_SYMBOL(hmm_vma_get_pfns); 764 765 /* 766 * hmm_vma_range_done() - stop tracking change to CPU page table over a range 767 * @range: range being tracked 768 * Returns: false if range data has been invalidated, true otherwise 769 * 770 * Range struct is used to track updates to the CPU page table after a call to 771 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done 772 * using the data, or wants to lock updates to the data it got from those 773 * functions, it must call the hmm_vma_range_done() function, which will then 774 * stop tracking CPU page table updates. 775 * 776 * Note that device driver must still implement general CPU page table update 777 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using 778 * the mmu_notifier API directly. 779 * 780 * CPU page table update tracking done through hmm_range is only temporary and 781 * to be used while trying to duplicate CPU page table contents for a range of 782 * virtual addresses. 783 * 784 * There are two ways to use this : 785 * again: 786 * hmm_vma_get_pfns(range); or hmm_vma_fault(...); 787 * trans = device_build_page_table_update_transaction(pfns); 788 * device_page_table_lock(); 789 * if (!hmm_vma_range_done(range)) { 790 * device_page_table_unlock(); 791 * goto again; 792 * } 793 * device_commit_transaction(trans); 794 * device_page_table_unlock(); 795 * 796 * Or: 797 * hmm_vma_get_pfns(range); or hmm_vma_fault(...); 798 * device_page_table_lock(); 799 * hmm_vma_range_done(range); 800 * device_update_page_table(range->pfns); 801 * device_page_table_unlock(); 802 */ 803 bool hmm_vma_range_done(struct hmm_range *range) 804 { 805 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT; 806 struct hmm *hmm; 807 808 if (range->end <= range->start) { 809 BUG(); 810 return false; 811 } 812 813 hmm = hmm_register(range->vma->vm_mm); 814 if (!hmm) { 815 memset(range->pfns, 0, sizeof(*range->pfns) * npages); 816 return false; 817 } 818 819 spin_lock(&hmm->lock); 820 list_del_rcu(&range->list); 821 spin_unlock(&hmm->lock); 822 823 return range->valid; 824 } 825 EXPORT_SYMBOL(hmm_vma_range_done); 826 827 /* 828 * hmm_vma_fault() - try to fault some address in a virtual address range 829 * @range: range being faulted 830 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) 831 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop) 832 * 833 * This is similar to a regular CPU page fault except that it will not trigger 834 * any memory migration if the memory being faulted is not accessible by CPUs. 835 * 836 * On error, for one virtual address in the range, the function will mark the 837 * corresponding HMM pfn entry with an error flag. 838 * 839 * Expected use pattern: 840 * retry: 841 * down_read(&mm->mmap_sem); 842 * // Find vma and address device wants to fault, initialize hmm_pfn_t 843 * // array accordingly 844 * ret = hmm_vma_fault(range, write, block); 845 * switch (ret) { 846 * case -EAGAIN: 847 * hmm_vma_range_done(range); 848 * // You might want to rate limit or yield to play nicely, you may 849 * // also commit any valid pfn in the array assuming that you are 850 * // getting true from hmm_vma_range_monitor_end() 851 * goto retry; 852 * case 0: 853 * break; 854 * case -ENOMEM: 855 * case -EINVAL: 856 * case -EPERM: 857 * default: 858 * // Handle error ! 859 * up_read(&mm->mmap_sem) 860 * return; 861 * } 862 * // Take device driver lock that serialize device page table update 863 * driver_lock_device_page_table_update(); 864 * hmm_vma_range_done(range); 865 * // Commit pfns we got from hmm_vma_fault() 866 * driver_unlock_device_page_table_update(); 867 * up_read(&mm->mmap_sem) 868 * 869 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0) 870 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION ! 871 * 872 * YOU HAVE BEEN WARNED ! 873 */ 874 int hmm_vma_fault(struct hmm_range *range, bool block) 875 { 876 struct vm_area_struct *vma = range->vma; 877 unsigned long start = range->start; 878 struct hmm_vma_walk hmm_vma_walk; 879 struct mm_walk mm_walk; 880 struct hmm *hmm; 881 int ret; 882 883 /* Sanity check, this really should not happen ! */ 884 if (range->start < vma->vm_start || range->start >= vma->vm_end) 885 return -EINVAL; 886 if (range->end < vma->vm_start || range->end > vma->vm_end) 887 return -EINVAL; 888 889 hmm = hmm_register(vma->vm_mm); 890 if (!hmm) { 891 hmm_pfns_clear(range, range->pfns, range->start, range->end); 892 return -ENOMEM; 893 } 894 /* Caller must have registered a mirror using hmm_mirror_register() */ 895 if (!hmm->mmu_notifier.ops) 896 return -EINVAL; 897 898 /* FIXME support hugetlb fs */ 899 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 900 vma_is_dax(vma)) { 901 hmm_pfns_special(range); 902 return -EINVAL; 903 } 904 905 if (!(vma->vm_flags & VM_READ)) { 906 /* 907 * If vma do not allow read access, then assume that it does 908 * not allow write access, either. Architecture that allow 909 * write without read access are not supported by HMM, because 910 * operations such has atomic access would not work. 911 */ 912 hmm_pfns_clear(range, range->pfns, range->start, range->end); 913 return -EPERM; 914 } 915 916 /* Initialize range to track CPU page table update */ 917 spin_lock(&hmm->lock); 918 range->valid = true; 919 list_add_rcu(&range->list, &hmm->ranges); 920 spin_unlock(&hmm->lock); 921 922 hmm_vma_walk.fault = true; 923 hmm_vma_walk.block = block; 924 hmm_vma_walk.range = range; 925 mm_walk.private = &hmm_vma_walk; 926 hmm_vma_walk.last = range->start; 927 928 mm_walk.vma = vma; 929 mm_walk.mm = vma->vm_mm; 930 mm_walk.pte_entry = NULL; 931 mm_walk.test_walk = NULL; 932 mm_walk.hugetlb_entry = NULL; 933 mm_walk.pmd_entry = hmm_vma_walk_pmd; 934 mm_walk.pte_hole = hmm_vma_walk_hole; 935 936 do { 937 ret = walk_page_range(start, range->end, &mm_walk); 938 start = hmm_vma_walk.last; 939 } while (ret == -EAGAIN); 940 941 if (ret) { 942 unsigned long i; 943 944 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 945 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last, 946 range->end); 947 hmm_vma_range_done(range); 948 } 949 return ret; 950 } 951 EXPORT_SYMBOL(hmm_vma_fault); 952 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 953 954 955 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) 956 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, 957 unsigned long addr) 958 { 959 struct page *page; 960 961 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 962 if (!page) 963 return NULL; 964 lock_page(page); 965 return page; 966 } 967 EXPORT_SYMBOL(hmm_vma_alloc_locked_page); 968 969 970 static void hmm_devmem_ref_release(struct percpu_ref *ref) 971 { 972 struct hmm_devmem *devmem; 973 974 devmem = container_of(ref, struct hmm_devmem, ref); 975 complete(&devmem->completion); 976 } 977 978 static void hmm_devmem_ref_exit(void *data) 979 { 980 struct percpu_ref *ref = data; 981 struct hmm_devmem *devmem; 982 983 devmem = container_of(ref, struct hmm_devmem, ref); 984 wait_for_completion(&devmem->completion); 985 percpu_ref_exit(ref); 986 } 987 988 static void hmm_devmem_ref_kill(struct percpu_ref *ref) 989 { 990 percpu_ref_kill(ref); 991 } 992 993 static int hmm_devmem_fault(struct vm_area_struct *vma, 994 unsigned long addr, 995 const struct page *page, 996 unsigned int flags, 997 pmd_t *pmdp) 998 { 999 struct hmm_devmem *devmem = page->pgmap->data; 1000 1001 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); 1002 } 1003 1004 static void hmm_devmem_free(struct page *page, void *data) 1005 { 1006 struct hmm_devmem *devmem = data; 1007 1008 page->mapping = NULL; 1009 1010 devmem->ops->free(devmem, page); 1011 } 1012 1013 /* 1014 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory 1015 * 1016 * @ops: memory event device driver callback (see struct hmm_devmem_ops) 1017 * @device: device struct to bind the resource too 1018 * @size: size in bytes of the device memory to add 1019 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise 1020 * 1021 * This function first finds an empty range of physical address big enough to 1022 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which 1023 * in turn allocates struct pages. It does not do anything beyond that; all 1024 * events affecting the memory will go through the various callbacks provided 1025 * by hmm_devmem_ops struct. 1026 * 1027 * Device driver should call this function during device initialization and 1028 * is then responsible of memory management. HMM only provides helpers. 1029 */ 1030 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, 1031 struct device *device, 1032 unsigned long size) 1033 { 1034 struct hmm_devmem *devmem; 1035 resource_size_t addr; 1036 void *result; 1037 int ret; 1038 1039 dev_pagemap_get_ops(); 1040 1041 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); 1042 if (!devmem) 1043 return ERR_PTR(-ENOMEM); 1044 1045 init_completion(&devmem->completion); 1046 devmem->pfn_first = -1UL; 1047 devmem->pfn_last = -1UL; 1048 devmem->resource = NULL; 1049 devmem->device = device; 1050 devmem->ops = ops; 1051 1052 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1053 0, GFP_KERNEL); 1054 if (ret) 1055 return ERR_PTR(ret); 1056 1057 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref); 1058 if (ret) 1059 return ERR_PTR(ret); 1060 1061 size = ALIGN(size, PA_SECTION_SIZE); 1062 addr = min((unsigned long)iomem_resource.end, 1063 (1UL << MAX_PHYSMEM_BITS) - 1); 1064 addr = addr - size + 1UL; 1065 1066 /* 1067 * FIXME add a new helper to quickly walk resource tree and find free 1068 * range 1069 * 1070 * FIXME what about ioport_resource resource ? 1071 */ 1072 for (; addr > size && addr >= iomem_resource.start; addr -= size) { 1073 ret = region_intersects(addr, size, 0, IORES_DESC_NONE); 1074 if (ret != REGION_DISJOINT) 1075 continue; 1076 1077 devmem->resource = devm_request_mem_region(device, addr, size, 1078 dev_name(device)); 1079 if (!devmem->resource) 1080 return ERR_PTR(-ENOMEM); 1081 break; 1082 } 1083 if (!devmem->resource) 1084 return ERR_PTR(-ERANGE); 1085 1086 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1087 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1088 devmem->pfn_last = devmem->pfn_first + 1089 (resource_size(devmem->resource) >> PAGE_SHIFT); 1090 devmem->page_fault = hmm_devmem_fault; 1091 1092 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; 1093 devmem->pagemap.res = *devmem->resource; 1094 devmem->pagemap.page_free = hmm_devmem_free; 1095 devmem->pagemap.altmap_valid = false; 1096 devmem->pagemap.ref = &devmem->ref; 1097 devmem->pagemap.data = devmem; 1098 devmem->pagemap.kill = hmm_devmem_ref_kill; 1099 1100 result = devm_memremap_pages(devmem->device, &devmem->pagemap); 1101 if (IS_ERR(result)) 1102 return result; 1103 return devmem; 1104 } 1105 EXPORT_SYMBOL_GPL(hmm_devmem_add); 1106 1107 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, 1108 struct device *device, 1109 struct resource *res) 1110 { 1111 struct hmm_devmem *devmem; 1112 void *result; 1113 int ret; 1114 1115 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) 1116 return ERR_PTR(-EINVAL); 1117 1118 dev_pagemap_get_ops(); 1119 1120 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); 1121 if (!devmem) 1122 return ERR_PTR(-ENOMEM); 1123 1124 init_completion(&devmem->completion); 1125 devmem->pfn_first = -1UL; 1126 devmem->pfn_last = -1UL; 1127 devmem->resource = res; 1128 devmem->device = device; 1129 devmem->ops = ops; 1130 1131 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1132 0, GFP_KERNEL); 1133 if (ret) 1134 return ERR_PTR(ret); 1135 1136 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, 1137 &devmem->ref); 1138 if (ret) 1139 return ERR_PTR(ret); 1140 1141 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1142 devmem->pfn_last = devmem->pfn_first + 1143 (resource_size(devmem->resource) >> PAGE_SHIFT); 1144 devmem->page_fault = hmm_devmem_fault; 1145 1146 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; 1147 devmem->pagemap.res = *devmem->resource; 1148 devmem->pagemap.page_free = hmm_devmem_free; 1149 devmem->pagemap.altmap_valid = false; 1150 devmem->pagemap.ref = &devmem->ref; 1151 devmem->pagemap.data = devmem; 1152 devmem->pagemap.kill = hmm_devmem_ref_kill; 1153 1154 result = devm_memremap_pages(devmem->device, &devmem->pagemap); 1155 if (IS_ERR(result)) 1156 return result; 1157 return devmem; 1158 } 1159 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource); 1160 1161 /* 1162 * A device driver that wants to handle multiple devices memory through a 1163 * single fake device can use hmm_device to do so. This is purely a helper 1164 * and it is not needed to make use of any HMM functionality. 1165 */ 1166 #define HMM_DEVICE_MAX 256 1167 1168 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); 1169 static DEFINE_SPINLOCK(hmm_device_lock); 1170 static struct class *hmm_device_class; 1171 static dev_t hmm_device_devt; 1172 1173 static void hmm_device_release(struct device *device) 1174 { 1175 struct hmm_device *hmm_device; 1176 1177 hmm_device = container_of(device, struct hmm_device, device); 1178 spin_lock(&hmm_device_lock); 1179 clear_bit(hmm_device->minor, hmm_device_mask); 1180 spin_unlock(&hmm_device_lock); 1181 1182 kfree(hmm_device); 1183 } 1184 1185 struct hmm_device *hmm_device_new(void *drvdata) 1186 { 1187 struct hmm_device *hmm_device; 1188 1189 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); 1190 if (!hmm_device) 1191 return ERR_PTR(-ENOMEM); 1192 1193 spin_lock(&hmm_device_lock); 1194 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); 1195 if (hmm_device->minor >= HMM_DEVICE_MAX) { 1196 spin_unlock(&hmm_device_lock); 1197 kfree(hmm_device); 1198 return ERR_PTR(-EBUSY); 1199 } 1200 set_bit(hmm_device->minor, hmm_device_mask); 1201 spin_unlock(&hmm_device_lock); 1202 1203 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); 1204 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), 1205 hmm_device->minor); 1206 hmm_device->device.release = hmm_device_release; 1207 dev_set_drvdata(&hmm_device->device, drvdata); 1208 hmm_device->device.class = hmm_device_class; 1209 device_initialize(&hmm_device->device); 1210 1211 return hmm_device; 1212 } 1213 EXPORT_SYMBOL(hmm_device_new); 1214 1215 void hmm_device_put(struct hmm_device *hmm_device) 1216 { 1217 put_device(&hmm_device->device); 1218 } 1219 EXPORT_SYMBOL(hmm_device_put); 1220 1221 static int __init hmm_init(void) 1222 { 1223 int ret; 1224 1225 ret = alloc_chrdev_region(&hmm_device_devt, 0, 1226 HMM_DEVICE_MAX, 1227 "hmm_device"); 1228 if (ret) 1229 return ret; 1230 1231 hmm_device_class = class_create(THIS_MODULE, "hmm_device"); 1232 if (IS_ERR(hmm_device_class)) { 1233 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); 1234 return PTR_ERR(hmm_device_class); 1235 } 1236 return 0; 1237 } 1238 1239 device_initcall(hmm_init); 1240 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 1241