xref: /openbmc/linux/mm/hmm.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 struct hmm_vma_walk {
30 	struct hmm_range	*range;
31 	unsigned long		last;
32 };
33 
34 enum {
35 	HMM_NEED_FAULT = 1 << 0,
36 	HMM_NEED_WRITE_FAULT = 1 << 1,
37 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39 
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41 			 struct hmm_range *range, unsigned long cpu_flags)
42 {
43 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44 
45 	for (; addr < end; addr += PAGE_SIZE, i++)
46 		range->hmm_pfns[i] = cpu_flags;
47 	return 0;
48 }
49 
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62 			 unsigned int required_fault, struct mm_walk *walk)
63 {
64 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
65 	struct vm_area_struct *vma = walk->vma;
66 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
67 
68 	WARN_ON_ONCE(!required_fault);
69 	hmm_vma_walk->last = addr;
70 
71 	if (required_fault & HMM_NEED_WRITE_FAULT) {
72 		if (!(vma->vm_flags & VM_WRITE))
73 			return -EPERM;
74 		fault_flags |= FAULT_FLAG_WRITE;
75 	}
76 
77 	for (; addr < end; addr += PAGE_SIZE)
78 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
79 		    VM_FAULT_ERROR)
80 			return -EFAULT;
81 	return -EBUSY;
82 }
83 
84 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
85 				       unsigned long pfn_req_flags,
86 				       unsigned long cpu_flags)
87 {
88 	struct hmm_range *range = hmm_vma_walk->range;
89 
90 	/*
91 	 * So we not only consider the individual per page request we also
92 	 * consider the default flags requested for the range. The API can
93 	 * be used 2 ways. The first one where the HMM user coalesces
94 	 * multiple page faults into one request and sets flags per pfn for
95 	 * those faults. The second one where the HMM user wants to pre-
96 	 * fault a range with specific flags. For the latter one it is a
97 	 * waste to have the user pre-fill the pfn arrays with a default
98 	 * flags value.
99 	 */
100 	pfn_req_flags &= range->pfn_flags_mask;
101 	pfn_req_flags |= range->default_flags;
102 
103 	/* We aren't ask to do anything ... */
104 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
105 		return 0;
106 
107 	/* Need to write fault ? */
108 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
109 	    !(cpu_flags & HMM_PFN_WRITE))
110 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
111 
112 	/* If CPU page table is not valid then we need to fault */
113 	if (!(cpu_flags & HMM_PFN_VALID))
114 		return HMM_NEED_FAULT;
115 	return 0;
116 }
117 
118 static unsigned int
119 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
120 		     const unsigned long hmm_pfns[], unsigned long npages,
121 		     unsigned long cpu_flags)
122 {
123 	struct hmm_range *range = hmm_vma_walk->range;
124 	unsigned int required_fault = 0;
125 	unsigned long i;
126 
127 	/*
128 	 * If the default flags do not request to fault pages, and the mask does
129 	 * not allow for individual pages to be faulted, then
130 	 * hmm_pte_need_fault() will always return 0.
131 	 */
132 	if (!((range->default_flags | range->pfn_flags_mask) &
133 	      HMM_PFN_REQ_FAULT))
134 		return 0;
135 
136 	for (i = 0; i < npages; ++i) {
137 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
138 						     cpu_flags);
139 		if (required_fault == HMM_NEED_ALL_BITS)
140 			return required_fault;
141 	}
142 	return required_fault;
143 }
144 
145 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
146 			     __always_unused int depth, struct mm_walk *walk)
147 {
148 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
149 	struct hmm_range *range = hmm_vma_walk->range;
150 	unsigned int required_fault;
151 	unsigned long i, npages;
152 	unsigned long *hmm_pfns;
153 
154 	i = (addr - range->start) >> PAGE_SHIFT;
155 	npages = (end - addr) >> PAGE_SHIFT;
156 	hmm_pfns = &range->hmm_pfns[i];
157 	required_fault =
158 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
159 	if (!walk->vma) {
160 		if (required_fault)
161 			return -EFAULT;
162 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
163 	}
164 	if (required_fault)
165 		return hmm_vma_fault(addr, end, required_fault, walk);
166 	return hmm_pfns_fill(addr, end, range, 0);
167 }
168 
169 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
170 {
171 	return order << HMM_PFN_ORDER_SHIFT;
172 }
173 
174 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
175 						 pmd_t pmd)
176 {
177 	if (pmd_protnone(pmd))
178 		return 0;
179 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
180 				 HMM_PFN_VALID) |
181 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
182 }
183 
184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
185 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
186 			      unsigned long end, unsigned long hmm_pfns[],
187 			      pmd_t pmd)
188 {
189 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
190 	struct hmm_range *range = hmm_vma_walk->range;
191 	unsigned long pfn, npages, i;
192 	unsigned int required_fault;
193 	unsigned long cpu_flags;
194 
195 	npages = (end - addr) >> PAGE_SHIFT;
196 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
197 	required_fault =
198 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
199 	if (required_fault)
200 		return hmm_vma_fault(addr, end, required_fault, walk);
201 
202 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
203 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
204 		hmm_pfns[i] = pfn | cpu_flags;
205 	return 0;
206 }
207 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
208 /* stub to allow the code below to compile */
209 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
210 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
211 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
212 
213 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
214 		swp_entry_t entry)
215 {
216 	return is_device_private_entry(entry) &&
217 		device_private_entry_to_page(entry)->pgmap->owner ==
218 		range->dev_private_owner;
219 }
220 
221 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
222 						 pte_t pte)
223 {
224 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
225 		return 0;
226 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
227 }
228 
229 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
230 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
231 			      unsigned long *hmm_pfn)
232 {
233 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
234 	struct hmm_range *range = hmm_vma_walk->range;
235 	unsigned int required_fault;
236 	unsigned long cpu_flags;
237 	pte_t pte = *ptep;
238 	uint64_t pfn_req_flags = *hmm_pfn;
239 
240 	if (pte_none(pte)) {
241 		required_fault =
242 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
243 		if (required_fault)
244 			goto fault;
245 		*hmm_pfn = 0;
246 		return 0;
247 	}
248 
249 	if (!pte_present(pte)) {
250 		swp_entry_t entry = pte_to_swp_entry(pte);
251 
252 		/*
253 		 * Never fault in device private pages, but just report
254 		 * the PFN even if not present.
255 		 */
256 		if (hmm_is_device_private_entry(range, entry)) {
257 			cpu_flags = HMM_PFN_VALID;
258 			if (is_write_device_private_entry(entry))
259 				cpu_flags |= HMM_PFN_WRITE;
260 			*hmm_pfn = device_private_entry_to_pfn(entry) |
261 					cpu_flags;
262 			return 0;
263 		}
264 
265 		required_fault =
266 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
267 		if (!required_fault) {
268 			*hmm_pfn = 0;
269 			return 0;
270 		}
271 
272 		if (!non_swap_entry(entry))
273 			goto fault;
274 
275 		if (is_migration_entry(entry)) {
276 			pte_unmap(ptep);
277 			hmm_vma_walk->last = addr;
278 			migration_entry_wait(walk->mm, pmdp, addr);
279 			return -EBUSY;
280 		}
281 
282 		/* Report error for everything else */
283 		pte_unmap(ptep);
284 		return -EFAULT;
285 	}
286 
287 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
288 	required_fault =
289 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
290 	if (required_fault)
291 		goto fault;
292 
293 	/*
294 	 * Since each architecture defines a struct page for the zero page, just
295 	 * fall through and treat it like a normal page.
296 	 */
297 	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
298 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
299 			pte_unmap(ptep);
300 			return -EFAULT;
301 		}
302 		*hmm_pfn = HMM_PFN_ERROR;
303 		return 0;
304 	}
305 
306 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
307 	return 0;
308 
309 fault:
310 	pte_unmap(ptep);
311 	/* Fault any virtual address we were asked to fault */
312 	return hmm_vma_fault(addr, end, required_fault, walk);
313 }
314 
315 static int hmm_vma_walk_pmd(pmd_t *pmdp,
316 			    unsigned long start,
317 			    unsigned long end,
318 			    struct mm_walk *walk)
319 {
320 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
321 	struct hmm_range *range = hmm_vma_walk->range;
322 	unsigned long *hmm_pfns =
323 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
324 	unsigned long npages = (end - start) >> PAGE_SHIFT;
325 	unsigned long addr = start;
326 	pte_t *ptep;
327 	pmd_t pmd;
328 
329 again:
330 	pmd = READ_ONCE(*pmdp);
331 	if (pmd_none(pmd))
332 		return hmm_vma_walk_hole(start, end, -1, walk);
333 
334 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
335 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
336 			hmm_vma_walk->last = addr;
337 			pmd_migration_entry_wait(walk->mm, pmdp);
338 			return -EBUSY;
339 		}
340 		return hmm_pfns_fill(start, end, range, 0);
341 	}
342 
343 	if (!pmd_present(pmd)) {
344 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
345 			return -EFAULT;
346 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
347 	}
348 
349 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
350 		/*
351 		 * No need to take pmd_lock here, even if some other thread
352 		 * is splitting the huge pmd we will get that event through
353 		 * mmu_notifier callback.
354 		 *
355 		 * So just read pmd value and check again it's a transparent
356 		 * huge or device mapping one and compute corresponding pfn
357 		 * values.
358 		 */
359 		pmd = pmd_read_atomic(pmdp);
360 		barrier();
361 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
362 			goto again;
363 
364 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
365 	}
366 
367 	/*
368 	 * We have handled all the valid cases above ie either none, migration,
369 	 * huge or transparent huge. At this point either it is a valid pmd
370 	 * entry pointing to pte directory or it is a bad pmd that will not
371 	 * recover.
372 	 */
373 	if (pmd_bad(pmd)) {
374 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
375 			return -EFAULT;
376 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
377 	}
378 
379 	ptep = pte_offset_map(pmdp, addr);
380 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
381 		int r;
382 
383 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
384 		if (r) {
385 			/* hmm_vma_handle_pte() did pte_unmap() */
386 			return r;
387 		}
388 	}
389 	pte_unmap(ptep - 1);
390 	return 0;
391 }
392 
393 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
394     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
395 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
396 						 pud_t pud)
397 {
398 	if (!pud_present(pud))
399 		return 0;
400 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
401 				 HMM_PFN_VALID) |
402 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
403 }
404 
405 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
406 		struct mm_walk *walk)
407 {
408 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
409 	struct hmm_range *range = hmm_vma_walk->range;
410 	unsigned long addr = start;
411 	pud_t pud;
412 	int ret = 0;
413 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
414 
415 	if (!ptl)
416 		return 0;
417 
418 	/* Normally we don't want to split the huge page */
419 	walk->action = ACTION_CONTINUE;
420 
421 	pud = READ_ONCE(*pudp);
422 	if (pud_none(pud)) {
423 		spin_unlock(ptl);
424 		return hmm_vma_walk_hole(start, end, -1, walk);
425 	}
426 
427 	if (pud_huge(pud) && pud_devmap(pud)) {
428 		unsigned long i, npages, pfn;
429 		unsigned int required_fault;
430 		unsigned long *hmm_pfns;
431 		unsigned long cpu_flags;
432 
433 		if (!pud_present(pud)) {
434 			spin_unlock(ptl);
435 			return hmm_vma_walk_hole(start, end, -1, walk);
436 		}
437 
438 		i = (addr - range->start) >> PAGE_SHIFT;
439 		npages = (end - addr) >> PAGE_SHIFT;
440 		hmm_pfns = &range->hmm_pfns[i];
441 
442 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
443 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
444 						      npages, cpu_flags);
445 		if (required_fault) {
446 			spin_unlock(ptl);
447 			return hmm_vma_fault(addr, end, required_fault, walk);
448 		}
449 
450 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
451 		for (i = 0; i < npages; ++i, ++pfn)
452 			hmm_pfns[i] = pfn | cpu_flags;
453 		goto out_unlock;
454 	}
455 
456 	/* Ask for the PUD to be split */
457 	walk->action = ACTION_SUBTREE;
458 
459 out_unlock:
460 	spin_unlock(ptl);
461 	return ret;
462 }
463 #else
464 #define hmm_vma_walk_pud	NULL
465 #endif
466 
467 #ifdef CONFIG_HUGETLB_PAGE
468 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
469 				      unsigned long start, unsigned long end,
470 				      struct mm_walk *walk)
471 {
472 	unsigned long addr = start, i, pfn;
473 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
474 	struct hmm_range *range = hmm_vma_walk->range;
475 	struct vm_area_struct *vma = walk->vma;
476 	unsigned int required_fault;
477 	unsigned long pfn_req_flags;
478 	unsigned long cpu_flags;
479 	spinlock_t *ptl;
480 	pte_t entry;
481 
482 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
483 	entry = huge_ptep_get(pte);
484 
485 	i = (start - range->start) >> PAGE_SHIFT;
486 	pfn_req_flags = range->hmm_pfns[i];
487 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
488 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
489 	required_fault =
490 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
491 	if (required_fault) {
492 		spin_unlock(ptl);
493 		return hmm_vma_fault(addr, end, required_fault, walk);
494 	}
495 
496 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
497 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
498 		range->hmm_pfns[i] = pfn | cpu_flags;
499 
500 	spin_unlock(ptl);
501 	return 0;
502 }
503 #else
504 #define hmm_vma_walk_hugetlb_entry NULL
505 #endif /* CONFIG_HUGETLB_PAGE */
506 
507 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
508 			     struct mm_walk *walk)
509 {
510 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
511 	struct hmm_range *range = hmm_vma_walk->range;
512 	struct vm_area_struct *vma = walk->vma;
513 
514 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
515 	    vma->vm_flags & VM_READ)
516 		return 0;
517 
518 	/*
519 	 * vma ranges that don't have struct page backing them or map I/O
520 	 * devices directly cannot be handled by hmm_range_fault().
521 	 *
522 	 * If the vma does not allow read access, then assume that it does not
523 	 * allow write access either. HMM does not support architectures that
524 	 * allow write without read.
525 	 *
526 	 * If a fault is requested for an unsupported range then it is a hard
527 	 * failure.
528 	 */
529 	if (hmm_range_need_fault(hmm_vma_walk,
530 				 range->hmm_pfns +
531 					 ((start - range->start) >> PAGE_SHIFT),
532 				 (end - start) >> PAGE_SHIFT, 0))
533 		return -EFAULT;
534 
535 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
536 
537 	/* Skip this vma and continue processing the next vma. */
538 	return 1;
539 }
540 
541 static const struct mm_walk_ops hmm_walk_ops = {
542 	.pud_entry	= hmm_vma_walk_pud,
543 	.pmd_entry	= hmm_vma_walk_pmd,
544 	.pte_hole	= hmm_vma_walk_hole,
545 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
546 	.test_walk	= hmm_vma_walk_test,
547 };
548 
549 /**
550  * hmm_range_fault - try to fault some address in a virtual address range
551  * @range:	argument structure
552  *
553  * Returns 0 on success or one of the following error codes:
554  *
555  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
556  *		(e.g., device file vma).
557  * -ENOMEM:	Out of memory.
558  * -EPERM:	Invalid permission (e.g., asking for write and range is read
559  *		only).
560  * -EBUSY:	The range has been invalidated and the caller needs to wait for
561  *		the invalidation to finish.
562  * -EFAULT:     A page was requested to be valid and could not be made valid
563  *              ie it has no backing VMA or it is illegal to access
564  *
565  * This is similar to get_user_pages(), except that it can read the page tables
566  * without mutating them (ie causing faults).
567  */
568 int hmm_range_fault(struct hmm_range *range)
569 {
570 	struct hmm_vma_walk hmm_vma_walk = {
571 		.range = range,
572 		.last = range->start,
573 	};
574 	struct mm_struct *mm = range->notifier->mm;
575 	int ret;
576 
577 	mmap_assert_locked(mm);
578 
579 	do {
580 		/* If range is no longer valid force retry. */
581 		if (mmu_interval_check_retry(range->notifier,
582 					     range->notifier_seq))
583 			return -EBUSY;
584 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
585 				      &hmm_walk_ops, &hmm_vma_walk);
586 		/*
587 		 * When -EBUSY is returned the loop restarts with
588 		 * hmm_vma_walk.last set to an address that has not been stored
589 		 * in pfns. All entries < last in the pfn array are set to their
590 		 * output, and all >= are still at their input values.
591 		 */
592 	} while (ret == -EBUSY);
593 	return ret;
594 }
595 EXPORT_SYMBOL(hmm_range_fault);
596