1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * Authors: Jérôme Glisse <jglisse@redhat.com> 15 */ 16 /* 17 * Refer to include/linux/hmm.h for information about heterogeneous memory 18 * management or HMM for short. 19 */ 20 #include <linux/mm.h> 21 #include <linux/hmm.h> 22 #include <linux/init.h> 23 #include <linux/rmap.h> 24 #include <linux/swap.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/mmzone.h> 28 #include <linux/pagemap.h> 29 #include <linux/swapops.h> 30 #include <linux/hugetlb.h> 31 #include <linux/memremap.h> 32 #include <linux/jump_label.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/memory_hotplug.h> 35 36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) 37 38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC) 39 /* 40 * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h 41 */ 42 DEFINE_STATIC_KEY_FALSE(device_private_key); 43 EXPORT_SYMBOL(device_private_key); 44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 45 46 47 #if IS_ENABLED(CONFIG_HMM_MIRROR) 48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops; 49 50 /* 51 * struct hmm - HMM per mm struct 52 * 53 * @mm: mm struct this HMM struct is bound to 54 * @lock: lock protecting ranges list 55 * @sequence: we track updates to the CPU page table with a sequence number 56 * @ranges: list of range being snapshotted 57 * @mirrors: list of mirrors for this mm 58 * @mmu_notifier: mmu notifier to track updates to CPU page table 59 * @mirrors_sem: read/write semaphore protecting the mirrors list 60 */ 61 struct hmm { 62 struct mm_struct *mm; 63 spinlock_t lock; 64 atomic_t sequence; 65 struct list_head ranges; 66 struct list_head mirrors; 67 struct mmu_notifier mmu_notifier; 68 struct rw_semaphore mirrors_sem; 69 }; 70 71 /* 72 * hmm_register - register HMM against an mm (HMM internal) 73 * 74 * @mm: mm struct to attach to 75 * 76 * This is not intended to be used directly by device drivers. It allocates an 77 * HMM struct if mm does not have one, and initializes it. 78 */ 79 static struct hmm *hmm_register(struct mm_struct *mm) 80 { 81 struct hmm *hmm = READ_ONCE(mm->hmm); 82 bool cleanup = false; 83 84 /* 85 * The hmm struct can only be freed once the mm_struct goes away, 86 * hence we should always have pre-allocated an new hmm struct 87 * above. 88 */ 89 if (hmm) 90 return hmm; 91 92 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); 93 if (!hmm) 94 return NULL; 95 INIT_LIST_HEAD(&hmm->mirrors); 96 init_rwsem(&hmm->mirrors_sem); 97 atomic_set(&hmm->sequence, 0); 98 hmm->mmu_notifier.ops = NULL; 99 INIT_LIST_HEAD(&hmm->ranges); 100 spin_lock_init(&hmm->lock); 101 hmm->mm = mm; 102 103 /* 104 * We should only get here if hold the mmap_sem in write mode ie on 105 * registration of first mirror through hmm_mirror_register() 106 */ 107 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; 108 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) { 109 kfree(hmm); 110 return NULL; 111 } 112 113 spin_lock(&mm->page_table_lock); 114 if (!mm->hmm) 115 mm->hmm = hmm; 116 else 117 cleanup = true; 118 spin_unlock(&mm->page_table_lock); 119 120 if (cleanup) { 121 mmu_notifier_unregister(&hmm->mmu_notifier, mm); 122 kfree(hmm); 123 } 124 125 return mm->hmm; 126 } 127 128 void hmm_mm_destroy(struct mm_struct *mm) 129 { 130 kfree(mm->hmm); 131 } 132 133 static void hmm_invalidate_range(struct hmm *hmm, 134 enum hmm_update_type action, 135 unsigned long start, 136 unsigned long end) 137 { 138 struct hmm_mirror *mirror; 139 struct hmm_range *range; 140 141 spin_lock(&hmm->lock); 142 list_for_each_entry(range, &hmm->ranges, list) { 143 unsigned long addr, idx, npages; 144 145 if (end < range->start || start >= range->end) 146 continue; 147 148 range->valid = false; 149 addr = max(start, range->start); 150 idx = (addr - range->start) >> PAGE_SHIFT; 151 npages = (min(range->end, end) - addr) >> PAGE_SHIFT; 152 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages); 153 } 154 spin_unlock(&hmm->lock); 155 156 down_read(&hmm->mirrors_sem); 157 list_for_each_entry(mirror, &hmm->mirrors, list) 158 mirror->ops->sync_cpu_device_pagetables(mirror, action, 159 start, end); 160 up_read(&hmm->mirrors_sem); 161 } 162 163 static void hmm_invalidate_range_start(struct mmu_notifier *mn, 164 struct mm_struct *mm, 165 unsigned long start, 166 unsigned long end) 167 { 168 struct hmm *hmm = mm->hmm; 169 170 VM_BUG_ON(!hmm); 171 172 atomic_inc(&hmm->sequence); 173 } 174 175 static void hmm_invalidate_range_end(struct mmu_notifier *mn, 176 struct mm_struct *mm, 177 unsigned long start, 178 unsigned long end) 179 { 180 struct hmm *hmm = mm->hmm; 181 182 VM_BUG_ON(!hmm); 183 184 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end); 185 } 186 187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { 188 .invalidate_range_start = hmm_invalidate_range_start, 189 .invalidate_range_end = hmm_invalidate_range_end, 190 }; 191 192 /* 193 * hmm_mirror_register() - register a mirror against an mm 194 * 195 * @mirror: new mirror struct to register 196 * @mm: mm to register against 197 * 198 * To start mirroring a process address space, the device driver must register 199 * an HMM mirror struct. 200 * 201 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! 202 */ 203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) 204 { 205 /* Sanity check */ 206 if (!mm || !mirror || !mirror->ops) 207 return -EINVAL; 208 209 mirror->hmm = hmm_register(mm); 210 if (!mirror->hmm) 211 return -ENOMEM; 212 213 down_write(&mirror->hmm->mirrors_sem); 214 list_add(&mirror->list, &mirror->hmm->mirrors); 215 up_write(&mirror->hmm->mirrors_sem); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(hmm_mirror_register); 220 221 /* 222 * hmm_mirror_unregister() - unregister a mirror 223 * 224 * @mirror: new mirror struct to register 225 * 226 * Stop mirroring a process address space, and cleanup. 227 */ 228 void hmm_mirror_unregister(struct hmm_mirror *mirror) 229 { 230 struct hmm *hmm = mirror->hmm; 231 232 down_write(&hmm->mirrors_sem); 233 list_del(&mirror->list); 234 up_write(&hmm->mirrors_sem); 235 } 236 EXPORT_SYMBOL(hmm_mirror_unregister); 237 238 struct hmm_vma_walk { 239 struct hmm_range *range; 240 unsigned long last; 241 bool fault; 242 bool block; 243 bool write; 244 }; 245 246 static int hmm_vma_do_fault(struct mm_walk *walk, 247 unsigned long addr, 248 hmm_pfn_t *pfn) 249 { 250 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE; 251 struct hmm_vma_walk *hmm_vma_walk = walk->private; 252 struct vm_area_struct *vma = walk->vma; 253 int r; 254 255 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; 256 flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0; 257 r = handle_mm_fault(vma, addr, flags); 258 if (r & VM_FAULT_RETRY) 259 return -EBUSY; 260 if (r & VM_FAULT_ERROR) { 261 *pfn = HMM_PFN_ERROR; 262 return -EFAULT; 263 } 264 265 return -EAGAIN; 266 } 267 268 static void hmm_pfns_special(hmm_pfn_t *pfns, 269 unsigned long addr, 270 unsigned long end) 271 { 272 for (; addr < end; addr += PAGE_SIZE, pfns++) 273 *pfns = HMM_PFN_SPECIAL; 274 } 275 276 static int hmm_pfns_bad(unsigned long addr, 277 unsigned long end, 278 struct mm_walk *walk) 279 { 280 struct hmm_range *range = walk->private; 281 hmm_pfn_t *pfns = range->pfns; 282 unsigned long i; 283 284 i = (addr - range->start) >> PAGE_SHIFT; 285 for (; addr < end; addr += PAGE_SIZE, i++) 286 pfns[i] = HMM_PFN_ERROR; 287 288 return 0; 289 } 290 291 static void hmm_pfns_clear(hmm_pfn_t *pfns, 292 unsigned long addr, 293 unsigned long end) 294 { 295 for (; addr < end; addr += PAGE_SIZE, pfns++) 296 *pfns = 0; 297 } 298 299 static int hmm_vma_walk_hole(unsigned long addr, 300 unsigned long end, 301 struct mm_walk *walk) 302 { 303 struct hmm_vma_walk *hmm_vma_walk = walk->private; 304 struct hmm_range *range = hmm_vma_walk->range; 305 hmm_pfn_t *pfns = range->pfns; 306 unsigned long i; 307 308 hmm_vma_walk->last = addr; 309 i = (addr - range->start) >> PAGE_SHIFT; 310 for (; addr < end; addr += PAGE_SIZE, i++) { 311 pfns[i] = HMM_PFN_EMPTY; 312 if (hmm_vma_walk->fault) { 313 int ret; 314 315 ret = hmm_vma_do_fault(walk, addr, &pfns[i]); 316 if (ret != -EAGAIN) 317 return ret; 318 } 319 } 320 321 return hmm_vma_walk->fault ? -EAGAIN : 0; 322 } 323 324 static int hmm_vma_walk_clear(unsigned long addr, 325 unsigned long end, 326 struct mm_walk *walk) 327 { 328 struct hmm_vma_walk *hmm_vma_walk = walk->private; 329 struct hmm_range *range = hmm_vma_walk->range; 330 hmm_pfn_t *pfns = range->pfns; 331 unsigned long i; 332 333 hmm_vma_walk->last = addr; 334 i = (addr - range->start) >> PAGE_SHIFT; 335 for (; addr < end; addr += PAGE_SIZE, i++) { 336 pfns[i] = 0; 337 if (hmm_vma_walk->fault) { 338 int ret; 339 340 ret = hmm_vma_do_fault(walk, addr, &pfns[i]); 341 if (ret != -EAGAIN) 342 return ret; 343 } 344 } 345 346 return hmm_vma_walk->fault ? -EAGAIN : 0; 347 } 348 349 static int hmm_vma_walk_pmd(pmd_t *pmdp, 350 unsigned long start, 351 unsigned long end, 352 struct mm_walk *walk) 353 { 354 struct hmm_vma_walk *hmm_vma_walk = walk->private; 355 struct hmm_range *range = hmm_vma_walk->range; 356 struct vm_area_struct *vma = walk->vma; 357 hmm_pfn_t *pfns = range->pfns; 358 unsigned long addr = start, i; 359 bool write_fault; 360 hmm_pfn_t flag; 361 pte_t *ptep; 362 363 i = (addr - range->start) >> PAGE_SHIFT; 364 flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0; 365 write_fault = hmm_vma_walk->fault & hmm_vma_walk->write; 366 367 again: 368 if (pmd_none(*pmdp)) 369 return hmm_vma_walk_hole(start, end, walk); 370 371 if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB) 372 return hmm_pfns_bad(start, end, walk); 373 374 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) { 375 unsigned long pfn; 376 pmd_t pmd; 377 378 /* 379 * No need to take pmd_lock here, even if some other threads 380 * is splitting the huge pmd we will get that event through 381 * mmu_notifier callback. 382 * 383 * So just read pmd value and check again its a transparent 384 * huge or device mapping one and compute corresponding pfn 385 * values. 386 */ 387 pmd = pmd_read_atomic(pmdp); 388 barrier(); 389 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 390 goto again; 391 if (pmd_protnone(pmd)) 392 return hmm_vma_walk_clear(start, end, walk); 393 394 if (write_fault && !pmd_write(pmd)) 395 return hmm_vma_walk_clear(start, end, walk); 396 397 pfn = pmd_pfn(pmd) + pte_index(addr); 398 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0; 399 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) 400 pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag; 401 return 0; 402 } 403 404 if (pmd_bad(*pmdp)) 405 return hmm_pfns_bad(start, end, walk); 406 407 ptep = pte_offset_map(pmdp, addr); 408 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { 409 pte_t pte = *ptep; 410 411 pfns[i] = 0; 412 413 if (pte_none(pte)) { 414 pfns[i] = HMM_PFN_EMPTY; 415 if (hmm_vma_walk->fault) 416 goto fault; 417 continue; 418 } 419 420 if (!pte_present(pte)) { 421 swp_entry_t entry; 422 423 if (!non_swap_entry(entry)) { 424 if (hmm_vma_walk->fault) 425 goto fault; 426 continue; 427 } 428 429 entry = pte_to_swp_entry(pte); 430 431 /* 432 * This is a special swap entry, ignore migration, use 433 * device and report anything else as error. 434 */ 435 if (is_device_private_entry(entry)) { 436 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry)); 437 if (is_write_device_private_entry(entry)) { 438 pfns[i] |= HMM_PFN_WRITE; 439 } else if (write_fault) 440 goto fault; 441 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE; 442 pfns[i] |= flag; 443 } else if (is_migration_entry(entry)) { 444 if (hmm_vma_walk->fault) { 445 pte_unmap(ptep); 446 hmm_vma_walk->last = addr; 447 migration_entry_wait(vma->vm_mm, 448 pmdp, addr); 449 return -EAGAIN; 450 } 451 continue; 452 } else { 453 /* Report error for everything else */ 454 pfns[i] = HMM_PFN_ERROR; 455 } 456 continue; 457 } 458 459 if (write_fault && !pte_write(pte)) 460 goto fault; 461 462 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag; 463 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0; 464 continue; 465 466 fault: 467 pte_unmap(ptep); 468 /* Fault all pages in range */ 469 return hmm_vma_walk_clear(start, end, walk); 470 } 471 pte_unmap(ptep - 1); 472 473 return 0; 474 } 475 476 /* 477 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses 478 * @vma: virtual memory area containing the virtual address range 479 * @range: used to track snapshot validity 480 * @start: range virtual start address (inclusive) 481 * @end: range virtual end address (exclusive) 482 * @entries: array of hmm_pfn_t: provided by the caller, filled in by function 483 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success 484 * 485 * This snapshots the CPU page table for a range of virtual addresses. Snapshot 486 * validity is tracked by range struct. See hmm_vma_range_done() for further 487 * information. 488 * 489 * The range struct is initialized here. It tracks the CPU page table, but only 490 * if the function returns success (0), in which case the caller must then call 491 * hmm_vma_range_done() to stop CPU page table update tracking on this range. 492 * 493 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS 494 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED ! 495 */ 496 int hmm_vma_get_pfns(struct vm_area_struct *vma, 497 struct hmm_range *range, 498 unsigned long start, 499 unsigned long end, 500 hmm_pfn_t *pfns) 501 { 502 struct hmm_vma_walk hmm_vma_walk; 503 struct mm_walk mm_walk; 504 struct hmm *hmm; 505 506 /* FIXME support hugetlb fs */ 507 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) { 508 hmm_pfns_special(pfns, start, end); 509 return -EINVAL; 510 } 511 512 /* Sanity check, this really should not happen ! */ 513 if (start < vma->vm_start || start >= vma->vm_end) 514 return -EINVAL; 515 if (end < vma->vm_start || end > vma->vm_end) 516 return -EINVAL; 517 518 hmm = hmm_register(vma->vm_mm); 519 if (!hmm) 520 return -ENOMEM; 521 /* Caller must have registered a mirror, via hmm_mirror_register() ! */ 522 if (!hmm->mmu_notifier.ops) 523 return -EINVAL; 524 525 /* Initialize range to track CPU page table update */ 526 range->start = start; 527 range->pfns = pfns; 528 range->end = end; 529 spin_lock(&hmm->lock); 530 range->valid = true; 531 list_add_rcu(&range->list, &hmm->ranges); 532 spin_unlock(&hmm->lock); 533 534 hmm_vma_walk.fault = false; 535 hmm_vma_walk.range = range; 536 mm_walk.private = &hmm_vma_walk; 537 538 mm_walk.vma = vma; 539 mm_walk.mm = vma->vm_mm; 540 mm_walk.pte_entry = NULL; 541 mm_walk.test_walk = NULL; 542 mm_walk.hugetlb_entry = NULL; 543 mm_walk.pmd_entry = hmm_vma_walk_pmd; 544 mm_walk.pte_hole = hmm_vma_walk_hole; 545 546 walk_page_range(start, end, &mm_walk); 547 return 0; 548 } 549 EXPORT_SYMBOL(hmm_vma_get_pfns); 550 551 /* 552 * hmm_vma_range_done() - stop tracking change to CPU page table over a range 553 * @vma: virtual memory area containing the virtual address range 554 * @range: range being tracked 555 * Returns: false if range data has been invalidated, true otherwise 556 * 557 * Range struct is used to track updates to the CPU page table after a call to 558 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done 559 * using the data, or wants to lock updates to the data it got from those 560 * functions, it must call the hmm_vma_range_done() function, which will then 561 * stop tracking CPU page table updates. 562 * 563 * Note that device driver must still implement general CPU page table update 564 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using 565 * the mmu_notifier API directly. 566 * 567 * CPU page table update tracking done through hmm_range is only temporary and 568 * to be used while trying to duplicate CPU page table contents for a range of 569 * virtual addresses. 570 * 571 * There are two ways to use this : 572 * again: 573 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...); 574 * trans = device_build_page_table_update_transaction(pfns); 575 * device_page_table_lock(); 576 * if (!hmm_vma_range_done(vma, range)) { 577 * device_page_table_unlock(); 578 * goto again; 579 * } 580 * device_commit_transaction(trans); 581 * device_page_table_unlock(); 582 * 583 * Or: 584 * hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...); 585 * device_page_table_lock(); 586 * hmm_vma_range_done(vma, range); 587 * device_update_page_table(pfns); 588 * device_page_table_unlock(); 589 */ 590 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range) 591 { 592 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT; 593 struct hmm *hmm; 594 595 if (range->end <= range->start) { 596 BUG(); 597 return false; 598 } 599 600 hmm = hmm_register(vma->vm_mm); 601 if (!hmm) { 602 memset(range->pfns, 0, sizeof(*range->pfns) * npages); 603 return false; 604 } 605 606 spin_lock(&hmm->lock); 607 list_del_rcu(&range->list); 608 spin_unlock(&hmm->lock); 609 610 return range->valid; 611 } 612 EXPORT_SYMBOL(hmm_vma_range_done); 613 614 /* 615 * hmm_vma_fault() - try to fault some address in a virtual address range 616 * @vma: virtual memory area containing the virtual address range 617 * @range: use to track pfns array content validity 618 * @start: fault range virtual start address (inclusive) 619 * @end: fault range virtual end address (exclusive) 620 * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted 621 * @write: is it a write fault 622 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) 623 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop) 624 * 625 * This is similar to a regular CPU page fault except that it will not trigger 626 * any memory migration if the memory being faulted is not accessible by CPUs. 627 * 628 * On error, for one virtual address in the range, the function will set the 629 * hmm_pfn_t error flag for the corresponding pfn entry. 630 * 631 * Expected use pattern: 632 * retry: 633 * down_read(&mm->mmap_sem); 634 * // Find vma and address device wants to fault, initialize hmm_pfn_t 635 * // array accordingly 636 * ret = hmm_vma_fault(vma, start, end, pfns, allow_retry); 637 * switch (ret) { 638 * case -EAGAIN: 639 * hmm_vma_range_done(vma, range); 640 * // You might want to rate limit or yield to play nicely, you may 641 * // also commit any valid pfn in the array assuming that you are 642 * // getting true from hmm_vma_range_monitor_end() 643 * goto retry; 644 * case 0: 645 * break; 646 * default: 647 * // Handle error ! 648 * up_read(&mm->mmap_sem) 649 * return; 650 * } 651 * // Take device driver lock that serialize device page table update 652 * driver_lock_device_page_table_update(); 653 * hmm_vma_range_done(vma, range); 654 * // Commit pfns we got from hmm_vma_fault() 655 * driver_unlock_device_page_table_update(); 656 * up_read(&mm->mmap_sem) 657 * 658 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0) 659 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION ! 660 * 661 * YOU HAVE BEEN WARNED ! 662 */ 663 int hmm_vma_fault(struct vm_area_struct *vma, 664 struct hmm_range *range, 665 unsigned long start, 666 unsigned long end, 667 hmm_pfn_t *pfns, 668 bool write, 669 bool block) 670 { 671 struct hmm_vma_walk hmm_vma_walk; 672 struct mm_walk mm_walk; 673 struct hmm *hmm; 674 int ret; 675 676 /* Sanity check, this really should not happen ! */ 677 if (start < vma->vm_start || start >= vma->vm_end) 678 return -EINVAL; 679 if (end < vma->vm_start || end > vma->vm_end) 680 return -EINVAL; 681 682 hmm = hmm_register(vma->vm_mm); 683 if (!hmm) { 684 hmm_pfns_clear(pfns, start, end); 685 return -ENOMEM; 686 } 687 /* Caller must have registered a mirror using hmm_mirror_register() */ 688 if (!hmm->mmu_notifier.ops) 689 return -EINVAL; 690 691 /* Initialize range to track CPU page table update */ 692 range->start = start; 693 range->pfns = pfns; 694 range->end = end; 695 spin_lock(&hmm->lock); 696 range->valid = true; 697 list_add_rcu(&range->list, &hmm->ranges); 698 spin_unlock(&hmm->lock); 699 700 /* FIXME support hugetlb fs */ 701 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) { 702 hmm_pfns_special(pfns, start, end); 703 return 0; 704 } 705 706 hmm_vma_walk.fault = true; 707 hmm_vma_walk.write = write; 708 hmm_vma_walk.block = block; 709 hmm_vma_walk.range = range; 710 mm_walk.private = &hmm_vma_walk; 711 hmm_vma_walk.last = range->start; 712 713 mm_walk.vma = vma; 714 mm_walk.mm = vma->vm_mm; 715 mm_walk.pte_entry = NULL; 716 mm_walk.test_walk = NULL; 717 mm_walk.hugetlb_entry = NULL; 718 mm_walk.pmd_entry = hmm_vma_walk_pmd; 719 mm_walk.pte_hole = hmm_vma_walk_hole; 720 721 do { 722 ret = walk_page_range(start, end, &mm_walk); 723 start = hmm_vma_walk.last; 724 } while (ret == -EAGAIN); 725 726 if (ret) { 727 unsigned long i; 728 729 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 730 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end); 731 hmm_vma_range_done(vma, range); 732 } 733 return ret; 734 } 735 EXPORT_SYMBOL(hmm_vma_fault); 736 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 737 738 739 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) 740 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, 741 unsigned long addr) 742 { 743 struct page *page; 744 745 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 746 if (!page) 747 return NULL; 748 lock_page(page); 749 return page; 750 } 751 EXPORT_SYMBOL(hmm_vma_alloc_locked_page); 752 753 754 static void hmm_devmem_ref_release(struct percpu_ref *ref) 755 { 756 struct hmm_devmem *devmem; 757 758 devmem = container_of(ref, struct hmm_devmem, ref); 759 complete(&devmem->completion); 760 } 761 762 static void hmm_devmem_ref_exit(void *data) 763 { 764 struct percpu_ref *ref = data; 765 struct hmm_devmem *devmem; 766 767 devmem = container_of(ref, struct hmm_devmem, ref); 768 percpu_ref_exit(ref); 769 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data); 770 } 771 772 static void hmm_devmem_ref_kill(void *data) 773 { 774 struct percpu_ref *ref = data; 775 struct hmm_devmem *devmem; 776 777 devmem = container_of(ref, struct hmm_devmem, ref); 778 percpu_ref_kill(ref); 779 wait_for_completion(&devmem->completion); 780 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data); 781 } 782 783 static int hmm_devmem_fault(struct vm_area_struct *vma, 784 unsigned long addr, 785 const struct page *page, 786 unsigned int flags, 787 pmd_t *pmdp) 788 { 789 struct hmm_devmem *devmem = page->pgmap->data; 790 791 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); 792 } 793 794 static void hmm_devmem_free(struct page *page, void *data) 795 { 796 struct hmm_devmem *devmem = data; 797 798 devmem->ops->free(devmem, page); 799 } 800 801 static DEFINE_MUTEX(hmm_devmem_lock); 802 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL); 803 804 static void hmm_devmem_radix_release(struct resource *resource) 805 { 806 resource_size_t key, align_start, align_size, align_end; 807 808 align_start = resource->start & ~(PA_SECTION_SIZE - 1); 809 align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE); 810 align_end = align_start + align_size - 1; 811 812 mutex_lock(&hmm_devmem_lock); 813 for (key = resource->start; 814 key <= resource->end; 815 key += PA_SECTION_SIZE) 816 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT); 817 mutex_unlock(&hmm_devmem_lock); 818 } 819 820 static void hmm_devmem_release(struct device *dev, void *data) 821 { 822 struct hmm_devmem *devmem = data; 823 struct resource *resource = devmem->resource; 824 unsigned long start_pfn, npages; 825 struct zone *zone; 826 struct page *page; 827 828 if (percpu_ref_tryget_live(&devmem->ref)) { 829 dev_WARN(dev, "%s: page mapping is still live!\n", __func__); 830 percpu_ref_put(&devmem->ref); 831 } 832 833 /* pages are dead and unused, undo the arch mapping */ 834 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT; 835 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT; 836 837 page = pfn_to_page(start_pfn); 838 zone = page_zone(page); 839 840 mem_hotplug_begin(); 841 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) 842 __remove_pages(zone, start_pfn, npages); 843 else 844 arch_remove_memory(start_pfn << PAGE_SHIFT, 845 npages << PAGE_SHIFT); 846 mem_hotplug_done(); 847 848 hmm_devmem_radix_release(resource); 849 } 850 851 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys) 852 { 853 WARN_ON_ONCE(!rcu_read_lock_held()); 854 855 return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT); 856 } 857 858 static int hmm_devmem_pages_create(struct hmm_devmem *devmem) 859 { 860 resource_size_t key, align_start, align_size, align_end; 861 struct device *device = devmem->device; 862 int ret, nid, is_ram; 863 unsigned long pfn; 864 865 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1); 866 align_size = ALIGN(devmem->resource->start + 867 resource_size(devmem->resource), 868 PA_SECTION_SIZE) - align_start; 869 870 is_ram = region_intersects(align_start, align_size, 871 IORESOURCE_SYSTEM_RAM, 872 IORES_DESC_NONE); 873 if (is_ram == REGION_MIXED) { 874 WARN_ONCE(1, "%s attempted on mixed region %pr\n", 875 __func__, devmem->resource); 876 return -ENXIO; 877 } 878 if (is_ram == REGION_INTERSECTS) 879 return -ENXIO; 880 881 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY) 882 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; 883 else 884 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; 885 886 devmem->pagemap.res = devmem->resource; 887 devmem->pagemap.page_fault = hmm_devmem_fault; 888 devmem->pagemap.page_free = hmm_devmem_free; 889 devmem->pagemap.dev = devmem->device; 890 devmem->pagemap.ref = &devmem->ref; 891 devmem->pagemap.data = devmem; 892 893 mutex_lock(&hmm_devmem_lock); 894 align_end = align_start + align_size - 1; 895 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) { 896 struct hmm_devmem *dup; 897 898 rcu_read_lock(); 899 dup = hmm_devmem_find(key); 900 rcu_read_unlock(); 901 if (dup) { 902 dev_err(device, "%s: collides with mapping for %s\n", 903 __func__, dev_name(dup->device)); 904 mutex_unlock(&hmm_devmem_lock); 905 ret = -EBUSY; 906 goto error; 907 } 908 ret = radix_tree_insert(&hmm_devmem_radix, 909 key >> PA_SECTION_SHIFT, 910 devmem); 911 if (ret) { 912 dev_err(device, "%s: failed: %d\n", __func__, ret); 913 mutex_unlock(&hmm_devmem_lock); 914 goto error_radix; 915 } 916 } 917 mutex_unlock(&hmm_devmem_lock); 918 919 nid = dev_to_node(device); 920 if (nid < 0) 921 nid = numa_mem_id(); 922 923 mem_hotplug_begin(); 924 /* 925 * For device private memory we call add_pages() as we only need to 926 * allocate and initialize struct page for the device memory. More- 927 * over the device memory is un-accessible thus we do not want to 928 * create a linear mapping for the memory like arch_add_memory() 929 * would do. 930 * 931 * For device public memory, which is accesible by the CPU, we do 932 * want the linear mapping and thus use arch_add_memory(). 933 */ 934 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC) 935 ret = arch_add_memory(nid, align_start, align_size, false); 936 else 937 ret = add_pages(nid, align_start >> PAGE_SHIFT, 938 align_size >> PAGE_SHIFT, false); 939 if (ret) { 940 mem_hotplug_done(); 941 goto error_add_memory; 942 } 943 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 944 align_start >> PAGE_SHIFT, 945 align_size >> PAGE_SHIFT); 946 mem_hotplug_done(); 947 948 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) { 949 struct page *page = pfn_to_page(pfn); 950 951 page->pgmap = &devmem->pagemap; 952 } 953 return 0; 954 955 error_add_memory: 956 untrack_pfn(NULL, PHYS_PFN(align_start), align_size); 957 error_radix: 958 hmm_devmem_radix_release(devmem->resource); 959 error: 960 return ret; 961 } 962 963 static int hmm_devmem_match(struct device *dev, void *data, void *match_data) 964 { 965 struct hmm_devmem *devmem = data; 966 967 return devmem->resource == match_data; 968 } 969 970 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem) 971 { 972 devres_release(devmem->device, &hmm_devmem_release, 973 &hmm_devmem_match, devmem->resource); 974 } 975 976 /* 977 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory 978 * 979 * @ops: memory event device driver callback (see struct hmm_devmem_ops) 980 * @device: device struct to bind the resource too 981 * @size: size in bytes of the device memory to add 982 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise 983 * 984 * This function first finds an empty range of physical address big enough to 985 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which 986 * in turn allocates struct pages. It does not do anything beyond that; all 987 * events affecting the memory will go through the various callbacks provided 988 * by hmm_devmem_ops struct. 989 * 990 * Device driver should call this function during device initialization and 991 * is then responsible of memory management. HMM only provides helpers. 992 */ 993 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, 994 struct device *device, 995 unsigned long size) 996 { 997 struct hmm_devmem *devmem; 998 resource_size_t addr; 999 int ret; 1000 1001 static_branch_enable(&device_private_key); 1002 1003 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), 1004 GFP_KERNEL, dev_to_node(device)); 1005 if (!devmem) 1006 return ERR_PTR(-ENOMEM); 1007 1008 init_completion(&devmem->completion); 1009 devmem->pfn_first = -1UL; 1010 devmem->pfn_last = -1UL; 1011 devmem->resource = NULL; 1012 devmem->device = device; 1013 devmem->ops = ops; 1014 1015 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1016 0, GFP_KERNEL); 1017 if (ret) 1018 goto error_percpu_ref; 1019 1020 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); 1021 if (ret) 1022 goto error_devm_add_action; 1023 1024 size = ALIGN(size, PA_SECTION_SIZE); 1025 addr = min((unsigned long)iomem_resource.end, 1026 (1UL << MAX_PHYSMEM_BITS) - 1); 1027 addr = addr - size + 1UL; 1028 1029 /* 1030 * FIXME add a new helper to quickly walk resource tree and find free 1031 * range 1032 * 1033 * FIXME what about ioport_resource resource ? 1034 */ 1035 for (; addr > size && addr >= iomem_resource.start; addr -= size) { 1036 ret = region_intersects(addr, size, 0, IORES_DESC_NONE); 1037 if (ret != REGION_DISJOINT) 1038 continue; 1039 1040 devmem->resource = devm_request_mem_region(device, addr, size, 1041 dev_name(device)); 1042 if (!devmem->resource) { 1043 ret = -ENOMEM; 1044 goto error_no_resource; 1045 } 1046 break; 1047 } 1048 if (!devmem->resource) { 1049 ret = -ERANGE; 1050 goto error_no_resource; 1051 } 1052 1053 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1054 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1055 devmem->pfn_last = devmem->pfn_first + 1056 (resource_size(devmem->resource) >> PAGE_SHIFT); 1057 1058 ret = hmm_devmem_pages_create(devmem); 1059 if (ret) 1060 goto error_pages; 1061 1062 devres_add(device, devmem); 1063 1064 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); 1065 if (ret) { 1066 hmm_devmem_remove(devmem); 1067 return ERR_PTR(ret); 1068 } 1069 1070 return devmem; 1071 1072 error_pages: 1073 devm_release_mem_region(device, devmem->resource->start, 1074 resource_size(devmem->resource)); 1075 error_no_resource: 1076 error_devm_add_action: 1077 hmm_devmem_ref_kill(&devmem->ref); 1078 hmm_devmem_ref_exit(&devmem->ref); 1079 error_percpu_ref: 1080 devres_free(devmem); 1081 return ERR_PTR(ret); 1082 } 1083 EXPORT_SYMBOL(hmm_devmem_add); 1084 1085 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, 1086 struct device *device, 1087 struct resource *res) 1088 { 1089 struct hmm_devmem *devmem; 1090 int ret; 1091 1092 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) 1093 return ERR_PTR(-EINVAL); 1094 1095 static_branch_enable(&device_private_key); 1096 1097 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), 1098 GFP_KERNEL, dev_to_node(device)); 1099 if (!devmem) 1100 return ERR_PTR(-ENOMEM); 1101 1102 init_completion(&devmem->completion); 1103 devmem->pfn_first = -1UL; 1104 devmem->pfn_last = -1UL; 1105 devmem->resource = res; 1106 devmem->device = device; 1107 devmem->ops = ops; 1108 1109 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1110 0, GFP_KERNEL); 1111 if (ret) 1112 goto error_percpu_ref; 1113 1114 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); 1115 if (ret) 1116 goto error_devm_add_action; 1117 1118 1119 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1120 devmem->pfn_last = devmem->pfn_first + 1121 (resource_size(devmem->resource) >> PAGE_SHIFT); 1122 1123 ret = hmm_devmem_pages_create(devmem); 1124 if (ret) 1125 goto error_devm_add_action; 1126 1127 devres_add(device, devmem); 1128 1129 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); 1130 if (ret) { 1131 hmm_devmem_remove(devmem); 1132 return ERR_PTR(ret); 1133 } 1134 1135 return devmem; 1136 1137 error_devm_add_action: 1138 hmm_devmem_ref_kill(&devmem->ref); 1139 hmm_devmem_ref_exit(&devmem->ref); 1140 error_percpu_ref: 1141 devres_free(devmem); 1142 return ERR_PTR(ret); 1143 } 1144 EXPORT_SYMBOL(hmm_devmem_add_resource); 1145 1146 /* 1147 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE) 1148 * 1149 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory 1150 * 1151 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf 1152 * of the device driver. It will free struct page and remove the resource that 1153 * reserved the physical address range for this device memory. 1154 */ 1155 void hmm_devmem_remove(struct hmm_devmem *devmem) 1156 { 1157 resource_size_t start, size; 1158 struct device *device; 1159 bool cdm = false; 1160 1161 if (!devmem) 1162 return; 1163 1164 device = devmem->device; 1165 start = devmem->resource->start; 1166 size = resource_size(devmem->resource); 1167 1168 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY; 1169 hmm_devmem_ref_kill(&devmem->ref); 1170 hmm_devmem_ref_exit(&devmem->ref); 1171 hmm_devmem_pages_remove(devmem); 1172 1173 if (!cdm) 1174 devm_release_mem_region(device, start, size); 1175 } 1176 EXPORT_SYMBOL(hmm_devmem_remove); 1177 1178 /* 1179 * A device driver that wants to handle multiple devices memory through a 1180 * single fake device can use hmm_device to do so. This is purely a helper 1181 * and it is not needed to make use of any HMM functionality. 1182 */ 1183 #define HMM_DEVICE_MAX 256 1184 1185 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); 1186 static DEFINE_SPINLOCK(hmm_device_lock); 1187 static struct class *hmm_device_class; 1188 static dev_t hmm_device_devt; 1189 1190 static void hmm_device_release(struct device *device) 1191 { 1192 struct hmm_device *hmm_device; 1193 1194 hmm_device = container_of(device, struct hmm_device, device); 1195 spin_lock(&hmm_device_lock); 1196 clear_bit(hmm_device->minor, hmm_device_mask); 1197 spin_unlock(&hmm_device_lock); 1198 1199 kfree(hmm_device); 1200 } 1201 1202 struct hmm_device *hmm_device_new(void *drvdata) 1203 { 1204 struct hmm_device *hmm_device; 1205 1206 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); 1207 if (!hmm_device) 1208 return ERR_PTR(-ENOMEM); 1209 1210 spin_lock(&hmm_device_lock); 1211 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); 1212 if (hmm_device->minor >= HMM_DEVICE_MAX) { 1213 spin_unlock(&hmm_device_lock); 1214 kfree(hmm_device); 1215 return ERR_PTR(-EBUSY); 1216 } 1217 set_bit(hmm_device->minor, hmm_device_mask); 1218 spin_unlock(&hmm_device_lock); 1219 1220 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); 1221 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), 1222 hmm_device->minor); 1223 hmm_device->device.release = hmm_device_release; 1224 dev_set_drvdata(&hmm_device->device, drvdata); 1225 hmm_device->device.class = hmm_device_class; 1226 device_initialize(&hmm_device->device); 1227 1228 return hmm_device; 1229 } 1230 EXPORT_SYMBOL(hmm_device_new); 1231 1232 void hmm_device_put(struct hmm_device *hmm_device) 1233 { 1234 put_device(&hmm_device->device); 1235 } 1236 EXPORT_SYMBOL(hmm_device_put); 1237 1238 static int __init hmm_init(void) 1239 { 1240 int ret; 1241 1242 ret = alloc_chrdev_region(&hmm_device_devt, 0, 1243 HMM_DEVICE_MAX, 1244 "hmm_device"); 1245 if (ret) 1246 return ret; 1247 1248 hmm_device_class = class_create(THIS_MODULE, "hmm_device"); 1249 if (IS_ERR(hmm_device_class)) { 1250 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); 1251 return PTR_ERR(hmm_device_class); 1252 } 1253 return 0; 1254 } 1255 1256 device_initcall(hmm_init); 1257 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 1258