xref: /openbmc/linux/mm/hmm.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45 
46 
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49 
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62 	struct mm_struct	*mm;
63 	spinlock_t		lock;
64 	atomic_t		sequence;
65 	struct list_head	ranges;
66 	struct list_head	mirrors;
67 	struct mmu_notifier	mmu_notifier;
68 	struct rw_semaphore	mirrors_sem;
69 };
70 
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81 	struct hmm *hmm = READ_ONCE(mm->hmm);
82 	bool cleanup = false;
83 
84 	/*
85 	 * The hmm struct can only be freed once the mm_struct goes away,
86 	 * hence we should always have pre-allocated an new hmm struct
87 	 * above.
88 	 */
89 	if (hmm)
90 		return hmm;
91 
92 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93 	if (!hmm)
94 		return NULL;
95 	INIT_LIST_HEAD(&hmm->mirrors);
96 	init_rwsem(&hmm->mirrors_sem);
97 	atomic_set(&hmm->sequence, 0);
98 	hmm->mmu_notifier.ops = NULL;
99 	INIT_LIST_HEAD(&hmm->ranges);
100 	spin_lock_init(&hmm->lock);
101 	hmm->mm = mm;
102 
103 	/*
104 	 * We should only get here if hold the mmap_sem in write mode ie on
105 	 * registration of first mirror through hmm_mirror_register()
106 	 */
107 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109 		kfree(hmm);
110 		return NULL;
111 	}
112 
113 	spin_lock(&mm->page_table_lock);
114 	if (!mm->hmm)
115 		mm->hmm = hmm;
116 	else
117 		cleanup = true;
118 	spin_unlock(&mm->page_table_lock);
119 
120 	if (cleanup) {
121 		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122 		kfree(hmm);
123 	}
124 
125 	return mm->hmm;
126 }
127 
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130 	kfree(mm->hmm);
131 }
132 
133 static void hmm_invalidate_range(struct hmm *hmm,
134 				 enum hmm_update_type action,
135 				 unsigned long start,
136 				 unsigned long end)
137 {
138 	struct hmm_mirror *mirror;
139 	struct hmm_range *range;
140 
141 	spin_lock(&hmm->lock);
142 	list_for_each_entry(range, &hmm->ranges, list) {
143 		unsigned long addr, idx, npages;
144 
145 		if (end < range->start || start >= range->end)
146 			continue;
147 
148 		range->valid = false;
149 		addr = max(start, range->start);
150 		idx = (addr - range->start) >> PAGE_SHIFT;
151 		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153 	}
154 	spin_unlock(&hmm->lock);
155 
156 	down_read(&hmm->mirrors_sem);
157 	list_for_each_entry(mirror, &hmm->mirrors, list)
158 		mirror->ops->sync_cpu_device_pagetables(mirror, action,
159 							start, end);
160 	up_read(&hmm->mirrors_sem);
161 }
162 
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164 				       struct mm_struct *mm,
165 				       unsigned long start,
166 				       unsigned long end)
167 {
168 	struct hmm *hmm = mm->hmm;
169 
170 	VM_BUG_ON(!hmm);
171 
172 	atomic_inc(&hmm->sequence);
173 }
174 
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176 				     struct mm_struct *mm,
177 				     unsigned long start,
178 				     unsigned long end)
179 {
180 	struct hmm *hmm = mm->hmm;
181 
182 	VM_BUG_ON(!hmm);
183 
184 	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186 
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188 	.invalidate_range_start	= hmm_invalidate_range_start,
189 	.invalidate_range_end	= hmm_invalidate_range_end,
190 };
191 
192 /*
193  * hmm_mirror_register() - register a mirror against an mm
194  *
195  * @mirror: new mirror struct to register
196  * @mm: mm to register against
197  *
198  * To start mirroring a process address space, the device driver must register
199  * an HMM mirror struct.
200  *
201  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202  */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205 	/* Sanity check */
206 	if (!mm || !mirror || !mirror->ops)
207 		return -EINVAL;
208 
209 	mirror->hmm = hmm_register(mm);
210 	if (!mirror->hmm)
211 		return -ENOMEM;
212 
213 	down_write(&mirror->hmm->mirrors_sem);
214 	list_add(&mirror->list, &mirror->hmm->mirrors);
215 	up_write(&mirror->hmm->mirrors_sem);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220 
221 /*
222  * hmm_mirror_unregister() - unregister a mirror
223  *
224  * @mirror: new mirror struct to register
225  *
226  * Stop mirroring a process address space, and cleanup.
227  */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230 	struct hmm *hmm = mirror->hmm;
231 
232 	down_write(&hmm->mirrors_sem);
233 	list_del(&mirror->list);
234 	up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237 
238 struct hmm_vma_walk {
239 	struct hmm_range	*range;
240 	unsigned long		last;
241 	bool			fault;
242 	bool			block;
243 	bool			write;
244 };
245 
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247 			    unsigned long addr,
248 			    hmm_pfn_t *pfn)
249 {
250 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
252 	struct vm_area_struct *vma = walk->vma;
253 	int r;
254 
255 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256 	flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257 	r = handle_mm_fault(vma, addr, flags);
258 	if (r & VM_FAULT_RETRY)
259 		return -EBUSY;
260 	if (r & VM_FAULT_ERROR) {
261 		*pfn = HMM_PFN_ERROR;
262 		return -EFAULT;
263 	}
264 
265 	return -EAGAIN;
266 }
267 
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269 			     unsigned long addr,
270 			     unsigned long end)
271 {
272 	for (; addr < end; addr += PAGE_SIZE, pfns++)
273 		*pfns = HMM_PFN_SPECIAL;
274 }
275 
276 static int hmm_pfns_bad(unsigned long addr,
277 			unsigned long end,
278 			struct mm_walk *walk)
279 {
280 	struct hmm_range *range = walk->private;
281 	hmm_pfn_t *pfns = range->pfns;
282 	unsigned long i;
283 
284 	i = (addr - range->start) >> PAGE_SHIFT;
285 	for (; addr < end; addr += PAGE_SIZE, i++)
286 		pfns[i] = HMM_PFN_ERROR;
287 
288 	return 0;
289 }
290 
291 static void hmm_pfns_clear(hmm_pfn_t *pfns,
292 			   unsigned long addr,
293 			   unsigned long end)
294 {
295 	for (; addr < end; addr += PAGE_SIZE, pfns++)
296 		*pfns = 0;
297 }
298 
299 static int hmm_vma_walk_hole(unsigned long addr,
300 			     unsigned long end,
301 			     struct mm_walk *walk)
302 {
303 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
304 	struct hmm_range *range = hmm_vma_walk->range;
305 	hmm_pfn_t *pfns = range->pfns;
306 	unsigned long i;
307 
308 	hmm_vma_walk->last = addr;
309 	i = (addr - range->start) >> PAGE_SHIFT;
310 	for (; addr < end; addr += PAGE_SIZE, i++) {
311 		pfns[i] = HMM_PFN_EMPTY;
312 		if (hmm_vma_walk->fault) {
313 			int ret;
314 
315 			ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
316 			if (ret != -EAGAIN)
317 				return ret;
318 		}
319 	}
320 
321 	return hmm_vma_walk->fault ? -EAGAIN : 0;
322 }
323 
324 static int hmm_vma_walk_clear(unsigned long addr,
325 			      unsigned long end,
326 			      struct mm_walk *walk)
327 {
328 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
329 	struct hmm_range *range = hmm_vma_walk->range;
330 	hmm_pfn_t *pfns = range->pfns;
331 	unsigned long i;
332 
333 	hmm_vma_walk->last = addr;
334 	i = (addr - range->start) >> PAGE_SHIFT;
335 	for (; addr < end; addr += PAGE_SIZE, i++) {
336 		pfns[i] = 0;
337 		if (hmm_vma_walk->fault) {
338 			int ret;
339 
340 			ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
341 			if (ret != -EAGAIN)
342 				return ret;
343 		}
344 	}
345 
346 	return hmm_vma_walk->fault ? -EAGAIN : 0;
347 }
348 
349 static int hmm_vma_walk_pmd(pmd_t *pmdp,
350 			    unsigned long start,
351 			    unsigned long end,
352 			    struct mm_walk *walk)
353 {
354 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
355 	struct hmm_range *range = hmm_vma_walk->range;
356 	struct vm_area_struct *vma = walk->vma;
357 	hmm_pfn_t *pfns = range->pfns;
358 	unsigned long addr = start, i;
359 	bool write_fault;
360 	hmm_pfn_t flag;
361 	pte_t *ptep;
362 
363 	i = (addr - range->start) >> PAGE_SHIFT;
364 	flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
365 	write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
366 
367 again:
368 	if (pmd_none(*pmdp))
369 		return hmm_vma_walk_hole(start, end, walk);
370 
371 	if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
372 		return hmm_pfns_bad(start, end, walk);
373 
374 	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
375 		unsigned long pfn;
376 		pmd_t pmd;
377 
378 		/*
379 		 * No need to take pmd_lock here, even if some other threads
380 		 * is splitting the huge pmd we will get that event through
381 		 * mmu_notifier callback.
382 		 *
383 		 * So just read pmd value and check again its a transparent
384 		 * huge or device mapping one and compute corresponding pfn
385 		 * values.
386 		 */
387 		pmd = pmd_read_atomic(pmdp);
388 		barrier();
389 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
390 			goto again;
391 		if (pmd_protnone(pmd))
392 			return hmm_vma_walk_clear(start, end, walk);
393 
394 		if (write_fault && !pmd_write(pmd))
395 			return hmm_vma_walk_clear(start, end, walk);
396 
397 		pfn = pmd_pfn(pmd) + pte_index(addr);
398 		flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
399 		for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
400 			pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
401 		return 0;
402 	}
403 
404 	if (pmd_bad(*pmdp))
405 		return hmm_pfns_bad(start, end, walk);
406 
407 	ptep = pte_offset_map(pmdp, addr);
408 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
409 		pte_t pte = *ptep;
410 
411 		pfns[i] = 0;
412 
413 		if (pte_none(pte)) {
414 			pfns[i] = HMM_PFN_EMPTY;
415 			if (hmm_vma_walk->fault)
416 				goto fault;
417 			continue;
418 		}
419 
420 		if (!pte_present(pte)) {
421 			swp_entry_t entry;
422 
423 			if (!non_swap_entry(entry)) {
424 				if (hmm_vma_walk->fault)
425 					goto fault;
426 				continue;
427 			}
428 
429 			entry = pte_to_swp_entry(pte);
430 
431 			/*
432 			 * This is a special swap entry, ignore migration, use
433 			 * device and report anything else as error.
434 			 */
435 			if (is_device_private_entry(entry)) {
436 				pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
437 				if (is_write_device_private_entry(entry)) {
438 					pfns[i] |= HMM_PFN_WRITE;
439 				} else if (write_fault)
440 					goto fault;
441 				pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
442 				pfns[i] |= flag;
443 			} else if (is_migration_entry(entry)) {
444 				if (hmm_vma_walk->fault) {
445 					pte_unmap(ptep);
446 					hmm_vma_walk->last = addr;
447 					migration_entry_wait(vma->vm_mm,
448 							     pmdp, addr);
449 					return -EAGAIN;
450 				}
451 				continue;
452 			} else {
453 				/* Report error for everything else */
454 				pfns[i] = HMM_PFN_ERROR;
455 			}
456 			continue;
457 		}
458 
459 		if (write_fault && !pte_write(pte))
460 			goto fault;
461 
462 		pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
463 		pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
464 		continue;
465 
466 fault:
467 		pte_unmap(ptep);
468 		/* Fault all pages in range */
469 		return hmm_vma_walk_clear(start, end, walk);
470 	}
471 	pte_unmap(ptep - 1);
472 
473 	return 0;
474 }
475 
476 /*
477  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
478  * @vma: virtual memory area containing the virtual address range
479  * @range: used to track snapshot validity
480  * @start: range virtual start address (inclusive)
481  * @end: range virtual end address (exclusive)
482  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
483  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
484  *
485  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
486  * validity is tracked by range struct. See hmm_vma_range_done() for further
487  * information.
488  *
489  * The range struct is initialized here. It tracks the CPU page table, but only
490  * if the function returns success (0), in which case the caller must then call
491  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
492  *
493  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
494  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
495  */
496 int hmm_vma_get_pfns(struct vm_area_struct *vma,
497 		     struct hmm_range *range,
498 		     unsigned long start,
499 		     unsigned long end,
500 		     hmm_pfn_t *pfns)
501 {
502 	struct hmm_vma_walk hmm_vma_walk;
503 	struct mm_walk mm_walk;
504 	struct hmm *hmm;
505 
506 	/* FIXME support hugetlb fs */
507 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
508 		hmm_pfns_special(pfns, start, end);
509 		return -EINVAL;
510 	}
511 
512 	/* Sanity check, this really should not happen ! */
513 	if (start < vma->vm_start || start >= vma->vm_end)
514 		return -EINVAL;
515 	if (end < vma->vm_start || end > vma->vm_end)
516 		return -EINVAL;
517 
518 	hmm = hmm_register(vma->vm_mm);
519 	if (!hmm)
520 		return -ENOMEM;
521 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
522 	if (!hmm->mmu_notifier.ops)
523 		return -EINVAL;
524 
525 	/* Initialize range to track CPU page table update */
526 	range->start = start;
527 	range->pfns = pfns;
528 	range->end = end;
529 	spin_lock(&hmm->lock);
530 	range->valid = true;
531 	list_add_rcu(&range->list, &hmm->ranges);
532 	spin_unlock(&hmm->lock);
533 
534 	hmm_vma_walk.fault = false;
535 	hmm_vma_walk.range = range;
536 	mm_walk.private = &hmm_vma_walk;
537 
538 	mm_walk.vma = vma;
539 	mm_walk.mm = vma->vm_mm;
540 	mm_walk.pte_entry = NULL;
541 	mm_walk.test_walk = NULL;
542 	mm_walk.hugetlb_entry = NULL;
543 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
544 	mm_walk.pte_hole = hmm_vma_walk_hole;
545 
546 	walk_page_range(start, end, &mm_walk);
547 	return 0;
548 }
549 EXPORT_SYMBOL(hmm_vma_get_pfns);
550 
551 /*
552  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
553  * @vma: virtual memory area containing the virtual address range
554  * @range: range being tracked
555  * Returns: false if range data has been invalidated, true otherwise
556  *
557  * Range struct is used to track updates to the CPU page table after a call to
558  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
559  * using the data,  or wants to lock updates to the data it got from those
560  * functions, it must call the hmm_vma_range_done() function, which will then
561  * stop tracking CPU page table updates.
562  *
563  * Note that device driver must still implement general CPU page table update
564  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
565  * the mmu_notifier API directly.
566  *
567  * CPU page table update tracking done through hmm_range is only temporary and
568  * to be used while trying to duplicate CPU page table contents for a range of
569  * virtual addresses.
570  *
571  * There are two ways to use this :
572  * again:
573  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
574  *   trans = device_build_page_table_update_transaction(pfns);
575  *   device_page_table_lock();
576  *   if (!hmm_vma_range_done(vma, range)) {
577  *     device_page_table_unlock();
578  *     goto again;
579  *   }
580  *   device_commit_transaction(trans);
581  *   device_page_table_unlock();
582  *
583  * Or:
584  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
585  *   device_page_table_lock();
586  *   hmm_vma_range_done(vma, range);
587  *   device_update_page_table(pfns);
588  *   device_page_table_unlock();
589  */
590 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
591 {
592 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
593 	struct hmm *hmm;
594 
595 	if (range->end <= range->start) {
596 		BUG();
597 		return false;
598 	}
599 
600 	hmm = hmm_register(vma->vm_mm);
601 	if (!hmm) {
602 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
603 		return false;
604 	}
605 
606 	spin_lock(&hmm->lock);
607 	list_del_rcu(&range->list);
608 	spin_unlock(&hmm->lock);
609 
610 	return range->valid;
611 }
612 EXPORT_SYMBOL(hmm_vma_range_done);
613 
614 /*
615  * hmm_vma_fault() - try to fault some address in a virtual address range
616  * @vma: virtual memory area containing the virtual address range
617  * @range: use to track pfns array content validity
618  * @start: fault range virtual start address (inclusive)
619  * @end: fault range virtual end address (exclusive)
620  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
621  * @write: is it a write fault
622  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
623  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
624  *
625  * This is similar to a regular CPU page fault except that it will not trigger
626  * any memory migration if the memory being faulted is not accessible by CPUs.
627  *
628  * On error, for one virtual address in the range, the function will set the
629  * hmm_pfn_t error flag for the corresponding pfn entry.
630  *
631  * Expected use pattern:
632  * retry:
633  *   down_read(&mm->mmap_sem);
634  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
635  *   // array accordingly
636  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
637  *   switch (ret) {
638  *   case -EAGAIN:
639  *     hmm_vma_range_done(vma, range);
640  *     // You might want to rate limit or yield to play nicely, you may
641  *     // also commit any valid pfn in the array assuming that you are
642  *     // getting true from hmm_vma_range_monitor_end()
643  *     goto retry;
644  *   case 0:
645  *     break;
646  *   default:
647  *     // Handle error !
648  *     up_read(&mm->mmap_sem)
649  *     return;
650  *   }
651  *   // Take device driver lock that serialize device page table update
652  *   driver_lock_device_page_table_update();
653  *   hmm_vma_range_done(vma, range);
654  *   // Commit pfns we got from hmm_vma_fault()
655  *   driver_unlock_device_page_table_update();
656  *   up_read(&mm->mmap_sem)
657  *
658  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
659  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
660  *
661  * YOU HAVE BEEN WARNED !
662  */
663 int hmm_vma_fault(struct vm_area_struct *vma,
664 		  struct hmm_range *range,
665 		  unsigned long start,
666 		  unsigned long end,
667 		  hmm_pfn_t *pfns,
668 		  bool write,
669 		  bool block)
670 {
671 	struct hmm_vma_walk hmm_vma_walk;
672 	struct mm_walk mm_walk;
673 	struct hmm *hmm;
674 	int ret;
675 
676 	/* Sanity check, this really should not happen ! */
677 	if (start < vma->vm_start || start >= vma->vm_end)
678 		return -EINVAL;
679 	if (end < vma->vm_start || end > vma->vm_end)
680 		return -EINVAL;
681 
682 	hmm = hmm_register(vma->vm_mm);
683 	if (!hmm) {
684 		hmm_pfns_clear(pfns, start, end);
685 		return -ENOMEM;
686 	}
687 	/* Caller must have registered a mirror using hmm_mirror_register() */
688 	if (!hmm->mmu_notifier.ops)
689 		return -EINVAL;
690 
691 	/* Initialize range to track CPU page table update */
692 	range->start = start;
693 	range->pfns = pfns;
694 	range->end = end;
695 	spin_lock(&hmm->lock);
696 	range->valid = true;
697 	list_add_rcu(&range->list, &hmm->ranges);
698 	spin_unlock(&hmm->lock);
699 
700 	/* FIXME support hugetlb fs */
701 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
702 		hmm_pfns_special(pfns, start, end);
703 		return 0;
704 	}
705 
706 	hmm_vma_walk.fault = true;
707 	hmm_vma_walk.write = write;
708 	hmm_vma_walk.block = block;
709 	hmm_vma_walk.range = range;
710 	mm_walk.private = &hmm_vma_walk;
711 	hmm_vma_walk.last = range->start;
712 
713 	mm_walk.vma = vma;
714 	mm_walk.mm = vma->vm_mm;
715 	mm_walk.pte_entry = NULL;
716 	mm_walk.test_walk = NULL;
717 	mm_walk.hugetlb_entry = NULL;
718 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
719 	mm_walk.pte_hole = hmm_vma_walk_hole;
720 
721 	do {
722 		ret = walk_page_range(start, end, &mm_walk);
723 		start = hmm_vma_walk.last;
724 	} while (ret == -EAGAIN);
725 
726 	if (ret) {
727 		unsigned long i;
728 
729 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
730 		hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
731 		hmm_vma_range_done(vma, range);
732 	}
733 	return ret;
734 }
735 EXPORT_SYMBOL(hmm_vma_fault);
736 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
737 
738 
739 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
740 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
741 				       unsigned long addr)
742 {
743 	struct page *page;
744 
745 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
746 	if (!page)
747 		return NULL;
748 	lock_page(page);
749 	return page;
750 }
751 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
752 
753 
754 static void hmm_devmem_ref_release(struct percpu_ref *ref)
755 {
756 	struct hmm_devmem *devmem;
757 
758 	devmem = container_of(ref, struct hmm_devmem, ref);
759 	complete(&devmem->completion);
760 }
761 
762 static void hmm_devmem_ref_exit(void *data)
763 {
764 	struct percpu_ref *ref = data;
765 	struct hmm_devmem *devmem;
766 
767 	devmem = container_of(ref, struct hmm_devmem, ref);
768 	percpu_ref_exit(ref);
769 	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
770 }
771 
772 static void hmm_devmem_ref_kill(void *data)
773 {
774 	struct percpu_ref *ref = data;
775 	struct hmm_devmem *devmem;
776 
777 	devmem = container_of(ref, struct hmm_devmem, ref);
778 	percpu_ref_kill(ref);
779 	wait_for_completion(&devmem->completion);
780 	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
781 }
782 
783 static int hmm_devmem_fault(struct vm_area_struct *vma,
784 			    unsigned long addr,
785 			    const struct page *page,
786 			    unsigned int flags,
787 			    pmd_t *pmdp)
788 {
789 	struct hmm_devmem *devmem = page->pgmap->data;
790 
791 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
792 }
793 
794 static void hmm_devmem_free(struct page *page, void *data)
795 {
796 	struct hmm_devmem *devmem = data;
797 
798 	devmem->ops->free(devmem, page);
799 }
800 
801 static DEFINE_MUTEX(hmm_devmem_lock);
802 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
803 
804 static void hmm_devmem_radix_release(struct resource *resource)
805 {
806 	resource_size_t key, align_start, align_size, align_end;
807 
808 	align_start = resource->start & ~(PA_SECTION_SIZE - 1);
809 	align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
810 	align_end = align_start + align_size - 1;
811 
812 	mutex_lock(&hmm_devmem_lock);
813 	for (key = resource->start;
814 	     key <= resource->end;
815 	     key += PA_SECTION_SIZE)
816 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
817 	mutex_unlock(&hmm_devmem_lock);
818 }
819 
820 static void hmm_devmem_release(struct device *dev, void *data)
821 {
822 	struct hmm_devmem *devmem = data;
823 	struct resource *resource = devmem->resource;
824 	unsigned long start_pfn, npages;
825 	struct zone *zone;
826 	struct page *page;
827 
828 	if (percpu_ref_tryget_live(&devmem->ref)) {
829 		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
830 		percpu_ref_put(&devmem->ref);
831 	}
832 
833 	/* pages are dead and unused, undo the arch mapping */
834 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
835 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
836 
837 	page = pfn_to_page(start_pfn);
838 	zone = page_zone(page);
839 
840 	mem_hotplug_begin();
841 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
842 		__remove_pages(zone, start_pfn, npages);
843 	else
844 		arch_remove_memory(start_pfn << PAGE_SHIFT,
845 				   npages << PAGE_SHIFT);
846 	mem_hotplug_done();
847 
848 	hmm_devmem_radix_release(resource);
849 }
850 
851 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
852 {
853 	WARN_ON_ONCE(!rcu_read_lock_held());
854 
855 	return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
856 }
857 
858 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
859 {
860 	resource_size_t key, align_start, align_size, align_end;
861 	struct device *device = devmem->device;
862 	int ret, nid, is_ram;
863 	unsigned long pfn;
864 
865 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
866 	align_size = ALIGN(devmem->resource->start +
867 			   resource_size(devmem->resource),
868 			   PA_SECTION_SIZE) - align_start;
869 
870 	is_ram = region_intersects(align_start, align_size,
871 				   IORESOURCE_SYSTEM_RAM,
872 				   IORES_DESC_NONE);
873 	if (is_ram == REGION_MIXED) {
874 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
875 				__func__, devmem->resource);
876 		return -ENXIO;
877 	}
878 	if (is_ram == REGION_INTERSECTS)
879 		return -ENXIO;
880 
881 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
882 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
883 	else
884 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
885 
886 	devmem->pagemap.res = devmem->resource;
887 	devmem->pagemap.page_fault = hmm_devmem_fault;
888 	devmem->pagemap.page_free = hmm_devmem_free;
889 	devmem->pagemap.dev = devmem->device;
890 	devmem->pagemap.ref = &devmem->ref;
891 	devmem->pagemap.data = devmem;
892 
893 	mutex_lock(&hmm_devmem_lock);
894 	align_end = align_start + align_size - 1;
895 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
896 		struct hmm_devmem *dup;
897 
898 		rcu_read_lock();
899 		dup = hmm_devmem_find(key);
900 		rcu_read_unlock();
901 		if (dup) {
902 			dev_err(device, "%s: collides with mapping for %s\n",
903 				__func__, dev_name(dup->device));
904 			mutex_unlock(&hmm_devmem_lock);
905 			ret = -EBUSY;
906 			goto error;
907 		}
908 		ret = radix_tree_insert(&hmm_devmem_radix,
909 					key >> PA_SECTION_SHIFT,
910 					devmem);
911 		if (ret) {
912 			dev_err(device, "%s: failed: %d\n", __func__, ret);
913 			mutex_unlock(&hmm_devmem_lock);
914 			goto error_radix;
915 		}
916 	}
917 	mutex_unlock(&hmm_devmem_lock);
918 
919 	nid = dev_to_node(device);
920 	if (nid < 0)
921 		nid = numa_mem_id();
922 
923 	mem_hotplug_begin();
924 	/*
925 	 * For device private memory we call add_pages() as we only need to
926 	 * allocate and initialize struct page for the device memory. More-
927 	 * over the device memory is un-accessible thus we do not want to
928 	 * create a linear mapping for the memory like arch_add_memory()
929 	 * would do.
930 	 *
931 	 * For device public memory, which is accesible by the CPU, we do
932 	 * want the linear mapping and thus use arch_add_memory().
933 	 */
934 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
935 		ret = arch_add_memory(nid, align_start, align_size, false);
936 	else
937 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
938 				align_size >> PAGE_SHIFT, false);
939 	if (ret) {
940 		mem_hotplug_done();
941 		goto error_add_memory;
942 	}
943 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
944 				align_start >> PAGE_SHIFT,
945 				align_size >> PAGE_SHIFT);
946 	mem_hotplug_done();
947 
948 	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
949 		struct page *page = pfn_to_page(pfn);
950 
951 		page->pgmap = &devmem->pagemap;
952 	}
953 	return 0;
954 
955 error_add_memory:
956 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
957 error_radix:
958 	hmm_devmem_radix_release(devmem->resource);
959 error:
960 	return ret;
961 }
962 
963 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
964 {
965 	struct hmm_devmem *devmem = data;
966 
967 	return devmem->resource == match_data;
968 }
969 
970 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
971 {
972 	devres_release(devmem->device, &hmm_devmem_release,
973 		       &hmm_devmem_match, devmem->resource);
974 }
975 
976 /*
977  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
978  *
979  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
980  * @device: device struct to bind the resource too
981  * @size: size in bytes of the device memory to add
982  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
983  *
984  * This function first finds an empty range of physical address big enough to
985  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
986  * in turn allocates struct pages. It does not do anything beyond that; all
987  * events affecting the memory will go through the various callbacks provided
988  * by hmm_devmem_ops struct.
989  *
990  * Device driver should call this function during device initialization and
991  * is then responsible of memory management. HMM only provides helpers.
992  */
993 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
994 				  struct device *device,
995 				  unsigned long size)
996 {
997 	struct hmm_devmem *devmem;
998 	resource_size_t addr;
999 	int ret;
1000 
1001 	static_branch_enable(&device_private_key);
1002 
1003 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1004 				   GFP_KERNEL, dev_to_node(device));
1005 	if (!devmem)
1006 		return ERR_PTR(-ENOMEM);
1007 
1008 	init_completion(&devmem->completion);
1009 	devmem->pfn_first = -1UL;
1010 	devmem->pfn_last = -1UL;
1011 	devmem->resource = NULL;
1012 	devmem->device = device;
1013 	devmem->ops = ops;
1014 
1015 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1016 			      0, GFP_KERNEL);
1017 	if (ret)
1018 		goto error_percpu_ref;
1019 
1020 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1021 	if (ret)
1022 		goto error_devm_add_action;
1023 
1024 	size = ALIGN(size, PA_SECTION_SIZE);
1025 	addr = min((unsigned long)iomem_resource.end,
1026 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1027 	addr = addr - size + 1UL;
1028 
1029 	/*
1030 	 * FIXME add a new helper to quickly walk resource tree and find free
1031 	 * range
1032 	 *
1033 	 * FIXME what about ioport_resource resource ?
1034 	 */
1035 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1036 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1037 		if (ret != REGION_DISJOINT)
1038 			continue;
1039 
1040 		devmem->resource = devm_request_mem_region(device, addr, size,
1041 							   dev_name(device));
1042 		if (!devmem->resource) {
1043 			ret = -ENOMEM;
1044 			goto error_no_resource;
1045 		}
1046 		break;
1047 	}
1048 	if (!devmem->resource) {
1049 		ret = -ERANGE;
1050 		goto error_no_resource;
1051 	}
1052 
1053 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1054 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1055 	devmem->pfn_last = devmem->pfn_first +
1056 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1057 
1058 	ret = hmm_devmem_pages_create(devmem);
1059 	if (ret)
1060 		goto error_pages;
1061 
1062 	devres_add(device, devmem);
1063 
1064 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1065 	if (ret) {
1066 		hmm_devmem_remove(devmem);
1067 		return ERR_PTR(ret);
1068 	}
1069 
1070 	return devmem;
1071 
1072 error_pages:
1073 	devm_release_mem_region(device, devmem->resource->start,
1074 				resource_size(devmem->resource));
1075 error_no_resource:
1076 error_devm_add_action:
1077 	hmm_devmem_ref_kill(&devmem->ref);
1078 	hmm_devmem_ref_exit(&devmem->ref);
1079 error_percpu_ref:
1080 	devres_free(devmem);
1081 	return ERR_PTR(ret);
1082 }
1083 EXPORT_SYMBOL(hmm_devmem_add);
1084 
1085 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1086 					   struct device *device,
1087 					   struct resource *res)
1088 {
1089 	struct hmm_devmem *devmem;
1090 	int ret;
1091 
1092 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1093 		return ERR_PTR(-EINVAL);
1094 
1095 	static_branch_enable(&device_private_key);
1096 
1097 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1098 				   GFP_KERNEL, dev_to_node(device));
1099 	if (!devmem)
1100 		return ERR_PTR(-ENOMEM);
1101 
1102 	init_completion(&devmem->completion);
1103 	devmem->pfn_first = -1UL;
1104 	devmem->pfn_last = -1UL;
1105 	devmem->resource = res;
1106 	devmem->device = device;
1107 	devmem->ops = ops;
1108 
1109 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1110 			      0, GFP_KERNEL);
1111 	if (ret)
1112 		goto error_percpu_ref;
1113 
1114 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1115 	if (ret)
1116 		goto error_devm_add_action;
1117 
1118 
1119 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1120 	devmem->pfn_last = devmem->pfn_first +
1121 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1122 
1123 	ret = hmm_devmem_pages_create(devmem);
1124 	if (ret)
1125 		goto error_devm_add_action;
1126 
1127 	devres_add(device, devmem);
1128 
1129 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1130 	if (ret) {
1131 		hmm_devmem_remove(devmem);
1132 		return ERR_PTR(ret);
1133 	}
1134 
1135 	return devmem;
1136 
1137 error_devm_add_action:
1138 	hmm_devmem_ref_kill(&devmem->ref);
1139 	hmm_devmem_ref_exit(&devmem->ref);
1140 error_percpu_ref:
1141 	devres_free(devmem);
1142 	return ERR_PTR(ret);
1143 }
1144 EXPORT_SYMBOL(hmm_devmem_add_resource);
1145 
1146 /*
1147  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1148  *
1149  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1150  *
1151  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1152  * of the device driver. It will free struct page and remove the resource that
1153  * reserved the physical address range for this device memory.
1154  */
1155 void hmm_devmem_remove(struct hmm_devmem *devmem)
1156 {
1157 	resource_size_t start, size;
1158 	struct device *device;
1159 	bool cdm = false;
1160 
1161 	if (!devmem)
1162 		return;
1163 
1164 	device = devmem->device;
1165 	start = devmem->resource->start;
1166 	size = resource_size(devmem->resource);
1167 
1168 	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1169 	hmm_devmem_ref_kill(&devmem->ref);
1170 	hmm_devmem_ref_exit(&devmem->ref);
1171 	hmm_devmem_pages_remove(devmem);
1172 
1173 	if (!cdm)
1174 		devm_release_mem_region(device, start, size);
1175 }
1176 EXPORT_SYMBOL(hmm_devmem_remove);
1177 
1178 /*
1179  * A device driver that wants to handle multiple devices memory through a
1180  * single fake device can use hmm_device to do so. This is purely a helper
1181  * and it is not needed to make use of any HMM functionality.
1182  */
1183 #define HMM_DEVICE_MAX 256
1184 
1185 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1186 static DEFINE_SPINLOCK(hmm_device_lock);
1187 static struct class *hmm_device_class;
1188 static dev_t hmm_device_devt;
1189 
1190 static void hmm_device_release(struct device *device)
1191 {
1192 	struct hmm_device *hmm_device;
1193 
1194 	hmm_device = container_of(device, struct hmm_device, device);
1195 	spin_lock(&hmm_device_lock);
1196 	clear_bit(hmm_device->minor, hmm_device_mask);
1197 	spin_unlock(&hmm_device_lock);
1198 
1199 	kfree(hmm_device);
1200 }
1201 
1202 struct hmm_device *hmm_device_new(void *drvdata)
1203 {
1204 	struct hmm_device *hmm_device;
1205 
1206 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1207 	if (!hmm_device)
1208 		return ERR_PTR(-ENOMEM);
1209 
1210 	spin_lock(&hmm_device_lock);
1211 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1212 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1213 		spin_unlock(&hmm_device_lock);
1214 		kfree(hmm_device);
1215 		return ERR_PTR(-EBUSY);
1216 	}
1217 	set_bit(hmm_device->minor, hmm_device_mask);
1218 	spin_unlock(&hmm_device_lock);
1219 
1220 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1221 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1222 					hmm_device->minor);
1223 	hmm_device->device.release = hmm_device_release;
1224 	dev_set_drvdata(&hmm_device->device, drvdata);
1225 	hmm_device->device.class = hmm_device_class;
1226 	device_initialize(&hmm_device->device);
1227 
1228 	return hmm_device;
1229 }
1230 EXPORT_SYMBOL(hmm_device_new);
1231 
1232 void hmm_device_put(struct hmm_device *hmm_device)
1233 {
1234 	put_device(&hmm_device->device);
1235 }
1236 EXPORT_SYMBOL(hmm_device_put);
1237 
1238 static int __init hmm_init(void)
1239 {
1240 	int ret;
1241 
1242 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1243 				  HMM_DEVICE_MAX,
1244 				  "hmm_device");
1245 	if (ret)
1246 		return ret;
1247 
1248 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1249 	if (IS_ERR(hmm_device_class)) {
1250 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1251 		return PTR_ERR(hmm_device_class);
1252 	}
1253 	return 0;
1254 }
1255 
1256 device_initcall(hmm_init);
1257 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1258