xref: /openbmc/linux/mm/hmm.c (revision 151f4e2b)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/memory_hotplug.h>
36 
37 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
38 
39 #if IS_ENABLED(CONFIG_HMM_MIRROR)
40 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
41 
42 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
43 {
44 	struct hmm *hmm = READ_ONCE(mm->hmm);
45 
46 	if (hmm && kref_get_unless_zero(&hmm->kref))
47 		return hmm;
48 
49 	return NULL;
50 }
51 
52 /**
53  * hmm_get_or_create - register HMM against an mm (HMM internal)
54  *
55  * @mm: mm struct to attach to
56  * Returns: returns an HMM object, either by referencing the existing
57  *          (per-process) object, or by creating a new one.
58  *
59  * This is not intended to be used directly by device drivers. If mm already
60  * has an HMM struct then it get a reference on it and returns it. Otherwise
61  * it allocates an HMM struct, initializes it, associate it with the mm and
62  * returns it.
63  */
64 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
65 {
66 	struct hmm *hmm = mm_get_hmm(mm);
67 	bool cleanup = false;
68 
69 	if (hmm)
70 		return hmm;
71 
72 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
73 	if (!hmm)
74 		return NULL;
75 	init_waitqueue_head(&hmm->wq);
76 	INIT_LIST_HEAD(&hmm->mirrors);
77 	init_rwsem(&hmm->mirrors_sem);
78 	hmm->mmu_notifier.ops = NULL;
79 	INIT_LIST_HEAD(&hmm->ranges);
80 	mutex_init(&hmm->lock);
81 	kref_init(&hmm->kref);
82 	hmm->notifiers = 0;
83 	hmm->dead = false;
84 	hmm->mm = mm;
85 
86 	spin_lock(&mm->page_table_lock);
87 	if (!mm->hmm)
88 		mm->hmm = hmm;
89 	else
90 		cleanup = true;
91 	spin_unlock(&mm->page_table_lock);
92 
93 	if (cleanup)
94 		goto error;
95 
96 	/*
97 	 * We should only get here if hold the mmap_sem in write mode ie on
98 	 * registration of first mirror through hmm_mirror_register()
99 	 */
100 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
101 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
102 		goto error_mm;
103 
104 	return hmm;
105 
106 error_mm:
107 	spin_lock(&mm->page_table_lock);
108 	if (mm->hmm == hmm)
109 		mm->hmm = NULL;
110 	spin_unlock(&mm->page_table_lock);
111 error:
112 	kfree(hmm);
113 	return NULL;
114 }
115 
116 static void hmm_free(struct kref *kref)
117 {
118 	struct hmm *hmm = container_of(kref, struct hmm, kref);
119 	struct mm_struct *mm = hmm->mm;
120 
121 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
122 
123 	spin_lock(&mm->page_table_lock);
124 	if (mm->hmm == hmm)
125 		mm->hmm = NULL;
126 	spin_unlock(&mm->page_table_lock);
127 
128 	kfree(hmm);
129 }
130 
131 static inline void hmm_put(struct hmm *hmm)
132 {
133 	kref_put(&hmm->kref, hmm_free);
134 }
135 
136 void hmm_mm_destroy(struct mm_struct *mm)
137 {
138 	struct hmm *hmm;
139 
140 	spin_lock(&mm->page_table_lock);
141 	hmm = mm_get_hmm(mm);
142 	mm->hmm = NULL;
143 	if (hmm) {
144 		hmm->mm = NULL;
145 		hmm->dead = true;
146 		spin_unlock(&mm->page_table_lock);
147 		hmm_put(hmm);
148 		return;
149 	}
150 
151 	spin_unlock(&mm->page_table_lock);
152 }
153 
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156 	struct hmm *hmm = mm_get_hmm(mm);
157 	struct hmm_mirror *mirror;
158 	struct hmm_range *range;
159 
160 	/* Report this HMM as dying. */
161 	hmm->dead = true;
162 
163 	/* Wake-up everyone waiting on any range. */
164 	mutex_lock(&hmm->lock);
165 	list_for_each_entry(range, &hmm->ranges, list) {
166 		range->valid = false;
167 	}
168 	wake_up_all(&hmm->wq);
169 	mutex_unlock(&hmm->lock);
170 
171 	down_write(&hmm->mirrors_sem);
172 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
173 					  list);
174 	while (mirror) {
175 		list_del_init(&mirror->list);
176 		if (mirror->ops->release) {
177 			/*
178 			 * Drop mirrors_sem so callback can wait on any pending
179 			 * work that might itself trigger mmu_notifier callback
180 			 * and thus would deadlock with us.
181 			 */
182 			up_write(&hmm->mirrors_sem);
183 			mirror->ops->release(mirror);
184 			down_write(&hmm->mirrors_sem);
185 		}
186 		mirror = list_first_entry_or_null(&hmm->mirrors,
187 						  struct hmm_mirror, list);
188 	}
189 	up_write(&hmm->mirrors_sem);
190 
191 	hmm_put(hmm);
192 }
193 
194 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
195 			const struct mmu_notifier_range *nrange)
196 {
197 	struct hmm *hmm = mm_get_hmm(nrange->mm);
198 	struct hmm_mirror *mirror;
199 	struct hmm_update update;
200 	struct hmm_range *range;
201 	int ret = 0;
202 
203 	VM_BUG_ON(!hmm);
204 
205 	update.start = nrange->start;
206 	update.end = nrange->end;
207 	update.event = HMM_UPDATE_INVALIDATE;
208 	update.blockable = mmu_notifier_range_blockable(nrange);
209 
210 	if (mmu_notifier_range_blockable(nrange))
211 		mutex_lock(&hmm->lock);
212 	else if (!mutex_trylock(&hmm->lock)) {
213 		ret = -EAGAIN;
214 		goto out;
215 	}
216 	hmm->notifiers++;
217 	list_for_each_entry(range, &hmm->ranges, list) {
218 		if (update.end < range->start || update.start >= range->end)
219 			continue;
220 
221 		range->valid = false;
222 	}
223 	mutex_unlock(&hmm->lock);
224 
225 	if (mmu_notifier_range_blockable(nrange))
226 		down_read(&hmm->mirrors_sem);
227 	else if (!down_read_trylock(&hmm->mirrors_sem)) {
228 		ret = -EAGAIN;
229 		goto out;
230 	}
231 	list_for_each_entry(mirror, &hmm->mirrors, list) {
232 		int ret;
233 
234 		ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
235 		if (!update.blockable && ret == -EAGAIN) {
236 			up_read(&hmm->mirrors_sem);
237 			ret = -EAGAIN;
238 			goto out;
239 		}
240 	}
241 	up_read(&hmm->mirrors_sem);
242 
243 out:
244 	hmm_put(hmm);
245 	return ret;
246 }
247 
248 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
249 			const struct mmu_notifier_range *nrange)
250 {
251 	struct hmm *hmm = mm_get_hmm(nrange->mm);
252 
253 	VM_BUG_ON(!hmm);
254 
255 	mutex_lock(&hmm->lock);
256 	hmm->notifiers--;
257 	if (!hmm->notifiers) {
258 		struct hmm_range *range;
259 
260 		list_for_each_entry(range, &hmm->ranges, list) {
261 			if (range->valid)
262 				continue;
263 			range->valid = true;
264 		}
265 		wake_up_all(&hmm->wq);
266 	}
267 	mutex_unlock(&hmm->lock);
268 
269 	hmm_put(hmm);
270 }
271 
272 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
273 	.release		= hmm_release,
274 	.invalidate_range_start	= hmm_invalidate_range_start,
275 	.invalidate_range_end	= hmm_invalidate_range_end,
276 };
277 
278 /*
279  * hmm_mirror_register() - register a mirror against an mm
280  *
281  * @mirror: new mirror struct to register
282  * @mm: mm to register against
283  *
284  * To start mirroring a process address space, the device driver must register
285  * an HMM mirror struct.
286  *
287  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
288  */
289 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
290 {
291 	/* Sanity check */
292 	if (!mm || !mirror || !mirror->ops)
293 		return -EINVAL;
294 
295 	mirror->hmm = hmm_get_or_create(mm);
296 	if (!mirror->hmm)
297 		return -ENOMEM;
298 
299 	down_write(&mirror->hmm->mirrors_sem);
300 	list_add(&mirror->list, &mirror->hmm->mirrors);
301 	up_write(&mirror->hmm->mirrors_sem);
302 
303 	return 0;
304 }
305 EXPORT_SYMBOL(hmm_mirror_register);
306 
307 /*
308  * hmm_mirror_unregister() - unregister a mirror
309  *
310  * @mirror: new mirror struct to register
311  *
312  * Stop mirroring a process address space, and cleanup.
313  */
314 void hmm_mirror_unregister(struct hmm_mirror *mirror)
315 {
316 	struct hmm *hmm = READ_ONCE(mirror->hmm);
317 
318 	if (hmm == NULL)
319 		return;
320 
321 	down_write(&hmm->mirrors_sem);
322 	list_del_init(&mirror->list);
323 	/* To protect us against double unregister ... */
324 	mirror->hmm = NULL;
325 	up_write(&hmm->mirrors_sem);
326 
327 	hmm_put(hmm);
328 }
329 EXPORT_SYMBOL(hmm_mirror_unregister);
330 
331 struct hmm_vma_walk {
332 	struct hmm_range	*range;
333 	struct dev_pagemap	*pgmap;
334 	unsigned long		last;
335 	bool			fault;
336 	bool			block;
337 };
338 
339 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
340 			    bool write_fault, uint64_t *pfn)
341 {
342 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
343 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
344 	struct hmm_range *range = hmm_vma_walk->range;
345 	struct vm_area_struct *vma = walk->vma;
346 	vm_fault_t ret;
347 
348 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
349 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
350 	ret = handle_mm_fault(vma, addr, flags);
351 	if (ret & VM_FAULT_RETRY)
352 		return -EAGAIN;
353 	if (ret & VM_FAULT_ERROR) {
354 		*pfn = range->values[HMM_PFN_ERROR];
355 		return -EFAULT;
356 	}
357 
358 	return -EBUSY;
359 }
360 
361 static int hmm_pfns_bad(unsigned long addr,
362 			unsigned long end,
363 			struct mm_walk *walk)
364 {
365 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
366 	struct hmm_range *range = hmm_vma_walk->range;
367 	uint64_t *pfns = range->pfns;
368 	unsigned long i;
369 
370 	i = (addr - range->start) >> PAGE_SHIFT;
371 	for (; addr < end; addr += PAGE_SIZE, i++)
372 		pfns[i] = range->values[HMM_PFN_ERROR];
373 
374 	return 0;
375 }
376 
377 /*
378  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
379  * @start: range virtual start address (inclusive)
380  * @end: range virtual end address (exclusive)
381  * @fault: should we fault or not ?
382  * @write_fault: write fault ?
383  * @walk: mm_walk structure
384  * Returns: 0 on success, -EBUSY after page fault, or page fault error
385  *
386  * This function will be called whenever pmd_none() or pte_none() returns true,
387  * or whenever there is no page directory covering the virtual address range.
388  */
389 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
390 			      bool fault, bool write_fault,
391 			      struct mm_walk *walk)
392 {
393 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
394 	struct hmm_range *range = hmm_vma_walk->range;
395 	uint64_t *pfns = range->pfns;
396 	unsigned long i, page_size;
397 
398 	hmm_vma_walk->last = addr;
399 	page_size = hmm_range_page_size(range);
400 	i = (addr - range->start) >> range->page_shift;
401 
402 	for (; addr < end; addr += page_size, i++) {
403 		pfns[i] = range->values[HMM_PFN_NONE];
404 		if (fault || write_fault) {
405 			int ret;
406 
407 			ret = hmm_vma_do_fault(walk, addr, write_fault,
408 					       &pfns[i]);
409 			if (ret != -EBUSY)
410 				return ret;
411 		}
412 	}
413 
414 	return (fault || write_fault) ? -EBUSY : 0;
415 }
416 
417 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
418 				      uint64_t pfns, uint64_t cpu_flags,
419 				      bool *fault, bool *write_fault)
420 {
421 	struct hmm_range *range = hmm_vma_walk->range;
422 
423 	if (!hmm_vma_walk->fault)
424 		return;
425 
426 	/*
427 	 * So we not only consider the individual per page request we also
428 	 * consider the default flags requested for the range. The API can
429 	 * be use in 2 fashions. The first one where the HMM user coalesce
430 	 * multiple page fault into one request and set flags per pfns for
431 	 * of those faults. The second one where the HMM user want to pre-
432 	 * fault a range with specific flags. For the latter one it is a
433 	 * waste to have the user pre-fill the pfn arrays with a default
434 	 * flags value.
435 	 */
436 	pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
437 
438 	/* We aren't ask to do anything ... */
439 	if (!(pfns & range->flags[HMM_PFN_VALID]))
440 		return;
441 	/* If this is device memory than only fault if explicitly requested */
442 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
443 		/* Do we fault on device memory ? */
444 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
445 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
446 			*fault = true;
447 		}
448 		return;
449 	}
450 
451 	/* If CPU page table is not valid then we need to fault */
452 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
453 	/* Need to write fault ? */
454 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
455 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
456 		*write_fault = true;
457 		*fault = true;
458 	}
459 }
460 
461 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
462 				 const uint64_t *pfns, unsigned long npages,
463 				 uint64_t cpu_flags, bool *fault,
464 				 bool *write_fault)
465 {
466 	unsigned long i;
467 
468 	if (!hmm_vma_walk->fault) {
469 		*fault = *write_fault = false;
470 		return;
471 	}
472 
473 	*fault = *write_fault = false;
474 	for (i = 0; i < npages; ++i) {
475 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
476 				   fault, write_fault);
477 		if ((*write_fault))
478 			return;
479 	}
480 }
481 
482 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
483 			     struct mm_walk *walk)
484 {
485 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
486 	struct hmm_range *range = hmm_vma_walk->range;
487 	bool fault, write_fault;
488 	unsigned long i, npages;
489 	uint64_t *pfns;
490 
491 	i = (addr - range->start) >> PAGE_SHIFT;
492 	npages = (end - addr) >> PAGE_SHIFT;
493 	pfns = &range->pfns[i];
494 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
495 			     0, &fault, &write_fault);
496 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
497 }
498 
499 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
500 {
501 	if (pmd_protnone(pmd))
502 		return 0;
503 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
504 				range->flags[HMM_PFN_WRITE] :
505 				range->flags[HMM_PFN_VALID];
506 }
507 
508 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
509 {
510 	if (!pud_present(pud))
511 		return 0;
512 	return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
513 				range->flags[HMM_PFN_WRITE] :
514 				range->flags[HMM_PFN_VALID];
515 }
516 
517 static int hmm_vma_handle_pmd(struct mm_walk *walk,
518 			      unsigned long addr,
519 			      unsigned long end,
520 			      uint64_t *pfns,
521 			      pmd_t pmd)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
525 	struct hmm_range *range = hmm_vma_walk->range;
526 	unsigned long pfn, npages, i;
527 	bool fault, write_fault;
528 	uint64_t cpu_flags;
529 
530 	npages = (end - addr) >> PAGE_SHIFT;
531 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
532 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
533 			     &fault, &write_fault);
534 
535 	if (pmd_protnone(pmd) || fault || write_fault)
536 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
537 
538 	pfn = pmd_pfn(pmd) + pte_index(addr);
539 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
540 		if (pmd_devmap(pmd)) {
541 			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
542 					      hmm_vma_walk->pgmap);
543 			if (unlikely(!hmm_vma_walk->pgmap))
544 				return -EBUSY;
545 		}
546 		pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
547 	}
548 	if (hmm_vma_walk->pgmap) {
549 		put_dev_pagemap(hmm_vma_walk->pgmap);
550 		hmm_vma_walk->pgmap = NULL;
551 	}
552 	hmm_vma_walk->last = end;
553 	return 0;
554 #else
555 	/* If THP is not enabled then we should never reach that code ! */
556 	return -EINVAL;
557 #endif
558 }
559 
560 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
561 {
562 	if (pte_none(pte) || !pte_present(pte))
563 		return 0;
564 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
565 				range->flags[HMM_PFN_WRITE] :
566 				range->flags[HMM_PFN_VALID];
567 }
568 
569 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
570 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
571 			      uint64_t *pfn)
572 {
573 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
574 	struct hmm_range *range = hmm_vma_walk->range;
575 	struct vm_area_struct *vma = walk->vma;
576 	bool fault, write_fault;
577 	uint64_t cpu_flags;
578 	pte_t pte = *ptep;
579 	uint64_t orig_pfn = *pfn;
580 
581 	*pfn = range->values[HMM_PFN_NONE];
582 	fault = write_fault = false;
583 
584 	if (pte_none(pte)) {
585 		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
586 				   &fault, &write_fault);
587 		if (fault || write_fault)
588 			goto fault;
589 		return 0;
590 	}
591 
592 	if (!pte_present(pte)) {
593 		swp_entry_t entry = pte_to_swp_entry(pte);
594 
595 		if (!non_swap_entry(entry)) {
596 			if (fault || write_fault)
597 				goto fault;
598 			return 0;
599 		}
600 
601 		/*
602 		 * This is a special swap entry, ignore migration, use
603 		 * device and report anything else as error.
604 		 */
605 		if (is_device_private_entry(entry)) {
606 			cpu_flags = range->flags[HMM_PFN_VALID] |
607 				range->flags[HMM_PFN_DEVICE_PRIVATE];
608 			cpu_flags |= is_write_device_private_entry(entry) ?
609 				range->flags[HMM_PFN_WRITE] : 0;
610 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
611 					   &fault, &write_fault);
612 			if (fault || write_fault)
613 				goto fault;
614 			*pfn = hmm_device_entry_from_pfn(range,
615 					    swp_offset(entry));
616 			*pfn |= cpu_flags;
617 			return 0;
618 		}
619 
620 		if (is_migration_entry(entry)) {
621 			if (fault || write_fault) {
622 				pte_unmap(ptep);
623 				hmm_vma_walk->last = addr;
624 				migration_entry_wait(vma->vm_mm,
625 						     pmdp, addr);
626 				return -EBUSY;
627 			}
628 			return 0;
629 		}
630 
631 		/* Report error for everything else */
632 		*pfn = range->values[HMM_PFN_ERROR];
633 		return -EFAULT;
634 	} else {
635 		cpu_flags = pte_to_hmm_pfn_flags(range, pte);
636 		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
637 				   &fault, &write_fault);
638 	}
639 
640 	if (fault || write_fault)
641 		goto fault;
642 
643 	if (pte_devmap(pte)) {
644 		hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
645 					      hmm_vma_walk->pgmap);
646 		if (unlikely(!hmm_vma_walk->pgmap))
647 			return -EBUSY;
648 	} else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
649 		*pfn = range->values[HMM_PFN_SPECIAL];
650 		return -EFAULT;
651 	}
652 
653 	*pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
654 	return 0;
655 
656 fault:
657 	if (hmm_vma_walk->pgmap) {
658 		put_dev_pagemap(hmm_vma_walk->pgmap);
659 		hmm_vma_walk->pgmap = NULL;
660 	}
661 	pte_unmap(ptep);
662 	/* Fault any virtual address we were asked to fault */
663 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
664 }
665 
666 static int hmm_vma_walk_pmd(pmd_t *pmdp,
667 			    unsigned long start,
668 			    unsigned long end,
669 			    struct mm_walk *walk)
670 {
671 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
672 	struct hmm_range *range = hmm_vma_walk->range;
673 	struct vm_area_struct *vma = walk->vma;
674 	uint64_t *pfns = range->pfns;
675 	unsigned long addr = start, i;
676 	pte_t *ptep;
677 	pmd_t pmd;
678 
679 
680 again:
681 	pmd = READ_ONCE(*pmdp);
682 	if (pmd_none(pmd))
683 		return hmm_vma_walk_hole(start, end, walk);
684 
685 	if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
686 		return hmm_pfns_bad(start, end, walk);
687 
688 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
689 		bool fault, write_fault;
690 		unsigned long npages;
691 		uint64_t *pfns;
692 
693 		i = (addr - range->start) >> PAGE_SHIFT;
694 		npages = (end - addr) >> PAGE_SHIFT;
695 		pfns = &range->pfns[i];
696 
697 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
698 				     0, &fault, &write_fault);
699 		if (fault || write_fault) {
700 			hmm_vma_walk->last = addr;
701 			pmd_migration_entry_wait(vma->vm_mm, pmdp);
702 			return -EBUSY;
703 		}
704 		return 0;
705 	} else if (!pmd_present(pmd))
706 		return hmm_pfns_bad(start, end, walk);
707 
708 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
709 		/*
710 		 * No need to take pmd_lock here, even if some other threads
711 		 * is splitting the huge pmd we will get that event through
712 		 * mmu_notifier callback.
713 		 *
714 		 * So just read pmd value and check again its a transparent
715 		 * huge or device mapping one and compute corresponding pfn
716 		 * values.
717 		 */
718 		pmd = pmd_read_atomic(pmdp);
719 		barrier();
720 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
721 			goto again;
722 
723 		i = (addr - range->start) >> PAGE_SHIFT;
724 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
725 	}
726 
727 	/*
728 	 * We have handled all the valid case above ie either none, migration,
729 	 * huge or transparent huge. At this point either it is a valid pmd
730 	 * entry pointing to pte directory or it is a bad pmd that will not
731 	 * recover.
732 	 */
733 	if (pmd_bad(pmd))
734 		return hmm_pfns_bad(start, end, walk);
735 
736 	ptep = pte_offset_map(pmdp, addr);
737 	i = (addr - range->start) >> PAGE_SHIFT;
738 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
739 		int r;
740 
741 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
742 		if (r) {
743 			/* hmm_vma_handle_pte() did unmap pte directory */
744 			hmm_vma_walk->last = addr;
745 			return r;
746 		}
747 	}
748 	if (hmm_vma_walk->pgmap) {
749 		/*
750 		 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
751 		 * so that we can leverage get_dev_pagemap() optimization which
752 		 * will not re-take a reference on a pgmap if we already have
753 		 * one.
754 		 */
755 		put_dev_pagemap(hmm_vma_walk->pgmap);
756 		hmm_vma_walk->pgmap = NULL;
757 	}
758 	pte_unmap(ptep - 1);
759 
760 	hmm_vma_walk->last = addr;
761 	return 0;
762 }
763 
764 static int hmm_vma_walk_pud(pud_t *pudp,
765 			    unsigned long start,
766 			    unsigned long end,
767 			    struct mm_walk *walk)
768 {
769 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
770 	struct hmm_range *range = hmm_vma_walk->range;
771 	unsigned long addr = start, next;
772 	pmd_t *pmdp;
773 	pud_t pud;
774 	int ret;
775 
776 again:
777 	pud = READ_ONCE(*pudp);
778 	if (pud_none(pud))
779 		return hmm_vma_walk_hole(start, end, walk);
780 
781 	if (pud_huge(pud) && pud_devmap(pud)) {
782 		unsigned long i, npages, pfn;
783 		uint64_t *pfns, cpu_flags;
784 		bool fault, write_fault;
785 
786 		if (!pud_present(pud))
787 			return hmm_vma_walk_hole(start, end, walk);
788 
789 		i = (addr - range->start) >> PAGE_SHIFT;
790 		npages = (end - addr) >> PAGE_SHIFT;
791 		pfns = &range->pfns[i];
792 
793 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
794 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
795 				     cpu_flags, &fault, &write_fault);
796 		if (fault || write_fault)
797 			return hmm_vma_walk_hole_(addr, end, fault,
798 						write_fault, walk);
799 
800 #ifdef CONFIG_HUGETLB_PAGE
801 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
802 		for (i = 0; i < npages; ++i, ++pfn) {
803 			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
804 					      hmm_vma_walk->pgmap);
805 			if (unlikely(!hmm_vma_walk->pgmap))
806 				return -EBUSY;
807 			pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
808 				  cpu_flags;
809 		}
810 		if (hmm_vma_walk->pgmap) {
811 			put_dev_pagemap(hmm_vma_walk->pgmap);
812 			hmm_vma_walk->pgmap = NULL;
813 		}
814 		hmm_vma_walk->last = end;
815 		return 0;
816 #else
817 		return -EINVAL;
818 #endif
819 	}
820 
821 	split_huge_pud(walk->vma, pudp, addr);
822 	if (pud_none(*pudp))
823 		goto again;
824 
825 	pmdp = pmd_offset(pudp, addr);
826 	do {
827 		next = pmd_addr_end(addr, end);
828 		ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
829 		if (ret)
830 			return ret;
831 	} while (pmdp++, addr = next, addr != end);
832 
833 	return 0;
834 }
835 
836 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
837 				      unsigned long start, unsigned long end,
838 				      struct mm_walk *walk)
839 {
840 #ifdef CONFIG_HUGETLB_PAGE
841 	unsigned long addr = start, i, pfn, mask, size, pfn_inc;
842 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
843 	struct hmm_range *range = hmm_vma_walk->range;
844 	struct vm_area_struct *vma = walk->vma;
845 	struct hstate *h = hstate_vma(vma);
846 	uint64_t orig_pfn, cpu_flags;
847 	bool fault, write_fault;
848 	spinlock_t *ptl;
849 	pte_t entry;
850 	int ret = 0;
851 
852 	size = 1UL << huge_page_shift(h);
853 	mask = size - 1;
854 	if (range->page_shift != PAGE_SHIFT) {
855 		/* Make sure we are looking at full page. */
856 		if (start & mask)
857 			return -EINVAL;
858 		if (end < (start + size))
859 			return -EINVAL;
860 		pfn_inc = size >> PAGE_SHIFT;
861 	} else {
862 		pfn_inc = 1;
863 		size = PAGE_SIZE;
864 	}
865 
866 
867 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
868 	entry = huge_ptep_get(pte);
869 
870 	i = (start - range->start) >> range->page_shift;
871 	orig_pfn = range->pfns[i];
872 	range->pfns[i] = range->values[HMM_PFN_NONE];
873 	cpu_flags = pte_to_hmm_pfn_flags(range, entry);
874 	fault = write_fault = false;
875 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
876 			   &fault, &write_fault);
877 	if (fault || write_fault) {
878 		ret = -ENOENT;
879 		goto unlock;
880 	}
881 
882 	pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
883 	for (; addr < end; addr += size, i++, pfn += pfn_inc)
884 		range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
885 				 cpu_flags;
886 	hmm_vma_walk->last = end;
887 
888 unlock:
889 	spin_unlock(ptl);
890 
891 	if (ret == -ENOENT)
892 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
893 
894 	return ret;
895 #else /* CONFIG_HUGETLB_PAGE */
896 	return -EINVAL;
897 #endif
898 }
899 
900 static void hmm_pfns_clear(struct hmm_range *range,
901 			   uint64_t *pfns,
902 			   unsigned long addr,
903 			   unsigned long end)
904 {
905 	for (; addr < end; addr += PAGE_SIZE, pfns++)
906 		*pfns = range->values[HMM_PFN_NONE];
907 }
908 
909 /*
910  * hmm_range_register() - start tracking change to CPU page table over a range
911  * @range: range
912  * @mm: the mm struct for the range of virtual address
913  * @start: start virtual address (inclusive)
914  * @end: end virtual address (exclusive)
915  * @page_shift: expect page shift for the range
916  * Returns 0 on success, -EFAULT if the address space is no longer valid
917  *
918  * Track updates to the CPU page table see include/linux/hmm.h
919  */
920 int hmm_range_register(struct hmm_range *range,
921 		       struct mm_struct *mm,
922 		       unsigned long start,
923 		       unsigned long end,
924 		       unsigned page_shift)
925 {
926 	unsigned long mask = ((1UL << page_shift) - 1UL);
927 
928 	range->valid = false;
929 	range->hmm = NULL;
930 
931 	if ((start & mask) || (end & mask))
932 		return -EINVAL;
933 	if (start >= end)
934 		return -EINVAL;
935 
936 	range->page_shift = page_shift;
937 	range->start = start;
938 	range->end = end;
939 
940 	range->hmm = hmm_get_or_create(mm);
941 	if (!range->hmm)
942 		return -EFAULT;
943 
944 	/* Check if hmm_mm_destroy() was call. */
945 	if (range->hmm->mm == NULL || range->hmm->dead) {
946 		hmm_put(range->hmm);
947 		return -EFAULT;
948 	}
949 
950 	/* Initialize range to track CPU page table update */
951 	mutex_lock(&range->hmm->lock);
952 
953 	list_add_rcu(&range->list, &range->hmm->ranges);
954 
955 	/*
956 	 * If there are any concurrent notifiers we have to wait for them for
957 	 * the range to be valid (see hmm_range_wait_until_valid()).
958 	 */
959 	if (!range->hmm->notifiers)
960 		range->valid = true;
961 	mutex_unlock(&range->hmm->lock);
962 
963 	return 0;
964 }
965 EXPORT_SYMBOL(hmm_range_register);
966 
967 /*
968  * hmm_range_unregister() - stop tracking change to CPU page table over a range
969  * @range: range
970  *
971  * Range struct is used to track updates to the CPU page table after a call to
972  * hmm_range_register(). See include/linux/hmm.h for how to use it.
973  */
974 void hmm_range_unregister(struct hmm_range *range)
975 {
976 	/* Sanity check this really should not happen. */
977 	if (range->hmm == NULL || range->end <= range->start)
978 		return;
979 
980 	mutex_lock(&range->hmm->lock);
981 	list_del_rcu(&range->list);
982 	mutex_unlock(&range->hmm->lock);
983 
984 	/* Drop reference taken by hmm_range_register() */
985 	range->valid = false;
986 	hmm_put(range->hmm);
987 	range->hmm = NULL;
988 }
989 EXPORT_SYMBOL(hmm_range_unregister);
990 
991 /*
992  * hmm_range_snapshot() - snapshot CPU page table for a range
993  * @range: range
994  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
995  *          permission (for instance asking for write and range is read only),
996  *          -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
997  *          vma or it is illegal to access that range), number of valid pages
998  *          in range->pfns[] (from range start address).
999  *
1000  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
1001  * validity is tracked by range struct. See in include/linux/hmm.h for example
1002  * on how to use.
1003  */
1004 long hmm_range_snapshot(struct hmm_range *range)
1005 {
1006 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1007 	unsigned long start = range->start, end;
1008 	struct hmm_vma_walk hmm_vma_walk;
1009 	struct hmm *hmm = range->hmm;
1010 	struct vm_area_struct *vma;
1011 	struct mm_walk mm_walk;
1012 
1013 	/* Check if hmm_mm_destroy() was call. */
1014 	if (hmm->mm == NULL || hmm->dead)
1015 		return -EFAULT;
1016 
1017 	do {
1018 		/* If range is no longer valid force retry. */
1019 		if (!range->valid)
1020 			return -EAGAIN;
1021 
1022 		vma = find_vma(hmm->mm, start);
1023 		if (vma == NULL || (vma->vm_flags & device_vma))
1024 			return -EFAULT;
1025 
1026 		if (is_vm_hugetlb_page(vma)) {
1027 			struct hstate *h = hstate_vma(vma);
1028 
1029 			if (huge_page_shift(h) != range->page_shift &&
1030 			    range->page_shift != PAGE_SHIFT)
1031 				return -EINVAL;
1032 		} else {
1033 			if (range->page_shift != PAGE_SHIFT)
1034 				return -EINVAL;
1035 		}
1036 
1037 		if (!(vma->vm_flags & VM_READ)) {
1038 			/*
1039 			 * If vma do not allow read access, then assume that it
1040 			 * does not allow write access, either. HMM does not
1041 			 * support architecture that allow write without read.
1042 			 */
1043 			hmm_pfns_clear(range, range->pfns,
1044 				range->start, range->end);
1045 			return -EPERM;
1046 		}
1047 
1048 		range->vma = vma;
1049 		hmm_vma_walk.pgmap = NULL;
1050 		hmm_vma_walk.last = start;
1051 		hmm_vma_walk.fault = false;
1052 		hmm_vma_walk.range = range;
1053 		mm_walk.private = &hmm_vma_walk;
1054 		end = min(range->end, vma->vm_end);
1055 
1056 		mm_walk.vma = vma;
1057 		mm_walk.mm = vma->vm_mm;
1058 		mm_walk.pte_entry = NULL;
1059 		mm_walk.test_walk = NULL;
1060 		mm_walk.hugetlb_entry = NULL;
1061 		mm_walk.pud_entry = hmm_vma_walk_pud;
1062 		mm_walk.pmd_entry = hmm_vma_walk_pmd;
1063 		mm_walk.pte_hole = hmm_vma_walk_hole;
1064 		mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1065 
1066 		walk_page_range(start, end, &mm_walk);
1067 		start = end;
1068 	} while (start < range->end);
1069 
1070 	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1071 }
1072 EXPORT_SYMBOL(hmm_range_snapshot);
1073 
1074 /*
1075  * hmm_range_fault() - try to fault some address in a virtual address range
1076  * @range: range being faulted
1077  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1078  * Returns: number of valid pages in range->pfns[] (from range start
1079  *          address). This may be zero. If the return value is negative,
1080  *          then one of the following values may be returned:
1081  *
1082  *           -EINVAL  invalid arguments or mm or virtual address are in an
1083  *                    invalid vma (for instance device file vma).
1084  *           -ENOMEM: Out of memory.
1085  *           -EPERM:  Invalid permission (for instance asking for write and
1086  *                    range is read only).
1087  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1088  *                    happens if block argument is false.
1089  *           -EBUSY:  If the the range is being invalidated and you should wait
1090  *                    for invalidation to finish.
1091  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1092  *                    that range), number of valid pages in range->pfns[] (from
1093  *                    range start address).
1094  *
1095  * This is similar to a regular CPU page fault except that it will not trigger
1096  * any memory migration if the memory being faulted is not accessible by CPUs
1097  * and caller does not ask for migration.
1098  *
1099  * On error, for one virtual address in the range, the function will mark the
1100  * corresponding HMM pfn entry with an error flag.
1101  */
1102 long hmm_range_fault(struct hmm_range *range, bool block)
1103 {
1104 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1105 	unsigned long start = range->start, end;
1106 	struct hmm_vma_walk hmm_vma_walk;
1107 	struct hmm *hmm = range->hmm;
1108 	struct vm_area_struct *vma;
1109 	struct mm_walk mm_walk;
1110 	int ret;
1111 
1112 	/* Check if hmm_mm_destroy() was call. */
1113 	if (hmm->mm == NULL || hmm->dead)
1114 		return -EFAULT;
1115 
1116 	do {
1117 		/* If range is no longer valid force retry. */
1118 		if (!range->valid) {
1119 			up_read(&hmm->mm->mmap_sem);
1120 			return -EAGAIN;
1121 		}
1122 
1123 		vma = find_vma(hmm->mm, start);
1124 		if (vma == NULL || (vma->vm_flags & device_vma))
1125 			return -EFAULT;
1126 
1127 		if (is_vm_hugetlb_page(vma)) {
1128 			if (huge_page_shift(hstate_vma(vma)) !=
1129 			    range->page_shift &&
1130 			    range->page_shift != PAGE_SHIFT)
1131 				return -EINVAL;
1132 		} else {
1133 			if (range->page_shift != PAGE_SHIFT)
1134 				return -EINVAL;
1135 		}
1136 
1137 		if (!(vma->vm_flags & VM_READ)) {
1138 			/*
1139 			 * If vma do not allow read access, then assume that it
1140 			 * does not allow write access, either. HMM does not
1141 			 * support architecture that allow write without read.
1142 			 */
1143 			hmm_pfns_clear(range, range->pfns,
1144 				range->start, range->end);
1145 			return -EPERM;
1146 		}
1147 
1148 		range->vma = vma;
1149 		hmm_vma_walk.pgmap = NULL;
1150 		hmm_vma_walk.last = start;
1151 		hmm_vma_walk.fault = true;
1152 		hmm_vma_walk.block = block;
1153 		hmm_vma_walk.range = range;
1154 		mm_walk.private = &hmm_vma_walk;
1155 		end = min(range->end, vma->vm_end);
1156 
1157 		mm_walk.vma = vma;
1158 		mm_walk.mm = vma->vm_mm;
1159 		mm_walk.pte_entry = NULL;
1160 		mm_walk.test_walk = NULL;
1161 		mm_walk.hugetlb_entry = NULL;
1162 		mm_walk.pud_entry = hmm_vma_walk_pud;
1163 		mm_walk.pmd_entry = hmm_vma_walk_pmd;
1164 		mm_walk.pte_hole = hmm_vma_walk_hole;
1165 		mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1166 
1167 		do {
1168 			ret = walk_page_range(start, end, &mm_walk);
1169 			start = hmm_vma_walk.last;
1170 
1171 			/* Keep trying while the range is valid. */
1172 		} while (ret == -EBUSY && range->valid);
1173 
1174 		if (ret) {
1175 			unsigned long i;
1176 
1177 			i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1178 			hmm_pfns_clear(range, &range->pfns[i],
1179 				hmm_vma_walk.last, range->end);
1180 			return ret;
1181 		}
1182 		start = end;
1183 
1184 	} while (start < range->end);
1185 
1186 	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1187 }
1188 EXPORT_SYMBOL(hmm_range_fault);
1189 
1190 /**
1191  * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1192  * @range: range being faulted
1193  * @device: device against to dma map page to
1194  * @daddrs: dma address of mapped pages
1195  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1196  * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been
1197  *          drop and you need to try again, some other error value otherwise
1198  *
1199  * Note same usage pattern as hmm_range_fault().
1200  */
1201 long hmm_range_dma_map(struct hmm_range *range,
1202 		       struct device *device,
1203 		       dma_addr_t *daddrs,
1204 		       bool block)
1205 {
1206 	unsigned long i, npages, mapped;
1207 	long ret;
1208 
1209 	ret = hmm_range_fault(range, block);
1210 	if (ret <= 0)
1211 		return ret ? ret : -EBUSY;
1212 
1213 	npages = (range->end - range->start) >> PAGE_SHIFT;
1214 	for (i = 0, mapped = 0; i < npages; ++i) {
1215 		enum dma_data_direction dir = DMA_TO_DEVICE;
1216 		struct page *page;
1217 
1218 		/*
1219 		 * FIXME need to update DMA API to provide invalid DMA address
1220 		 * value instead of a function to test dma address value. This
1221 		 * would remove lot of dumb code duplicated accross many arch.
1222 		 *
1223 		 * For now setting it to 0 here is good enough as the pfns[]
1224 		 * value is what is use to check what is valid and what isn't.
1225 		 */
1226 		daddrs[i] = 0;
1227 
1228 		page = hmm_device_entry_to_page(range, range->pfns[i]);
1229 		if (page == NULL)
1230 			continue;
1231 
1232 		/* Check if range is being invalidated */
1233 		if (!range->valid) {
1234 			ret = -EBUSY;
1235 			goto unmap;
1236 		}
1237 
1238 		/* If it is read and write than map bi-directional. */
1239 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1240 			dir = DMA_BIDIRECTIONAL;
1241 
1242 		daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1243 		if (dma_mapping_error(device, daddrs[i])) {
1244 			ret = -EFAULT;
1245 			goto unmap;
1246 		}
1247 
1248 		mapped++;
1249 	}
1250 
1251 	return mapped;
1252 
1253 unmap:
1254 	for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1255 		enum dma_data_direction dir = DMA_TO_DEVICE;
1256 		struct page *page;
1257 
1258 		page = hmm_device_entry_to_page(range, range->pfns[i]);
1259 		if (page == NULL)
1260 			continue;
1261 
1262 		if (dma_mapping_error(device, daddrs[i]))
1263 			continue;
1264 
1265 		/* If it is read and write than map bi-directional. */
1266 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1267 			dir = DMA_BIDIRECTIONAL;
1268 
1269 		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1270 		mapped--;
1271 	}
1272 
1273 	return ret;
1274 }
1275 EXPORT_SYMBOL(hmm_range_dma_map);
1276 
1277 /**
1278  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1279  * @range: range being unmapped
1280  * @vma: the vma against which the range (optional)
1281  * @device: device against which dma map was done
1282  * @daddrs: dma address of mapped pages
1283  * @dirty: dirty page if it had the write flag set
1284  * Returns: number of page unmapped on success, -EINVAL otherwise
1285  *
1286  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1287  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1288  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1289  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1290  */
1291 long hmm_range_dma_unmap(struct hmm_range *range,
1292 			 struct vm_area_struct *vma,
1293 			 struct device *device,
1294 			 dma_addr_t *daddrs,
1295 			 bool dirty)
1296 {
1297 	unsigned long i, npages;
1298 	long cpages = 0;
1299 
1300 	/* Sanity check. */
1301 	if (range->end <= range->start)
1302 		return -EINVAL;
1303 	if (!daddrs)
1304 		return -EINVAL;
1305 	if (!range->pfns)
1306 		return -EINVAL;
1307 
1308 	npages = (range->end - range->start) >> PAGE_SHIFT;
1309 	for (i = 0; i < npages; ++i) {
1310 		enum dma_data_direction dir = DMA_TO_DEVICE;
1311 		struct page *page;
1312 
1313 		page = hmm_device_entry_to_page(range, range->pfns[i]);
1314 		if (page == NULL)
1315 			continue;
1316 
1317 		/* If it is read and write than map bi-directional. */
1318 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1319 			dir = DMA_BIDIRECTIONAL;
1320 
1321 			/*
1322 			 * See comments in function description on why it is
1323 			 * safe here to call set_page_dirty()
1324 			 */
1325 			if (dirty)
1326 				set_page_dirty(page);
1327 		}
1328 
1329 		/* Unmap and clear pfns/dma address */
1330 		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1331 		range->pfns[i] = range->values[HMM_PFN_NONE];
1332 		/* FIXME see comments in hmm_vma_dma_map() */
1333 		daddrs[i] = 0;
1334 		cpages++;
1335 	}
1336 
1337 	return cpages;
1338 }
1339 EXPORT_SYMBOL(hmm_range_dma_unmap);
1340 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1341 
1342 
1343 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1344 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1345 				       unsigned long addr)
1346 {
1347 	struct page *page;
1348 
1349 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1350 	if (!page)
1351 		return NULL;
1352 	lock_page(page);
1353 	return page;
1354 }
1355 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1356 
1357 
1358 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1359 {
1360 	struct hmm_devmem *devmem;
1361 
1362 	devmem = container_of(ref, struct hmm_devmem, ref);
1363 	complete(&devmem->completion);
1364 }
1365 
1366 static void hmm_devmem_ref_exit(void *data)
1367 {
1368 	struct percpu_ref *ref = data;
1369 	struct hmm_devmem *devmem;
1370 
1371 	devmem = container_of(ref, struct hmm_devmem, ref);
1372 	wait_for_completion(&devmem->completion);
1373 	percpu_ref_exit(ref);
1374 }
1375 
1376 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1377 {
1378 	percpu_ref_kill(ref);
1379 }
1380 
1381 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1382 			    unsigned long addr,
1383 			    const struct page *page,
1384 			    unsigned int flags,
1385 			    pmd_t *pmdp)
1386 {
1387 	struct hmm_devmem *devmem = page->pgmap->data;
1388 
1389 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1390 }
1391 
1392 static void hmm_devmem_free(struct page *page, void *data)
1393 {
1394 	struct hmm_devmem *devmem = data;
1395 
1396 	page->mapping = NULL;
1397 
1398 	devmem->ops->free(devmem, page);
1399 }
1400 
1401 /*
1402  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1403  *
1404  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1405  * @device: device struct to bind the resource too
1406  * @size: size in bytes of the device memory to add
1407  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1408  *
1409  * This function first finds an empty range of physical address big enough to
1410  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1411  * in turn allocates struct pages. It does not do anything beyond that; all
1412  * events affecting the memory will go through the various callbacks provided
1413  * by hmm_devmem_ops struct.
1414  *
1415  * Device driver should call this function during device initialization and
1416  * is then responsible of memory management. HMM only provides helpers.
1417  */
1418 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1419 				  struct device *device,
1420 				  unsigned long size)
1421 {
1422 	struct hmm_devmem *devmem;
1423 	resource_size_t addr;
1424 	void *result;
1425 	int ret;
1426 
1427 	dev_pagemap_get_ops();
1428 
1429 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1430 	if (!devmem)
1431 		return ERR_PTR(-ENOMEM);
1432 
1433 	init_completion(&devmem->completion);
1434 	devmem->pfn_first = -1UL;
1435 	devmem->pfn_last = -1UL;
1436 	devmem->resource = NULL;
1437 	devmem->device = device;
1438 	devmem->ops = ops;
1439 
1440 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1441 			      0, GFP_KERNEL);
1442 	if (ret)
1443 		return ERR_PTR(ret);
1444 
1445 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1446 	if (ret)
1447 		return ERR_PTR(ret);
1448 
1449 	size = ALIGN(size, PA_SECTION_SIZE);
1450 	addr = min((unsigned long)iomem_resource.end,
1451 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1452 	addr = addr - size + 1UL;
1453 
1454 	/*
1455 	 * FIXME add a new helper to quickly walk resource tree and find free
1456 	 * range
1457 	 *
1458 	 * FIXME what about ioport_resource resource ?
1459 	 */
1460 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1461 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1462 		if (ret != REGION_DISJOINT)
1463 			continue;
1464 
1465 		devmem->resource = devm_request_mem_region(device, addr, size,
1466 							   dev_name(device));
1467 		if (!devmem->resource)
1468 			return ERR_PTR(-ENOMEM);
1469 		break;
1470 	}
1471 	if (!devmem->resource)
1472 		return ERR_PTR(-ERANGE);
1473 
1474 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1475 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1476 	devmem->pfn_last = devmem->pfn_first +
1477 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1478 	devmem->page_fault = hmm_devmem_fault;
1479 
1480 	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1481 	devmem->pagemap.res = *devmem->resource;
1482 	devmem->pagemap.page_free = hmm_devmem_free;
1483 	devmem->pagemap.altmap_valid = false;
1484 	devmem->pagemap.ref = &devmem->ref;
1485 	devmem->pagemap.data = devmem;
1486 	devmem->pagemap.kill = hmm_devmem_ref_kill;
1487 
1488 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1489 	if (IS_ERR(result))
1490 		return result;
1491 	return devmem;
1492 }
1493 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1494 
1495 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1496 					   struct device *device,
1497 					   struct resource *res)
1498 {
1499 	struct hmm_devmem *devmem;
1500 	void *result;
1501 	int ret;
1502 
1503 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1504 		return ERR_PTR(-EINVAL);
1505 
1506 	dev_pagemap_get_ops();
1507 
1508 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1509 	if (!devmem)
1510 		return ERR_PTR(-ENOMEM);
1511 
1512 	init_completion(&devmem->completion);
1513 	devmem->pfn_first = -1UL;
1514 	devmem->pfn_last = -1UL;
1515 	devmem->resource = res;
1516 	devmem->device = device;
1517 	devmem->ops = ops;
1518 
1519 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1520 			      0, GFP_KERNEL);
1521 	if (ret)
1522 		return ERR_PTR(ret);
1523 
1524 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1525 			&devmem->ref);
1526 	if (ret)
1527 		return ERR_PTR(ret);
1528 
1529 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1530 	devmem->pfn_last = devmem->pfn_first +
1531 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1532 	devmem->page_fault = hmm_devmem_fault;
1533 
1534 	devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1535 	devmem->pagemap.res = *devmem->resource;
1536 	devmem->pagemap.page_free = hmm_devmem_free;
1537 	devmem->pagemap.altmap_valid = false;
1538 	devmem->pagemap.ref = &devmem->ref;
1539 	devmem->pagemap.data = devmem;
1540 	devmem->pagemap.kill = hmm_devmem_ref_kill;
1541 
1542 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1543 	if (IS_ERR(result))
1544 		return result;
1545 	return devmem;
1546 }
1547 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1548 
1549 /*
1550  * A device driver that wants to handle multiple devices memory through a
1551  * single fake device can use hmm_device to do so. This is purely a helper
1552  * and it is not needed to make use of any HMM functionality.
1553  */
1554 #define HMM_DEVICE_MAX 256
1555 
1556 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1557 static DEFINE_SPINLOCK(hmm_device_lock);
1558 static struct class *hmm_device_class;
1559 static dev_t hmm_device_devt;
1560 
1561 static void hmm_device_release(struct device *device)
1562 {
1563 	struct hmm_device *hmm_device;
1564 
1565 	hmm_device = container_of(device, struct hmm_device, device);
1566 	spin_lock(&hmm_device_lock);
1567 	clear_bit(hmm_device->minor, hmm_device_mask);
1568 	spin_unlock(&hmm_device_lock);
1569 
1570 	kfree(hmm_device);
1571 }
1572 
1573 struct hmm_device *hmm_device_new(void *drvdata)
1574 {
1575 	struct hmm_device *hmm_device;
1576 
1577 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1578 	if (!hmm_device)
1579 		return ERR_PTR(-ENOMEM);
1580 
1581 	spin_lock(&hmm_device_lock);
1582 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1583 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1584 		spin_unlock(&hmm_device_lock);
1585 		kfree(hmm_device);
1586 		return ERR_PTR(-EBUSY);
1587 	}
1588 	set_bit(hmm_device->minor, hmm_device_mask);
1589 	spin_unlock(&hmm_device_lock);
1590 
1591 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1592 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1593 					hmm_device->minor);
1594 	hmm_device->device.release = hmm_device_release;
1595 	dev_set_drvdata(&hmm_device->device, drvdata);
1596 	hmm_device->device.class = hmm_device_class;
1597 	device_initialize(&hmm_device->device);
1598 
1599 	return hmm_device;
1600 }
1601 EXPORT_SYMBOL(hmm_device_new);
1602 
1603 void hmm_device_put(struct hmm_device *hmm_device)
1604 {
1605 	put_device(&hmm_device->device);
1606 }
1607 EXPORT_SYMBOL(hmm_device_put);
1608 
1609 static int __init hmm_init(void)
1610 {
1611 	int ret;
1612 
1613 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1614 				  HMM_DEVICE_MAX,
1615 				  "hmm_device");
1616 	if (ret)
1617 		return ret;
1618 
1619 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1620 	if (IS_ERR(hmm_device_class)) {
1621 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1622 		return PTR_ERR(hmm_device_class);
1623 	}
1624 	return 0;
1625 }
1626 
1627 device_initcall(hmm_init);
1628 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1629