xref: /openbmc/linux/mm/highmem.c (revision fb960bd2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High memory handling common code and variables.
4  *
5  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7  *
8  *
9  * Redesigned the x86 32-bit VM architecture to deal with
10  * 64-bit physical space. With current x86 CPUs this
11  * means up to 64 Gigabytes physical RAM.
12  *
13  * Rewrote high memory support to move the page cache into
14  * high memory. Implemented permanent (schedulable) kmaps
15  * based on Linus' idea.
16  *
17  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18  */
19 
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/blkdev.h>
27 #include <linux/init.h>
28 #include <linux/hash.h>
29 #include <linux/highmem.h>
30 #include <linux/kgdb.h>
31 #include <asm/tlbflush.h>
32 
33 
34 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
35 DEFINE_PER_CPU(int, __kmap_atomic_idx);
36 #endif
37 
38 /*
39  * Virtual_count is not a pure "count".
40  *  0 means that it is not mapped, and has not been mapped
41  *    since a TLB flush - it is usable.
42  *  1 means that there are no users, but it has been mapped
43  *    since the last TLB flush - so we can't use it.
44  *  n means that there are (n-1) current users of it.
45  */
46 #ifdef CONFIG_HIGHMEM
47 
48 /*
49  * Architecture with aliasing data cache may define the following family of
50  * helper functions in its asm/highmem.h to control cache color of virtual
51  * addresses where physical memory pages are mapped by kmap.
52  */
53 #ifndef get_pkmap_color
54 
55 /*
56  * Determine color of virtual address where the page should be mapped.
57  */
58 static inline unsigned int get_pkmap_color(struct page *page)
59 {
60 	return 0;
61 }
62 #define get_pkmap_color get_pkmap_color
63 
64 /*
65  * Get next index for mapping inside PKMAP region for page with given color.
66  */
67 static inline unsigned int get_next_pkmap_nr(unsigned int color)
68 {
69 	static unsigned int last_pkmap_nr;
70 
71 	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
72 	return last_pkmap_nr;
73 }
74 
75 /*
76  * Determine if page index inside PKMAP region (pkmap_nr) of given color
77  * has wrapped around PKMAP region end. When this happens an attempt to
78  * flush all unused PKMAP slots is made.
79  */
80 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
81 {
82 	return pkmap_nr == 0;
83 }
84 
85 /*
86  * Get the number of PKMAP entries of the given color. If no free slot is
87  * found after checking that many entries, kmap will sleep waiting for
88  * someone to call kunmap and free PKMAP slot.
89  */
90 static inline int get_pkmap_entries_count(unsigned int color)
91 {
92 	return LAST_PKMAP;
93 }
94 
95 /*
96  * Get head of a wait queue for PKMAP entries of the given color.
97  * Wait queues for different mapping colors should be independent to avoid
98  * unnecessary wakeups caused by freeing of slots of other colors.
99  */
100 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
101 {
102 	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
103 
104 	return &pkmap_map_wait;
105 }
106 #endif
107 
108 unsigned long totalhigh_pages __read_mostly;
109 EXPORT_SYMBOL(totalhigh_pages);
110 
111 
112 EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
113 
114 unsigned int nr_free_highpages (void)
115 {
116 	struct zone *zone;
117 	unsigned int pages = 0;
118 
119 	for_each_populated_zone(zone) {
120 		if (is_highmem(zone))
121 			pages += zone_page_state(zone, NR_FREE_PAGES);
122 	}
123 
124 	return pages;
125 }
126 
127 static int pkmap_count[LAST_PKMAP];
128 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
129 
130 pte_t * pkmap_page_table;
131 
132 /*
133  * Most architectures have no use for kmap_high_get(), so let's abstract
134  * the disabling of IRQ out of the locking in that case to save on a
135  * potential useless overhead.
136  */
137 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
138 #define lock_kmap()             spin_lock_irq(&kmap_lock)
139 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
140 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
141 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
142 #else
143 #define lock_kmap()             spin_lock(&kmap_lock)
144 #define unlock_kmap()           spin_unlock(&kmap_lock)
145 #define lock_kmap_any(flags)    \
146 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
147 #define unlock_kmap_any(flags)  \
148 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
149 #endif
150 
151 struct page *kmap_to_page(void *vaddr)
152 {
153 	unsigned long addr = (unsigned long)vaddr;
154 
155 	if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
156 		int i = PKMAP_NR(addr);
157 		return pte_page(pkmap_page_table[i]);
158 	}
159 
160 	return virt_to_page(addr);
161 }
162 EXPORT_SYMBOL(kmap_to_page);
163 
164 static void flush_all_zero_pkmaps(void)
165 {
166 	int i;
167 	int need_flush = 0;
168 
169 	flush_cache_kmaps();
170 
171 	for (i = 0; i < LAST_PKMAP; i++) {
172 		struct page *page;
173 
174 		/*
175 		 * zero means we don't have anything to do,
176 		 * >1 means that it is still in use. Only
177 		 * a count of 1 means that it is free but
178 		 * needs to be unmapped
179 		 */
180 		if (pkmap_count[i] != 1)
181 			continue;
182 		pkmap_count[i] = 0;
183 
184 		/* sanity check */
185 		BUG_ON(pte_none(pkmap_page_table[i]));
186 
187 		/*
188 		 * Don't need an atomic fetch-and-clear op here;
189 		 * no-one has the page mapped, and cannot get at
190 		 * its virtual address (and hence PTE) without first
191 		 * getting the kmap_lock (which is held here).
192 		 * So no dangers, even with speculative execution.
193 		 */
194 		page = pte_page(pkmap_page_table[i]);
195 		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
196 
197 		set_page_address(page, NULL);
198 		need_flush = 1;
199 	}
200 	if (need_flush)
201 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
202 }
203 
204 /**
205  * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
206  */
207 void kmap_flush_unused(void)
208 {
209 	lock_kmap();
210 	flush_all_zero_pkmaps();
211 	unlock_kmap();
212 }
213 
214 static inline unsigned long map_new_virtual(struct page *page)
215 {
216 	unsigned long vaddr;
217 	int count;
218 	unsigned int last_pkmap_nr;
219 	unsigned int color = get_pkmap_color(page);
220 
221 start:
222 	count = get_pkmap_entries_count(color);
223 	/* Find an empty entry */
224 	for (;;) {
225 		last_pkmap_nr = get_next_pkmap_nr(color);
226 		if (no_more_pkmaps(last_pkmap_nr, color)) {
227 			flush_all_zero_pkmaps();
228 			count = get_pkmap_entries_count(color);
229 		}
230 		if (!pkmap_count[last_pkmap_nr])
231 			break;	/* Found a usable entry */
232 		if (--count)
233 			continue;
234 
235 		/*
236 		 * Sleep for somebody else to unmap their entries
237 		 */
238 		{
239 			DECLARE_WAITQUEUE(wait, current);
240 			wait_queue_head_t *pkmap_map_wait =
241 				get_pkmap_wait_queue_head(color);
242 
243 			__set_current_state(TASK_UNINTERRUPTIBLE);
244 			add_wait_queue(pkmap_map_wait, &wait);
245 			unlock_kmap();
246 			schedule();
247 			remove_wait_queue(pkmap_map_wait, &wait);
248 			lock_kmap();
249 
250 			/* Somebody else might have mapped it while we slept */
251 			if (page_address(page))
252 				return (unsigned long)page_address(page);
253 
254 			/* Re-start */
255 			goto start;
256 		}
257 	}
258 	vaddr = PKMAP_ADDR(last_pkmap_nr);
259 	set_pte_at(&init_mm, vaddr,
260 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
261 
262 	pkmap_count[last_pkmap_nr] = 1;
263 	set_page_address(page, (void *)vaddr);
264 
265 	return vaddr;
266 }
267 
268 /**
269  * kmap_high - map a highmem page into memory
270  * @page: &struct page to map
271  *
272  * Returns the page's virtual memory address.
273  *
274  * We cannot call this from interrupts, as it may block.
275  */
276 void *kmap_high(struct page *page)
277 {
278 	unsigned long vaddr;
279 
280 	/*
281 	 * For highmem pages, we can't trust "virtual" until
282 	 * after we have the lock.
283 	 */
284 	lock_kmap();
285 	vaddr = (unsigned long)page_address(page);
286 	if (!vaddr)
287 		vaddr = map_new_virtual(page);
288 	pkmap_count[PKMAP_NR(vaddr)]++;
289 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
290 	unlock_kmap();
291 	return (void*) vaddr;
292 }
293 
294 EXPORT_SYMBOL(kmap_high);
295 
296 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
297 /**
298  * kmap_high_get - pin a highmem page into memory
299  * @page: &struct page to pin
300  *
301  * Returns the page's current virtual memory address, or NULL if no mapping
302  * exists.  If and only if a non null address is returned then a
303  * matching call to kunmap_high() is necessary.
304  *
305  * This can be called from any context.
306  */
307 void *kmap_high_get(struct page *page)
308 {
309 	unsigned long vaddr, flags;
310 
311 	lock_kmap_any(flags);
312 	vaddr = (unsigned long)page_address(page);
313 	if (vaddr) {
314 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
315 		pkmap_count[PKMAP_NR(vaddr)]++;
316 	}
317 	unlock_kmap_any(flags);
318 	return (void*) vaddr;
319 }
320 #endif
321 
322 /**
323  * kunmap_high - unmap a highmem page into memory
324  * @page: &struct page to unmap
325  *
326  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
327  * only from user context.
328  */
329 void kunmap_high(struct page *page)
330 {
331 	unsigned long vaddr;
332 	unsigned long nr;
333 	unsigned long flags;
334 	int need_wakeup;
335 	unsigned int color = get_pkmap_color(page);
336 	wait_queue_head_t *pkmap_map_wait;
337 
338 	lock_kmap_any(flags);
339 	vaddr = (unsigned long)page_address(page);
340 	BUG_ON(!vaddr);
341 	nr = PKMAP_NR(vaddr);
342 
343 	/*
344 	 * A count must never go down to zero
345 	 * without a TLB flush!
346 	 */
347 	need_wakeup = 0;
348 	switch (--pkmap_count[nr]) {
349 	case 0:
350 		BUG();
351 	case 1:
352 		/*
353 		 * Avoid an unnecessary wake_up() function call.
354 		 * The common case is pkmap_count[] == 1, but
355 		 * no waiters.
356 		 * The tasks queued in the wait-queue are guarded
357 		 * by both the lock in the wait-queue-head and by
358 		 * the kmap_lock.  As the kmap_lock is held here,
359 		 * no need for the wait-queue-head's lock.  Simply
360 		 * test if the queue is empty.
361 		 */
362 		pkmap_map_wait = get_pkmap_wait_queue_head(color);
363 		need_wakeup = waitqueue_active(pkmap_map_wait);
364 	}
365 	unlock_kmap_any(flags);
366 
367 	/* do wake-up, if needed, race-free outside of the spin lock */
368 	if (need_wakeup)
369 		wake_up(pkmap_map_wait);
370 }
371 
372 EXPORT_SYMBOL(kunmap_high);
373 #endif
374 
375 #if defined(HASHED_PAGE_VIRTUAL)
376 
377 #define PA_HASH_ORDER	7
378 
379 /*
380  * Describes one page->virtual association
381  */
382 struct page_address_map {
383 	struct page *page;
384 	void *virtual;
385 	struct list_head list;
386 };
387 
388 static struct page_address_map page_address_maps[LAST_PKMAP];
389 
390 /*
391  * Hash table bucket
392  */
393 static struct page_address_slot {
394 	struct list_head lh;			/* List of page_address_maps */
395 	spinlock_t lock;			/* Protect this bucket's list */
396 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
397 
398 static struct page_address_slot *page_slot(const struct page *page)
399 {
400 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
401 }
402 
403 /**
404  * page_address - get the mapped virtual address of a page
405  * @page: &struct page to get the virtual address of
406  *
407  * Returns the page's virtual address.
408  */
409 void *page_address(const struct page *page)
410 {
411 	unsigned long flags;
412 	void *ret;
413 	struct page_address_slot *pas;
414 
415 	if (!PageHighMem(page))
416 		return lowmem_page_address(page);
417 
418 	pas = page_slot(page);
419 	ret = NULL;
420 	spin_lock_irqsave(&pas->lock, flags);
421 	if (!list_empty(&pas->lh)) {
422 		struct page_address_map *pam;
423 
424 		list_for_each_entry(pam, &pas->lh, list) {
425 			if (pam->page == page) {
426 				ret = pam->virtual;
427 				goto done;
428 			}
429 		}
430 	}
431 done:
432 	spin_unlock_irqrestore(&pas->lock, flags);
433 	return ret;
434 }
435 
436 EXPORT_SYMBOL(page_address);
437 
438 /**
439  * set_page_address - set a page's virtual address
440  * @page: &struct page to set
441  * @virtual: virtual address to use
442  */
443 void set_page_address(struct page *page, void *virtual)
444 {
445 	unsigned long flags;
446 	struct page_address_slot *pas;
447 	struct page_address_map *pam;
448 
449 	BUG_ON(!PageHighMem(page));
450 
451 	pas = page_slot(page);
452 	if (virtual) {		/* Add */
453 		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
454 		pam->page = page;
455 		pam->virtual = virtual;
456 
457 		spin_lock_irqsave(&pas->lock, flags);
458 		list_add_tail(&pam->list, &pas->lh);
459 		spin_unlock_irqrestore(&pas->lock, flags);
460 	} else {		/* Remove */
461 		spin_lock_irqsave(&pas->lock, flags);
462 		list_for_each_entry(pam, &pas->lh, list) {
463 			if (pam->page == page) {
464 				list_del(&pam->list);
465 				spin_unlock_irqrestore(&pas->lock, flags);
466 				goto done;
467 			}
468 		}
469 		spin_unlock_irqrestore(&pas->lock, flags);
470 	}
471 done:
472 	return;
473 }
474 
475 void __init page_address_init(void)
476 {
477 	int i;
478 
479 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
480 		INIT_LIST_HEAD(&page_address_htable[i].lh);
481 		spin_lock_init(&page_address_htable[i].lock);
482 	}
483 }
484 
485 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
486