xref: /openbmc/linux/mm/highmem.c (revision edfbe2b0)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <asm/tlbflush.h>
30 
31 static mempool_t *page_pool, *isa_page_pool;
32 
33 static void *page_pool_alloc(unsigned int __nocast gfp_mask, void *data)
34 {
35 	unsigned int gfp = gfp_mask | (unsigned int) (long) data;
36 
37 	return alloc_page(gfp);
38 }
39 
40 static void page_pool_free(void *page, void *data)
41 {
42 	__free_page(page);
43 }
44 
45 /*
46  * Virtual_count is not a pure "count".
47  *  0 means that it is not mapped, and has not been mapped
48  *    since a TLB flush - it is usable.
49  *  1 means that there are no users, but it has been mapped
50  *    since the last TLB flush - so we can't use it.
51  *  n means that there are (n-1) current users of it.
52  */
53 #ifdef CONFIG_HIGHMEM
54 static int pkmap_count[LAST_PKMAP];
55 static unsigned int last_pkmap_nr;
56 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
57 
58 pte_t * pkmap_page_table;
59 
60 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
61 
62 static void flush_all_zero_pkmaps(void)
63 {
64 	int i;
65 
66 	flush_cache_kmaps();
67 
68 	for (i = 0; i < LAST_PKMAP; i++) {
69 		struct page *page;
70 
71 		/*
72 		 * zero means we don't have anything to do,
73 		 * >1 means that it is still in use. Only
74 		 * a count of 1 means that it is free but
75 		 * needs to be unmapped
76 		 */
77 		if (pkmap_count[i] != 1)
78 			continue;
79 		pkmap_count[i] = 0;
80 
81 		/* sanity check */
82 		if (pte_none(pkmap_page_table[i]))
83 			BUG();
84 
85 		/*
86 		 * Don't need an atomic fetch-and-clear op here;
87 		 * no-one has the page mapped, and cannot get at
88 		 * its virtual address (and hence PTE) without first
89 		 * getting the kmap_lock (which is held here).
90 		 * So no dangers, even with speculative execution.
91 		 */
92 		page = pte_page(pkmap_page_table[i]);
93 		pte_clear(&init_mm, (unsigned long)page_address(page),
94 			  &pkmap_page_table[i]);
95 
96 		set_page_address(page, NULL);
97 	}
98 	flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
99 }
100 
101 static inline unsigned long map_new_virtual(struct page *page)
102 {
103 	unsigned long vaddr;
104 	int count;
105 
106 start:
107 	count = LAST_PKMAP;
108 	/* Find an empty entry */
109 	for (;;) {
110 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
111 		if (!last_pkmap_nr) {
112 			flush_all_zero_pkmaps();
113 			count = LAST_PKMAP;
114 		}
115 		if (!pkmap_count[last_pkmap_nr])
116 			break;	/* Found a usable entry */
117 		if (--count)
118 			continue;
119 
120 		/*
121 		 * Sleep for somebody else to unmap their entries
122 		 */
123 		{
124 			DECLARE_WAITQUEUE(wait, current);
125 
126 			__set_current_state(TASK_UNINTERRUPTIBLE);
127 			add_wait_queue(&pkmap_map_wait, &wait);
128 			spin_unlock(&kmap_lock);
129 			schedule();
130 			remove_wait_queue(&pkmap_map_wait, &wait);
131 			spin_lock(&kmap_lock);
132 
133 			/* Somebody else might have mapped it while we slept */
134 			if (page_address(page))
135 				return (unsigned long)page_address(page);
136 
137 			/* Re-start */
138 			goto start;
139 		}
140 	}
141 	vaddr = PKMAP_ADDR(last_pkmap_nr);
142 	set_pte_at(&init_mm, vaddr,
143 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
144 
145 	pkmap_count[last_pkmap_nr] = 1;
146 	set_page_address(page, (void *)vaddr);
147 
148 	return vaddr;
149 }
150 
151 void fastcall *kmap_high(struct page *page)
152 {
153 	unsigned long vaddr;
154 
155 	/*
156 	 * For highmem pages, we can't trust "virtual" until
157 	 * after we have the lock.
158 	 *
159 	 * We cannot call this from interrupts, as it may block
160 	 */
161 	spin_lock(&kmap_lock);
162 	vaddr = (unsigned long)page_address(page);
163 	if (!vaddr)
164 		vaddr = map_new_virtual(page);
165 	pkmap_count[PKMAP_NR(vaddr)]++;
166 	if (pkmap_count[PKMAP_NR(vaddr)] < 2)
167 		BUG();
168 	spin_unlock(&kmap_lock);
169 	return (void*) vaddr;
170 }
171 
172 EXPORT_SYMBOL(kmap_high);
173 
174 void fastcall kunmap_high(struct page *page)
175 {
176 	unsigned long vaddr;
177 	unsigned long nr;
178 	int need_wakeup;
179 
180 	spin_lock(&kmap_lock);
181 	vaddr = (unsigned long)page_address(page);
182 	if (!vaddr)
183 		BUG();
184 	nr = PKMAP_NR(vaddr);
185 
186 	/*
187 	 * A count must never go down to zero
188 	 * without a TLB flush!
189 	 */
190 	need_wakeup = 0;
191 	switch (--pkmap_count[nr]) {
192 	case 0:
193 		BUG();
194 	case 1:
195 		/*
196 		 * Avoid an unnecessary wake_up() function call.
197 		 * The common case is pkmap_count[] == 1, but
198 		 * no waiters.
199 		 * The tasks queued in the wait-queue are guarded
200 		 * by both the lock in the wait-queue-head and by
201 		 * the kmap_lock.  As the kmap_lock is held here,
202 		 * no need for the wait-queue-head's lock.  Simply
203 		 * test if the queue is empty.
204 		 */
205 		need_wakeup = waitqueue_active(&pkmap_map_wait);
206 	}
207 	spin_unlock(&kmap_lock);
208 
209 	/* do wake-up, if needed, race-free outside of the spin lock */
210 	if (need_wakeup)
211 		wake_up(&pkmap_map_wait);
212 }
213 
214 EXPORT_SYMBOL(kunmap_high);
215 
216 #define POOL_SIZE	64
217 
218 static __init int init_emergency_pool(void)
219 {
220 	struct sysinfo i;
221 	si_meminfo(&i);
222 	si_swapinfo(&i);
223 
224 	if (!i.totalhigh)
225 		return 0;
226 
227 	page_pool = mempool_create(POOL_SIZE, page_pool_alloc, page_pool_free, NULL);
228 	if (!page_pool)
229 		BUG();
230 	printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
231 
232 	return 0;
233 }
234 
235 __initcall(init_emergency_pool);
236 
237 /*
238  * highmem version, map in to vec
239  */
240 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
241 {
242 	unsigned long flags;
243 	unsigned char *vto;
244 
245 	local_irq_save(flags);
246 	vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
247 	memcpy(vto + to->bv_offset, vfrom, to->bv_len);
248 	kunmap_atomic(vto, KM_BOUNCE_READ);
249 	local_irq_restore(flags);
250 }
251 
252 #else /* CONFIG_HIGHMEM */
253 
254 #define bounce_copy_vec(to, vfrom)	\
255 	memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
256 
257 #endif
258 
259 #define ISA_POOL_SIZE	16
260 
261 /*
262  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
263  * as the max address, so check if the pool has already been created.
264  */
265 int init_emergency_isa_pool(void)
266 {
267 	if (isa_page_pool)
268 		return 0;
269 
270 	isa_page_pool = mempool_create(ISA_POOL_SIZE, page_pool_alloc, page_pool_free, (void *) __GFP_DMA);
271 	if (!isa_page_pool)
272 		BUG();
273 
274 	printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
275 	return 0;
276 }
277 
278 /*
279  * Simple bounce buffer support for highmem pages. Depending on the
280  * queue gfp mask set, *to may or may not be a highmem page. kmap it
281  * always, it will do the Right Thing
282  */
283 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
284 {
285 	unsigned char *vfrom;
286 	struct bio_vec *tovec, *fromvec;
287 	int i;
288 
289 	__bio_for_each_segment(tovec, to, i, 0) {
290 		fromvec = from->bi_io_vec + i;
291 
292 		/*
293 		 * not bounced
294 		 */
295 		if (tovec->bv_page == fromvec->bv_page)
296 			continue;
297 
298 		/*
299 		 * fromvec->bv_offset and fromvec->bv_len might have been
300 		 * modified by the block layer, so use the original copy,
301 		 * bounce_copy_vec already uses tovec->bv_len
302 		 */
303 		vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
304 
305 		flush_dcache_page(tovec->bv_page);
306 		bounce_copy_vec(tovec, vfrom);
307 	}
308 }
309 
310 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
311 {
312 	struct bio *bio_orig = bio->bi_private;
313 	struct bio_vec *bvec, *org_vec;
314 	int i;
315 
316 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
317 		set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
318 
319 	/*
320 	 * free up bounce indirect pages used
321 	 */
322 	__bio_for_each_segment(bvec, bio, i, 0) {
323 		org_vec = bio_orig->bi_io_vec + i;
324 		if (bvec->bv_page == org_vec->bv_page)
325 			continue;
326 
327 		mempool_free(bvec->bv_page, pool);
328 		dec_page_state(nr_bounce);
329 	}
330 
331 	bio_endio(bio_orig, bio_orig->bi_size, err);
332 	bio_put(bio);
333 }
334 
335 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done,int err)
336 {
337 	if (bio->bi_size)
338 		return 1;
339 
340 	bounce_end_io(bio, page_pool, err);
341 	return 0;
342 }
343 
344 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
345 {
346 	if (bio->bi_size)
347 		return 1;
348 
349 	bounce_end_io(bio, isa_page_pool, err);
350 	return 0;
351 }
352 
353 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
354 {
355 	struct bio *bio_orig = bio->bi_private;
356 
357 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
358 		copy_to_high_bio_irq(bio_orig, bio);
359 
360 	bounce_end_io(bio, pool, err);
361 }
362 
363 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
364 {
365 	if (bio->bi_size)
366 		return 1;
367 
368 	__bounce_end_io_read(bio, page_pool, err);
369 	return 0;
370 }
371 
372 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
373 {
374 	if (bio->bi_size)
375 		return 1;
376 
377 	__bounce_end_io_read(bio, isa_page_pool, err);
378 	return 0;
379 }
380 
381 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
382 			mempool_t *pool)
383 {
384 	struct page *page;
385 	struct bio *bio = NULL;
386 	int i, rw = bio_data_dir(*bio_orig);
387 	struct bio_vec *to, *from;
388 
389 	bio_for_each_segment(from, *bio_orig, i) {
390 		page = from->bv_page;
391 
392 		/*
393 		 * is destination page below bounce pfn?
394 		 */
395 		if (page_to_pfn(page) < q->bounce_pfn)
396 			continue;
397 
398 		/*
399 		 * irk, bounce it
400 		 */
401 		if (!bio)
402 			bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
403 
404 		to = bio->bi_io_vec + i;
405 
406 		to->bv_page = mempool_alloc(pool, q->bounce_gfp);
407 		to->bv_len = from->bv_len;
408 		to->bv_offset = from->bv_offset;
409 		inc_page_state(nr_bounce);
410 
411 		if (rw == WRITE) {
412 			char *vto, *vfrom;
413 
414 			flush_dcache_page(from->bv_page);
415 			vto = page_address(to->bv_page) + to->bv_offset;
416 			vfrom = kmap(from->bv_page) + from->bv_offset;
417 			memcpy(vto, vfrom, to->bv_len);
418 			kunmap(from->bv_page);
419 		}
420 	}
421 
422 	/*
423 	 * no pages bounced
424 	 */
425 	if (!bio)
426 		return;
427 
428 	/*
429 	 * at least one page was bounced, fill in possible non-highmem
430 	 * pages
431 	 */
432 	__bio_for_each_segment(from, *bio_orig, i, 0) {
433 		to = bio_iovec_idx(bio, i);
434 		if (!to->bv_page) {
435 			to->bv_page = from->bv_page;
436 			to->bv_len = from->bv_len;
437 			to->bv_offset = from->bv_offset;
438 		}
439 	}
440 
441 	bio->bi_bdev = (*bio_orig)->bi_bdev;
442 	bio->bi_flags |= (1 << BIO_BOUNCED);
443 	bio->bi_sector = (*bio_orig)->bi_sector;
444 	bio->bi_rw = (*bio_orig)->bi_rw;
445 
446 	bio->bi_vcnt = (*bio_orig)->bi_vcnt;
447 	bio->bi_idx = (*bio_orig)->bi_idx;
448 	bio->bi_size = (*bio_orig)->bi_size;
449 
450 	if (pool == page_pool) {
451 		bio->bi_end_io = bounce_end_io_write;
452 		if (rw == READ)
453 			bio->bi_end_io = bounce_end_io_read;
454 	} else {
455 		bio->bi_end_io = bounce_end_io_write_isa;
456 		if (rw == READ)
457 			bio->bi_end_io = bounce_end_io_read_isa;
458 	}
459 
460 	bio->bi_private = *bio_orig;
461 	*bio_orig = bio;
462 }
463 
464 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
465 {
466 	mempool_t *pool;
467 
468 	/*
469 	 * for non-isa bounce case, just check if the bounce pfn is equal
470 	 * to or bigger than the highest pfn in the system -- in that case,
471 	 * don't waste time iterating over bio segments
472 	 */
473 	if (!(q->bounce_gfp & GFP_DMA)) {
474 		if (q->bounce_pfn >= blk_max_pfn)
475 			return;
476 		pool = page_pool;
477 	} else {
478 		BUG_ON(!isa_page_pool);
479 		pool = isa_page_pool;
480 	}
481 
482 	/*
483 	 * slow path
484 	 */
485 	__blk_queue_bounce(q, bio_orig, pool);
486 }
487 
488 EXPORT_SYMBOL(blk_queue_bounce);
489 
490 #if defined(HASHED_PAGE_VIRTUAL)
491 
492 #define PA_HASH_ORDER	7
493 
494 /*
495  * Describes one page->virtual association
496  */
497 struct page_address_map {
498 	struct page *page;
499 	void *virtual;
500 	struct list_head list;
501 };
502 
503 /*
504  * page_address_map freelist, allocated from page_address_maps.
505  */
506 static struct list_head page_address_pool;	/* freelist */
507 static spinlock_t pool_lock;			/* protects page_address_pool */
508 
509 /*
510  * Hash table bucket
511  */
512 static struct page_address_slot {
513 	struct list_head lh;			/* List of page_address_maps */
514 	spinlock_t lock;			/* Protect this bucket's list */
515 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
516 
517 static struct page_address_slot *page_slot(struct page *page)
518 {
519 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
520 }
521 
522 void *page_address(struct page *page)
523 {
524 	unsigned long flags;
525 	void *ret;
526 	struct page_address_slot *pas;
527 
528 	if (!PageHighMem(page))
529 		return lowmem_page_address(page);
530 
531 	pas = page_slot(page);
532 	ret = NULL;
533 	spin_lock_irqsave(&pas->lock, flags);
534 	if (!list_empty(&pas->lh)) {
535 		struct page_address_map *pam;
536 
537 		list_for_each_entry(pam, &pas->lh, list) {
538 			if (pam->page == page) {
539 				ret = pam->virtual;
540 				goto done;
541 			}
542 		}
543 	}
544 done:
545 	spin_unlock_irqrestore(&pas->lock, flags);
546 	return ret;
547 }
548 
549 EXPORT_SYMBOL(page_address);
550 
551 void set_page_address(struct page *page, void *virtual)
552 {
553 	unsigned long flags;
554 	struct page_address_slot *pas;
555 	struct page_address_map *pam;
556 
557 	BUG_ON(!PageHighMem(page));
558 
559 	pas = page_slot(page);
560 	if (virtual) {		/* Add */
561 		BUG_ON(list_empty(&page_address_pool));
562 
563 		spin_lock_irqsave(&pool_lock, flags);
564 		pam = list_entry(page_address_pool.next,
565 				struct page_address_map, list);
566 		list_del(&pam->list);
567 		spin_unlock_irqrestore(&pool_lock, flags);
568 
569 		pam->page = page;
570 		pam->virtual = virtual;
571 
572 		spin_lock_irqsave(&pas->lock, flags);
573 		list_add_tail(&pam->list, &pas->lh);
574 		spin_unlock_irqrestore(&pas->lock, flags);
575 	} else {		/* Remove */
576 		spin_lock_irqsave(&pas->lock, flags);
577 		list_for_each_entry(pam, &pas->lh, list) {
578 			if (pam->page == page) {
579 				list_del(&pam->list);
580 				spin_unlock_irqrestore(&pas->lock, flags);
581 				spin_lock_irqsave(&pool_lock, flags);
582 				list_add_tail(&pam->list, &page_address_pool);
583 				spin_unlock_irqrestore(&pool_lock, flags);
584 				goto done;
585 			}
586 		}
587 		spin_unlock_irqrestore(&pas->lock, flags);
588 	}
589 done:
590 	return;
591 }
592 
593 static struct page_address_map page_address_maps[LAST_PKMAP];
594 
595 void __init page_address_init(void)
596 {
597 	int i;
598 
599 	INIT_LIST_HEAD(&page_address_pool);
600 	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
601 		list_add(&page_address_maps[i].list, &page_address_pool);
602 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
603 		INIT_LIST_HEAD(&page_address_htable[i].lh);
604 		spin_lock_init(&page_address_htable[i].lock);
605 	}
606 	spin_lock_init(&pool_lock);
607 }
608 
609 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
610