xref: /openbmc/linux/mm/highmem.c (revision 920c7a5d)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/blktrace_api.h>
30 #include <asm/tlbflush.h>
31 
32 /*
33  * Virtual_count is not a pure "count".
34  *  0 means that it is not mapped, and has not been mapped
35  *    since a TLB flush - it is usable.
36  *  1 means that there are no users, but it has been mapped
37  *    since the last TLB flush - so we can't use it.
38  *  n means that there are (n-1) current users of it.
39  */
40 #ifdef CONFIG_HIGHMEM
41 
42 unsigned long totalhigh_pages __read_mostly;
43 
44 unsigned int nr_free_highpages (void)
45 {
46 	pg_data_t *pgdat;
47 	unsigned int pages = 0;
48 
49 	for_each_online_pgdat(pgdat) {
50 		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
51 			NR_FREE_PAGES);
52 		if (zone_movable_is_highmem())
53 			pages += zone_page_state(
54 					&pgdat->node_zones[ZONE_MOVABLE],
55 					NR_FREE_PAGES);
56 	}
57 
58 	return pages;
59 }
60 
61 static int pkmap_count[LAST_PKMAP];
62 static unsigned int last_pkmap_nr;
63 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
64 
65 pte_t * pkmap_page_table;
66 
67 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
68 
69 static void flush_all_zero_pkmaps(void)
70 {
71 	int i;
72 
73 	flush_cache_kmaps();
74 
75 	for (i = 0; i < LAST_PKMAP; i++) {
76 		struct page *page;
77 
78 		/*
79 		 * zero means we don't have anything to do,
80 		 * >1 means that it is still in use. Only
81 		 * a count of 1 means that it is free but
82 		 * needs to be unmapped
83 		 */
84 		if (pkmap_count[i] != 1)
85 			continue;
86 		pkmap_count[i] = 0;
87 
88 		/* sanity check */
89 		BUG_ON(pte_none(pkmap_page_table[i]));
90 
91 		/*
92 		 * Don't need an atomic fetch-and-clear op here;
93 		 * no-one has the page mapped, and cannot get at
94 		 * its virtual address (and hence PTE) without first
95 		 * getting the kmap_lock (which is held here).
96 		 * So no dangers, even with speculative execution.
97 		 */
98 		page = pte_page(pkmap_page_table[i]);
99 		pte_clear(&init_mm, (unsigned long)page_address(page),
100 			  &pkmap_page_table[i]);
101 
102 		set_page_address(page, NULL);
103 	}
104 	flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
105 }
106 
107 /* Flush all unused kmap mappings in order to remove stray
108    mappings. */
109 void kmap_flush_unused(void)
110 {
111 	spin_lock(&kmap_lock);
112 	flush_all_zero_pkmaps();
113 	spin_unlock(&kmap_lock);
114 }
115 
116 static inline unsigned long map_new_virtual(struct page *page)
117 {
118 	unsigned long vaddr;
119 	int count;
120 
121 start:
122 	count = LAST_PKMAP;
123 	/* Find an empty entry */
124 	for (;;) {
125 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
126 		if (!last_pkmap_nr) {
127 			flush_all_zero_pkmaps();
128 			count = LAST_PKMAP;
129 		}
130 		if (!pkmap_count[last_pkmap_nr])
131 			break;	/* Found a usable entry */
132 		if (--count)
133 			continue;
134 
135 		/*
136 		 * Sleep for somebody else to unmap their entries
137 		 */
138 		{
139 			DECLARE_WAITQUEUE(wait, current);
140 
141 			__set_current_state(TASK_UNINTERRUPTIBLE);
142 			add_wait_queue(&pkmap_map_wait, &wait);
143 			spin_unlock(&kmap_lock);
144 			schedule();
145 			remove_wait_queue(&pkmap_map_wait, &wait);
146 			spin_lock(&kmap_lock);
147 
148 			/* Somebody else might have mapped it while we slept */
149 			if (page_address(page))
150 				return (unsigned long)page_address(page);
151 
152 			/* Re-start */
153 			goto start;
154 		}
155 	}
156 	vaddr = PKMAP_ADDR(last_pkmap_nr);
157 	set_pte_at(&init_mm, vaddr,
158 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
159 
160 	pkmap_count[last_pkmap_nr] = 1;
161 	set_page_address(page, (void *)vaddr);
162 
163 	return vaddr;
164 }
165 
166 void *kmap_high(struct page *page)
167 {
168 	unsigned long vaddr;
169 
170 	/*
171 	 * For highmem pages, we can't trust "virtual" until
172 	 * after we have the lock.
173 	 *
174 	 * We cannot call this from interrupts, as it may block
175 	 */
176 	spin_lock(&kmap_lock);
177 	vaddr = (unsigned long)page_address(page);
178 	if (!vaddr)
179 		vaddr = map_new_virtual(page);
180 	pkmap_count[PKMAP_NR(vaddr)]++;
181 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
182 	spin_unlock(&kmap_lock);
183 	return (void*) vaddr;
184 }
185 
186 EXPORT_SYMBOL(kmap_high);
187 
188 void kunmap_high(struct page *page)
189 {
190 	unsigned long vaddr;
191 	unsigned long nr;
192 	int need_wakeup;
193 
194 	spin_lock(&kmap_lock);
195 	vaddr = (unsigned long)page_address(page);
196 	BUG_ON(!vaddr);
197 	nr = PKMAP_NR(vaddr);
198 
199 	/*
200 	 * A count must never go down to zero
201 	 * without a TLB flush!
202 	 */
203 	need_wakeup = 0;
204 	switch (--pkmap_count[nr]) {
205 	case 0:
206 		BUG();
207 	case 1:
208 		/*
209 		 * Avoid an unnecessary wake_up() function call.
210 		 * The common case is pkmap_count[] == 1, but
211 		 * no waiters.
212 		 * The tasks queued in the wait-queue are guarded
213 		 * by both the lock in the wait-queue-head and by
214 		 * the kmap_lock.  As the kmap_lock is held here,
215 		 * no need for the wait-queue-head's lock.  Simply
216 		 * test if the queue is empty.
217 		 */
218 		need_wakeup = waitqueue_active(&pkmap_map_wait);
219 	}
220 	spin_unlock(&kmap_lock);
221 
222 	/* do wake-up, if needed, race-free outside of the spin lock */
223 	if (need_wakeup)
224 		wake_up(&pkmap_map_wait);
225 }
226 
227 EXPORT_SYMBOL(kunmap_high);
228 #endif
229 
230 #if defined(HASHED_PAGE_VIRTUAL)
231 
232 #define PA_HASH_ORDER	7
233 
234 /*
235  * Describes one page->virtual association
236  */
237 struct page_address_map {
238 	struct page *page;
239 	void *virtual;
240 	struct list_head list;
241 };
242 
243 /*
244  * page_address_map freelist, allocated from page_address_maps.
245  */
246 static struct list_head page_address_pool;	/* freelist */
247 static spinlock_t pool_lock;			/* protects page_address_pool */
248 
249 /*
250  * Hash table bucket
251  */
252 static struct page_address_slot {
253 	struct list_head lh;			/* List of page_address_maps */
254 	spinlock_t lock;			/* Protect this bucket's list */
255 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
256 
257 static struct page_address_slot *page_slot(struct page *page)
258 {
259 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
260 }
261 
262 void *page_address(struct page *page)
263 {
264 	unsigned long flags;
265 	void *ret;
266 	struct page_address_slot *pas;
267 
268 	if (!PageHighMem(page))
269 		return lowmem_page_address(page);
270 
271 	pas = page_slot(page);
272 	ret = NULL;
273 	spin_lock_irqsave(&pas->lock, flags);
274 	if (!list_empty(&pas->lh)) {
275 		struct page_address_map *pam;
276 
277 		list_for_each_entry(pam, &pas->lh, list) {
278 			if (pam->page == page) {
279 				ret = pam->virtual;
280 				goto done;
281 			}
282 		}
283 	}
284 done:
285 	spin_unlock_irqrestore(&pas->lock, flags);
286 	return ret;
287 }
288 
289 EXPORT_SYMBOL(page_address);
290 
291 void set_page_address(struct page *page, void *virtual)
292 {
293 	unsigned long flags;
294 	struct page_address_slot *pas;
295 	struct page_address_map *pam;
296 
297 	BUG_ON(!PageHighMem(page));
298 
299 	pas = page_slot(page);
300 	if (virtual) {		/* Add */
301 		BUG_ON(list_empty(&page_address_pool));
302 
303 		spin_lock_irqsave(&pool_lock, flags);
304 		pam = list_entry(page_address_pool.next,
305 				struct page_address_map, list);
306 		list_del(&pam->list);
307 		spin_unlock_irqrestore(&pool_lock, flags);
308 
309 		pam->page = page;
310 		pam->virtual = virtual;
311 
312 		spin_lock_irqsave(&pas->lock, flags);
313 		list_add_tail(&pam->list, &pas->lh);
314 		spin_unlock_irqrestore(&pas->lock, flags);
315 	} else {		/* Remove */
316 		spin_lock_irqsave(&pas->lock, flags);
317 		list_for_each_entry(pam, &pas->lh, list) {
318 			if (pam->page == page) {
319 				list_del(&pam->list);
320 				spin_unlock_irqrestore(&pas->lock, flags);
321 				spin_lock_irqsave(&pool_lock, flags);
322 				list_add_tail(&pam->list, &page_address_pool);
323 				spin_unlock_irqrestore(&pool_lock, flags);
324 				goto done;
325 			}
326 		}
327 		spin_unlock_irqrestore(&pas->lock, flags);
328 	}
329 done:
330 	return;
331 }
332 
333 static struct page_address_map page_address_maps[LAST_PKMAP];
334 
335 void __init page_address_init(void)
336 {
337 	int i;
338 
339 	INIT_LIST_HEAD(&page_address_pool);
340 	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
341 		list_add(&page_address_maps[i].list, &page_address_pool);
342 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
343 		INIT_LIST_HEAD(&page_address_htable[i].lh);
344 		spin_lock_init(&page_address_htable[i].lock);
345 	}
346 	spin_lock_init(&pool_lock);
347 }
348 
349 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
350