xref: /openbmc/linux/mm/highmem.c (revision 85250a24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High memory handling common code and variables.
4  *
5  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7  *
8  *
9  * Redesigned the x86 32-bit VM architecture to deal with
10  * 64-bit physical space. With current x86 CPUs this
11  * means up to 64 Gigabytes physical RAM.
12  *
13  * Rewrote high memory support to move the page cache into
14  * high memory. Implemented permanent (schedulable) kmaps
15  * based on Linus' idea.
16  *
17  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18  */
19 
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 #include <linux/vmalloc.h>
32 
33 #ifdef CONFIG_KMAP_LOCAL
34 static inline int kmap_local_calc_idx(int idx)
35 {
36 	return idx + KM_MAX_IDX * smp_processor_id();
37 }
38 
39 #ifndef arch_kmap_local_map_idx
40 #define arch_kmap_local_map_idx(idx, pfn)	kmap_local_calc_idx(idx)
41 #endif
42 #endif /* CONFIG_KMAP_LOCAL */
43 
44 /*
45  * Virtual_count is not a pure "count".
46  *  0 means that it is not mapped, and has not been mapped
47  *    since a TLB flush - it is usable.
48  *  1 means that there are no users, but it has been mapped
49  *    since the last TLB flush - so we can't use it.
50  *  n means that there are (n-1) current users of it.
51  */
52 #ifdef CONFIG_HIGHMEM
53 
54 /*
55  * Architecture with aliasing data cache may define the following family of
56  * helper functions in its asm/highmem.h to control cache color of virtual
57  * addresses where physical memory pages are mapped by kmap.
58  */
59 #ifndef get_pkmap_color
60 
61 /*
62  * Determine color of virtual address where the page should be mapped.
63  */
64 static inline unsigned int get_pkmap_color(struct page *page)
65 {
66 	return 0;
67 }
68 #define get_pkmap_color get_pkmap_color
69 
70 /*
71  * Get next index for mapping inside PKMAP region for page with given color.
72  */
73 static inline unsigned int get_next_pkmap_nr(unsigned int color)
74 {
75 	static unsigned int last_pkmap_nr;
76 
77 	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
78 	return last_pkmap_nr;
79 }
80 
81 /*
82  * Determine if page index inside PKMAP region (pkmap_nr) of given color
83  * has wrapped around PKMAP region end. When this happens an attempt to
84  * flush all unused PKMAP slots is made.
85  */
86 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
87 {
88 	return pkmap_nr == 0;
89 }
90 
91 /*
92  * Get the number of PKMAP entries of the given color. If no free slot is
93  * found after checking that many entries, kmap will sleep waiting for
94  * someone to call kunmap and free PKMAP slot.
95  */
96 static inline int get_pkmap_entries_count(unsigned int color)
97 {
98 	return LAST_PKMAP;
99 }
100 
101 /*
102  * Get head of a wait queue for PKMAP entries of the given color.
103  * Wait queues for different mapping colors should be independent to avoid
104  * unnecessary wakeups caused by freeing of slots of other colors.
105  */
106 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
107 {
108 	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
109 
110 	return &pkmap_map_wait;
111 }
112 #endif
113 
114 atomic_long_t _totalhigh_pages __read_mostly;
115 EXPORT_SYMBOL(_totalhigh_pages);
116 
117 unsigned int __nr_free_highpages(void)
118 {
119 	struct zone *zone;
120 	unsigned int pages = 0;
121 
122 	for_each_populated_zone(zone) {
123 		if (is_highmem(zone))
124 			pages += zone_page_state(zone, NR_FREE_PAGES);
125 	}
126 
127 	return pages;
128 }
129 
130 static int pkmap_count[LAST_PKMAP];
131 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
132 
133 pte_t *pkmap_page_table;
134 
135 /*
136  * Most architectures have no use for kmap_high_get(), so let's abstract
137  * the disabling of IRQ out of the locking in that case to save on a
138  * potential useless overhead.
139  */
140 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
141 #define lock_kmap()             spin_lock_irq(&kmap_lock)
142 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
143 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
144 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
145 #else
146 #define lock_kmap()             spin_lock(&kmap_lock)
147 #define unlock_kmap()           spin_unlock(&kmap_lock)
148 #define lock_kmap_any(flags)    \
149 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
150 #define unlock_kmap_any(flags)  \
151 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
152 #endif
153 
154 struct page *__kmap_to_page(void *vaddr)
155 {
156 	unsigned long base = (unsigned long) vaddr & PAGE_MASK;
157 	struct kmap_ctrl *kctrl = &current->kmap_ctrl;
158 	unsigned long addr = (unsigned long)vaddr;
159 	int i;
160 
161 	/* kmap() mappings */
162 	if (WARN_ON_ONCE(addr >= PKMAP_ADDR(0) &&
163 			 addr < PKMAP_ADDR(LAST_PKMAP)))
164 		return pte_page(pkmap_page_table[PKMAP_NR(addr)]);
165 
166 	/* kmap_local_page() mappings */
167 	if (WARN_ON_ONCE(base >= __fix_to_virt(FIX_KMAP_END) &&
168 			 base < __fix_to_virt(FIX_KMAP_BEGIN))) {
169 		for (i = 0; i < kctrl->idx; i++) {
170 			unsigned long base_addr;
171 			int idx;
172 
173 			idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
174 			base_addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
175 
176 			if (base_addr == base)
177 				return pte_page(kctrl->pteval[i]);
178 		}
179 	}
180 
181 	return virt_to_page(vaddr);
182 }
183 EXPORT_SYMBOL(__kmap_to_page);
184 
185 static void flush_all_zero_pkmaps(void)
186 {
187 	int i;
188 	int need_flush = 0;
189 
190 	flush_cache_kmaps();
191 
192 	for (i = 0; i < LAST_PKMAP; i++) {
193 		struct page *page;
194 
195 		/*
196 		 * zero means we don't have anything to do,
197 		 * >1 means that it is still in use. Only
198 		 * a count of 1 means that it is free but
199 		 * needs to be unmapped
200 		 */
201 		if (pkmap_count[i] != 1)
202 			continue;
203 		pkmap_count[i] = 0;
204 
205 		/* sanity check */
206 		BUG_ON(pte_none(pkmap_page_table[i]));
207 
208 		/*
209 		 * Don't need an atomic fetch-and-clear op here;
210 		 * no-one has the page mapped, and cannot get at
211 		 * its virtual address (and hence PTE) without first
212 		 * getting the kmap_lock (which is held here).
213 		 * So no dangers, even with speculative execution.
214 		 */
215 		page = pte_page(pkmap_page_table[i]);
216 		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
217 
218 		set_page_address(page, NULL);
219 		need_flush = 1;
220 	}
221 	if (need_flush)
222 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
223 }
224 
225 void __kmap_flush_unused(void)
226 {
227 	lock_kmap();
228 	flush_all_zero_pkmaps();
229 	unlock_kmap();
230 }
231 
232 static inline unsigned long map_new_virtual(struct page *page)
233 {
234 	unsigned long vaddr;
235 	int count;
236 	unsigned int last_pkmap_nr;
237 	unsigned int color = get_pkmap_color(page);
238 
239 start:
240 	count = get_pkmap_entries_count(color);
241 	/* Find an empty entry */
242 	for (;;) {
243 		last_pkmap_nr = get_next_pkmap_nr(color);
244 		if (no_more_pkmaps(last_pkmap_nr, color)) {
245 			flush_all_zero_pkmaps();
246 			count = get_pkmap_entries_count(color);
247 		}
248 		if (!pkmap_count[last_pkmap_nr])
249 			break;	/* Found a usable entry */
250 		if (--count)
251 			continue;
252 
253 		/*
254 		 * Sleep for somebody else to unmap their entries
255 		 */
256 		{
257 			DECLARE_WAITQUEUE(wait, current);
258 			wait_queue_head_t *pkmap_map_wait =
259 				get_pkmap_wait_queue_head(color);
260 
261 			__set_current_state(TASK_UNINTERRUPTIBLE);
262 			add_wait_queue(pkmap_map_wait, &wait);
263 			unlock_kmap();
264 			schedule();
265 			remove_wait_queue(pkmap_map_wait, &wait);
266 			lock_kmap();
267 
268 			/* Somebody else might have mapped it while we slept */
269 			if (page_address(page))
270 				return (unsigned long)page_address(page);
271 
272 			/* Re-start */
273 			goto start;
274 		}
275 	}
276 	vaddr = PKMAP_ADDR(last_pkmap_nr);
277 	set_pte_at(&init_mm, vaddr,
278 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
279 
280 	pkmap_count[last_pkmap_nr] = 1;
281 	set_page_address(page, (void *)vaddr);
282 
283 	return vaddr;
284 }
285 
286 /**
287  * kmap_high - map a highmem page into memory
288  * @page: &struct page to map
289  *
290  * Returns the page's virtual memory address.
291  *
292  * We cannot call this from interrupts, as it may block.
293  */
294 void *kmap_high(struct page *page)
295 {
296 	unsigned long vaddr;
297 
298 	/*
299 	 * For highmem pages, we can't trust "virtual" until
300 	 * after we have the lock.
301 	 */
302 	lock_kmap();
303 	vaddr = (unsigned long)page_address(page);
304 	if (!vaddr)
305 		vaddr = map_new_virtual(page);
306 	pkmap_count[PKMAP_NR(vaddr)]++;
307 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
308 	unlock_kmap();
309 	return (void *) vaddr;
310 }
311 EXPORT_SYMBOL(kmap_high);
312 
313 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
314 /**
315  * kmap_high_get - pin a highmem page into memory
316  * @page: &struct page to pin
317  *
318  * Returns the page's current virtual memory address, or NULL if no mapping
319  * exists.  If and only if a non null address is returned then a
320  * matching call to kunmap_high() is necessary.
321  *
322  * This can be called from any context.
323  */
324 void *kmap_high_get(struct page *page)
325 {
326 	unsigned long vaddr, flags;
327 
328 	lock_kmap_any(flags);
329 	vaddr = (unsigned long)page_address(page);
330 	if (vaddr) {
331 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
332 		pkmap_count[PKMAP_NR(vaddr)]++;
333 	}
334 	unlock_kmap_any(flags);
335 	return (void *) vaddr;
336 }
337 #endif
338 
339 /**
340  * kunmap_high - unmap a highmem page into memory
341  * @page: &struct page to unmap
342  *
343  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
344  * only from user context.
345  */
346 void kunmap_high(struct page *page)
347 {
348 	unsigned long vaddr;
349 	unsigned long nr;
350 	unsigned long flags;
351 	int need_wakeup;
352 	unsigned int color = get_pkmap_color(page);
353 	wait_queue_head_t *pkmap_map_wait;
354 
355 	lock_kmap_any(flags);
356 	vaddr = (unsigned long)page_address(page);
357 	BUG_ON(!vaddr);
358 	nr = PKMAP_NR(vaddr);
359 
360 	/*
361 	 * A count must never go down to zero
362 	 * without a TLB flush!
363 	 */
364 	need_wakeup = 0;
365 	switch (--pkmap_count[nr]) {
366 	case 0:
367 		BUG();
368 	case 1:
369 		/*
370 		 * Avoid an unnecessary wake_up() function call.
371 		 * The common case is pkmap_count[] == 1, but
372 		 * no waiters.
373 		 * The tasks queued in the wait-queue are guarded
374 		 * by both the lock in the wait-queue-head and by
375 		 * the kmap_lock.  As the kmap_lock is held here,
376 		 * no need for the wait-queue-head's lock.  Simply
377 		 * test if the queue is empty.
378 		 */
379 		pkmap_map_wait = get_pkmap_wait_queue_head(color);
380 		need_wakeup = waitqueue_active(pkmap_map_wait);
381 	}
382 	unlock_kmap_any(flags);
383 
384 	/* do wake-up, if needed, race-free outside of the spin lock */
385 	if (need_wakeup)
386 		wake_up(pkmap_map_wait);
387 }
388 EXPORT_SYMBOL(kunmap_high);
389 
390 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
391 		unsigned start2, unsigned end2)
392 {
393 	unsigned int i;
394 
395 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
396 
397 	if (start1 >= end1)
398 		start1 = end1 = 0;
399 	if (start2 >= end2)
400 		start2 = end2 = 0;
401 
402 	for (i = 0; i < compound_nr(page); i++) {
403 		void *kaddr = NULL;
404 
405 		if (start1 >= PAGE_SIZE) {
406 			start1 -= PAGE_SIZE;
407 			end1 -= PAGE_SIZE;
408 		} else {
409 			unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
410 
411 			if (end1 > start1) {
412 				kaddr = kmap_local_page(page + i);
413 				memset(kaddr + start1, 0, this_end - start1);
414 			}
415 			end1 -= this_end;
416 			start1 = 0;
417 		}
418 
419 		if (start2 >= PAGE_SIZE) {
420 			start2 -= PAGE_SIZE;
421 			end2 -= PAGE_SIZE;
422 		} else {
423 			unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
424 
425 			if (end2 > start2) {
426 				if (!kaddr)
427 					kaddr = kmap_local_page(page + i);
428 				memset(kaddr + start2, 0, this_end - start2);
429 			}
430 			end2 -= this_end;
431 			start2 = 0;
432 		}
433 
434 		if (kaddr) {
435 			kunmap_local(kaddr);
436 			flush_dcache_page(page + i);
437 		}
438 
439 		if (!end1 && !end2)
440 			break;
441 	}
442 
443 	BUG_ON((start1 | start2 | end1 | end2) != 0);
444 }
445 EXPORT_SYMBOL(zero_user_segments);
446 #endif /* CONFIG_HIGHMEM */
447 
448 #ifdef CONFIG_KMAP_LOCAL
449 
450 #include <asm/kmap_size.h>
451 
452 /*
453  * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
454  * slot is unused which acts as a guard page
455  */
456 #ifdef CONFIG_DEBUG_KMAP_LOCAL
457 # define KM_INCR	2
458 #else
459 # define KM_INCR	1
460 #endif
461 
462 static inline int kmap_local_idx_push(void)
463 {
464 	WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
465 	current->kmap_ctrl.idx += KM_INCR;
466 	BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
467 	return current->kmap_ctrl.idx - 1;
468 }
469 
470 static inline int kmap_local_idx(void)
471 {
472 	return current->kmap_ctrl.idx - 1;
473 }
474 
475 static inline void kmap_local_idx_pop(void)
476 {
477 	current->kmap_ctrl.idx -= KM_INCR;
478 	BUG_ON(current->kmap_ctrl.idx < 0);
479 }
480 
481 #ifndef arch_kmap_local_post_map
482 # define arch_kmap_local_post_map(vaddr, pteval)	do { } while (0)
483 #endif
484 
485 #ifndef arch_kmap_local_pre_unmap
486 # define arch_kmap_local_pre_unmap(vaddr)		do { } while (0)
487 #endif
488 
489 #ifndef arch_kmap_local_post_unmap
490 # define arch_kmap_local_post_unmap(vaddr)		do { } while (0)
491 #endif
492 
493 #ifndef arch_kmap_local_unmap_idx
494 #define arch_kmap_local_unmap_idx(idx, vaddr)	kmap_local_calc_idx(idx)
495 #endif
496 
497 #ifndef arch_kmap_local_high_get
498 static inline void *arch_kmap_local_high_get(struct page *page)
499 {
500 	return NULL;
501 }
502 #endif
503 
504 #ifndef arch_kmap_local_set_pte
505 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev)	\
506 	set_pte_at(mm, vaddr, ptep, ptev)
507 #endif
508 
509 /* Unmap a local mapping which was obtained by kmap_high_get() */
510 static inline bool kmap_high_unmap_local(unsigned long vaddr)
511 {
512 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
513 	if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
514 		kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
515 		return true;
516 	}
517 #endif
518 	return false;
519 }
520 
521 static pte_t *__kmap_pte;
522 
523 static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
524 {
525 	if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
526 		/*
527 		 * Set by the arch if __kmap_pte[-idx] does not produce
528 		 * the correct entry.
529 		 */
530 		return virt_to_kpte(vaddr);
531 	if (!__kmap_pte)
532 		__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
533 	return &__kmap_pte[-idx];
534 }
535 
536 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
537 {
538 	pte_t pteval, *kmap_pte;
539 	unsigned long vaddr;
540 	int idx;
541 
542 	/*
543 	 * Disable migration so resulting virtual address is stable
544 	 * across preemption.
545 	 */
546 	migrate_disable();
547 	preempt_disable();
548 	idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
549 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
550 	kmap_pte = kmap_get_pte(vaddr, idx);
551 	BUG_ON(!pte_none(*kmap_pte));
552 	pteval = pfn_pte(pfn, prot);
553 	arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
554 	arch_kmap_local_post_map(vaddr, pteval);
555 	current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
556 	preempt_enable();
557 
558 	return (void *)vaddr;
559 }
560 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
561 
562 void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
563 {
564 	void *kmap;
565 
566 	/*
567 	 * To broaden the usage of the actual kmap_local() machinery always map
568 	 * pages when debugging is enabled and the architecture has no problems
569 	 * with alias mappings.
570 	 */
571 	if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
572 		return page_address(page);
573 
574 	/* Try kmap_high_get() if architecture has it enabled */
575 	kmap = arch_kmap_local_high_get(page);
576 	if (kmap)
577 		return kmap;
578 
579 	return __kmap_local_pfn_prot(page_to_pfn(page), prot);
580 }
581 EXPORT_SYMBOL(__kmap_local_page_prot);
582 
583 void kunmap_local_indexed(const void *vaddr)
584 {
585 	unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
586 	pte_t *kmap_pte;
587 	int idx;
588 
589 	if (addr < __fix_to_virt(FIX_KMAP_END) ||
590 	    addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
591 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
592 			/* This _should_ never happen! See above. */
593 			WARN_ON_ONCE(1);
594 			return;
595 		}
596 		/*
597 		 * Handle mappings which were obtained by kmap_high_get()
598 		 * first as the virtual address of such mappings is below
599 		 * PAGE_OFFSET. Warn for all other addresses which are in
600 		 * the user space part of the virtual address space.
601 		 */
602 		if (!kmap_high_unmap_local(addr))
603 			WARN_ON_ONCE(addr < PAGE_OFFSET);
604 		return;
605 	}
606 
607 	preempt_disable();
608 	idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
609 	WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
610 
611 	kmap_pte = kmap_get_pte(addr, idx);
612 	arch_kmap_local_pre_unmap(addr);
613 	pte_clear(&init_mm, addr, kmap_pte);
614 	arch_kmap_local_post_unmap(addr);
615 	current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
616 	kmap_local_idx_pop();
617 	preempt_enable();
618 	migrate_enable();
619 }
620 EXPORT_SYMBOL(kunmap_local_indexed);
621 
622 /*
623  * Invoked before switch_to(). This is safe even when during or after
624  * clearing the maps an interrupt which needs a kmap_local happens because
625  * the task::kmap_ctrl.idx is not modified by the unmapping code so a
626  * nested kmap_local will use the next unused index and restore the index
627  * on unmap. The already cleared kmaps of the outgoing task are irrelevant
628  * because the interrupt context does not know about them. The same applies
629  * when scheduling back in for an interrupt which happens before the
630  * restore is complete.
631  */
632 void __kmap_local_sched_out(void)
633 {
634 	struct task_struct *tsk = current;
635 	pte_t *kmap_pte;
636 	int i;
637 
638 	/* Clear kmaps */
639 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
640 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
641 		unsigned long addr;
642 		int idx;
643 
644 		/* With debug all even slots are unmapped and act as guard */
645 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
646 			WARN_ON_ONCE(pte_val(pteval) != 0);
647 			continue;
648 		}
649 		if (WARN_ON_ONCE(pte_none(pteval)))
650 			continue;
651 
652 		/*
653 		 * This is a horrible hack for XTENSA to calculate the
654 		 * coloured PTE index. Uses the PFN encoded into the pteval
655 		 * and the map index calculation because the actual mapped
656 		 * virtual address is not stored in task::kmap_ctrl.
657 		 * For any sane architecture this is optimized out.
658 		 */
659 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
660 
661 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
662 		kmap_pte = kmap_get_pte(addr, idx);
663 		arch_kmap_local_pre_unmap(addr);
664 		pte_clear(&init_mm, addr, kmap_pte);
665 		arch_kmap_local_post_unmap(addr);
666 	}
667 }
668 
669 void __kmap_local_sched_in(void)
670 {
671 	struct task_struct *tsk = current;
672 	pte_t *kmap_pte;
673 	int i;
674 
675 	/* Restore kmaps */
676 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
677 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
678 		unsigned long addr;
679 		int idx;
680 
681 		/* With debug all even slots are unmapped and act as guard */
682 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
683 			WARN_ON_ONCE(pte_val(pteval) != 0);
684 			continue;
685 		}
686 		if (WARN_ON_ONCE(pte_none(pteval)))
687 			continue;
688 
689 		/* See comment in __kmap_local_sched_out() */
690 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
691 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
692 		kmap_pte = kmap_get_pte(addr, idx);
693 		set_pte_at(&init_mm, addr, kmap_pte, pteval);
694 		arch_kmap_local_post_map(addr, pteval);
695 	}
696 }
697 
698 void kmap_local_fork(struct task_struct *tsk)
699 {
700 	if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
701 		memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
702 }
703 
704 #endif
705 
706 #if defined(HASHED_PAGE_VIRTUAL)
707 
708 #define PA_HASH_ORDER	7
709 
710 /*
711  * Describes one page->virtual association
712  */
713 struct page_address_map {
714 	struct page *page;
715 	void *virtual;
716 	struct list_head list;
717 };
718 
719 static struct page_address_map page_address_maps[LAST_PKMAP];
720 
721 /*
722  * Hash table bucket
723  */
724 static struct page_address_slot {
725 	struct list_head lh;			/* List of page_address_maps */
726 	spinlock_t lock;			/* Protect this bucket's list */
727 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
728 
729 static struct page_address_slot *page_slot(const struct page *page)
730 {
731 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
732 }
733 
734 /**
735  * page_address - get the mapped virtual address of a page
736  * @page: &struct page to get the virtual address of
737  *
738  * Returns the page's virtual address.
739  */
740 void *page_address(const struct page *page)
741 {
742 	unsigned long flags;
743 	void *ret;
744 	struct page_address_slot *pas;
745 
746 	if (!PageHighMem(page))
747 		return lowmem_page_address(page);
748 
749 	pas = page_slot(page);
750 	ret = NULL;
751 	spin_lock_irqsave(&pas->lock, flags);
752 	if (!list_empty(&pas->lh)) {
753 		struct page_address_map *pam;
754 
755 		list_for_each_entry(pam, &pas->lh, list) {
756 			if (pam->page == page) {
757 				ret = pam->virtual;
758 				break;
759 			}
760 		}
761 	}
762 
763 	spin_unlock_irqrestore(&pas->lock, flags);
764 	return ret;
765 }
766 EXPORT_SYMBOL(page_address);
767 
768 /**
769  * set_page_address - set a page's virtual address
770  * @page: &struct page to set
771  * @virtual: virtual address to use
772  */
773 void set_page_address(struct page *page, void *virtual)
774 {
775 	unsigned long flags;
776 	struct page_address_slot *pas;
777 	struct page_address_map *pam;
778 
779 	BUG_ON(!PageHighMem(page));
780 
781 	pas = page_slot(page);
782 	if (virtual) {		/* Add */
783 		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
784 		pam->page = page;
785 		pam->virtual = virtual;
786 
787 		spin_lock_irqsave(&pas->lock, flags);
788 		list_add_tail(&pam->list, &pas->lh);
789 		spin_unlock_irqrestore(&pas->lock, flags);
790 	} else {		/* Remove */
791 		spin_lock_irqsave(&pas->lock, flags);
792 		list_for_each_entry(pam, &pas->lh, list) {
793 			if (pam->page == page) {
794 				list_del(&pam->list);
795 				break;
796 			}
797 		}
798 		spin_unlock_irqrestore(&pas->lock, flags);
799 	}
800 
801 	return;
802 }
803 
804 void __init page_address_init(void)
805 {
806 	int i;
807 
808 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
809 		INIT_LIST_HEAD(&page_address_htable[i].lh);
810 		spin_lock_init(&page_address_htable[i].lock);
811 	}
812 }
813 
814 #endif	/* defined(HASHED_PAGE_VIRTUAL) */
815