1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * High memory handling common code and variables. 4 * 5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de 6 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de 7 * 8 * 9 * Redesigned the x86 32-bit VM architecture to deal with 10 * 64-bit physical space. With current x86 CPUs this 11 * means up to 64 Gigabytes physical RAM. 12 * 13 * Rewrote high memory support to move the page cache into 14 * high memory. Implemented permanent (schedulable) kmaps 15 * based on Linus' idea. 16 * 17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 18 */ 19 20 #include <linux/mm.h> 21 #include <linux/export.h> 22 #include <linux/swap.h> 23 #include <linux/bio.h> 24 #include <linux/pagemap.h> 25 #include <linux/mempool.h> 26 #include <linux/init.h> 27 #include <linux/hash.h> 28 #include <linux/highmem.h> 29 #include <linux/kgdb.h> 30 #include <asm/tlbflush.h> 31 #include <linux/vmalloc.h> 32 33 /* 34 * Virtual_count is not a pure "count". 35 * 0 means that it is not mapped, and has not been mapped 36 * since a TLB flush - it is usable. 37 * 1 means that there are no users, but it has been mapped 38 * since the last TLB flush - so we can't use it. 39 * n means that there are (n-1) current users of it. 40 */ 41 #ifdef CONFIG_HIGHMEM 42 43 /* 44 * Architecture with aliasing data cache may define the following family of 45 * helper functions in its asm/highmem.h to control cache color of virtual 46 * addresses where physical memory pages are mapped by kmap. 47 */ 48 #ifndef get_pkmap_color 49 50 /* 51 * Determine color of virtual address where the page should be mapped. 52 */ 53 static inline unsigned int get_pkmap_color(struct page *page) 54 { 55 return 0; 56 } 57 #define get_pkmap_color get_pkmap_color 58 59 /* 60 * Get next index for mapping inside PKMAP region for page with given color. 61 */ 62 static inline unsigned int get_next_pkmap_nr(unsigned int color) 63 { 64 static unsigned int last_pkmap_nr; 65 66 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; 67 return last_pkmap_nr; 68 } 69 70 /* 71 * Determine if page index inside PKMAP region (pkmap_nr) of given color 72 * has wrapped around PKMAP region end. When this happens an attempt to 73 * flush all unused PKMAP slots is made. 74 */ 75 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color) 76 { 77 return pkmap_nr == 0; 78 } 79 80 /* 81 * Get the number of PKMAP entries of the given color. If no free slot is 82 * found after checking that many entries, kmap will sleep waiting for 83 * someone to call kunmap and free PKMAP slot. 84 */ 85 static inline int get_pkmap_entries_count(unsigned int color) 86 { 87 return LAST_PKMAP; 88 } 89 90 /* 91 * Get head of a wait queue for PKMAP entries of the given color. 92 * Wait queues for different mapping colors should be independent to avoid 93 * unnecessary wakeups caused by freeing of slots of other colors. 94 */ 95 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color) 96 { 97 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); 98 99 return &pkmap_map_wait; 100 } 101 #endif 102 103 atomic_long_t _totalhigh_pages __read_mostly; 104 EXPORT_SYMBOL(_totalhigh_pages); 105 106 unsigned int __nr_free_highpages(void) 107 { 108 struct zone *zone; 109 unsigned int pages = 0; 110 111 for_each_populated_zone(zone) { 112 if (is_highmem(zone)) 113 pages += zone_page_state(zone, NR_FREE_PAGES); 114 } 115 116 return pages; 117 } 118 119 static int pkmap_count[LAST_PKMAP]; 120 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); 121 122 pte_t *pkmap_page_table; 123 124 /* 125 * Most architectures have no use for kmap_high_get(), so let's abstract 126 * the disabling of IRQ out of the locking in that case to save on a 127 * potential useless overhead. 128 */ 129 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 130 #define lock_kmap() spin_lock_irq(&kmap_lock) 131 #define unlock_kmap() spin_unlock_irq(&kmap_lock) 132 #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags) 133 #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags) 134 #else 135 #define lock_kmap() spin_lock(&kmap_lock) 136 #define unlock_kmap() spin_unlock(&kmap_lock) 137 #define lock_kmap_any(flags) \ 138 do { spin_lock(&kmap_lock); (void)(flags); } while (0) 139 #define unlock_kmap_any(flags) \ 140 do { spin_unlock(&kmap_lock); (void)(flags); } while (0) 141 #endif 142 143 struct page *__kmap_to_page(void *vaddr) 144 { 145 unsigned long addr = (unsigned long)vaddr; 146 147 if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) { 148 int i = PKMAP_NR(addr); 149 150 return pte_page(pkmap_page_table[i]); 151 } 152 153 return virt_to_page(addr); 154 } 155 EXPORT_SYMBOL(__kmap_to_page); 156 157 static void flush_all_zero_pkmaps(void) 158 { 159 int i; 160 int need_flush = 0; 161 162 flush_cache_kmaps(); 163 164 for (i = 0; i < LAST_PKMAP; i++) { 165 struct page *page; 166 167 /* 168 * zero means we don't have anything to do, 169 * >1 means that it is still in use. Only 170 * a count of 1 means that it is free but 171 * needs to be unmapped 172 */ 173 if (pkmap_count[i] != 1) 174 continue; 175 pkmap_count[i] = 0; 176 177 /* sanity check */ 178 BUG_ON(pte_none(pkmap_page_table[i])); 179 180 /* 181 * Don't need an atomic fetch-and-clear op here; 182 * no-one has the page mapped, and cannot get at 183 * its virtual address (and hence PTE) without first 184 * getting the kmap_lock (which is held here). 185 * So no dangers, even with speculative execution. 186 */ 187 page = pte_page(pkmap_page_table[i]); 188 pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]); 189 190 set_page_address(page, NULL); 191 need_flush = 1; 192 } 193 if (need_flush) 194 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); 195 } 196 197 void __kmap_flush_unused(void) 198 { 199 lock_kmap(); 200 flush_all_zero_pkmaps(); 201 unlock_kmap(); 202 } 203 204 static inline unsigned long map_new_virtual(struct page *page) 205 { 206 unsigned long vaddr; 207 int count; 208 unsigned int last_pkmap_nr; 209 unsigned int color = get_pkmap_color(page); 210 211 start: 212 count = get_pkmap_entries_count(color); 213 /* Find an empty entry */ 214 for (;;) { 215 last_pkmap_nr = get_next_pkmap_nr(color); 216 if (no_more_pkmaps(last_pkmap_nr, color)) { 217 flush_all_zero_pkmaps(); 218 count = get_pkmap_entries_count(color); 219 } 220 if (!pkmap_count[last_pkmap_nr]) 221 break; /* Found a usable entry */ 222 if (--count) 223 continue; 224 225 /* 226 * Sleep for somebody else to unmap their entries 227 */ 228 { 229 DECLARE_WAITQUEUE(wait, current); 230 wait_queue_head_t *pkmap_map_wait = 231 get_pkmap_wait_queue_head(color); 232 233 __set_current_state(TASK_UNINTERRUPTIBLE); 234 add_wait_queue(pkmap_map_wait, &wait); 235 unlock_kmap(); 236 schedule(); 237 remove_wait_queue(pkmap_map_wait, &wait); 238 lock_kmap(); 239 240 /* Somebody else might have mapped it while we slept */ 241 if (page_address(page)) 242 return (unsigned long)page_address(page); 243 244 /* Re-start */ 245 goto start; 246 } 247 } 248 vaddr = PKMAP_ADDR(last_pkmap_nr); 249 set_pte_at(&init_mm, vaddr, 250 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); 251 252 pkmap_count[last_pkmap_nr] = 1; 253 set_page_address(page, (void *)vaddr); 254 255 return vaddr; 256 } 257 258 /** 259 * kmap_high - map a highmem page into memory 260 * @page: &struct page to map 261 * 262 * Returns the page's virtual memory address. 263 * 264 * We cannot call this from interrupts, as it may block. 265 */ 266 void *kmap_high(struct page *page) 267 { 268 unsigned long vaddr; 269 270 /* 271 * For highmem pages, we can't trust "virtual" until 272 * after we have the lock. 273 */ 274 lock_kmap(); 275 vaddr = (unsigned long)page_address(page); 276 if (!vaddr) 277 vaddr = map_new_virtual(page); 278 pkmap_count[PKMAP_NR(vaddr)]++; 279 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); 280 unlock_kmap(); 281 return (void *) vaddr; 282 } 283 EXPORT_SYMBOL(kmap_high); 284 285 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 286 /** 287 * kmap_high_get - pin a highmem page into memory 288 * @page: &struct page to pin 289 * 290 * Returns the page's current virtual memory address, or NULL if no mapping 291 * exists. If and only if a non null address is returned then a 292 * matching call to kunmap_high() is necessary. 293 * 294 * This can be called from any context. 295 */ 296 void *kmap_high_get(struct page *page) 297 { 298 unsigned long vaddr, flags; 299 300 lock_kmap_any(flags); 301 vaddr = (unsigned long)page_address(page); 302 if (vaddr) { 303 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1); 304 pkmap_count[PKMAP_NR(vaddr)]++; 305 } 306 unlock_kmap_any(flags); 307 return (void *) vaddr; 308 } 309 #endif 310 311 /** 312 * kunmap_high - unmap a highmem page into memory 313 * @page: &struct page to unmap 314 * 315 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called 316 * only from user context. 317 */ 318 void kunmap_high(struct page *page) 319 { 320 unsigned long vaddr; 321 unsigned long nr; 322 unsigned long flags; 323 int need_wakeup; 324 unsigned int color = get_pkmap_color(page); 325 wait_queue_head_t *pkmap_map_wait; 326 327 lock_kmap_any(flags); 328 vaddr = (unsigned long)page_address(page); 329 BUG_ON(!vaddr); 330 nr = PKMAP_NR(vaddr); 331 332 /* 333 * A count must never go down to zero 334 * without a TLB flush! 335 */ 336 need_wakeup = 0; 337 switch (--pkmap_count[nr]) { 338 case 0: 339 BUG(); 340 case 1: 341 /* 342 * Avoid an unnecessary wake_up() function call. 343 * The common case is pkmap_count[] == 1, but 344 * no waiters. 345 * The tasks queued in the wait-queue are guarded 346 * by both the lock in the wait-queue-head and by 347 * the kmap_lock. As the kmap_lock is held here, 348 * no need for the wait-queue-head's lock. Simply 349 * test if the queue is empty. 350 */ 351 pkmap_map_wait = get_pkmap_wait_queue_head(color); 352 need_wakeup = waitqueue_active(pkmap_map_wait); 353 } 354 unlock_kmap_any(flags); 355 356 /* do wake-up, if needed, race-free outside of the spin lock */ 357 if (need_wakeup) 358 wake_up(pkmap_map_wait); 359 } 360 EXPORT_SYMBOL(kunmap_high); 361 362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 363 void zero_user_segments(struct page *page, unsigned start1, unsigned end1, 364 unsigned start2, unsigned end2) 365 { 366 unsigned int i; 367 368 BUG_ON(end1 > page_size(page) || end2 > page_size(page)); 369 370 if (start1 >= end1) 371 start1 = end1 = 0; 372 if (start2 >= end2) 373 start2 = end2 = 0; 374 375 for (i = 0; i < compound_nr(page); i++) { 376 void *kaddr = NULL; 377 378 if (start1 >= PAGE_SIZE) { 379 start1 -= PAGE_SIZE; 380 end1 -= PAGE_SIZE; 381 } else { 382 unsigned this_end = min_t(unsigned, end1, PAGE_SIZE); 383 384 if (end1 > start1) { 385 kaddr = kmap_local_page(page + i); 386 memset(kaddr + start1, 0, this_end - start1); 387 } 388 end1 -= this_end; 389 start1 = 0; 390 } 391 392 if (start2 >= PAGE_SIZE) { 393 start2 -= PAGE_SIZE; 394 end2 -= PAGE_SIZE; 395 } else { 396 unsigned this_end = min_t(unsigned, end2, PAGE_SIZE); 397 398 if (end2 > start2) { 399 if (!kaddr) 400 kaddr = kmap_local_page(page + i); 401 memset(kaddr + start2, 0, this_end - start2); 402 } 403 end2 -= this_end; 404 start2 = 0; 405 } 406 407 if (kaddr) { 408 kunmap_local(kaddr); 409 flush_dcache_page(page + i); 410 } 411 412 if (!end1 && !end2) 413 break; 414 } 415 416 BUG_ON((start1 | start2 | end1 | end2) != 0); 417 } 418 EXPORT_SYMBOL(zero_user_segments); 419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 420 #endif /* CONFIG_HIGHMEM */ 421 422 #ifdef CONFIG_KMAP_LOCAL 423 424 #include <asm/kmap_size.h> 425 426 /* 427 * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second 428 * slot is unused which acts as a guard page 429 */ 430 #ifdef CONFIG_DEBUG_KMAP_LOCAL 431 # define KM_INCR 2 432 #else 433 # define KM_INCR 1 434 #endif 435 436 static inline int kmap_local_idx_push(void) 437 { 438 WARN_ON_ONCE(in_hardirq() && !irqs_disabled()); 439 current->kmap_ctrl.idx += KM_INCR; 440 BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX); 441 return current->kmap_ctrl.idx - 1; 442 } 443 444 static inline int kmap_local_idx(void) 445 { 446 return current->kmap_ctrl.idx - 1; 447 } 448 449 static inline void kmap_local_idx_pop(void) 450 { 451 current->kmap_ctrl.idx -= KM_INCR; 452 BUG_ON(current->kmap_ctrl.idx < 0); 453 } 454 455 #ifndef arch_kmap_local_post_map 456 # define arch_kmap_local_post_map(vaddr, pteval) do { } while (0) 457 #endif 458 459 #ifndef arch_kmap_local_pre_unmap 460 # define arch_kmap_local_pre_unmap(vaddr) do { } while (0) 461 #endif 462 463 #ifndef arch_kmap_local_post_unmap 464 # define arch_kmap_local_post_unmap(vaddr) do { } while (0) 465 #endif 466 467 #ifndef arch_kmap_local_map_idx 468 #define arch_kmap_local_map_idx(idx, pfn) kmap_local_calc_idx(idx) 469 #endif 470 471 #ifndef arch_kmap_local_unmap_idx 472 #define arch_kmap_local_unmap_idx(idx, vaddr) kmap_local_calc_idx(idx) 473 #endif 474 475 #ifndef arch_kmap_local_high_get 476 static inline void *arch_kmap_local_high_get(struct page *page) 477 { 478 return NULL; 479 } 480 #endif 481 482 #ifndef arch_kmap_local_set_pte 483 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev) \ 484 set_pte_at(mm, vaddr, ptep, ptev) 485 #endif 486 487 /* Unmap a local mapping which was obtained by kmap_high_get() */ 488 static inline bool kmap_high_unmap_local(unsigned long vaddr) 489 { 490 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 491 if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) { 492 kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)])); 493 return true; 494 } 495 #endif 496 return false; 497 } 498 499 static inline int kmap_local_calc_idx(int idx) 500 { 501 return idx + KM_MAX_IDX * smp_processor_id(); 502 } 503 504 static pte_t *__kmap_pte; 505 506 static pte_t *kmap_get_pte(void) 507 { 508 if (!__kmap_pte) 509 __kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); 510 return __kmap_pte; 511 } 512 513 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot) 514 { 515 pte_t pteval, *kmap_pte = kmap_get_pte(); 516 unsigned long vaddr; 517 int idx; 518 519 /* 520 * Disable migration so resulting virtual address is stable 521 * across preemption. 522 */ 523 migrate_disable(); 524 preempt_disable(); 525 idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn); 526 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); 527 BUG_ON(!pte_none(*(kmap_pte - idx))); 528 pteval = pfn_pte(pfn, prot); 529 arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte - idx, pteval); 530 arch_kmap_local_post_map(vaddr, pteval); 531 current->kmap_ctrl.pteval[kmap_local_idx()] = pteval; 532 preempt_enable(); 533 534 return (void *)vaddr; 535 } 536 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot); 537 538 void *__kmap_local_page_prot(struct page *page, pgprot_t prot) 539 { 540 void *kmap; 541 542 /* 543 * To broaden the usage of the actual kmap_local() machinery always map 544 * pages when debugging is enabled and the architecture has no problems 545 * with alias mappings. 546 */ 547 if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page)) 548 return page_address(page); 549 550 /* Try kmap_high_get() if architecture has it enabled */ 551 kmap = arch_kmap_local_high_get(page); 552 if (kmap) 553 return kmap; 554 555 return __kmap_local_pfn_prot(page_to_pfn(page), prot); 556 } 557 EXPORT_SYMBOL(__kmap_local_page_prot); 558 559 void kunmap_local_indexed(void *vaddr) 560 { 561 unsigned long addr = (unsigned long) vaddr & PAGE_MASK; 562 pte_t *kmap_pte = kmap_get_pte(); 563 int idx; 564 565 if (addr < __fix_to_virt(FIX_KMAP_END) || 566 addr > __fix_to_virt(FIX_KMAP_BEGIN)) { 567 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) { 568 /* This _should_ never happen! See above. */ 569 WARN_ON_ONCE(1); 570 return; 571 } 572 /* 573 * Handle mappings which were obtained by kmap_high_get() 574 * first as the virtual address of such mappings is below 575 * PAGE_OFFSET. Warn for all other addresses which are in 576 * the user space part of the virtual address space. 577 */ 578 if (!kmap_high_unmap_local(addr)) 579 WARN_ON_ONCE(addr < PAGE_OFFSET); 580 return; 581 } 582 583 preempt_disable(); 584 idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr); 585 WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx)); 586 587 arch_kmap_local_pre_unmap(addr); 588 pte_clear(&init_mm, addr, kmap_pte - idx); 589 arch_kmap_local_post_unmap(addr); 590 current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0); 591 kmap_local_idx_pop(); 592 preempt_enable(); 593 migrate_enable(); 594 } 595 EXPORT_SYMBOL(kunmap_local_indexed); 596 597 /* 598 * Invoked before switch_to(). This is safe even when during or after 599 * clearing the maps an interrupt which needs a kmap_local happens because 600 * the task::kmap_ctrl.idx is not modified by the unmapping code so a 601 * nested kmap_local will use the next unused index and restore the index 602 * on unmap. The already cleared kmaps of the outgoing task are irrelevant 603 * because the interrupt context does not know about them. The same applies 604 * when scheduling back in for an interrupt which happens before the 605 * restore is complete. 606 */ 607 void __kmap_local_sched_out(void) 608 { 609 struct task_struct *tsk = current; 610 pte_t *kmap_pte = kmap_get_pte(); 611 int i; 612 613 /* Clear kmaps */ 614 for (i = 0; i < tsk->kmap_ctrl.idx; i++) { 615 pte_t pteval = tsk->kmap_ctrl.pteval[i]; 616 unsigned long addr; 617 int idx; 618 619 /* With debug all even slots are unmapped and act as guard */ 620 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) { 621 WARN_ON_ONCE(!pte_none(pteval)); 622 continue; 623 } 624 if (WARN_ON_ONCE(pte_none(pteval))) 625 continue; 626 627 /* 628 * This is a horrible hack for XTENSA to calculate the 629 * coloured PTE index. Uses the PFN encoded into the pteval 630 * and the map index calculation because the actual mapped 631 * virtual address is not stored in task::kmap_ctrl. 632 * For any sane architecture this is optimized out. 633 */ 634 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval)); 635 636 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx); 637 arch_kmap_local_pre_unmap(addr); 638 pte_clear(&init_mm, addr, kmap_pte - idx); 639 arch_kmap_local_post_unmap(addr); 640 } 641 } 642 643 void __kmap_local_sched_in(void) 644 { 645 struct task_struct *tsk = current; 646 pte_t *kmap_pte = kmap_get_pte(); 647 int i; 648 649 /* Restore kmaps */ 650 for (i = 0; i < tsk->kmap_ctrl.idx; i++) { 651 pte_t pteval = tsk->kmap_ctrl.pteval[i]; 652 unsigned long addr; 653 int idx; 654 655 /* With debug all even slots are unmapped and act as guard */ 656 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) { 657 WARN_ON_ONCE(!pte_none(pteval)); 658 continue; 659 } 660 if (WARN_ON_ONCE(pte_none(pteval))) 661 continue; 662 663 /* See comment in __kmap_local_sched_out() */ 664 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval)); 665 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx); 666 set_pte_at(&init_mm, addr, kmap_pte - idx, pteval); 667 arch_kmap_local_post_map(addr, pteval); 668 } 669 } 670 671 void kmap_local_fork(struct task_struct *tsk) 672 { 673 if (WARN_ON_ONCE(tsk->kmap_ctrl.idx)) 674 memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl)); 675 } 676 677 #endif 678 679 #if defined(HASHED_PAGE_VIRTUAL) 680 681 #define PA_HASH_ORDER 7 682 683 /* 684 * Describes one page->virtual association 685 */ 686 struct page_address_map { 687 struct page *page; 688 void *virtual; 689 struct list_head list; 690 }; 691 692 static struct page_address_map page_address_maps[LAST_PKMAP]; 693 694 /* 695 * Hash table bucket 696 */ 697 static struct page_address_slot { 698 struct list_head lh; /* List of page_address_maps */ 699 spinlock_t lock; /* Protect this bucket's list */ 700 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; 701 702 static struct page_address_slot *page_slot(const struct page *page) 703 { 704 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; 705 } 706 707 /** 708 * page_address - get the mapped virtual address of a page 709 * @page: &struct page to get the virtual address of 710 * 711 * Returns the page's virtual address. 712 */ 713 void *page_address(const struct page *page) 714 { 715 unsigned long flags; 716 void *ret; 717 struct page_address_slot *pas; 718 719 if (!PageHighMem(page)) 720 return lowmem_page_address(page); 721 722 pas = page_slot(page); 723 ret = NULL; 724 spin_lock_irqsave(&pas->lock, flags); 725 if (!list_empty(&pas->lh)) { 726 struct page_address_map *pam; 727 728 list_for_each_entry(pam, &pas->lh, list) { 729 if (pam->page == page) { 730 ret = pam->virtual; 731 goto done; 732 } 733 } 734 } 735 done: 736 spin_unlock_irqrestore(&pas->lock, flags); 737 return ret; 738 } 739 EXPORT_SYMBOL(page_address); 740 741 /** 742 * set_page_address - set a page's virtual address 743 * @page: &struct page to set 744 * @virtual: virtual address to use 745 */ 746 void set_page_address(struct page *page, void *virtual) 747 { 748 unsigned long flags; 749 struct page_address_slot *pas; 750 struct page_address_map *pam; 751 752 BUG_ON(!PageHighMem(page)); 753 754 pas = page_slot(page); 755 if (virtual) { /* Add */ 756 pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)]; 757 pam->page = page; 758 pam->virtual = virtual; 759 760 spin_lock_irqsave(&pas->lock, flags); 761 list_add_tail(&pam->list, &pas->lh); 762 spin_unlock_irqrestore(&pas->lock, flags); 763 } else { /* Remove */ 764 spin_lock_irqsave(&pas->lock, flags); 765 list_for_each_entry(pam, &pas->lh, list) { 766 if (pam->page == page) { 767 list_del(&pam->list); 768 spin_unlock_irqrestore(&pas->lock, flags); 769 goto done; 770 } 771 } 772 spin_unlock_irqrestore(&pas->lock, flags); 773 } 774 done: 775 return; 776 } 777 778 void __init page_address_init(void) 779 { 780 int i; 781 782 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { 783 INIT_LIST_HEAD(&page_address_htable[i].lh); 784 spin_lock_init(&page_address_htable[i].lock); 785 } 786 } 787 788 #endif /* defined(HASHED_PAGE_VIRTUAL) */ 789