1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * High memory handling common code and variables. 4 * 5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de 6 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de 7 * 8 * 9 * Redesigned the x86 32-bit VM architecture to deal with 10 * 64-bit physical space. With current x86 CPUs this 11 * means up to 64 Gigabytes physical RAM. 12 * 13 * Rewrote high memory support to move the page cache into 14 * high memory. Implemented permanent (schedulable) kmaps 15 * based on Linus' idea. 16 * 17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 18 */ 19 20 #include <linux/mm.h> 21 #include <linux/export.h> 22 #include <linux/swap.h> 23 #include <linux/bio.h> 24 #include <linux/pagemap.h> 25 #include <linux/mempool.h> 26 #include <linux/blkdev.h> 27 #include <linux/init.h> 28 #include <linux/hash.h> 29 #include <linux/highmem.h> 30 #include <linux/kgdb.h> 31 #include <asm/tlbflush.h> 32 #include <linux/vmalloc.h> 33 34 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) 35 DEFINE_PER_CPU(int, __kmap_atomic_idx); 36 #endif 37 38 /* 39 * Virtual_count is not a pure "count". 40 * 0 means that it is not mapped, and has not been mapped 41 * since a TLB flush - it is usable. 42 * 1 means that there are no users, but it has been mapped 43 * since the last TLB flush - so we can't use it. 44 * n means that there are (n-1) current users of it. 45 */ 46 #ifdef CONFIG_HIGHMEM 47 48 /* 49 * Architecture with aliasing data cache may define the following family of 50 * helper functions in its asm/highmem.h to control cache color of virtual 51 * addresses where physical memory pages are mapped by kmap. 52 */ 53 #ifndef get_pkmap_color 54 55 /* 56 * Determine color of virtual address where the page should be mapped. 57 */ 58 static inline unsigned int get_pkmap_color(struct page *page) 59 { 60 return 0; 61 } 62 #define get_pkmap_color get_pkmap_color 63 64 /* 65 * Get next index for mapping inside PKMAP region for page with given color. 66 */ 67 static inline unsigned int get_next_pkmap_nr(unsigned int color) 68 { 69 static unsigned int last_pkmap_nr; 70 71 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; 72 return last_pkmap_nr; 73 } 74 75 /* 76 * Determine if page index inside PKMAP region (pkmap_nr) of given color 77 * has wrapped around PKMAP region end. When this happens an attempt to 78 * flush all unused PKMAP slots is made. 79 */ 80 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color) 81 { 82 return pkmap_nr == 0; 83 } 84 85 /* 86 * Get the number of PKMAP entries of the given color. If no free slot is 87 * found after checking that many entries, kmap will sleep waiting for 88 * someone to call kunmap and free PKMAP slot. 89 */ 90 static inline int get_pkmap_entries_count(unsigned int color) 91 { 92 return LAST_PKMAP; 93 } 94 95 /* 96 * Get head of a wait queue for PKMAP entries of the given color. 97 * Wait queues for different mapping colors should be independent to avoid 98 * unnecessary wakeups caused by freeing of slots of other colors. 99 */ 100 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color) 101 { 102 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); 103 104 return &pkmap_map_wait; 105 } 106 #endif 107 108 atomic_long_t _totalhigh_pages __read_mostly; 109 EXPORT_SYMBOL(_totalhigh_pages); 110 111 EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx); 112 113 unsigned int nr_free_highpages (void) 114 { 115 struct zone *zone; 116 unsigned int pages = 0; 117 118 for_each_populated_zone(zone) { 119 if (is_highmem(zone)) 120 pages += zone_page_state(zone, NR_FREE_PAGES); 121 } 122 123 return pages; 124 } 125 126 static int pkmap_count[LAST_PKMAP]; 127 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); 128 129 pte_t * pkmap_page_table; 130 131 /* 132 * Most architectures have no use for kmap_high_get(), so let's abstract 133 * the disabling of IRQ out of the locking in that case to save on a 134 * potential useless overhead. 135 */ 136 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 137 #define lock_kmap() spin_lock_irq(&kmap_lock) 138 #define unlock_kmap() spin_unlock_irq(&kmap_lock) 139 #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags) 140 #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags) 141 #else 142 #define lock_kmap() spin_lock(&kmap_lock) 143 #define unlock_kmap() spin_unlock(&kmap_lock) 144 #define lock_kmap_any(flags) \ 145 do { spin_lock(&kmap_lock); (void)(flags); } while (0) 146 #define unlock_kmap_any(flags) \ 147 do { spin_unlock(&kmap_lock); (void)(flags); } while (0) 148 #endif 149 150 struct page *kmap_to_page(void *vaddr) 151 { 152 unsigned long addr = (unsigned long)vaddr; 153 154 if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) { 155 int i = PKMAP_NR(addr); 156 return pte_page(pkmap_page_table[i]); 157 } 158 159 return virt_to_page(addr); 160 } 161 EXPORT_SYMBOL(kmap_to_page); 162 163 static void flush_all_zero_pkmaps(void) 164 { 165 int i; 166 int need_flush = 0; 167 168 flush_cache_kmaps(); 169 170 for (i = 0; i < LAST_PKMAP; i++) { 171 struct page *page; 172 173 /* 174 * zero means we don't have anything to do, 175 * >1 means that it is still in use. Only 176 * a count of 1 means that it is free but 177 * needs to be unmapped 178 */ 179 if (pkmap_count[i] != 1) 180 continue; 181 pkmap_count[i] = 0; 182 183 /* sanity check */ 184 BUG_ON(pte_none(pkmap_page_table[i])); 185 186 /* 187 * Don't need an atomic fetch-and-clear op here; 188 * no-one has the page mapped, and cannot get at 189 * its virtual address (and hence PTE) without first 190 * getting the kmap_lock (which is held here). 191 * So no dangers, even with speculative execution. 192 */ 193 page = pte_page(pkmap_page_table[i]); 194 pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]); 195 196 set_page_address(page, NULL); 197 need_flush = 1; 198 } 199 if (need_flush) 200 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); 201 } 202 203 /** 204 * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings 205 */ 206 void kmap_flush_unused(void) 207 { 208 lock_kmap(); 209 flush_all_zero_pkmaps(); 210 unlock_kmap(); 211 } 212 213 static inline unsigned long map_new_virtual(struct page *page) 214 { 215 unsigned long vaddr; 216 int count; 217 unsigned int last_pkmap_nr; 218 unsigned int color = get_pkmap_color(page); 219 220 start: 221 count = get_pkmap_entries_count(color); 222 /* Find an empty entry */ 223 for (;;) { 224 last_pkmap_nr = get_next_pkmap_nr(color); 225 if (no_more_pkmaps(last_pkmap_nr, color)) { 226 flush_all_zero_pkmaps(); 227 count = get_pkmap_entries_count(color); 228 } 229 if (!pkmap_count[last_pkmap_nr]) 230 break; /* Found a usable entry */ 231 if (--count) 232 continue; 233 234 /* 235 * Sleep for somebody else to unmap their entries 236 */ 237 { 238 DECLARE_WAITQUEUE(wait, current); 239 wait_queue_head_t *pkmap_map_wait = 240 get_pkmap_wait_queue_head(color); 241 242 __set_current_state(TASK_UNINTERRUPTIBLE); 243 add_wait_queue(pkmap_map_wait, &wait); 244 unlock_kmap(); 245 schedule(); 246 remove_wait_queue(pkmap_map_wait, &wait); 247 lock_kmap(); 248 249 /* Somebody else might have mapped it while we slept */ 250 if (page_address(page)) 251 return (unsigned long)page_address(page); 252 253 /* Re-start */ 254 goto start; 255 } 256 } 257 vaddr = PKMAP_ADDR(last_pkmap_nr); 258 set_pte_at(&init_mm, vaddr, 259 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); 260 261 pkmap_count[last_pkmap_nr] = 1; 262 set_page_address(page, (void *)vaddr); 263 264 return vaddr; 265 } 266 267 /** 268 * kmap_high - map a highmem page into memory 269 * @page: &struct page to map 270 * 271 * Returns the page's virtual memory address. 272 * 273 * We cannot call this from interrupts, as it may block. 274 */ 275 void *kmap_high(struct page *page) 276 { 277 unsigned long vaddr; 278 279 /* 280 * For highmem pages, we can't trust "virtual" until 281 * after we have the lock. 282 */ 283 lock_kmap(); 284 vaddr = (unsigned long)page_address(page); 285 if (!vaddr) 286 vaddr = map_new_virtual(page); 287 pkmap_count[PKMAP_NR(vaddr)]++; 288 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); 289 unlock_kmap(); 290 return (void*) vaddr; 291 } 292 293 EXPORT_SYMBOL(kmap_high); 294 295 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 296 /** 297 * kmap_high_get - pin a highmem page into memory 298 * @page: &struct page to pin 299 * 300 * Returns the page's current virtual memory address, or NULL if no mapping 301 * exists. If and only if a non null address is returned then a 302 * matching call to kunmap_high() is necessary. 303 * 304 * This can be called from any context. 305 */ 306 void *kmap_high_get(struct page *page) 307 { 308 unsigned long vaddr, flags; 309 310 lock_kmap_any(flags); 311 vaddr = (unsigned long)page_address(page); 312 if (vaddr) { 313 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1); 314 pkmap_count[PKMAP_NR(vaddr)]++; 315 } 316 unlock_kmap_any(flags); 317 return (void*) vaddr; 318 } 319 #endif 320 321 /** 322 * kunmap_high - unmap a highmem page into memory 323 * @page: &struct page to unmap 324 * 325 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called 326 * only from user context. 327 */ 328 void kunmap_high(struct page *page) 329 { 330 unsigned long vaddr; 331 unsigned long nr; 332 unsigned long flags; 333 int need_wakeup; 334 unsigned int color = get_pkmap_color(page); 335 wait_queue_head_t *pkmap_map_wait; 336 337 lock_kmap_any(flags); 338 vaddr = (unsigned long)page_address(page); 339 BUG_ON(!vaddr); 340 nr = PKMAP_NR(vaddr); 341 342 /* 343 * A count must never go down to zero 344 * without a TLB flush! 345 */ 346 need_wakeup = 0; 347 switch (--pkmap_count[nr]) { 348 case 0: 349 BUG(); 350 case 1: 351 /* 352 * Avoid an unnecessary wake_up() function call. 353 * The common case is pkmap_count[] == 1, but 354 * no waiters. 355 * The tasks queued in the wait-queue are guarded 356 * by both the lock in the wait-queue-head and by 357 * the kmap_lock. As the kmap_lock is held here, 358 * no need for the wait-queue-head's lock. Simply 359 * test if the queue is empty. 360 */ 361 pkmap_map_wait = get_pkmap_wait_queue_head(color); 362 need_wakeup = waitqueue_active(pkmap_map_wait); 363 } 364 unlock_kmap_any(flags); 365 366 /* do wake-up, if needed, race-free outside of the spin lock */ 367 if (need_wakeup) 368 wake_up(pkmap_map_wait); 369 } 370 371 EXPORT_SYMBOL(kunmap_high); 372 #endif /* CONFIG_HIGHMEM */ 373 374 #if defined(HASHED_PAGE_VIRTUAL) 375 376 #define PA_HASH_ORDER 7 377 378 /* 379 * Describes one page->virtual association 380 */ 381 struct page_address_map { 382 struct page *page; 383 void *virtual; 384 struct list_head list; 385 }; 386 387 static struct page_address_map page_address_maps[LAST_PKMAP]; 388 389 /* 390 * Hash table bucket 391 */ 392 static struct page_address_slot { 393 struct list_head lh; /* List of page_address_maps */ 394 spinlock_t lock; /* Protect this bucket's list */ 395 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; 396 397 static struct page_address_slot *page_slot(const struct page *page) 398 { 399 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; 400 } 401 402 /** 403 * page_address - get the mapped virtual address of a page 404 * @page: &struct page to get the virtual address of 405 * 406 * Returns the page's virtual address. 407 */ 408 void *page_address(const struct page *page) 409 { 410 unsigned long flags; 411 void *ret; 412 struct page_address_slot *pas; 413 414 if (!PageHighMem(page)) 415 return lowmem_page_address(page); 416 417 pas = page_slot(page); 418 ret = NULL; 419 spin_lock_irqsave(&pas->lock, flags); 420 if (!list_empty(&pas->lh)) { 421 struct page_address_map *pam; 422 423 list_for_each_entry(pam, &pas->lh, list) { 424 if (pam->page == page) { 425 ret = pam->virtual; 426 goto done; 427 } 428 } 429 } 430 done: 431 spin_unlock_irqrestore(&pas->lock, flags); 432 return ret; 433 } 434 435 EXPORT_SYMBOL(page_address); 436 437 /** 438 * set_page_address - set a page's virtual address 439 * @page: &struct page to set 440 * @virtual: virtual address to use 441 */ 442 void set_page_address(struct page *page, void *virtual) 443 { 444 unsigned long flags; 445 struct page_address_slot *pas; 446 struct page_address_map *pam; 447 448 BUG_ON(!PageHighMem(page)); 449 450 pas = page_slot(page); 451 if (virtual) { /* Add */ 452 pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)]; 453 pam->page = page; 454 pam->virtual = virtual; 455 456 spin_lock_irqsave(&pas->lock, flags); 457 list_add_tail(&pam->list, &pas->lh); 458 spin_unlock_irqrestore(&pas->lock, flags); 459 } else { /* Remove */ 460 spin_lock_irqsave(&pas->lock, flags); 461 list_for_each_entry(pam, &pas->lh, list) { 462 if (pam->page == page) { 463 list_del(&pam->list); 464 spin_unlock_irqrestore(&pas->lock, flags); 465 goto done; 466 } 467 } 468 spin_unlock_irqrestore(&pas->lock, flags); 469 } 470 done: 471 return; 472 } 473 474 void __init page_address_init(void) 475 { 476 int i; 477 478 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { 479 INIT_LIST_HEAD(&page_address_htable[i].lh); 480 spin_lock_init(&page_address_htable[i].lock); 481 } 482 } 483 484 #endif /* defined(HASHED_PAGE_VIRTUAL) */ 485