1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * If this WARN_ON() fires, then the system *might* be leaking pages (by 333 * leaving them pinned), but probably not. More likely, gup/pup returned 334 * a hard -ERRNO error to the caller, who erroneously passed it here. 335 */ 336 if (WARN_ON(IS_ERR_VALUE(npages))) 337 return; 338 /* 339 * TODO: this can be optimized for huge pages: if a series of pages is 340 * physically contiguous and part of the same compound page, then a 341 * single operation to the head page should suffice. 342 */ 343 for (index = 0; index < npages; index++) 344 unpin_user_page(pages[index]); 345 } 346 EXPORT_SYMBOL(unpin_user_pages); 347 348 #ifdef CONFIG_MMU 349 static struct page *no_page_table(struct vm_area_struct *vma, 350 unsigned int flags) 351 { 352 /* 353 * When core dumping an enormous anonymous area that nobody 354 * has touched so far, we don't want to allocate unnecessary pages or 355 * page tables. Return error instead of NULL to skip handle_mm_fault, 356 * then get_dump_page() will return NULL to leave a hole in the dump. 357 * But we can only make this optimization where a hole would surely 358 * be zero-filled if handle_mm_fault() actually did handle it. 359 */ 360 if ((flags & FOLL_DUMP) && 361 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 362 return ERR_PTR(-EFAULT); 363 return NULL; 364 } 365 366 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 367 pte_t *pte, unsigned int flags) 368 { 369 /* No page to get reference */ 370 if (flags & FOLL_GET) 371 return -EFAULT; 372 373 if (flags & FOLL_TOUCH) { 374 pte_t entry = *pte; 375 376 if (flags & FOLL_WRITE) 377 entry = pte_mkdirty(entry); 378 entry = pte_mkyoung(entry); 379 380 if (!pte_same(*pte, entry)) { 381 set_pte_at(vma->vm_mm, address, pte, entry); 382 update_mmu_cache(vma, address, pte); 383 } 384 } 385 386 /* Proper page table entry exists, but no corresponding struct page */ 387 return -EEXIST; 388 } 389 390 /* 391 * FOLL_FORCE can write to even unwritable pte's, but only 392 * after we've gone through a COW cycle and they are dirty. 393 */ 394 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 395 { 396 return pte_write(pte) || 397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 398 } 399 400 static struct page *follow_page_pte(struct vm_area_struct *vma, 401 unsigned long address, pmd_t *pmd, unsigned int flags, 402 struct dev_pagemap **pgmap) 403 { 404 struct mm_struct *mm = vma->vm_mm; 405 struct page *page; 406 spinlock_t *ptl; 407 pte_t *ptep, pte; 408 int ret; 409 410 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 411 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 412 (FOLL_PIN | FOLL_GET))) 413 return ERR_PTR(-EINVAL); 414 retry: 415 if (unlikely(pmd_bad(*pmd))) 416 return no_page_table(vma, flags); 417 418 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 419 pte = *ptep; 420 if (!pte_present(pte)) { 421 swp_entry_t entry; 422 /* 423 * KSM's break_ksm() relies upon recognizing a ksm page 424 * even while it is being migrated, so for that case we 425 * need migration_entry_wait(). 426 */ 427 if (likely(!(flags & FOLL_MIGRATION))) 428 goto no_page; 429 if (pte_none(pte)) 430 goto no_page; 431 entry = pte_to_swp_entry(pte); 432 if (!is_migration_entry(entry)) 433 goto no_page; 434 pte_unmap_unlock(ptep, ptl); 435 migration_entry_wait(mm, pmd, address); 436 goto retry; 437 } 438 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 439 goto no_page; 440 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 441 pte_unmap_unlock(ptep, ptl); 442 return NULL; 443 } 444 445 page = vm_normal_page(vma, address, pte); 446 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 447 /* 448 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 449 * case since they are only valid while holding the pgmap 450 * reference. 451 */ 452 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 453 if (*pgmap) 454 page = pte_page(pte); 455 else 456 goto no_page; 457 } else if (unlikely(!page)) { 458 if (flags & FOLL_DUMP) { 459 /* Avoid special (like zero) pages in core dumps */ 460 page = ERR_PTR(-EFAULT); 461 goto out; 462 } 463 464 if (is_zero_pfn(pte_pfn(pte))) { 465 page = pte_page(pte); 466 } else { 467 ret = follow_pfn_pte(vma, address, ptep, flags); 468 page = ERR_PTR(ret); 469 goto out; 470 } 471 } 472 473 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 474 get_page(page); 475 pte_unmap_unlock(ptep, ptl); 476 lock_page(page); 477 ret = split_huge_page(page); 478 unlock_page(page); 479 put_page(page); 480 if (ret) 481 return ERR_PTR(ret); 482 goto retry; 483 } 484 485 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 486 if (unlikely(!try_grab_page(page, flags))) { 487 page = ERR_PTR(-ENOMEM); 488 goto out; 489 } 490 /* 491 * We need to make the page accessible if and only if we are going 492 * to access its content (the FOLL_PIN case). Please see 493 * Documentation/core-api/pin_user_pages.rst for details. 494 */ 495 if (flags & FOLL_PIN) { 496 ret = arch_make_page_accessible(page); 497 if (ret) { 498 unpin_user_page(page); 499 page = ERR_PTR(ret); 500 goto out; 501 } 502 } 503 if (flags & FOLL_TOUCH) { 504 if ((flags & FOLL_WRITE) && 505 !pte_dirty(pte) && !PageDirty(page)) 506 set_page_dirty(page); 507 /* 508 * pte_mkyoung() would be more correct here, but atomic care 509 * is needed to avoid losing the dirty bit: it is easier to use 510 * mark_page_accessed(). 511 */ 512 mark_page_accessed(page); 513 } 514 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 515 /* Do not mlock pte-mapped THP */ 516 if (PageTransCompound(page)) 517 goto out; 518 519 /* 520 * The preliminary mapping check is mainly to avoid the 521 * pointless overhead of lock_page on the ZERO_PAGE 522 * which might bounce very badly if there is contention. 523 * 524 * If the page is already locked, we don't need to 525 * handle it now - vmscan will handle it later if and 526 * when it attempts to reclaim the page. 527 */ 528 if (page->mapping && trylock_page(page)) { 529 lru_add_drain(); /* push cached pages to LRU */ 530 /* 531 * Because we lock page here, and migration is 532 * blocked by the pte's page reference, and we 533 * know the page is still mapped, we don't even 534 * need to check for file-cache page truncation. 535 */ 536 mlock_vma_page(page); 537 unlock_page(page); 538 } 539 } 540 out: 541 pte_unmap_unlock(ptep, ptl); 542 return page; 543 no_page: 544 pte_unmap_unlock(ptep, ptl); 545 if (!pte_none(pte)) 546 return NULL; 547 return no_page_table(vma, flags); 548 } 549 550 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 551 unsigned long address, pud_t *pudp, 552 unsigned int flags, 553 struct follow_page_context *ctx) 554 { 555 pmd_t *pmd, pmdval; 556 spinlock_t *ptl; 557 struct page *page; 558 struct mm_struct *mm = vma->vm_mm; 559 560 pmd = pmd_offset(pudp, address); 561 /* 562 * The READ_ONCE() will stabilize the pmdval in a register or 563 * on the stack so that it will stop changing under the code. 564 */ 565 pmdval = READ_ONCE(*pmd); 566 if (pmd_none(pmdval)) 567 return no_page_table(vma, flags); 568 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 569 page = follow_huge_pmd(mm, address, pmd, flags); 570 if (page) 571 return page; 572 return no_page_table(vma, flags); 573 } 574 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 575 page = follow_huge_pd(vma, address, 576 __hugepd(pmd_val(pmdval)), flags, 577 PMD_SHIFT); 578 if (page) 579 return page; 580 return no_page_table(vma, flags); 581 } 582 retry: 583 if (!pmd_present(pmdval)) { 584 if (likely(!(flags & FOLL_MIGRATION))) 585 return no_page_table(vma, flags); 586 VM_BUG_ON(thp_migration_supported() && 587 !is_pmd_migration_entry(pmdval)); 588 if (is_pmd_migration_entry(pmdval)) 589 pmd_migration_entry_wait(mm, pmd); 590 pmdval = READ_ONCE(*pmd); 591 /* 592 * MADV_DONTNEED may convert the pmd to null because 593 * mmap_lock is held in read mode 594 */ 595 if (pmd_none(pmdval)) 596 return no_page_table(vma, flags); 597 goto retry; 598 } 599 if (pmd_devmap(pmdval)) { 600 ptl = pmd_lock(mm, pmd); 601 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 602 spin_unlock(ptl); 603 if (page) 604 return page; 605 } 606 if (likely(!pmd_trans_huge(pmdval))) 607 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 608 609 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 610 return no_page_table(vma, flags); 611 612 retry_locked: 613 ptl = pmd_lock(mm, pmd); 614 if (unlikely(pmd_none(*pmd))) { 615 spin_unlock(ptl); 616 return no_page_table(vma, flags); 617 } 618 if (unlikely(!pmd_present(*pmd))) { 619 spin_unlock(ptl); 620 if (likely(!(flags & FOLL_MIGRATION))) 621 return no_page_table(vma, flags); 622 pmd_migration_entry_wait(mm, pmd); 623 goto retry_locked; 624 } 625 if (unlikely(!pmd_trans_huge(*pmd))) { 626 spin_unlock(ptl); 627 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 628 } 629 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 630 int ret; 631 page = pmd_page(*pmd); 632 if (is_huge_zero_page(page)) { 633 spin_unlock(ptl); 634 ret = 0; 635 split_huge_pmd(vma, pmd, address); 636 if (pmd_trans_unstable(pmd)) 637 ret = -EBUSY; 638 } else if (flags & FOLL_SPLIT) { 639 if (unlikely(!try_get_page(page))) { 640 spin_unlock(ptl); 641 return ERR_PTR(-ENOMEM); 642 } 643 spin_unlock(ptl); 644 lock_page(page); 645 ret = split_huge_page(page); 646 unlock_page(page); 647 put_page(page); 648 if (pmd_none(*pmd)) 649 return no_page_table(vma, flags); 650 } else { /* flags & FOLL_SPLIT_PMD */ 651 spin_unlock(ptl); 652 split_huge_pmd(vma, pmd, address); 653 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 654 } 655 656 return ret ? ERR_PTR(ret) : 657 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 658 } 659 page = follow_trans_huge_pmd(vma, address, pmd, flags); 660 spin_unlock(ptl); 661 ctx->page_mask = HPAGE_PMD_NR - 1; 662 return page; 663 } 664 665 static struct page *follow_pud_mask(struct vm_area_struct *vma, 666 unsigned long address, p4d_t *p4dp, 667 unsigned int flags, 668 struct follow_page_context *ctx) 669 { 670 pud_t *pud; 671 spinlock_t *ptl; 672 struct page *page; 673 struct mm_struct *mm = vma->vm_mm; 674 675 pud = pud_offset(p4dp, address); 676 if (pud_none(*pud)) 677 return no_page_table(vma, flags); 678 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 679 page = follow_huge_pud(mm, address, pud, flags); 680 if (page) 681 return page; 682 return no_page_table(vma, flags); 683 } 684 if (is_hugepd(__hugepd(pud_val(*pud)))) { 685 page = follow_huge_pd(vma, address, 686 __hugepd(pud_val(*pud)), flags, 687 PUD_SHIFT); 688 if (page) 689 return page; 690 return no_page_table(vma, flags); 691 } 692 if (pud_devmap(*pud)) { 693 ptl = pud_lock(mm, pud); 694 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 695 spin_unlock(ptl); 696 if (page) 697 return page; 698 } 699 if (unlikely(pud_bad(*pud))) 700 return no_page_table(vma, flags); 701 702 return follow_pmd_mask(vma, address, pud, flags, ctx); 703 } 704 705 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 706 unsigned long address, pgd_t *pgdp, 707 unsigned int flags, 708 struct follow_page_context *ctx) 709 { 710 p4d_t *p4d; 711 struct page *page; 712 713 p4d = p4d_offset(pgdp, address); 714 if (p4d_none(*p4d)) 715 return no_page_table(vma, flags); 716 BUILD_BUG_ON(p4d_huge(*p4d)); 717 if (unlikely(p4d_bad(*p4d))) 718 return no_page_table(vma, flags); 719 720 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 721 page = follow_huge_pd(vma, address, 722 __hugepd(p4d_val(*p4d)), flags, 723 P4D_SHIFT); 724 if (page) 725 return page; 726 return no_page_table(vma, flags); 727 } 728 return follow_pud_mask(vma, address, p4d, flags, ctx); 729 } 730 731 /** 732 * follow_page_mask - look up a page descriptor from a user-virtual address 733 * @vma: vm_area_struct mapping @address 734 * @address: virtual address to look up 735 * @flags: flags modifying lookup behaviour 736 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 737 * pointer to output page_mask 738 * 739 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 740 * 741 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 742 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 743 * 744 * On output, the @ctx->page_mask is set according to the size of the page. 745 * 746 * Return: the mapped (struct page *), %NULL if no mapping exists, or 747 * an error pointer if there is a mapping to something not represented 748 * by a page descriptor (see also vm_normal_page()). 749 */ 750 static struct page *follow_page_mask(struct vm_area_struct *vma, 751 unsigned long address, unsigned int flags, 752 struct follow_page_context *ctx) 753 { 754 pgd_t *pgd; 755 struct page *page; 756 struct mm_struct *mm = vma->vm_mm; 757 758 ctx->page_mask = 0; 759 760 /* make this handle hugepd */ 761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 762 if (!IS_ERR(page)) { 763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 764 return page; 765 } 766 767 pgd = pgd_offset(mm, address); 768 769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 770 return no_page_table(vma, flags); 771 772 if (pgd_huge(*pgd)) { 773 page = follow_huge_pgd(mm, address, pgd, flags); 774 if (page) 775 return page; 776 return no_page_table(vma, flags); 777 } 778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 779 page = follow_huge_pd(vma, address, 780 __hugepd(pgd_val(*pgd)), flags, 781 PGDIR_SHIFT); 782 if (page) 783 return page; 784 return no_page_table(vma, flags); 785 } 786 787 return follow_p4d_mask(vma, address, pgd, flags, ctx); 788 } 789 790 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 791 unsigned int foll_flags) 792 { 793 struct follow_page_context ctx = { NULL }; 794 struct page *page; 795 796 page = follow_page_mask(vma, address, foll_flags, &ctx); 797 if (ctx.pgmap) 798 put_dev_pagemap(ctx.pgmap); 799 return page; 800 } 801 802 static int get_gate_page(struct mm_struct *mm, unsigned long address, 803 unsigned int gup_flags, struct vm_area_struct **vma, 804 struct page **page) 805 { 806 pgd_t *pgd; 807 p4d_t *p4d; 808 pud_t *pud; 809 pmd_t *pmd; 810 pte_t *pte; 811 int ret = -EFAULT; 812 813 /* user gate pages are read-only */ 814 if (gup_flags & FOLL_WRITE) 815 return -EFAULT; 816 if (address > TASK_SIZE) 817 pgd = pgd_offset_k(address); 818 else 819 pgd = pgd_offset_gate(mm, address); 820 if (pgd_none(*pgd)) 821 return -EFAULT; 822 p4d = p4d_offset(pgd, address); 823 if (p4d_none(*p4d)) 824 return -EFAULT; 825 pud = pud_offset(p4d, address); 826 if (pud_none(*pud)) 827 return -EFAULT; 828 pmd = pmd_offset(pud, address); 829 if (!pmd_present(*pmd)) 830 return -EFAULT; 831 VM_BUG_ON(pmd_trans_huge(*pmd)); 832 pte = pte_offset_map(pmd, address); 833 if (pte_none(*pte)) 834 goto unmap; 835 *vma = get_gate_vma(mm); 836 if (!page) 837 goto out; 838 *page = vm_normal_page(*vma, address, *pte); 839 if (!*page) { 840 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 841 goto unmap; 842 *page = pte_page(*pte); 843 } 844 if (unlikely(!try_grab_page(*page, gup_flags))) { 845 ret = -ENOMEM; 846 goto unmap; 847 } 848 out: 849 ret = 0; 850 unmap: 851 pte_unmap(pte); 852 return ret; 853 } 854 855 /* 856 * mmap_lock must be held on entry. If @locked != NULL and *@flags 857 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 858 * is, *@locked will be set to 0 and -EBUSY returned. 859 */ 860 static int faultin_page(struct vm_area_struct *vma, 861 unsigned long address, unsigned int *flags, int *locked) 862 { 863 unsigned int fault_flags = 0; 864 vm_fault_t ret; 865 866 /* mlock all present pages, but do not fault in new pages */ 867 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 868 return -ENOENT; 869 if (*flags & FOLL_WRITE) 870 fault_flags |= FAULT_FLAG_WRITE; 871 if (*flags & FOLL_REMOTE) 872 fault_flags |= FAULT_FLAG_REMOTE; 873 if (locked) 874 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 875 if (*flags & FOLL_NOWAIT) 876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 877 if (*flags & FOLL_TRIED) { 878 /* 879 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 880 * can co-exist 881 */ 882 fault_flags |= FAULT_FLAG_TRIED; 883 } 884 885 ret = handle_mm_fault(vma, address, fault_flags, NULL); 886 if (ret & VM_FAULT_ERROR) { 887 int err = vm_fault_to_errno(ret, *flags); 888 889 if (err) 890 return err; 891 BUG(); 892 } 893 894 if (ret & VM_FAULT_RETRY) { 895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 896 *locked = 0; 897 return -EBUSY; 898 } 899 900 /* 901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 902 * necessary, even if maybe_mkwrite decided not to set pte_write. We 903 * can thus safely do subsequent page lookups as if they were reads. 904 * But only do so when looping for pte_write is futile: in some cases 905 * userspace may also be wanting to write to the gotten user page, 906 * which a read fault here might prevent (a readonly page might get 907 * reCOWed by userspace write). 908 */ 909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 910 *flags |= FOLL_COW; 911 return 0; 912 } 913 914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 915 { 916 vm_flags_t vm_flags = vma->vm_flags; 917 int write = (gup_flags & FOLL_WRITE); 918 int foreign = (gup_flags & FOLL_REMOTE); 919 920 if (vm_flags & (VM_IO | VM_PFNMAP)) 921 return -EFAULT; 922 923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 924 return -EFAULT; 925 926 if (write) { 927 if (!(vm_flags & VM_WRITE)) { 928 if (!(gup_flags & FOLL_FORCE)) 929 return -EFAULT; 930 /* 931 * We used to let the write,force case do COW in a 932 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 933 * set a breakpoint in a read-only mapping of an 934 * executable, without corrupting the file (yet only 935 * when that file had been opened for writing!). 936 * Anon pages in shared mappings are surprising: now 937 * just reject it. 938 */ 939 if (!is_cow_mapping(vm_flags)) 940 return -EFAULT; 941 } 942 } else if (!(vm_flags & VM_READ)) { 943 if (!(gup_flags & FOLL_FORCE)) 944 return -EFAULT; 945 /* 946 * Is there actually any vma we can reach here which does not 947 * have VM_MAYREAD set? 948 */ 949 if (!(vm_flags & VM_MAYREAD)) 950 return -EFAULT; 951 } 952 /* 953 * gups are always data accesses, not instruction 954 * fetches, so execute=false here 955 */ 956 if (!arch_vma_access_permitted(vma, write, false, foreign)) 957 return -EFAULT; 958 return 0; 959 } 960 961 /** 962 * __get_user_pages() - pin user pages in memory 963 * @mm: mm_struct of target mm 964 * @start: starting user address 965 * @nr_pages: number of pages from start to pin 966 * @gup_flags: flags modifying pin behaviour 967 * @pages: array that receives pointers to the pages pinned. 968 * Should be at least nr_pages long. Or NULL, if caller 969 * only intends to ensure the pages are faulted in. 970 * @vmas: array of pointers to vmas corresponding to each page. 971 * Or NULL if the caller does not require them. 972 * @locked: whether we're still with the mmap_lock held 973 * 974 * Returns either number of pages pinned (which may be less than the 975 * number requested), or an error. Details about the return value: 976 * 977 * -- If nr_pages is 0, returns 0. 978 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 979 * -- If nr_pages is >0, and some pages were pinned, returns the number of 980 * pages pinned. Again, this may be less than nr_pages. 981 * -- 0 return value is possible when the fault would need to be retried. 982 * 983 * The caller is responsible for releasing returned @pages, via put_page(). 984 * 985 * @vmas are valid only as long as mmap_lock is held. 986 * 987 * Must be called with mmap_lock held. It may be released. See below. 988 * 989 * __get_user_pages walks a process's page tables and takes a reference to 990 * each struct page that each user address corresponds to at a given 991 * instant. That is, it takes the page that would be accessed if a user 992 * thread accesses the given user virtual address at that instant. 993 * 994 * This does not guarantee that the page exists in the user mappings when 995 * __get_user_pages returns, and there may even be a completely different 996 * page there in some cases (eg. if mmapped pagecache has been invalidated 997 * and subsequently re faulted). However it does guarantee that the page 998 * won't be freed completely. And mostly callers simply care that the page 999 * contains data that was valid *at some point in time*. Typically, an IO 1000 * or similar operation cannot guarantee anything stronger anyway because 1001 * locks can't be held over the syscall boundary. 1002 * 1003 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1004 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1005 * appropriate) must be called after the page is finished with, and 1006 * before put_page is called. 1007 * 1008 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1009 * released by an up_read(). That can happen if @gup_flags does not 1010 * have FOLL_NOWAIT. 1011 * 1012 * A caller using such a combination of @locked and @gup_flags 1013 * must therefore hold the mmap_lock for reading only, and recognize 1014 * when it's been released. Otherwise, it must be held for either 1015 * reading or writing and will not be released. 1016 * 1017 * In most cases, get_user_pages or get_user_pages_fast should be used 1018 * instead of __get_user_pages. __get_user_pages should be used only if 1019 * you need some special @gup_flags. 1020 */ 1021 static long __get_user_pages(struct mm_struct *mm, 1022 unsigned long start, unsigned long nr_pages, 1023 unsigned int gup_flags, struct page **pages, 1024 struct vm_area_struct **vmas, int *locked) 1025 { 1026 long ret = 0, i = 0; 1027 struct vm_area_struct *vma = NULL; 1028 struct follow_page_context ctx = { NULL }; 1029 1030 if (!nr_pages) 1031 return 0; 1032 1033 start = untagged_addr(start); 1034 1035 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1036 1037 /* 1038 * If FOLL_FORCE is set then do not force a full fault as the hinting 1039 * fault information is unrelated to the reference behaviour of a task 1040 * using the address space 1041 */ 1042 if (!(gup_flags & FOLL_FORCE)) 1043 gup_flags |= FOLL_NUMA; 1044 1045 do { 1046 struct page *page; 1047 unsigned int foll_flags = gup_flags; 1048 unsigned int page_increm; 1049 1050 /* first iteration or cross vma bound */ 1051 if (!vma || start >= vma->vm_end) { 1052 vma = find_extend_vma(mm, start); 1053 if (!vma && in_gate_area(mm, start)) { 1054 ret = get_gate_page(mm, start & PAGE_MASK, 1055 gup_flags, &vma, 1056 pages ? &pages[i] : NULL); 1057 if (ret) 1058 goto out; 1059 ctx.page_mask = 0; 1060 goto next_page; 1061 } 1062 1063 if (!vma || check_vma_flags(vma, gup_flags)) { 1064 ret = -EFAULT; 1065 goto out; 1066 } 1067 if (is_vm_hugetlb_page(vma)) { 1068 i = follow_hugetlb_page(mm, vma, pages, vmas, 1069 &start, &nr_pages, i, 1070 gup_flags, locked); 1071 if (locked && *locked == 0) { 1072 /* 1073 * We've got a VM_FAULT_RETRY 1074 * and we've lost mmap_lock. 1075 * We must stop here. 1076 */ 1077 BUG_ON(gup_flags & FOLL_NOWAIT); 1078 BUG_ON(ret != 0); 1079 goto out; 1080 } 1081 continue; 1082 } 1083 } 1084 retry: 1085 /* 1086 * If we have a pending SIGKILL, don't keep faulting pages and 1087 * potentially allocating memory. 1088 */ 1089 if (fatal_signal_pending(current)) { 1090 ret = -EINTR; 1091 goto out; 1092 } 1093 cond_resched(); 1094 1095 page = follow_page_mask(vma, start, foll_flags, &ctx); 1096 if (!page) { 1097 ret = faultin_page(vma, start, &foll_flags, locked); 1098 switch (ret) { 1099 case 0: 1100 goto retry; 1101 case -EBUSY: 1102 ret = 0; 1103 fallthrough; 1104 case -EFAULT: 1105 case -ENOMEM: 1106 case -EHWPOISON: 1107 goto out; 1108 case -ENOENT: 1109 goto next_page; 1110 } 1111 BUG(); 1112 } else if (PTR_ERR(page) == -EEXIST) { 1113 /* 1114 * Proper page table entry exists, but no corresponding 1115 * struct page. 1116 */ 1117 goto next_page; 1118 } else if (IS_ERR(page)) { 1119 ret = PTR_ERR(page); 1120 goto out; 1121 } 1122 if (pages) { 1123 pages[i] = page; 1124 flush_anon_page(vma, page, start); 1125 flush_dcache_page(page); 1126 ctx.page_mask = 0; 1127 } 1128 next_page: 1129 if (vmas) { 1130 vmas[i] = vma; 1131 ctx.page_mask = 0; 1132 } 1133 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1134 if (page_increm > nr_pages) 1135 page_increm = nr_pages; 1136 i += page_increm; 1137 start += page_increm * PAGE_SIZE; 1138 nr_pages -= page_increm; 1139 } while (nr_pages); 1140 out: 1141 if (ctx.pgmap) 1142 put_dev_pagemap(ctx.pgmap); 1143 return i ? i : ret; 1144 } 1145 1146 static bool vma_permits_fault(struct vm_area_struct *vma, 1147 unsigned int fault_flags) 1148 { 1149 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1150 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1151 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1152 1153 if (!(vm_flags & vma->vm_flags)) 1154 return false; 1155 1156 /* 1157 * The architecture might have a hardware protection 1158 * mechanism other than read/write that can deny access. 1159 * 1160 * gup always represents data access, not instruction 1161 * fetches, so execute=false here: 1162 */ 1163 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1164 return false; 1165 1166 return true; 1167 } 1168 1169 /** 1170 * fixup_user_fault() - manually resolve a user page fault 1171 * @mm: mm_struct of target mm 1172 * @address: user address 1173 * @fault_flags:flags to pass down to handle_mm_fault() 1174 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1175 * does not allow retry. If NULL, the caller must guarantee 1176 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1177 * 1178 * This is meant to be called in the specific scenario where for locking reasons 1179 * we try to access user memory in atomic context (within a pagefault_disable() 1180 * section), this returns -EFAULT, and we want to resolve the user fault before 1181 * trying again. 1182 * 1183 * Typically this is meant to be used by the futex code. 1184 * 1185 * The main difference with get_user_pages() is that this function will 1186 * unconditionally call handle_mm_fault() which will in turn perform all the 1187 * necessary SW fixup of the dirty and young bits in the PTE, while 1188 * get_user_pages() only guarantees to update these in the struct page. 1189 * 1190 * This is important for some architectures where those bits also gate the 1191 * access permission to the page because they are maintained in software. On 1192 * such architectures, gup() will not be enough to make a subsequent access 1193 * succeed. 1194 * 1195 * This function will not return with an unlocked mmap_lock. So it has not the 1196 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1197 */ 1198 int fixup_user_fault(struct mm_struct *mm, 1199 unsigned long address, unsigned int fault_flags, 1200 bool *unlocked) 1201 { 1202 struct vm_area_struct *vma; 1203 vm_fault_t ret, major = 0; 1204 1205 address = untagged_addr(address); 1206 1207 if (unlocked) 1208 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1209 1210 retry: 1211 vma = find_extend_vma(mm, address); 1212 if (!vma || address < vma->vm_start) 1213 return -EFAULT; 1214 1215 if (!vma_permits_fault(vma, fault_flags)) 1216 return -EFAULT; 1217 1218 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1219 fatal_signal_pending(current)) 1220 return -EINTR; 1221 1222 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1223 major |= ret & VM_FAULT_MAJOR; 1224 if (ret & VM_FAULT_ERROR) { 1225 int err = vm_fault_to_errno(ret, 0); 1226 1227 if (err) 1228 return err; 1229 BUG(); 1230 } 1231 1232 if (ret & VM_FAULT_RETRY) { 1233 mmap_read_lock(mm); 1234 *unlocked = true; 1235 fault_flags |= FAULT_FLAG_TRIED; 1236 goto retry; 1237 } 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(fixup_user_fault); 1242 1243 /* 1244 * Please note that this function, unlike __get_user_pages will not 1245 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1246 */ 1247 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1248 unsigned long start, 1249 unsigned long nr_pages, 1250 struct page **pages, 1251 struct vm_area_struct **vmas, 1252 int *locked, 1253 unsigned int flags) 1254 { 1255 long ret, pages_done; 1256 bool lock_dropped; 1257 1258 if (locked) { 1259 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1260 BUG_ON(vmas); 1261 /* check caller initialized locked */ 1262 BUG_ON(*locked != 1); 1263 } 1264 1265 if (flags & FOLL_PIN) 1266 atomic_set(&mm->has_pinned, 1); 1267 1268 /* 1269 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1270 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1271 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1272 * for FOLL_GET, not for the newer FOLL_PIN. 1273 * 1274 * FOLL_PIN always expects pages to be non-null, but no need to assert 1275 * that here, as any failures will be obvious enough. 1276 */ 1277 if (pages && !(flags & FOLL_PIN)) 1278 flags |= FOLL_GET; 1279 1280 pages_done = 0; 1281 lock_dropped = false; 1282 for (;;) { 1283 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1284 vmas, locked); 1285 if (!locked) 1286 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1287 return ret; 1288 1289 /* VM_FAULT_RETRY cannot return errors */ 1290 if (!*locked) { 1291 BUG_ON(ret < 0); 1292 BUG_ON(ret >= nr_pages); 1293 } 1294 1295 if (ret > 0) { 1296 nr_pages -= ret; 1297 pages_done += ret; 1298 if (!nr_pages) 1299 break; 1300 } 1301 if (*locked) { 1302 /* 1303 * VM_FAULT_RETRY didn't trigger or it was a 1304 * FOLL_NOWAIT. 1305 */ 1306 if (!pages_done) 1307 pages_done = ret; 1308 break; 1309 } 1310 /* 1311 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1312 * For the prefault case (!pages) we only update counts. 1313 */ 1314 if (likely(pages)) 1315 pages += ret; 1316 start += ret << PAGE_SHIFT; 1317 lock_dropped = true; 1318 1319 retry: 1320 /* 1321 * Repeat on the address that fired VM_FAULT_RETRY 1322 * with both FAULT_FLAG_ALLOW_RETRY and 1323 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1324 * by fatal signals, so we need to check it before we 1325 * start trying again otherwise it can loop forever. 1326 */ 1327 1328 if (fatal_signal_pending(current)) { 1329 if (!pages_done) 1330 pages_done = -EINTR; 1331 break; 1332 } 1333 1334 ret = mmap_read_lock_killable(mm); 1335 if (ret) { 1336 BUG_ON(ret > 0); 1337 if (!pages_done) 1338 pages_done = ret; 1339 break; 1340 } 1341 1342 *locked = 1; 1343 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1344 pages, NULL, locked); 1345 if (!*locked) { 1346 /* Continue to retry until we succeeded */ 1347 BUG_ON(ret != 0); 1348 goto retry; 1349 } 1350 if (ret != 1) { 1351 BUG_ON(ret > 1); 1352 if (!pages_done) 1353 pages_done = ret; 1354 break; 1355 } 1356 nr_pages--; 1357 pages_done++; 1358 if (!nr_pages) 1359 break; 1360 if (likely(pages)) 1361 pages++; 1362 start += PAGE_SIZE; 1363 } 1364 if (lock_dropped && *locked) { 1365 /* 1366 * We must let the caller know we temporarily dropped the lock 1367 * and so the critical section protected by it was lost. 1368 */ 1369 mmap_read_unlock(mm); 1370 *locked = 0; 1371 } 1372 return pages_done; 1373 } 1374 1375 /** 1376 * populate_vma_page_range() - populate a range of pages in the vma. 1377 * @vma: target vma 1378 * @start: start address 1379 * @end: end address 1380 * @locked: whether the mmap_lock is still held 1381 * 1382 * This takes care of mlocking the pages too if VM_LOCKED is set. 1383 * 1384 * Return either number of pages pinned in the vma, or a negative error 1385 * code on error. 1386 * 1387 * vma->vm_mm->mmap_lock must be held. 1388 * 1389 * If @locked is NULL, it may be held for read or write and will 1390 * be unperturbed. 1391 * 1392 * If @locked is non-NULL, it must held for read only and may be 1393 * released. If it's released, *@locked will be set to 0. 1394 */ 1395 long populate_vma_page_range(struct vm_area_struct *vma, 1396 unsigned long start, unsigned long end, int *locked) 1397 { 1398 struct mm_struct *mm = vma->vm_mm; 1399 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1400 int gup_flags; 1401 1402 VM_BUG_ON(start & ~PAGE_MASK); 1403 VM_BUG_ON(end & ~PAGE_MASK); 1404 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1405 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1406 mmap_assert_locked(mm); 1407 1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1409 if (vma->vm_flags & VM_LOCKONFAULT) 1410 gup_flags &= ~FOLL_POPULATE; 1411 /* 1412 * We want to touch writable mappings with a write fault in order 1413 * to break COW, except for shared mappings because these don't COW 1414 * and we would not want to dirty them for nothing. 1415 */ 1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1417 gup_flags |= FOLL_WRITE; 1418 1419 /* 1420 * We want mlock to succeed for regions that have any permissions 1421 * other than PROT_NONE. 1422 */ 1423 if (vma_is_accessible(vma)) 1424 gup_flags |= FOLL_FORCE; 1425 1426 /* 1427 * We made sure addr is within a VMA, so the following will 1428 * not result in a stack expansion that recurses back here. 1429 */ 1430 return __get_user_pages(mm, start, nr_pages, gup_flags, 1431 NULL, NULL, locked); 1432 } 1433 1434 /* 1435 * __mm_populate - populate and/or mlock pages within a range of address space. 1436 * 1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1438 * flags. VMAs must be already marked with the desired vm_flags, and 1439 * mmap_lock must not be held. 1440 */ 1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1442 { 1443 struct mm_struct *mm = current->mm; 1444 unsigned long end, nstart, nend; 1445 struct vm_area_struct *vma = NULL; 1446 int locked = 0; 1447 long ret = 0; 1448 1449 end = start + len; 1450 1451 for (nstart = start; nstart < end; nstart = nend) { 1452 /* 1453 * We want to fault in pages for [nstart; end) address range. 1454 * Find first corresponding VMA. 1455 */ 1456 if (!locked) { 1457 locked = 1; 1458 mmap_read_lock(mm); 1459 vma = find_vma(mm, nstart); 1460 } else if (nstart >= vma->vm_end) 1461 vma = vma->vm_next; 1462 if (!vma || vma->vm_start >= end) 1463 break; 1464 /* 1465 * Set [nstart; nend) to intersection of desired address 1466 * range with the first VMA. Also, skip undesirable VMA types. 1467 */ 1468 nend = min(end, vma->vm_end); 1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1470 continue; 1471 if (nstart < vma->vm_start) 1472 nstart = vma->vm_start; 1473 /* 1474 * Now fault in a range of pages. populate_vma_page_range() 1475 * double checks the vma flags, so that it won't mlock pages 1476 * if the vma was already munlocked. 1477 */ 1478 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1479 if (ret < 0) { 1480 if (ignore_errors) { 1481 ret = 0; 1482 continue; /* continue at next VMA */ 1483 } 1484 break; 1485 } 1486 nend = nstart + ret * PAGE_SIZE; 1487 ret = 0; 1488 } 1489 if (locked) 1490 mmap_read_unlock(mm); 1491 return ret; /* 0 or negative error code */ 1492 } 1493 #else /* CONFIG_MMU */ 1494 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1495 unsigned long nr_pages, struct page **pages, 1496 struct vm_area_struct **vmas, int *locked, 1497 unsigned int foll_flags) 1498 { 1499 struct vm_area_struct *vma; 1500 unsigned long vm_flags; 1501 int i; 1502 1503 /* calculate required read or write permissions. 1504 * If FOLL_FORCE is set, we only require the "MAY" flags. 1505 */ 1506 vm_flags = (foll_flags & FOLL_WRITE) ? 1507 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1508 vm_flags &= (foll_flags & FOLL_FORCE) ? 1509 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1510 1511 for (i = 0; i < nr_pages; i++) { 1512 vma = find_vma(mm, start); 1513 if (!vma) 1514 goto finish_or_fault; 1515 1516 /* protect what we can, including chardevs */ 1517 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1518 !(vm_flags & vma->vm_flags)) 1519 goto finish_or_fault; 1520 1521 if (pages) { 1522 pages[i] = virt_to_page(start); 1523 if (pages[i]) 1524 get_page(pages[i]); 1525 } 1526 if (vmas) 1527 vmas[i] = vma; 1528 start = (start + PAGE_SIZE) & PAGE_MASK; 1529 } 1530 1531 return i; 1532 1533 finish_or_fault: 1534 return i ? : -EFAULT; 1535 } 1536 #endif /* !CONFIG_MMU */ 1537 1538 /** 1539 * get_dump_page() - pin user page in memory while writing it to core dump 1540 * @addr: user address 1541 * 1542 * Returns struct page pointer of user page pinned for dump, 1543 * to be freed afterwards by put_page(). 1544 * 1545 * Returns NULL on any kind of failure - a hole must then be inserted into 1546 * the corefile, to preserve alignment with its headers; and also returns 1547 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1548 * allowing a hole to be left in the corefile to save diskspace. 1549 * 1550 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1551 */ 1552 #ifdef CONFIG_ELF_CORE 1553 struct page *get_dump_page(unsigned long addr) 1554 { 1555 struct mm_struct *mm = current->mm; 1556 struct page *page; 1557 int locked = 1; 1558 int ret; 1559 1560 if (mmap_read_lock_killable(mm)) 1561 return NULL; 1562 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1563 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1564 if (locked) 1565 mmap_read_unlock(mm); 1566 return (ret == 1) ? page : NULL; 1567 } 1568 #endif /* CONFIG_ELF_CORE */ 1569 1570 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1571 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1572 { 1573 long i; 1574 struct vm_area_struct *vma_prev = NULL; 1575 1576 for (i = 0; i < nr_pages; i++) { 1577 struct vm_area_struct *vma = vmas[i]; 1578 1579 if (vma == vma_prev) 1580 continue; 1581 1582 vma_prev = vma; 1583 1584 if (vma_is_fsdax(vma)) 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 #ifdef CONFIG_CMA 1591 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1592 unsigned long start, 1593 unsigned long nr_pages, 1594 struct page **pages, 1595 struct vm_area_struct **vmas, 1596 unsigned int gup_flags) 1597 { 1598 unsigned long i; 1599 unsigned long step; 1600 bool drain_allow = true; 1601 bool migrate_allow = true; 1602 LIST_HEAD(cma_page_list); 1603 long ret = nr_pages; 1604 struct migration_target_control mtc = { 1605 .nid = NUMA_NO_NODE, 1606 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1607 }; 1608 1609 check_again: 1610 for (i = 0; i < nr_pages;) { 1611 1612 struct page *head = compound_head(pages[i]); 1613 1614 /* 1615 * gup may start from a tail page. Advance step by the left 1616 * part. 1617 */ 1618 step = compound_nr(head) - (pages[i] - head); 1619 /* 1620 * If we get a page from the CMA zone, since we are going to 1621 * be pinning these entries, we might as well move them out 1622 * of the CMA zone if possible. 1623 */ 1624 if (is_migrate_cma_page(head)) { 1625 if (PageHuge(head)) 1626 isolate_huge_page(head, &cma_page_list); 1627 else { 1628 if (!PageLRU(head) && drain_allow) { 1629 lru_add_drain_all(); 1630 drain_allow = false; 1631 } 1632 1633 if (!isolate_lru_page(head)) { 1634 list_add_tail(&head->lru, &cma_page_list); 1635 mod_node_page_state(page_pgdat(head), 1636 NR_ISOLATED_ANON + 1637 page_is_file_lru(head), 1638 thp_nr_pages(head)); 1639 } 1640 } 1641 } 1642 1643 i += step; 1644 } 1645 1646 if (!list_empty(&cma_page_list)) { 1647 /* 1648 * drop the above get_user_pages reference. 1649 */ 1650 for (i = 0; i < nr_pages; i++) 1651 put_page(pages[i]); 1652 1653 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1654 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1655 /* 1656 * some of the pages failed migration. Do get_user_pages 1657 * without migration. 1658 */ 1659 migrate_allow = false; 1660 1661 if (!list_empty(&cma_page_list)) 1662 putback_movable_pages(&cma_page_list); 1663 } 1664 /* 1665 * We did migrate all the pages, Try to get the page references 1666 * again migrating any new CMA pages which we failed to isolate 1667 * earlier. 1668 */ 1669 ret = __get_user_pages_locked(mm, start, nr_pages, 1670 pages, vmas, NULL, 1671 gup_flags); 1672 1673 if ((ret > 0) && migrate_allow) { 1674 nr_pages = ret; 1675 drain_allow = true; 1676 goto check_again; 1677 } 1678 } 1679 1680 return ret; 1681 } 1682 #else 1683 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1684 unsigned long start, 1685 unsigned long nr_pages, 1686 struct page **pages, 1687 struct vm_area_struct **vmas, 1688 unsigned int gup_flags) 1689 { 1690 return nr_pages; 1691 } 1692 #endif /* CONFIG_CMA */ 1693 1694 /* 1695 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1696 * allows us to process the FOLL_LONGTERM flag. 1697 */ 1698 static long __gup_longterm_locked(struct mm_struct *mm, 1699 unsigned long start, 1700 unsigned long nr_pages, 1701 struct page **pages, 1702 struct vm_area_struct **vmas, 1703 unsigned int gup_flags) 1704 { 1705 struct vm_area_struct **vmas_tmp = vmas; 1706 unsigned long flags = 0; 1707 long rc, i; 1708 1709 if (gup_flags & FOLL_LONGTERM) { 1710 if (!pages) 1711 return -EINVAL; 1712 1713 if (!vmas_tmp) { 1714 vmas_tmp = kcalloc(nr_pages, 1715 sizeof(struct vm_area_struct *), 1716 GFP_KERNEL); 1717 if (!vmas_tmp) 1718 return -ENOMEM; 1719 } 1720 flags = memalloc_nocma_save(); 1721 } 1722 1723 rc = __get_user_pages_locked(mm, start, nr_pages, pages, 1724 vmas_tmp, NULL, gup_flags); 1725 1726 if (gup_flags & FOLL_LONGTERM) { 1727 if (rc < 0) 1728 goto out; 1729 1730 if (check_dax_vmas(vmas_tmp, rc)) { 1731 for (i = 0; i < rc; i++) 1732 put_page(pages[i]); 1733 rc = -EOPNOTSUPP; 1734 goto out; 1735 } 1736 1737 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1738 vmas_tmp, gup_flags); 1739 out: 1740 memalloc_nocma_restore(flags); 1741 } 1742 1743 if (vmas_tmp != vmas) 1744 kfree(vmas_tmp); 1745 return rc; 1746 } 1747 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1748 static __always_inline long __gup_longterm_locked(struct mm_struct *mm, 1749 unsigned long start, 1750 unsigned long nr_pages, 1751 struct page **pages, 1752 struct vm_area_struct **vmas, 1753 unsigned int flags) 1754 { 1755 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1756 NULL, flags); 1757 } 1758 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1759 1760 static bool is_valid_gup_flags(unsigned int gup_flags) 1761 { 1762 /* 1763 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1764 * never directly by the caller, so enforce that with an assertion: 1765 */ 1766 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1767 return false; 1768 /* 1769 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1770 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1771 * FOLL_PIN. 1772 */ 1773 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1774 return false; 1775 1776 return true; 1777 } 1778 1779 #ifdef CONFIG_MMU 1780 static long __get_user_pages_remote(struct mm_struct *mm, 1781 unsigned long start, unsigned long nr_pages, 1782 unsigned int gup_flags, struct page **pages, 1783 struct vm_area_struct **vmas, int *locked) 1784 { 1785 /* 1786 * Parts of FOLL_LONGTERM behavior are incompatible with 1787 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1788 * vmas. However, this only comes up if locked is set, and there are 1789 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1790 * allow what we can. 1791 */ 1792 if (gup_flags & FOLL_LONGTERM) { 1793 if (WARN_ON_ONCE(locked)) 1794 return -EINVAL; 1795 /* 1796 * This will check the vmas (even if our vmas arg is NULL) 1797 * and return -ENOTSUPP if DAX isn't allowed in this case: 1798 */ 1799 return __gup_longterm_locked(mm, start, nr_pages, pages, 1800 vmas, gup_flags | FOLL_TOUCH | 1801 FOLL_REMOTE); 1802 } 1803 1804 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1805 locked, 1806 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1807 } 1808 1809 /** 1810 * get_user_pages_remote() - pin user pages in memory 1811 * @mm: mm_struct of target mm 1812 * @start: starting user address 1813 * @nr_pages: number of pages from start to pin 1814 * @gup_flags: flags modifying lookup behaviour 1815 * @pages: array that receives pointers to the pages pinned. 1816 * Should be at least nr_pages long. Or NULL, if caller 1817 * only intends to ensure the pages are faulted in. 1818 * @vmas: array of pointers to vmas corresponding to each page. 1819 * Or NULL if the caller does not require them. 1820 * @locked: pointer to lock flag indicating whether lock is held and 1821 * subsequently whether VM_FAULT_RETRY functionality can be 1822 * utilised. Lock must initially be held. 1823 * 1824 * Returns either number of pages pinned (which may be less than the 1825 * number requested), or an error. Details about the return value: 1826 * 1827 * -- If nr_pages is 0, returns 0. 1828 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1829 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1830 * pages pinned. Again, this may be less than nr_pages. 1831 * 1832 * The caller is responsible for releasing returned @pages, via put_page(). 1833 * 1834 * @vmas are valid only as long as mmap_lock is held. 1835 * 1836 * Must be called with mmap_lock held for read or write. 1837 * 1838 * get_user_pages_remote walks a process's page tables and takes a reference 1839 * to each struct page that each user address corresponds to at a given 1840 * instant. That is, it takes the page that would be accessed if a user 1841 * thread accesses the given user virtual address at that instant. 1842 * 1843 * This does not guarantee that the page exists in the user mappings when 1844 * get_user_pages_remote returns, and there may even be a completely different 1845 * page there in some cases (eg. if mmapped pagecache has been invalidated 1846 * and subsequently re faulted). However it does guarantee that the page 1847 * won't be freed completely. And mostly callers simply care that the page 1848 * contains data that was valid *at some point in time*. Typically, an IO 1849 * or similar operation cannot guarantee anything stronger anyway because 1850 * locks can't be held over the syscall boundary. 1851 * 1852 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1853 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1854 * be called after the page is finished with, and before put_page is called. 1855 * 1856 * get_user_pages_remote is typically used for fewer-copy IO operations, 1857 * to get a handle on the memory by some means other than accesses 1858 * via the user virtual addresses. The pages may be submitted for 1859 * DMA to devices or accessed via their kernel linear mapping (via the 1860 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1861 * 1862 * See also get_user_pages_fast, for performance critical applications. 1863 * 1864 * get_user_pages_remote should be phased out in favor of 1865 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1866 * should use get_user_pages_remote because it cannot pass 1867 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1868 */ 1869 long get_user_pages_remote(struct mm_struct *mm, 1870 unsigned long start, unsigned long nr_pages, 1871 unsigned int gup_flags, struct page **pages, 1872 struct vm_area_struct **vmas, int *locked) 1873 { 1874 if (!is_valid_gup_flags(gup_flags)) 1875 return -EINVAL; 1876 1877 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1878 pages, vmas, locked); 1879 } 1880 EXPORT_SYMBOL(get_user_pages_remote); 1881 1882 #else /* CONFIG_MMU */ 1883 long get_user_pages_remote(struct mm_struct *mm, 1884 unsigned long start, unsigned long nr_pages, 1885 unsigned int gup_flags, struct page **pages, 1886 struct vm_area_struct **vmas, int *locked) 1887 { 1888 return 0; 1889 } 1890 1891 static long __get_user_pages_remote(struct mm_struct *mm, 1892 unsigned long start, unsigned long nr_pages, 1893 unsigned int gup_flags, struct page **pages, 1894 struct vm_area_struct **vmas, int *locked) 1895 { 1896 return 0; 1897 } 1898 #endif /* !CONFIG_MMU */ 1899 1900 /** 1901 * get_user_pages() - pin user pages in memory 1902 * @start: starting user address 1903 * @nr_pages: number of pages from start to pin 1904 * @gup_flags: flags modifying lookup behaviour 1905 * @pages: array that receives pointers to the pages pinned. 1906 * Should be at least nr_pages long. Or NULL, if caller 1907 * only intends to ensure the pages are faulted in. 1908 * @vmas: array of pointers to vmas corresponding to each page. 1909 * Or NULL if the caller does not require them. 1910 * 1911 * This is the same as get_user_pages_remote(), just with a less-flexible 1912 * calling convention where we assume that the mm being operated on belongs to 1913 * the current task, and doesn't allow passing of a locked parameter. We also 1914 * obviously don't pass FOLL_REMOTE in here. 1915 */ 1916 long get_user_pages(unsigned long start, unsigned long nr_pages, 1917 unsigned int gup_flags, struct page **pages, 1918 struct vm_area_struct **vmas) 1919 { 1920 if (!is_valid_gup_flags(gup_flags)) 1921 return -EINVAL; 1922 1923 return __gup_longterm_locked(current->mm, start, nr_pages, 1924 pages, vmas, gup_flags | FOLL_TOUCH); 1925 } 1926 EXPORT_SYMBOL(get_user_pages); 1927 1928 /** 1929 * get_user_pages_locked() is suitable to replace the form: 1930 * 1931 * mmap_read_lock(mm); 1932 * do_something() 1933 * get_user_pages(mm, ..., pages, NULL); 1934 * mmap_read_unlock(mm); 1935 * 1936 * to: 1937 * 1938 * int locked = 1; 1939 * mmap_read_lock(mm); 1940 * do_something() 1941 * get_user_pages_locked(mm, ..., pages, &locked); 1942 * if (locked) 1943 * mmap_read_unlock(mm); 1944 * 1945 * @start: starting user address 1946 * @nr_pages: number of pages from start to pin 1947 * @gup_flags: flags modifying lookup behaviour 1948 * @pages: array that receives pointers to the pages pinned. 1949 * Should be at least nr_pages long. Or NULL, if caller 1950 * only intends to ensure the pages are faulted in. 1951 * @locked: pointer to lock flag indicating whether lock is held and 1952 * subsequently whether VM_FAULT_RETRY functionality can be 1953 * utilised. Lock must initially be held. 1954 * 1955 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1956 * paths better by using either get_user_pages_locked() or 1957 * get_user_pages_unlocked(). 1958 * 1959 */ 1960 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1961 unsigned int gup_flags, struct page **pages, 1962 int *locked) 1963 { 1964 /* 1965 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1966 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1967 * vmas. As there are no users of this flag in this call we simply 1968 * disallow this option for now. 1969 */ 1970 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1971 return -EINVAL; 1972 /* 1973 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1974 * never directly by the caller, so enforce that: 1975 */ 1976 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1977 return -EINVAL; 1978 1979 return __get_user_pages_locked(current->mm, start, nr_pages, 1980 pages, NULL, locked, 1981 gup_flags | FOLL_TOUCH); 1982 } 1983 EXPORT_SYMBOL(get_user_pages_locked); 1984 1985 /* 1986 * get_user_pages_unlocked() is suitable to replace the form: 1987 * 1988 * mmap_read_lock(mm); 1989 * get_user_pages(mm, ..., pages, NULL); 1990 * mmap_read_unlock(mm); 1991 * 1992 * with: 1993 * 1994 * get_user_pages_unlocked(mm, ..., pages); 1995 * 1996 * It is functionally equivalent to get_user_pages_fast so 1997 * get_user_pages_fast should be used instead if specific gup_flags 1998 * (e.g. FOLL_FORCE) are not required. 1999 */ 2000 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2001 struct page **pages, unsigned int gup_flags) 2002 { 2003 struct mm_struct *mm = current->mm; 2004 int locked = 1; 2005 long ret; 2006 2007 /* 2008 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2009 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2010 * vmas. As there are no users of this flag in this call we simply 2011 * disallow this option for now. 2012 */ 2013 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2014 return -EINVAL; 2015 2016 mmap_read_lock(mm); 2017 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2018 &locked, gup_flags | FOLL_TOUCH); 2019 if (locked) 2020 mmap_read_unlock(mm); 2021 return ret; 2022 } 2023 EXPORT_SYMBOL(get_user_pages_unlocked); 2024 2025 /* 2026 * Fast GUP 2027 * 2028 * get_user_pages_fast attempts to pin user pages by walking the page 2029 * tables directly and avoids taking locks. Thus the walker needs to be 2030 * protected from page table pages being freed from under it, and should 2031 * block any THP splits. 2032 * 2033 * One way to achieve this is to have the walker disable interrupts, and 2034 * rely on IPIs from the TLB flushing code blocking before the page table 2035 * pages are freed. This is unsuitable for architectures that do not need 2036 * to broadcast an IPI when invalidating TLBs. 2037 * 2038 * Another way to achieve this is to batch up page table containing pages 2039 * belonging to more than one mm_user, then rcu_sched a callback to free those 2040 * pages. Disabling interrupts will allow the fast_gup walker to both block 2041 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2042 * (which is a relatively rare event). The code below adopts this strategy. 2043 * 2044 * Before activating this code, please be aware that the following assumptions 2045 * are currently made: 2046 * 2047 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2048 * free pages containing page tables or TLB flushing requires IPI broadcast. 2049 * 2050 * *) ptes can be read atomically by the architecture. 2051 * 2052 * *) access_ok is sufficient to validate userspace address ranges. 2053 * 2054 * The last two assumptions can be relaxed by the addition of helper functions. 2055 * 2056 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2057 */ 2058 #ifdef CONFIG_HAVE_FAST_GUP 2059 2060 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2061 { 2062 if (flags & FOLL_PIN) { 2063 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2064 refs); 2065 2066 if (hpage_pincount_available(page)) 2067 hpage_pincount_sub(page, refs); 2068 else 2069 refs *= GUP_PIN_COUNTING_BIAS; 2070 } 2071 2072 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2073 /* 2074 * Calling put_page() for each ref is unnecessarily slow. Only the last 2075 * ref needs a put_page(). 2076 */ 2077 if (refs > 1) 2078 page_ref_sub(page, refs - 1); 2079 put_page(page); 2080 } 2081 2082 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2083 2084 /* 2085 * WARNING: only to be used in the get_user_pages_fast() implementation. 2086 * 2087 * With get_user_pages_fast(), we walk down the pagetables without taking any 2088 * locks. For this we would like to load the pointers atomically, but sometimes 2089 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2090 * we do have is the guarantee that a PTE will only either go from not present 2091 * to present, or present to not present or both -- it will not switch to a 2092 * completely different present page without a TLB flush in between; something 2093 * that we are blocking by holding interrupts off. 2094 * 2095 * Setting ptes from not present to present goes: 2096 * 2097 * ptep->pte_high = h; 2098 * smp_wmb(); 2099 * ptep->pte_low = l; 2100 * 2101 * And present to not present goes: 2102 * 2103 * ptep->pte_low = 0; 2104 * smp_wmb(); 2105 * ptep->pte_high = 0; 2106 * 2107 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2108 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2109 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2110 * picked up a changed pte high. We might have gotten rubbish values from 2111 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2112 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2113 * operates on present ptes we're safe. 2114 */ 2115 static inline pte_t gup_get_pte(pte_t *ptep) 2116 { 2117 pte_t pte; 2118 2119 do { 2120 pte.pte_low = ptep->pte_low; 2121 smp_rmb(); 2122 pte.pte_high = ptep->pte_high; 2123 smp_rmb(); 2124 } while (unlikely(pte.pte_low != ptep->pte_low)); 2125 2126 return pte; 2127 } 2128 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2129 /* 2130 * We require that the PTE can be read atomically. 2131 */ 2132 static inline pte_t gup_get_pte(pte_t *ptep) 2133 { 2134 return ptep_get(ptep); 2135 } 2136 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2137 2138 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2139 unsigned int flags, 2140 struct page **pages) 2141 { 2142 while ((*nr) - nr_start) { 2143 struct page *page = pages[--(*nr)]; 2144 2145 ClearPageReferenced(page); 2146 if (flags & FOLL_PIN) 2147 unpin_user_page(page); 2148 else 2149 put_page(page); 2150 } 2151 } 2152 2153 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2154 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2155 unsigned int flags, struct page **pages, int *nr) 2156 { 2157 struct dev_pagemap *pgmap = NULL; 2158 int nr_start = *nr, ret = 0; 2159 pte_t *ptep, *ptem; 2160 2161 ptem = ptep = pte_offset_map(&pmd, addr); 2162 do { 2163 pte_t pte = gup_get_pte(ptep); 2164 struct page *head, *page; 2165 2166 /* 2167 * Similar to the PMD case below, NUMA hinting must take slow 2168 * path using the pte_protnone check. 2169 */ 2170 if (pte_protnone(pte)) 2171 goto pte_unmap; 2172 2173 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2174 goto pte_unmap; 2175 2176 if (pte_devmap(pte)) { 2177 if (unlikely(flags & FOLL_LONGTERM)) 2178 goto pte_unmap; 2179 2180 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2181 if (unlikely(!pgmap)) { 2182 undo_dev_pagemap(nr, nr_start, flags, pages); 2183 goto pte_unmap; 2184 } 2185 } else if (pte_special(pte)) 2186 goto pte_unmap; 2187 2188 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2189 page = pte_page(pte); 2190 2191 head = try_grab_compound_head(page, 1, flags); 2192 if (!head) 2193 goto pte_unmap; 2194 2195 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2196 put_compound_head(head, 1, flags); 2197 goto pte_unmap; 2198 } 2199 2200 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2201 2202 /* 2203 * We need to make the page accessible if and only if we are 2204 * going to access its content (the FOLL_PIN case). Please 2205 * see Documentation/core-api/pin_user_pages.rst for 2206 * details. 2207 */ 2208 if (flags & FOLL_PIN) { 2209 ret = arch_make_page_accessible(page); 2210 if (ret) { 2211 unpin_user_page(page); 2212 goto pte_unmap; 2213 } 2214 } 2215 SetPageReferenced(page); 2216 pages[*nr] = page; 2217 (*nr)++; 2218 2219 } while (ptep++, addr += PAGE_SIZE, addr != end); 2220 2221 ret = 1; 2222 2223 pte_unmap: 2224 if (pgmap) 2225 put_dev_pagemap(pgmap); 2226 pte_unmap(ptem); 2227 return ret; 2228 } 2229 #else 2230 2231 /* 2232 * If we can't determine whether or not a pte is special, then fail immediately 2233 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2234 * to be special. 2235 * 2236 * For a futex to be placed on a THP tail page, get_futex_key requires a 2237 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2238 * useful to have gup_huge_pmd even if we can't operate on ptes. 2239 */ 2240 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2241 unsigned int flags, struct page **pages, int *nr) 2242 { 2243 return 0; 2244 } 2245 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2246 2247 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2248 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2249 unsigned long end, unsigned int flags, 2250 struct page **pages, int *nr) 2251 { 2252 int nr_start = *nr; 2253 struct dev_pagemap *pgmap = NULL; 2254 2255 do { 2256 struct page *page = pfn_to_page(pfn); 2257 2258 pgmap = get_dev_pagemap(pfn, pgmap); 2259 if (unlikely(!pgmap)) { 2260 undo_dev_pagemap(nr, nr_start, flags, pages); 2261 return 0; 2262 } 2263 SetPageReferenced(page); 2264 pages[*nr] = page; 2265 if (unlikely(!try_grab_page(page, flags))) { 2266 undo_dev_pagemap(nr, nr_start, flags, pages); 2267 return 0; 2268 } 2269 (*nr)++; 2270 pfn++; 2271 } while (addr += PAGE_SIZE, addr != end); 2272 2273 if (pgmap) 2274 put_dev_pagemap(pgmap); 2275 return 1; 2276 } 2277 2278 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2279 unsigned long end, unsigned int flags, 2280 struct page **pages, int *nr) 2281 { 2282 unsigned long fault_pfn; 2283 int nr_start = *nr; 2284 2285 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2286 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2287 return 0; 2288 2289 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2290 undo_dev_pagemap(nr, nr_start, flags, pages); 2291 return 0; 2292 } 2293 return 1; 2294 } 2295 2296 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2297 unsigned long end, unsigned int flags, 2298 struct page **pages, int *nr) 2299 { 2300 unsigned long fault_pfn; 2301 int nr_start = *nr; 2302 2303 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2304 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2305 return 0; 2306 2307 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2308 undo_dev_pagemap(nr, nr_start, flags, pages); 2309 return 0; 2310 } 2311 return 1; 2312 } 2313 #else 2314 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2315 unsigned long end, unsigned int flags, 2316 struct page **pages, int *nr) 2317 { 2318 BUILD_BUG(); 2319 return 0; 2320 } 2321 2322 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2323 unsigned long end, unsigned int flags, 2324 struct page **pages, int *nr) 2325 { 2326 BUILD_BUG(); 2327 return 0; 2328 } 2329 #endif 2330 2331 static int record_subpages(struct page *page, unsigned long addr, 2332 unsigned long end, struct page **pages) 2333 { 2334 int nr; 2335 2336 for (nr = 0; addr != end; addr += PAGE_SIZE) 2337 pages[nr++] = page++; 2338 2339 return nr; 2340 } 2341 2342 #ifdef CONFIG_ARCH_HAS_HUGEPD 2343 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2344 unsigned long sz) 2345 { 2346 unsigned long __boundary = (addr + sz) & ~(sz-1); 2347 return (__boundary - 1 < end - 1) ? __boundary : end; 2348 } 2349 2350 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2351 unsigned long end, unsigned int flags, 2352 struct page **pages, int *nr) 2353 { 2354 unsigned long pte_end; 2355 struct page *head, *page; 2356 pte_t pte; 2357 int refs; 2358 2359 pte_end = (addr + sz) & ~(sz-1); 2360 if (pte_end < end) 2361 end = pte_end; 2362 2363 pte = huge_ptep_get(ptep); 2364 2365 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2366 return 0; 2367 2368 /* hugepages are never "special" */ 2369 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2370 2371 head = pte_page(pte); 2372 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2373 refs = record_subpages(page, addr, end, pages + *nr); 2374 2375 head = try_grab_compound_head(head, refs, flags); 2376 if (!head) 2377 return 0; 2378 2379 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2380 put_compound_head(head, refs, flags); 2381 return 0; 2382 } 2383 2384 *nr += refs; 2385 SetPageReferenced(head); 2386 return 1; 2387 } 2388 2389 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2390 unsigned int pdshift, unsigned long end, unsigned int flags, 2391 struct page **pages, int *nr) 2392 { 2393 pte_t *ptep; 2394 unsigned long sz = 1UL << hugepd_shift(hugepd); 2395 unsigned long next; 2396 2397 ptep = hugepte_offset(hugepd, addr, pdshift); 2398 do { 2399 next = hugepte_addr_end(addr, end, sz); 2400 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2401 return 0; 2402 } while (ptep++, addr = next, addr != end); 2403 2404 return 1; 2405 } 2406 #else 2407 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2408 unsigned int pdshift, unsigned long end, unsigned int flags, 2409 struct page **pages, int *nr) 2410 { 2411 return 0; 2412 } 2413 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2414 2415 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2416 unsigned long end, unsigned int flags, 2417 struct page **pages, int *nr) 2418 { 2419 struct page *head, *page; 2420 int refs; 2421 2422 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2423 return 0; 2424 2425 if (pmd_devmap(orig)) { 2426 if (unlikely(flags & FOLL_LONGTERM)) 2427 return 0; 2428 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2429 pages, nr); 2430 } 2431 2432 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2433 refs = record_subpages(page, addr, end, pages + *nr); 2434 2435 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2436 if (!head) 2437 return 0; 2438 2439 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2440 put_compound_head(head, refs, flags); 2441 return 0; 2442 } 2443 2444 *nr += refs; 2445 SetPageReferenced(head); 2446 return 1; 2447 } 2448 2449 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2450 unsigned long end, unsigned int flags, 2451 struct page **pages, int *nr) 2452 { 2453 struct page *head, *page; 2454 int refs; 2455 2456 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2457 return 0; 2458 2459 if (pud_devmap(orig)) { 2460 if (unlikely(flags & FOLL_LONGTERM)) 2461 return 0; 2462 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2463 pages, nr); 2464 } 2465 2466 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2467 refs = record_subpages(page, addr, end, pages + *nr); 2468 2469 head = try_grab_compound_head(pud_page(orig), refs, flags); 2470 if (!head) 2471 return 0; 2472 2473 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2474 put_compound_head(head, refs, flags); 2475 return 0; 2476 } 2477 2478 *nr += refs; 2479 SetPageReferenced(head); 2480 return 1; 2481 } 2482 2483 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2484 unsigned long end, unsigned int flags, 2485 struct page **pages, int *nr) 2486 { 2487 int refs; 2488 struct page *head, *page; 2489 2490 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2491 return 0; 2492 2493 BUILD_BUG_ON(pgd_devmap(orig)); 2494 2495 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2496 refs = record_subpages(page, addr, end, pages + *nr); 2497 2498 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2499 if (!head) 2500 return 0; 2501 2502 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2503 put_compound_head(head, refs, flags); 2504 return 0; 2505 } 2506 2507 *nr += refs; 2508 SetPageReferenced(head); 2509 return 1; 2510 } 2511 2512 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2513 unsigned int flags, struct page **pages, int *nr) 2514 { 2515 unsigned long next; 2516 pmd_t *pmdp; 2517 2518 pmdp = pmd_offset_lockless(pudp, pud, addr); 2519 do { 2520 pmd_t pmd = READ_ONCE(*pmdp); 2521 2522 next = pmd_addr_end(addr, end); 2523 if (!pmd_present(pmd)) 2524 return 0; 2525 2526 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2527 pmd_devmap(pmd))) { 2528 /* 2529 * NUMA hinting faults need to be handled in the GUP 2530 * slowpath for accounting purposes and so that they 2531 * can be serialised against THP migration. 2532 */ 2533 if (pmd_protnone(pmd)) 2534 return 0; 2535 2536 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2537 pages, nr)) 2538 return 0; 2539 2540 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2541 /* 2542 * architecture have different format for hugetlbfs 2543 * pmd format and THP pmd format 2544 */ 2545 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2546 PMD_SHIFT, next, flags, pages, nr)) 2547 return 0; 2548 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2549 return 0; 2550 } while (pmdp++, addr = next, addr != end); 2551 2552 return 1; 2553 } 2554 2555 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2556 unsigned int flags, struct page **pages, int *nr) 2557 { 2558 unsigned long next; 2559 pud_t *pudp; 2560 2561 pudp = pud_offset_lockless(p4dp, p4d, addr); 2562 do { 2563 pud_t pud = READ_ONCE(*pudp); 2564 2565 next = pud_addr_end(addr, end); 2566 if (unlikely(!pud_present(pud))) 2567 return 0; 2568 if (unlikely(pud_huge(pud))) { 2569 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2570 pages, nr)) 2571 return 0; 2572 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2573 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2574 PUD_SHIFT, next, flags, pages, nr)) 2575 return 0; 2576 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2577 return 0; 2578 } while (pudp++, addr = next, addr != end); 2579 2580 return 1; 2581 } 2582 2583 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2584 unsigned int flags, struct page **pages, int *nr) 2585 { 2586 unsigned long next; 2587 p4d_t *p4dp; 2588 2589 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2590 do { 2591 p4d_t p4d = READ_ONCE(*p4dp); 2592 2593 next = p4d_addr_end(addr, end); 2594 if (p4d_none(p4d)) 2595 return 0; 2596 BUILD_BUG_ON(p4d_huge(p4d)); 2597 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2598 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2599 P4D_SHIFT, next, flags, pages, nr)) 2600 return 0; 2601 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2602 return 0; 2603 } while (p4dp++, addr = next, addr != end); 2604 2605 return 1; 2606 } 2607 2608 static void gup_pgd_range(unsigned long addr, unsigned long end, 2609 unsigned int flags, struct page **pages, int *nr) 2610 { 2611 unsigned long next; 2612 pgd_t *pgdp; 2613 2614 pgdp = pgd_offset(current->mm, addr); 2615 do { 2616 pgd_t pgd = READ_ONCE(*pgdp); 2617 2618 next = pgd_addr_end(addr, end); 2619 if (pgd_none(pgd)) 2620 return; 2621 if (unlikely(pgd_huge(pgd))) { 2622 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2623 pages, nr)) 2624 return; 2625 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2626 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2627 PGDIR_SHIFT, next, flags, pages, nr)) 2628 return; 2629 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2630 return; 2631 } while (pgdp++, addr = next, addr != end); 2632 } 2633 #else 2634 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2635 unsigned int flags, struct page **pages, int *nr) 2636 { 2637 } 2638 #endif /* CONFIG_HAVE_FAST_GUP */ 2639 2640 #ifndef gup_fast_permitted 2641 /* 2642 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2643 * we need to fall back to the slow version: 2644 */ 2645 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2646 { 2647 return true; 2648 } 2649 #endif 2650 2651 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2652 unsigned int gup_flags, struct page **pages) 2653 { 2654 int ret; 2655 2656 /* 2657 * FIXME: FOLL_LONGTERM does not work with 2658 * get_user_pages_unlocked() (see comments in that function) 2659 */ 2660 if (gup_flags & FOLL_LONGTERM) { 2661 mmap_read_lock(current->mm); 2662 ret = __gup_longterm_locked(current->mm, 2663 start, nr_pages, 2664 pages, NULL, gup_flags); 2665 mmap_read_unlock(current->mm); 2666 } else { 2667 ret = get_user_pages_unlocked(start, nr_pages, 2668 pages, gup_flags); 2669 } 2670 2671 return ret; 2672 } 2673 2674 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2675 unsigned int gup_flags, 2676 struct page **pages) 2677 { 2678 unsigned long addr, len, end; 2679 unsigned long flags; 2680 int nr_pinned = 0, ret = 0; 2681 2682 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2683 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2684 FOLL_FAST_ONLY))) 2685 return -EINVAL; 2686 2687 if (gup_flags & FOLL_PIN) 2688 atomic_set(¤t->mm->has_pinned, 1); 2689 2690 if (!(gup_flags & FOLL_FAST_ONLY)) 2691 might_lock_read(¤t->mm->mmap_lock); 2692 2693 start = untagged_addr(start) & PAGE_MASK; 2694 addr = start; 2695 len = (unsigned long) nr_pages << PAGE_SHIFT; 2696 end = start + len; 2697 2698 if (end <= start) 2699 return 0; 2700 if (unlikely(!access_ok((void __user *)start, len))) 2701 return -EFAULT; 2702 2703 /* 2704 * Disable interrupts. The nested form is used, in order to allow 2705 * full, general purpose use of this routine. 2706 * 2707 * With interrupts disabled, we block page table pages from being 2708 * freed from under us. See struct mmu_table_batch comments in 2709 * include/asm-generic/tlb.h for more details. 2710 * 2711 * We do not adopt an rcu_read_lock(.) here as we also want to 2712 * block IPIs that come from THPs splitting. 2713 */ 2714 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2715 unsigned long fast_flags = gup_flags; 2716 2717 local_irq_save(flags); 2718 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2719 local_irq_restore(flags); 2720 ret = nr_pinned; 2721 } 2722 2723 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2724 /* Try to get the remaining pages with get_user_pages */ 2725 start += nr_pinned << PAGE_SHIFT; 2726 pages += nr_pinned; 2727 2728 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2729 gup_flags, pages); 2730 2731 /* Have to be a bit careful with return values */ 2732 if (nr_pinned > 0) { 2733 if (ret < 0) 2734 ret = nr_pinned; 2735 else 2736 ret += nr_pinned; 2737 } 2738 } 2739 2740 return ret; 2741 } 2742 /** 2743 * get_user_pages_fast_only() - pin user pages in memory 2744 * @start: starting user address 2745 * @nr_pages: number of pages from start to pin 2746 * @gup_flags: flags modifying pin behaviour 2747 * @pages: array that receives pointers to the pages pinned. 2748 * Should be at least nr_pages long. 2749 * 2750 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2751 * the regular GUP. 2752 * Note a difference with get_user_pages_fast: this always returns the 2753 * number of pages pinned, 0 if no pages were pinned. 2754 * 2755 * If the architecture does not support this function, simply return with no 2756 * pages pinned. 2757 * 2758 * Careful, careful! COW breaking can go either way, so a non-write 2759 * access can get ambiguous page results. If you call this function without 2760 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2761 */ 2762 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2763 unsigned int gup_flags, struct page **pages) 2764 { 2765 int nr_pinned; 2766 /* 2767 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2768 * because gup fast is always a "pin with a +1 page refcount" request. 2769 * 2770 * FOLL_FAST_ONLY is required in order to match the API description of 2771 * this routine: no fall back to regular ("slow") GUP. 2772 */ 2773 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2774 2775 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2776 pages); 2777 2778 /* 2779 * As specified in the API description above, this routine is not 2780 * allowed to return negative values. However, the common core 2781 * routine internal_get_user_pages_fast() *can* return -errno. 2782 * Therefore, correct for that here: 2783 */ 2784 if (nr_pinned < 0) 2785 nr_pinned = 0; 2786 2787 return nr_pinned; 2788 } 2789 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2790 2791 /** 2792 * get_user_pages_fast() - pin user pages in memory 2793 * @start: starting user address 2794 * @nr_pages: number of pages from start to pin 2795 * @gup_flags: flags modifying pin behaviour 2796 * @pages: array that receives pointers to the pages pinned. 2797 * Should be at least nr_pages long. 2798 * 2799 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2800 * If not successful, it will fall back to taking the lock and 2801 * calling get_user_pages(). 2802 * 2803 * Returns number of pages pinned. This may be fewer than the number requested. 2804 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2805 * -errno. 2806 */ 2807 int get_user_pages_fast(unsigned long start, int nr_pages, 2808 unsigned int gup_flags, struct page **pages) 2809 { 2810 if (!is_valid_gup_flags(gup_flags)) 2811 return -EINVAL; 2812 2813 /* 2814 * The caller may or may not have explicitly set FOLL_GET; either way is 2815 * OK. However, internally (within mm/gup.c), gup fast variants must set 2816 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2817 * request. 2818 */ 2819 gup_flags |= FOLL_GET; 2820 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2821 } 2822 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2823 2824 /** 2825 * pin_user_pages_fast() - pin user pages in memory without taking locks 2826 * 2827 * @start: starting user address 2828 * @nr_pages: number of pages from start to pin 2829 * @gup_flags: flags modifying pin behaviour 2830 * @pages: array that receives pointers to the pages pinned. 2831 * Should be at least nr_pages long. 2832 * 2833 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2834 * get_user_pages_fast() for documentation on the function arguments, because 2835 * the arguments here are identical. 2836 * 2837 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2838 * see Documentation/core-api/pin_user_pages.rst for further details. 2839 */ 2840 int pin_user_pages_fast(unsigned long start, int nr_pages, 2841 unsigned int gup_flags, struct page **pages) 2842 { 2843 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2844 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2845 return -EINVAL; 2846 2847 gup_flags |= FOLL_PIN; 2848 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2849 } 2850 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2851 2852 /* 2853 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2854 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2855 * 2856 * The API rules are the same, too: no negative values may be returned. 2857 */ 2858 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2859 unsigned int gup_flags, struct page **pages) 2860 { 2861 int nr_pinned; 2862 2863 /* 2864 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2865 * rules require returning 0, rather than -errno: 2866 */ 2867 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2868 return 0; 2869 /* 2870 * FOLL_FAST_ONLY is required in order to match the API description of 2871 * this routine: no fall back to regular ("slow") GUP. 2872 */ 2873 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2874 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2875 pages); 2876 /* 2877 * This routine is not allowed to return negative values. However, 2878 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2879 * correct for that here: 2880 */ 2881 if (nr_pinned < 0) 2882 nr_pinned = 0; 2883 2884 return nr_pinned; 2885 } 2886 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2887 2888 /** 2889 * pin_user_pages_remote() - pin pages of a remote process 2890 * 2891 * @mm: mm_struct of target mm 2892 * @start: starting user address 2893 * @nr_pages: number of pages from start to pin 2894 * @gup_flags: flags modifying lookup behaviour 2895 * @pages: array that receives pointers to the pages pinned. 2896 * Should be at least nr_pages long. Or NULL, if caller 2897 * only intends to ensure the pages are faulted in. 2898 * @vmas: array of pointers to vmas corresponding to each page. 2899 * Or NULL if the caller does not require them. 2900 * @locked: pointer to lock flag indicating whether lock is held and 2901 * subsequently whether VM_FAULT_RETRY functionality can be 2902 * utilised. Lock must initially be held. 2903 * 2904 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2905 * get_user_pages_remote() for documentation on the function arguments, because 2906 * the arguments here are identical. 2907 * 2908 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2909 * see Documentation/core-api/pin_user_pages.rst for details. 2910 */ 2911 long pin_user_pages_remote(struct mm_struct *mm, 2912 unsigned long start, unsigned long nr_pages, 2913 unsigned int gup_flags, struct page **pages, 2914 struct vm_area_struct **vmas, int *locked) 2915 { 2916 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2917 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2918 return -EINVAL; 2919 2920 gup_flags |= FOLL_PIN; 2921 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2922 pages, vmas, locked); 2923 } 2924 EXPORT_SYMBOL(pin_user_pages_remote); 2925 2926 /** 2927 * pin_user_pages() - pin user pages in memory for use by other devices 2928 * 2929 * @start: starting user address 2930 * @nr_pages: number of pages from start to pin 2931 * @gup_flags: flags modifying lookup behaviour 2932 * @pages: array that receives pointers to the pages pinned. 2933 * Should be at least nr_pages long. Or NULL, if caller 2934 * only intends to ensure the pages are faulted in. 2935 * @vmas: array of pointers to vmas corresponding to each page. 2936 * Or NULL if the caller does not require them. 2937 * 2938 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2939 * FOLL_PIN is set. 2940 * 2941 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2942 * see Documentation/core-api/pin_user_pages.rst for details. 2943 */ 2944 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2945 unsigned int gup_flags, struct page **pages, 2946 struct vm_area_struct **vmas) 2947 { 2948 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2949 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2950 return -EINVAL; 2951 2952 gup_flags |= FOLL_PIN; 2953 return __gup_longterm_locked(current->mm, start, nr_pages, 2954 pages, vmas, gup_flags); 2955 } 2956 EXPORT_SYMBOL(pin_user_pages); 2957 2958 /* 2959 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2960 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2961 * FOLL_PIN and rejects FOLL_GET. 2962 */ 2963 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2964 struct page **pages, unsigned int gup_flags) 2965 { 2966 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2967 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2968 return -EINVAL; 2969 2970 gup_flags |= FOLL_PIN; 2971 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2972 } 2973 EXPORT_SYMBOL(pin_user_pages_unlocked); 2974 2975 /* 2976 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2977 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2978 * FOLL_GET. 2979 */ 2980 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2981 unsigned int gup_flags, struct page **pages, 2982 int *locked) 2983 { 2984 /* 2985 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2986 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2987 * vmas. As there are no users of this flag in this call we simply 2988 * disallow this option for now. 2989 */ 2990 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2991 return -EINVAL; 2992 2993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2994 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2995 return -EINVAL; 2996 2997 gup_flags |= FOLL_PIN; 2998 return __get_user_pages_locked(current->mm, start, nr_pages, 2999 pages, NULL, locked, 3000 gup_flags | FOLL_TOUCH); 3001 } 3002 EXPORT_SYMBOL(pin_user_pages_locked); 3003