1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 /** 212 * follow_page_mask - look up a page descriptor from a user-virtual address 213 * @vma: vm_area_struct mapping @address 214 * @address: virtual address to look up 215 * @flags: flags modifying lookup behaviour 216 * @page_mask: on output, *page_mask is set according to the size of the page 217 * 218 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 219 * 220 * Returns the mapped (struct page *), %NULL if no mapping exists, or 221 * an error pointer if there is a mapping to something not represented 222 * by a page descriptor (see also vm_normal_page()). 223 */ 224 struct page *follow_page_mask(struct vm_area_struct *vma, 225 unsigned long address, unsigned int flags, 226 unsigned int *page_mask) 227 { 228 pgd_t *pgd; 229 p4d_t *p4d; 230 pud_t *pud; 231 pmd_t *pmd; 232 spinlock_t *ptl; 233 struct page *page; 234 struct mm_struct *mm = vma->vm_mm; 235 236 *page_mask = 0; 237 238 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 239 if (!IS_ERR(page)) { 240 BUG_ON(flags & FOLL_GET); 241 return page; 242 } 243 244 pgd = pgd_offset(mm, address); 245 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 246 return no_page_table(vma, flags); 247 p4d = p4d_offset(pgd, address); 248 if (p4d_none(*p4d)) 249 return no_page_table(vma, flags); 250 BUILD_BUG_ON(p4d_huge(*p4d)); 251 if (unlikely(p4d_bad(*p4d))) 252 return no_page_table(vma, flags); 253 pud = pud_offset(p4d, address); 254 if (pud_none(*pud)) 255 return no_page_table(vma, flags); 256 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 257 page = follow_huge_pud(mm, address, pud, flags); 258 if (page) 259 return page; 260 return no_page_table(vma, flags); 261 } 262 if (pud_devmap(*pud)) { 263 ptl = pud_lock(mm, pud); 264 page = follow_devmap_pud(vma, address, pud, flags); 265 spin_unlock(ptl); 266 if (page) 267 return page; 268 } 269 if (unlikely(pud_bad(*pud))) 270 return no_page_table(vma, flags); 271 272 pmd = pmd_offset(pud, address); 273 if (pmd_none(*pmd)) 274 return no_page_table(vma, flags); 275 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 276 page = follow_huge_pmd(mm, address, pmd, flags); 277 if (page) 278 return page; 279 return no_page_table(vma, flags); 280 } 281 if (pmd_devmap(*pmd)) { 282 ptl = pmd_lock(mm, pmd); 283 page = follow_devmap_pmd(vma, address, pmd, flags); 284 spin_unlock(ptl); 285 if (page) 286 return page; 287 } 288 if (likely(!pmd_trans_huge(*pmd))) 289 return follow_page_pte(vma, address, pmd, flags); 290 291 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 292 return no_page_table(vma, flags); 293 294 ptl = pmd_lock(mm, pmd); 295 if (unlikely(!pmd_trans_huge(*pmd))) { 296 spin_unlock(ptl); 297 return follow_page_pte(vma, address, pmd, flags); 298 } 299 if (flags & FOLL_SPLIT) { 300 int ret; 301 page = pmd_page(*pmd); 302 if (is_huge_zero_page(page)) { 303 spin_unlock(ptl); 304 ret = 0; 305 split_huge_pmd(vma, pmd, address); 306 if (pmd_trans_unstable(pmd)) 307 ret = -EBUSY; 308 } else { 309 get_page(page); 310 spin_unlock(ptl); 311 lock_page(page); 312 ret = split_huge_page(page); 313 unlock_page(page); 314 put_page(page); 315 if (pmd_none(*pmd)) 316 return no_page_table(vma, flags); 317 } 318 319 return ret ? ERR_PTR(ret) : 320 follow_page_pte(vma, address, pmd, flags); 321 } 322 323 page = follow_trans_huge_pmd(vma, address, pmd, flags); 324 spin_unlock(ptl); 325 *page_mask = HPAGE_PMD_NR - 1; 326 return page; 327 } 328 329 static int get_gate_page(struct mm_struct *mm, unsigned long address, 330 unsigned int gup_flags, struct vm_area_struct **vma, 331 struct page **page) 332 { 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd; 337 pte_t *pte; 338 int ret = -EFAULT; 339 340 /* user gate pages are read-only */ 341 if (gup_flags & FOLL_WRITE) 342 return -EFAULT; 343 if (address > TASK_SIZE) 344 pgd = pgd_offset_k(address); 345 else 346 pgd = pgd_offset_gate(mm, address); 347 BUG_ON(pgd_none(*pgd)); 348 p4d = p4d_offset(pgd, address); 349 BUG_ON(p4d_none(*p4d)); 350 pud = pud_offset(p4d, address); 351 BUG_ON(pud_none(*pud)); 352 pmd = pmd_offset(pud, address); 353 if (pmd_none(*pmd)) 354 return -EFAULT; 355 VM_BUG_ON(pmd_trans_huge(*pmd)); 356 pte = pte_offset_map(pmd, address); 357 if (pte_none(*pte)) 358 goto unmap; 359 *vma = get_gate_vma(mm); 360 if (!page) 361 goto out; 362 *page = vm_normal_page(*vma, address, *pte); 363 if (!*page) { 364 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 365 goto unmap; 366 *page = pte_page(*pte); 367 } 368 get_page(*page); 369 out: 370 ret = 0; 371 unmap: 372 pte_unmap(pte); 373 return ret; 374 } 375 376 /* 377 * mmap_sem must be held on entry. If @nonblocking != NULL and 378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 380 */ 381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 382 unsigned long address, unsigned int *flags, int *nonblocking) 383 { 384 unsigned int fault_flags = 0; 385 int ret; 386 387 /* mlock all present pages, but do not fault in new pages */ 388 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 389 return -ENOENT; 390 if (*flags & FOLL_WRITE) 391 fault_flags |= FAULT_FLAG_WRITE; 392 if (*flags & FOLL_REMOTE) 393 fault_flags |= FAULT_FLAG_REMOTE; 394 if (nonblocking) 395 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 396 if (*flags & FOLL_NOWAIT) 397 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 398 if (*flags & FOLL_TRIED) { 399 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 400 fault_flags |= FAULT_FLAG_TRIED; 401 } 402 403 ret = handle_mm_fault(vma, address, fault_flags); 404 if (ret & VM_FAULT_ERROR) { 405 int err = vm_fault_to_errno(ret, *flags); 406 407 if (err) 408 return err; 409 BUG(); 410 } 411 412 if (tsk) { 413 if (ret & VM_FAULT_MAJOR) 414 tsk->maj_flt++; 415 else 416 tsk->min_flt++; 417 } 418 419 if (ret & VM_FAULT_RETRY) { 420 if (nonblocking) 421 *nonblocking = 0; 422 return -EBUSY; 423 } 424 425 /* 426 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 427 * necessary, even if maybe_mkwrite decided not to set pte_write. We 428 * can thus safely do subsequent page lookups as if they were reads. 429 * But only do so when looping for pte_write is futile: in some cases 430 * userspace may also be wanting to write to the gotten user page, 431 * which a read fault here might prevent (a readonly page might get 432 * reCOWed by userspace write). 433 */ 434 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 435 *flags |= FOLL_COW; 436 return 0; 437 } 438 439 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 440 { 441 vm_flags_t vm_flags = vma->vm_flags; 442 int write = (gup_flags & FOLL_WRITE); 443 int foreign = (gup_flags & FOLL_REMOTE); 444 445 if (vm_flags & (VM_IO | VM_PFNMAP)) 446 return -EFAULT; 447 448 if (write) { 449 if (!(vm_flags & VM_WRITE)) { 450 if (!(gup_flags & FOLL_FORCE)) 451 return -EFAULT; 452 /* 453 * We used to let the write,force case do COW in a 454 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 455 * set a breakpoint in a read-only mapping of an 456 * executable, without corrupting the file (yet only 457 * when that file had been opened for writing!). 458 * Anon pages in shared mappings are surprising: now 459 * just reject it. 460 */ 461 if (!is_cow_mapping(vm_flags)) 462 return -EFAULT; 463 } 464 } else if (!(vm_flags & VM_READ)) { 465 if (!(gup_flags & FOLL_FORCE)) 466 return -EFAULT; 467 /* 468 * Is there actually any vma we can reach here which does not 469 * have VM_MAYREAD set? 470 */ 471 if (!(vm_flags & VM_MAYREAD)) 472 return -EFAULT; 473 } 474 /* 475 * gups are always data accesses, not instruction 476 * fetches, so execute=false here 477 */ 478 if (!arch_vma_access_permitted(vma, write, false, foreign)) 479 return -EFAULT; 480 return 0; 481 } 482 483 /** 484 * __get_user_pages() - pin user pages in memory 485 * @tsk: task_struct of target task 486 * @mm: mm_struct of target mm 487 * @start: starting user address 488 * @nr_pages: number of pages from start to pin 489 * @gup_flags: flags modifying pin behaviour 490 * @pages: array that receives pointers to the pages pinned. 491 * Should be at least nr_pages long. Or NULL, if caller 492 * only intends to ensure the pages are faulted in. 493 * @vmas: array of pointers to vmas corresponding to each page. 494 * Or NULL if the caller does not require them. 495 * @nonblocking: whether waiting for disk IO or mmap_sem contention 496 * 497 * Returns number of pages pinned. This may be fewer than the number 498 * requested. If nr_pages is 0 or negative, returns 0. If no pages 499 * were pinned, returns -errno. Each page returned must be released 500 * with a put_page() call when it is finished with. vmas will only 501 * remain valid while mmap_sem is held. 502 * 503 * Must be called with mmap_sem held. It may be released. See below. 504 * 505 * __get_user_pages walks a process's page tables and takes a reference to 506 * each struct page that each user address corresponds to at a given 507 * instant. That is, it takes the page that would be accessed if a user 508 * thread accesses the given user virtual address at that instant. 509 * 510 * This does not guarantee that the page exists in the user mappings when 511 * __get_user_pages returns, and there may even be a completely different 512 * page there in some cases (eg. if mmapped pagecache has been invalidated 513 * and subsequently re faulted). However it does guarantee that the page 514 * won't be freed completely. And mostly callers simply care that the page 515 * contains data that was valid *at some point in time*. Typically, an IO 516 * or similar operation cannot guarantee anything stronger anyway because 517 * locks can't be held over the syscall boundary. 518 * 519 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 520 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 521 * appropriate) must be called after the page is finished with, and 522 * before put_page is called. 523 * 524 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 525 * or mmap_sem contention, and if waiting is needed to pin all pages, 526 * *@nonblocking will be set to 0. Further, if @gup_flags does not 527 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 528 * this case. 529 * 530 * A caller using such a combination of @nonblocking and @gup_flags 531 * must therefore hold the mmap_sem for reading only, and recognize 532 * when it's been released. Otherwise, it must be held for either 533 * reading or writing and will not be released. 534 * 535 * In most cases, get_user_pages or get_user_pages_fast should be used 536 * instead of __get_user_pages. __get_user_pages should be used only if 537 * you need some special @gup_flags. 538 */ 539 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 540 unsigned long start, unsigned long nr_pages, 541 unsigned int gup_flags, struct page **pages, 542 struct vm_area_struct **vmas, int *nonblocking) 543 { 544 long i = 0; 545 unsigned int page_mask; 546 struct vm_area_struct *vma = NULL; 547 548 if (!nr_pages) 549 return 0; 550 551 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 552 553 /* 554 * If FOLL_FORCE is set then do not force a full fault as the hinting 555 * fault information is unrelated to the reference behaviour of a task 556 * using the address space 557 */ 558 if (!(gup_flags & FOLL_FORCE)) 559 gup_flags |= FOLL_NUMA; 560 561 do { 562 struct page *page; 563 unsigned int foll_flags = gup_flags; 564 unsigned int page_increm; 565 566 /* first iteration or cross vma bound */ 567 if (!vma || start >= vma->vm_end) { 568 vma = find_extend_vma(mm, start); 569 if (!vma && in_gate_area(mm, start)) { 570 int ret; 571 ret = get_gate_page(mm, start & PAGE_MASK, 572 gup_flags, &vma, 573 pages ? &pages[i] : NULL); 574 if (ret) 575 return i ? : ret; 576 page_mask = 0; 577 goto next_page; 578 } 579 580 if (!vma || check_vma_flags(vma, gup_flags)) 581 return i ? : -EFAULT; 582 if (is_vm_hugetlb_page(vma)) { 583 i = follow_hugetlb_page(mm, vma, pages, vmas, 584 &start, &nr_pages, i, 585 gup_flags, nonblocking); 586 continue; 587 } 588 } 589 retry: 590 /* 591 * If we have a pending SIGKILL, don't keep faulting pages and 592 * potentially allocating memory. 593 */ 594 if (unlikely(fatal_signal_pending(current))) 595 return i ? i : -ERESTARTSYS; 596 cond_resched(); 597 page = follow_page_mask(vma, start, foll_flags, &page_mask); 598 if (!page) { 599 int ret; 600 ret = faultin_page(tsk, vma, start, &foll_flags, 601 nonblocking); 602 switch (ret) { 603 case 0: 604 goto retry; 605 case -EFAULT: 606 case -ENOMEM: 607 case -EHWPOISON: 608 return i ? i : ret; 609 case -EBUSY: 610 return i; 611 case -ENOENT: 612 goto next_page; 613 } 614 BUG(); 615 } else if (PTR_ERR(page) == -EEXIST) { 616 /* 617 * Proper page table entry exists, but no corresponding 618 * struct page. 619 */ 620 goto next_page; 621 } else if (IS_ERR(page)) { 622 return i ? i : PTR_ERR(page); 623 } 624 if (pages) { 625 pages[i] = page; 626 flush_anon_page(vma, page, start); 627 flush_dcache_page(page); 628 page_mask = 0; 629 } 630 next_page: 631 if (vmas) { 632 vmas[i] = vma; 633 page_mask = 0; 634 } 635 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 636 if (page_increm > nr_pages) 637 page_increm = nr_pages; 638 i += page_increm; 639 start += page_increm * PAGE_SIZE; 640 nr_pages -= page_increm; 641 } while (nr_pages); 642 return i; 643 } 644 645 static bool vma_permits_fault(struct vm_area_struct *vma, 646 unsigned int fault_flags) 647 { 648 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 649 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 650 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 651 652 if (!(vm_flags & vma->vm_flags)) 653 return false; 654 655 /* 656 * The architecture might have a hardware protection 657 * mechanism other than read/write that can deny access. 658 * 659 * gup always represents data access, not instruction 660 * fetches, so execute=false here: 661 */ 662 if (!arch_vma_access_permitted(vma, write, false, foreign)) 663 return false; 664 665 return true; 666 } 667 668 /* 669 * fixup_user_fault() - manually resolve a user page fault 670 * @tsk: the task_struct to use for page fault accounting, or 671 * NULL if faults are not to be recorded. 672 * @mm: mm_struct of target mm 673 * @address: user address 674 * @fault_flags:flags to pass down to handle_mm_fault() 675 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 676 * does not allow retry 677 * 678 * This is meant to be called in the specific scenario where for locking reasons 679 * we try to access user memory in atomic context (within a pagefault_disable() 680 * section), this returns -EFAULT, and we want to resolve the user fault before 681 * trying again. 682 * 683 * Typically this is meant to be used by the futex code. 684 * 685 * The main difference with get_user_pages() is that this function will 686 * unconditionally call handle_mm_fault() which will in turn perform all the 687 * necessary SW fixup of the dirty and young bits in the PTE, while 688 * get_user_pages() only guarantees to update these in the struct page. 689 * 690 * This is important for some architectures where those bits also gate the 691 * access permission to the page because they are maintained in software. On 692 * such architectures, gup() will not be enough to make a subsequent access 693 * succeed. 694 * 695 * This function will not return with an unlocked mmap_sem. So it has not the 696 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 697 */ 698 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 699 unsigned long address, unsigned int fault_flags, 700 bool *unlocked) 701 { 702 struct vm_area_struct *vma; 703 int ret, major = 0; 704 705 if (unlocked) 706 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 707 708 retry: 709 vma = find_extend_vma(mm, address); 710 if (!vma || address < vma->vm_start) 711 return -EFAULT; 712 713 if (!vma_permits_fault(vma, fault_flags)) 714 return -EFAULT; 715 716 ret = handle_mm_fault(vma, address, fault_flags); 717 major |= ret & VM_FAULT_MAJOR; 718 if (ret & VM_FAULT_ERROR) { 719 int err = vm_fault_to_errno(ret, 0); 720 721 if (err) 722 return err; 723 BUG(); 724 } 725 726 if (ret & VM_FAULT_RETRY) { 727 down_read(&mm->mmap_sem); 728 if (!(fault_flags & FAULT_FLAG_TRIED)) { 729 *unlocked = true; 730 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 731 fault_flags |= FAULT_FLAG_TRIED; 732 goto retry; 733 } 734 } 735 736 if (tsk) { 737 if (major) 738 tsk->maj_flt++; 739 else 740 tsk->min_flt++; 741 } 742 return 0; 743 } 744 EXPORT_SYMBOL_GPL(fixup_user_fault); 745 746 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 747 struct mm_struct *mm, 748 unsigned long start, 749 unsigned long nr_pages, 750 struct page **pages, 751 struct vm_area_struct **vmas, 752 int *locked, bool notify_drop, 753 unsigned int flags) 754 { 755 long ret, pages_done; 756 bool lock_dropped; 757 758 if (locked) { 759 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 760 BUG_ON(vmas); 761 /* check caller initialized locked */ 762 BUG_ON(*locked != 1); 763 } 764 765 if (pages) 766 flags |= FOLL_GET; 767 768 pages_done = 0; 769 lock_dropped = false; 770 for (;;) { 771 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 772 vmas, locked); 773 if (!locked) 774 /* VM_FAULT_RETRY couldn't trigger, bypass */ 775 return ret; 776 777 /* VM_FAULT_RETRY cannot return errors */ 778 if (!*locked) { 779 BUG_ON(ret < 0); 780 BUG_ON(ret >= nr_pages); 781 } 782 783 if (!pages) 784 /* If it's a prefault don't insist harder */ 785 return ret; 786 787 if (ret > 0) { 788 nr_pages -= ret; 789 pages_done += ret; 790 if (!nr_pages) 791 break; 792 } 793 if (*locked) { 794 /* VM_FAULT_RETRY didn't trigger */ 795 if (!pages_done) 796 pages_done = ret; 797 break; 798 } 799 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 800 pages += ret; 801 start += ret << PAGE_SHIFT; 802 803 /* 804 * Repeat on the address that fired VM_FAULT_RETRY 805 * without FAULT_FLAG_ALLOW_RETRY but with 806 * FAULT_FLAG_TRIED. 807 */ 808 *locked = 1; 809 lock_dropped = true; 810 down_read(&mm->mmap_sem); 811 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 812 pages, NULL, NULL); 813 if (ret != 1) { 814 BUG_ON(ret > 1); 815 if (!pages_done) 816 pages_done = ret; 817 break; 818 } 819 nr_pages--; 820 pages_done++; 821 if (!nr_pages) 822 break; 823 pages++; 824 start += PAGE_SIZE; 825 } 826 if (notify_drop && lock_dropped && *locked) { 827 /* 828 * We must let the caller know we temporarily dropped the lock 829 * and so the critical section protected by it was lost. 830 */ 831 up_read(&mm->mmap_sem); 832 *locked = 0; 833 } 834 return pages_done; 835 } 836 837 /* 838 * We can leverage the VM_FAULT_RETRY functionality in the page fault 839 * paths better by using either get_user_pages_locked() or 840 * get_user_pages_unlocked(). 841 * 842 * get_user_pages_locked() is suitable to replace the form: 843 * 844 * down_read(&mm->mmap_sem); 845 * do_something() 846 * get_user_pages(tsk, mm, ..., pages, NULL); 847 * up_read(&mm->mmap_sem); 848 * 849 * to: 850 * 851 * int locked = 1; 852 * down_read(&mm->mmap_sem); 853 * do_something() 854 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 855 * if (locked) 856 * up_read(&mm->mmap_sem); 857 */ 858 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 859 unsigned int gup_flags, struct page **pages, 860 int *locked) 861 { 862 return __get_user_pages_locked(current, current->mm, start, nr_pages, 863 pages, NULL, locked, true, 864 gup_flags | FOLL_TOUCH); 865 } 866 EXPORT_SYMBOL(get_user_pages_locked); 867 868 /* 869 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for 870 * tsk, mm to be specified. 871 * 872 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 873 * caller if required (just like with __get_user_pages). "FOLL_GET" 874 * is set implicitly if "pages" is non-NULL. 875 */ 876 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, 877 struct mm_struct *mm, unsigned long start, 878 unsigned long nr_pages, struct page **pages, 879 unsigned int gup_flags) 880 { 881 long ret; 882 int locked = 1; 883 884 down_read(&mm->mmap_sem); 885 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL, 886 &locked, false, gup_flags); 887 if (locked) 888 up_read(&mm->mmap_sem); 889 return ret; 890 } 891 892 /* 893 * get_user_pages_unlocked() is suitable to replace the form: 894 * 895 * down_read(&mm->mmap_sem); 896 * get_user_pages(tsk, mm, ..., pages, NULL); 897 * up_read(&mm->mmap_sem); 898 * 899 * with: 900 * 901 * get_user_pages_unlocked(tsk, mm, ..., pages); 902 * 903 * It is functionally equivalent to get_user_pages_fast so 904 * get_user_pages_fast should be used instead if specific gup_flags 905 * (e.g. FOLL_FORCE) are not required. 906 */ 907 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 908 struct page **pages, unsigned int gup_flags) 909 { 910 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 911 pages, gup_flags | FOLL_TOUCH); 912 } 913 EXPORT_SYMBOL(get_user_pages_unlocked); 914 915 /* 916 * get_user_pages_remote() - pin user pages in memory 917 * @tsk: the task_struct to use for page fault accounting, or 918 * NULL if faults are not to be recorded. 919 * @mm: mm_struct of target mm 920 * @start: starting user address 921 * @nr_pages: number of pages from start to pin 922 * @gup_flags: flags modifying lookup behaviour 923 * @pages: array that receives pointers to the pages pinned. 924 * Should be at least nr_pages long. Or NULL, if caller 925 * only intends to ensure the pages are faulted in. 926 * @vmas: array of pointers to vmas corresponding to each page. 927 * Or NULL if the caller does not require them. 928 * @locked: pointer to lock flag indicating whether lock is held and 929 * subsequently whether VM_FAULT_RETRY functionality can be 930 * utilised. Lock must initially be held. 931 * 932 * Returns number of pages pinned. This may be fewer than the number 933 * requested. If nr_pages is 0 or negative, returns 0. If no pages 934 * were pinned, returns -errno. Each page returned must be released 935 * with a put_page() call when it is finished with. vmas will only 936 * remain valid while mmap_sem is held. 937 * 938 * Must be called with mmap_sem held for read or write. 939 * 940 * get_user_pages walks a process's page tables and takes a reference to 941 * each struct page that each user address corresponds to at a given 942 * instant. That is, it takes the page that would be accessed if a user 943 * thread accesses the given user virtual address at that instant. 944 * 945 * This does not guarantee that the page exists in the user mappings when 946 * get_user_pages returns, and there may even be a completely different 947 * page there in some cases (eg. if mmapped pagecache has been invalidated 948 * and subsequently re faulted). However it does guarantee that the page 949 * won't be freed completely. And mostly callers simply care that the page 950 * contains data that was valid *at some point in time*. Typically, an IO 951 * or similar operation cannot guarantee anything stronger anyway because 952 * locks can't be held over the syscall boundary. 953 * 954 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 955 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 956 * be called after the page is finished with, and before put_page is called. 957 * 958 * get_user_pages is typically used for fewer-copy IO operations, to get a 959 * handle on the memory by some means other than accesses via the user virtual 960 * addresses. The pages may be submitted for DMA to devices or accessed via 961 * their kernel linear mapping (via the kmap APIs). Care should be taken to 962 * use the correct cache flushing APIs. 963 * 964 * See also get_user_pages_fast, for performance critical applications. 965 * 966 * get_user_pages should be phased out in favor of 967 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 968 * should use get_user_pages because it cannot pass 969 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 970 */ 971 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 972 unsigned long start, unsigned long nr_pages, 973 unsigned int gup_flags, struct page **pages, 974 struct vm_area_struct **vmas, int *locked) 975 { 976 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 977 locked, true, 978 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 979 } 980 EXPORT_SYMBOL(get_user_pages_remote); 981 982 /* 983 * This is the same as get_user_pages_remote(), just with a 984 * less-flexible calling convention where we assume that the task 985 * and mm being operated on are the current task's and don't allow 986 * passing of a locked parameter. We also obviously don't pass 987 * FOLL_REMOTE in here. 988 */ 989 long get_user_pages(unsigned long start, unsigned long nr_pages, 990 unsigned int gup_flags, struct page **pages, 991 struct vm_area_struct **vmas) 992 { 993 return __get_user_pages_locked(current, current->mm, start, nr_pages, 994 pages, vmas, NULL, false, 995 gup_flags | FOLL_TOUCH); 996 } 997 EXPORT_SYMBOL(get_user_pages); 998 999 /** 1000 * populate_vma_page_range() - populate a range of pages in the vma. 1001 * @vma: target vma 1002 * @start: start address 1003 * @end: end address 1004 * @nonblocking: 1005 * 1006 * This takes care of mlocking the pages too if VM_LOCKED is set. 1007 * 1008 * return 0 on success, negative error code on error. 1009 * 1010 * vma->vm_mm->mmap_sem must be held. 1011 * 1012 * If @nonblocking is NULL, it may be held for read or write and will 1013 * be unperturbed. 1014 * 1015 * If @nonblocking is non-NULL, it must held for read only and may be 1016 * released. If it's released, *@nonblocking will be set to 0. 1017 */ 1018 long populate_vma_page_range(struct vm_area_struct *vma, 1019 unsigned long start, unsigned long end, int *nonblocking) 1020 { 1021 struct mm_struct *mm = vma->vm_mm; 1022 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1023 int gup_flags; 1024 1025 VM_BUG_ON(start & ~PAGE_MASK); 1026 VM_BUG_ON(end & ~PAGE_MASK); 1027 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1028 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1029 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1030 1031 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1032 if (vma->vm_flags & VM_LOCKONFAULT) 1033 gup_flags &= ~FOLL_POPULATE; 1034 /* 1035 * We want to touch writable mappings with a write fault in order 1036 * to break COW, except for shared mappings because these don't COW 1037 * and we would not want to dirty them for nothing. 1038 */ 1039 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1040 gup_flags |= FOLL_WRITE; 1041 1042 /* 1043 * We want mlock to succeed for regions that have any permissions 1044 * other than PROT_NONE. 1045 */ 1046 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1047 gup_flags |= FOLL_FORCE; 1048 1049 /* 1050 * We made sure addr is within a VMA, so the following will 1051 * not result in a stack expansion that recurses back here. 1052 */ 1053 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1054 NULL, NULL, nonblocking); 1055 } 1056 1057 /* 1058 * __mm_populate - populate and/or mlock pages within a range of address space. 1059 * 1060 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1061 * flags. VMAs must be already marked with the desired vm_flags, and 1062 * mmap_sem must not be held. 1063 */ 1064 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1065 { 1066 struct mm_struct *mm = current->mm; 1067 unsigned long end, nstart, nend; 1068 struct vm_area_struct *vma = NULL; 1069 int locked = 0; 1070 long ret = 0; 1071 1072 VM_BUG_ON(start & ~PAGE_MASK); 1073 VM_BUG_ON(len != PAGE_ALIGN(len)); 1074 end = start + len; 1075 1076 for (nstart = start; nstart < end; nstart = nend) { 1077 /* 1078 * We want to fault in pages for [nstart; end) address range. 1079 * Find first corresponding VMA. 1080 */ 1081 if (!locked) { 1082 locked = 1; 1083 down_read(&mm->mmap_sem); 1084 vma = find_vma(mm, nstart); 1085 } else if (nstart >= vma->vm_end) 1086 vma = vma->vm_next; 1087 if (!vma || vma->vm_start >= end) 1088 break; 1089 /* 1090 * Set [nstart; nend) to intersection of desired address 1091 * range with the first VMA. Also, skip undesirable VMA types. 1092 */ 1093 nend = min(end, vma->vm_end); 1094 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1095 continue; 1096 if (nstart < vma->vm_start) 1097 nstart = vma->vm_start; 1098 /* 1099 * Now fault in a range of pages. populate_vma_page_range() 1100 * double checks the vma flags, so that it won't mlock pages 1101 * if the vma was already munlocked. 1102 */ 1103 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1104 if (ret < 0) { 1105 if (ignore_errors) { 1106 ret = 0; 1107 continue; /* continue at next VMA */ 1108 } 1109 break; 1110 } 1111 nend = nstart + ret * PAGE_SIZE; 1112 ret = 0; 1113 } 1114 if (locked) 1115 up_read(&mm->mmap_sem); 1116 return ret; /* 0 or negative error code */ 1117 } 1118 1119 /** 1120 * get_dump_page() - pin user page in memory while writing it to core dump 1121 * @addr: user address 1122 * 1123 * Returns struct page pointer of user page pinned for dump, 1124 * to be freed afterwards by put_page(). 1125 * 1126 * Returns NULL on any kind of failure - a hole must then be inserted into 1127 * the corefile, to preserve alignment with its headers; and also returns 1128 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1129 * allowing a hole to be left in the corefile to save diskspace. 1130 * 1131 * Called without mmap_sem, but after all other threads have been killed. 1132 */ 1133 #ifdef CONFIG_ELF_CORE 1134 struct page *get_dump_page(unsigned long addr) 1135 { 1136 struct vm_area_struct *vma; 1137 struct page *page; 1138 1139 if (__get_user_pages(current, current->mm, addr, 1, 1140 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1141 NULL) < 1) 1142 return NULL; 1143 flush_cache_page(vma, addr, page_to_pfn(page)); 1144 return page; 1145 } 1146 #endif /* CONFIG_ELF_CORE */ 1147 1148 /* 1149 * Generic RCU Fast GUP 1150 * 1151 * get_user_pages_fast attempts to pin user pages by walking the page 1152 * tables directly and avoids taking locks. Thus the walker needs to be 1153 * protected from page table pages being freed from under it, and should 1154 * block any THP splits. 1155 * 1156 * One way to achieve this is to have the walker disable interrupts, and 1157 * rely on IPIs from the TLB flushing code blocking before the page table 1158 * pages are freed. This is unsuitable for architectures that do not need 1159 * to broadcast an IPI when invalidating TLBs. 1160 * 1161 * Another way to achieve this is to batch up page table containing pages 1162 * belonging to more than one mm_user, then rcu_sched a callback to free those 1163 * pages. Disabling interrupts will allow the fast_gup walker to both block 1164 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1165 * (which is a relatively rare event). The code below adopts this strategy. 1166 * 1167 * Before activating this code, please be aware that the following assumptions 1168 * are currently made: 1169 * 1170 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1171 * pages containing page tables. 1172 * 1173 * *) ptes can be read atomically by the architecture. 1174 * 1175 * *) access_ok is sufficient to validate userspace address ranges. 1176 * 1177 * The last two assumptions can be relaxed by the addition of helper functions. 1178 * 1179 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1180 */ 1181 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1182 1183 #ifndef gup_get_pte 1184 /* 1185 * We assume that the PTE can be read atomically. If this is not the case for 1186 * your architecture, please provide the helper. 1187 */ 1188 static inline pte_t gup_get_pte(pte_t *ptep) 1189 { 1190 return READ_ONCE(*ptep); 1191 } 1192 #endif 1193 1194 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1195 { 1196 while ((*nr) - nr_start) { 1197 struct page *page = pages[--(*nr)]; 1198 1199 ClearPageReferenced(page); 1200 put_page(page); 1201 } 1202 } 1203 1204 #ifdef __HAVE_ARCH_PTE_SPECIAL 1205 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1206 int write, struct page **pages, int *nr) 1207 { 1208 struct dev_pagemap *pgmap = NULL; 1209 int nr_start = *nr, ret = 0; 1210 pte_t *ptep, *ptem; 1211 1212 ptem = ptep = pte_offset_map(&pmd, addr); 1213 do { 1214 pte_t pte = gup_get_pte(ptep); 1215 struct page *head, *page; 1216 1217 /* 1218 * Similar to the PMD case below, NUMA hinting must take slow 1219 * path using the pte_protnone check. 1220 */ 1221 if (pte_protnone(pte)) 1222 goto pte_unmap; 1223 1224 if (!pte_access_permitted(pte, write)) 1225 goto pte_unmap; 1226 1227 if (pte_devmap(pte)) { 1228 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1229 if (unlikely(!pgmap)) { 1230 undo_dev_pagemap(nr, nr_start, pages); 1231 goto pte_unmap; 1232 } 1233 } else if (pte_special(pte)) 1234 goto pte_unmap; 1235 1236 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1237 page = pte_page(pte); 1238 head = compound_head(page); 1239 1240 if (!page_cache_get_speculative(head)) 1241 goto pte_unmap; 1242 1243 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1244 put_page(head); 1245 goto pte_unmap; 1246 } 1247 1248 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1249 1250 put_dev_pagemap(pgmap); 1251 SetPageReferenced(page); 1252 pages[*nr] = page; 1253 (*nr)++; 1254 1255 } while (ptep++, addr += PAGE_SIZE, addr != end); 1256 1257 ret = 1; 1258 1259 pte_unmap: 1260 pte_unmap(ptem); 1261 return ret; 1262 } 1263 #else 1264 1265 /* 1266 * If we can't determine whether or not a pte is special, then fail immediately 1267 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1268 * to be special. 1269 * 1270 * For a futex to be placed on a THP tail page, get_futex_key requires a 1271 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1272 * useful to have gup_huge_pmd even if we can't operate on ptes. 1273 */ 1274 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1275 int write, struct page **pages, int *nr) 1276 { 1277 return 0; 1278 } 1279 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1280 1281 #ifdef __HAVE_ARCH_PTE_DEVMAP 1282 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1283 unsigned long end, struct page **pages, int *nr) 1284 { 1285 int nr_start = *nr; 1286 struct dev_pagemap *pgmap = NULL; 1287 1288 do { 1289 struct page *page = pfn_to_page(pfn); 1290 1291 pgmap = get_dev_pagemap(pfn, pgmap); 1292 if (unlikely(!pgmap)) { 1293 undo_dev_pagemap(nr, nr_start, pages); 1294 return 0; 1295 } 1296 SetPageReferenced(page); 1297 pages[*nr] = page; 1298 get_page(page); 1299 put_dev_pagemap(pgmap); 1300 (*nr)++; 1301 pfn++; 1302 } while (addr += PAGE_SIZE, addr != end); 1303 return 1; 1304 } 1305 1306 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1307 unsigned long end, struct page **pages, int *nr) 1308 { 1309 unsigned long fault_pfn; 1310 1311 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1312 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1313 } 1314 1315 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1316 unsigned long end, struct page **pages, int *nr) 1317 { 1318 unsigned long fault_pfn; 1319 1320 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1321 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1322 } 1323 #else 1324 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1325 unsigned long end, struct page **pages, int *nr) 1326 { 1327 BUILD_BUG(); 1328 return 0; 1329 } 1330 1331 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1332 unsigned long end, struct page **pages, int *nr) 1333 { 1334 BUILD_BUG(); 1335 return 0; 1336 } 1337 #endif 1338 1339 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1340 unsigned long end, int write, struct page **pages, int *nr) 1341 { 1342 struct page *head, *page; 1343 int refs; 1344 1345 if (!pmd_access_permitted(orig, write)) 1346 return 0; 1347 1348 if (pmd_devmap(orig)) 1349 return __gup_device_huge_pmd(orig, addr, end, pages, nr); 1350 1351 refs = 0; 1352 head = pmd_page(orig); 1353 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1354 do { 1355 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1356 pages[*nr] = page; 1357 (*nr)++; 1358 page++; 1359 refs++; 1360 } while (addr += PAGE_SIZE, addr != end); 1361 1362 if (!page_cache_add_speculative(head, refs)) { 1363 *nr -= refs; 1364 return 0; 1365 } 1366 1367 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1368 *nr -= refs; 1369 while (refs--) 1370 put_page(head); 1371 return 0; 1372 } 1373 1374 SetPageReferenced(head); 1375 return 1; 1376 } 1377 1378 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1379 unsigned long end, int write, struct page **pages, int *nr) 1380 { 1381 struct page *head, *page; 1382 int refs; 1383 1384 if (!pud_access_permitted(orig, write)) 1385 return 0; 1386 1387 if (pud_devmap(orig)) 1388 return __gup_device_huge_pud(orig, addr, end, pages, nr); 1389 1390 refs = 0; 1391 head = pud_page(orig); 1392 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1393 do { 1394 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1395 pages[*nr] = page; 1396 (*nr)++; 1397 page++; 1398 refs++; 1399 } while (addr += PAGE_SIZE, addr != end); 1400 1401 if (!page_cache_add_speculative(head, refs)) { 1402 *nr -= refs; 1403 return 0; 1404 } 1405 1406 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1407 *nr -= refs; 1408 while (refs--) 1409 put_page(head); 1410 return 0; 1411 } 1412 1413 SetPageReferenced(head); 1414 return 1; 1415 } 1416 1417 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1418 unsigned long end, int write, 1419 struct page **pages, int *nr) 1420 { 1421 int refs; 1422 struct page *head, *page; 1423 1424 if (!pgd_access_permitted(orig, write)) 1425 return 0; 1426 1427 BUILD_BUG_ON(pgd_devmap(orig)); 1428 refs = 0; 1429 head = pgd_page(orig); 1430 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1431 do { 1432 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1433 pages[*nr] = page; 1434 (*nr)++; 1435 page++; 1436 refs++; 1437 } while (addr += PAGE_SIZE, addr != end); 1438 1439 if (!page_cache_add_speculative(head, refs)) { 1440 *nr -= refs; 1441 return 0; 1442 } 1443 1444 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1445 *nr -= refs; 1446 while (refs--) 1447 put_page(head); 1448 return 0; 1449 } 1450 1451 SetPageReferenced(head); 1452 return 1; 1453 } 1454 1455 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1456 int write, struct page **pages, int *nr) 1457 { 1458 unsigned long next; 1459 pmd_t *pmdp; 1460 1461 pmdp = pmd_offset(&pud, addr); 1462 do { 1463 pmd_t pmd = READ_ONCE(*pmdp); 1464 1465 next = pmd_addr_end(addr, end); 1466 if (pmd_none(pmd)) 1467 return 0; 1468 1469 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1470 /* 1471 * NUMA hinting faults need to be handled in the GUP 1472 * slowpath for accounting purposes and so that they 1473 * can be serialised against THP migration. 1474 */ 1475 if (pmd_protnone(pmd)) 1476 return 0; 1477 1478 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1479 pages, nr)) 1480 return 0; 1481 1482 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1483 /* 1484 * architecture have different format for hugetlbfs 1485 * pmd format and THP pmd format 1486 */ 1487 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1488 PMD_SHIFT, next, write, pages, nr)) 1489 return 0; 1490 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1491 return 0; 1492 } while (pmdp++, addr = next, addr != end); 1493 1494 return 1; 1495 } 1496 1497 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1498 int write, struct page **pages, int *nr) 1499 { 1500 unsigned long next; 1501 pud_t *pudp; 1502 1503 pudp = pud_offset(&p4d, addr); 1504 do { 1505 pud_t pud = READ_ONCE(*pudp); 1506 1507 next = pud_addr_end(addr, end); 1508 if (pud_none(pud)) 1509 return 0; 1510 if (unlikely(pud_huge(pud))) { 1511 if (!gup_huge_pud(pud, pudp, addr, next, write, 1512 pages, nr)) 1513 return 0; 1514 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1515 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1516 PUD_SHIFT, next, write, pages, nr)) 1517 return 0; 1518 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1519 return 0; 1520 } while (pudp++, addr = next, addr != end); 1521 1522 return 1; 1523 } 1524 1525 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1526 int write, struct page **pages, int *nr) 1527 { 1528 unsigned long next; 1529 p4d_t *p4dp; 1530 1531 p4dp = p4d_offset(&pgd, addr); 1532 do { 1533 p4d_t p4d = READ_ONCE(*p4dp); 1534 1535 next = p4d_addr_end(addr, end); 1536 if (p4d_none(p4d)) 1537 return 0; 1538 BUILD_BUG_ON(p4d_huge(p4d)); 1539 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1540 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1541 P4D_SHIFT, next, write, pages, nr)) 1542 return 0; 1543 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1544 return 0; 1545 } while (p4dp++, addr = next, addr != end); 1546 1547 return 1; 1548 } 1549 1550 /* 1551 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1552 * the regular GUP. It will only return non-negative values. 1553 */ 1554 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1555 struct page **pages) 1556 { 1557 struct mm_struct *mm = current->mm; 1558 unsigned long addr, len, end; 1559 unsigned long next, flags; 1560 pgd_t *pgdp; 1561 int nr = 0; 1562 1563 start &= PAGE_MASK; 1564 addr = start; 1565 len = (unsigned long) nr_pages << PAGE_SHIFT; 1566 end = start + len; 1567 1568 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1569 (void __user *)start, len))) 1570 return 0; 1571 1572 /* 1573 * Disable interrupts. We use the nested form as we can already have 1574 * interrupts disabled by get_futex_key. 1575 * 1576 * With interrupts disabled, we block page table pages from being 1577 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1578 * for more details. 1579 * 1580 * We do not adopt an rcu_read_lock(.) here as we also want to 1581 * block IPIs that come from THPs splitting. 1582 */ 1583 1584 local_irq_save(flags); 1585 pgdp = pgd_offset(mm, addr); 1586 do { 1587 pgd_t pgd = READ_ONCE(*pgdp); 1588 1589 next = pgd_addr_end(addr, end); 1590 if (pgd_none(pgd)) 1591 break; 1592 if (unlikely(pgd_huge(pgd))) { 1593 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1594 pages, &nr)) 1595 break; 1596 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1597 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1598 PGDIR_SHIFT, next, write, pages, &nr)) 1599 break; 1600 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr)) 1601 break; 1602 } while (pgdp++, addr = next, addr != end); 1603 local_irq_restore(flags); 1604 1605 return nr; 1606 } 1607 1608 #ifndef gup_fast_permitted 1609 /* 1610 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1611 * we need to fall back to the slow version: 1612 */ 1613 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1614 { 1615 unsigned long len, end; 1616 1617 len = (unsigned long) nr_pages << PAGE_SHIFT; 1618 end = start + len; 1619 return end >= start; 1620 } 1621 #endif 1622 1623 /** 1624 * get_user_pages_fast() - pin user pages in memory 1625 * @start: starting user address 1626 * @nr_pages: number of pages from start to pin 1627 * @write: whether pages will be written to 1628 * @pages: array that receives pointers to the pages pinned. 1629 * Should be at least nr_pages long. 1630 * 1631 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1632 * If not successful, it will fall back to taking the lock and 1633 * calling get_user_pages(). 1634 * 1635 * Returns number of pages pinned. This may be fewer than the number 1636 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1637 * were pinned, returns -errno. 1638 */ 1639 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1640 struct page **pages) 1641 { 1642 int nr = 0, ret = 0; 1643 1644 start &= PAGE_MASK; 1645 1646 if (gup_fast_permitted(start, nr_pages, write)) { 1647 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1648 ret = nr; 1649 } 1650 1651 if (nr < nr_pages) { 1652 /* Try to get the remaining pages with get_user_pages */ 1653 start += nr << PAGE_SHIFT; 1654 pages += nr; 1655 1656 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1657 write ? FOLL_WRITE : 0); 1658 1659 /* Have to be a bit careful with return values */ 1660 if (nr > 0) { 1661 if (ret < 0) 1662 ret = nr; 1663 else 1664 ret += nr; 1665 } 1666 } 1667 1668 return ret; 1669 } 1670 1671 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1672