xref: /openbmc/linux/mm/gup.c (revision e75d5ae8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
162 
163 		return folio;
164 	}
165 
166 	WARN_ON_ONCE(1);
167 	return NULL;
168 }
169 
170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
171 {
172 	if (flags & FOLL_PIN) {
173 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
174 		if (folio_test_large(folio))
175 			atomic_sub(refs, folio_pincount_ptr(folio));
176 		else
177 			refs *= GUP_PIN_COUNTING_BIAS;
178 	}
179 
180 	if (!put_devmap_managed_page_refs(&folio->page, refs))
181 		folio_put_refs(folio, refs);
182 }
183 
184 /**
185  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
186  * @page:    pointer to page to be grabbed
187  * @flags:   gup flags: these are the FOLL_* flag values.
188  *
189  * This might not do anything at all, depending on the flags argument.
190  *
191  * "grab" names in this file mean, "look at flags to decide whether to use
192  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
193  *
194  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
195  * time. Cases: please see the try_grab_folio() documentation, with
196  * "refs=1".
197  *
198  * Return: true for success, or if no action was required (if neither FOLL_PIN
199  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
200  * FOLL_PIN was set, but the page could not be grabbed.
201  */
202 bool __must_check try_grab_page(struct page *page, unsigned int flags)
203 {
204 	struct folio *folio = page_folio(page);
205 
206 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
207 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
208 		return false;
209 
210 	if (flags & FOLL_GET)
211 		folio_ref_inc(folio);
212 	else if (flags & FOLL_PIN) {
213 		/*
214 		 * Similar to try_grab_folio(): be sure to *also*
215 		 * increment the normal page refcount field at least once,
216 		 * so that the page really is pinned.
217 		 */
218 		if (folio_test_large(folio)) {
219 			folio_ref_add(folio, 1);
220 			atomic_add(1, folio_pincount_ptr(folio));
221 		} else {
222 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
223 		}
224 
225 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
226 	}
227 
228 	return true;
229 }
230 
231 /**
232  * unpin_user_page() - release a dma-pinned page
233  * @page:            pointer to page to be released
234  *
235  * Pages that were pinned via pin_user_pages*() must be released via either
236  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237  * that such pages can be separately tracked and uniquely handled. In
238  * particular, interactions with RDMA and filesystems need special handling.
239  */
240 void unpin_user_page(struct page *page)
241 {
242 	sanity_check_pinned_pages(&page, 1);
243 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
244 }
245 EXPORT_SYMBOL(unpin_user_page);
246 
247 static inline struct folio *gup_folio_range_next(struct page *start,
248 		unsigned long npages, unsigned long i, unsigned int *ntails)
249 {
250 	struct page *next = nth_page(start, i);
251 	struct folio *folio = page_folio(next);
252 	unsigned int nr = 1;
253 
254 	if (folio_test_large(folio))
255 		nr = min_t(unsigned int, npages - i,
256 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
257 
258 	*ntails = nr;
259 	return folio;
260 }
261 
262 static inline struct folio *gup_folio_next(struct page **list,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct folio *folio = page_folio(list[i]);
266 	unsigned int nr;
267 
268 	for (nr = i + 1; nr < npages; nr++) {
269 		if (page_folio(list[nr]) != folio)
270 			break;
271 	}
272 
273 	*ntails = nr - i;
274 	return folio;
275 }
276 
277 /**
278  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
279  * @pages:  array of pages to be maybe marked dirty, and definitely released.
280  * @npages: number of pages in the @pages array.
281  * @make_dirty: whether to mark the pages dirty
282  *
283  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
284  * variants called on that page.
285  *
286  * For each page in the @pages array, make that page (or its head page, if a
287  * compound page) dirty, if @make_dirty is true, and if the page was previously
288  * listed as clean. In any case, releases all pages using unpin_user_page(),
289  * possibly via unpin_user_pages(), for the non-dirty case.
290  *
291  * Please see the unpin_user_page() documentation for details.
292  *
293  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
294  * required, then the caller should a) verify that this is really correct,
295  * because _lock() is usually required, and b) hand code it:
296  * set_page_dirty_lock(), unpin_user_page().
297  *
298  */
299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
300 				 bool make_dirty)
301 {
302 	unsigned long i;
303 	struct folio *folio;
304 	unsigned int nr;
305 
306 	if (!make_dirty) {
307 		unpin_user_pages(pages, npages);
308 		return;
309 	}
310 
311 	sanity_check_pinned_pages(pages, npages);
312 	for (i = 0; i < npages; i += nr) {
313 		folio = gup_folio_next(pages, npages, i, &nr);
314 		/*
315 		 * Checking PageDirty at this point may race with
316 		 * clear_page_dirty_for_io(), but that's OK. Two key
317 		 * cases:
318 		 *
319 		 * 1) This code sees the page as already dirty, so it
320 		 * skips the call to set_page_dirty(). That could happen
321 		 * because clear_page_dirty_for_io() called
322 		 * page_mkclean(), followed by set_page_dirty().
323 		 * However, now the page is going to get written back,
324 		 * which meets the original intention of setting it
325 		 * dirty, so all is well: clear_page_dirty_for_io() goes
326 		 * on to call TestClearPageDirty(), and write the page
327 		 * back.
328 		 *
329 		 * 2) This code sees the page as clean, so it calls
330 		 * set_page_dirty(). The page stays dirty, despite being
331 		 * written back, so it gets written back again in the
332 		 * next writeback cycle. This is harmless.
333 		 */
334 		if (!folio_test_dirty(folio)) {
335 			folio_lock(folio);
336 			folio_mark_dirty(folio);
337 			folio_unlock(folio);
338 		}
339 		gup_put_folio(folio, nr, FOLL_PIN);
340 	}
341 }
342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
343 
344 /**
345  * unpin_user_page_range_dirty_lock() - release and optionally dirty
346  * gup-pinned page range
347  *
348  * @page:  the starting page of a range maybe marked dirty, and definitely released.
349  * @npages: number of consecutive pages to release.
350  * @make_dirty: whether to mark the pages dirty
351  *
352  * "gup-pinned page range" refers to a range of pages that has had one of the
353  * pin_user_pages() variants called on that page.
354  *
355  * For the page ranges defined by [page .. page+npages], make that range (or
356  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
357  * page range was previously listed as clean.
358  *
359  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
360  * required, then the caller should a) verify that this is really correct,
361  * because _lock() is usually required, and b) hand code it:
362  * set_page_dirty_lock(), unpin_user_page().
363  *
364  */
365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
366 				      bool make_dirty)
367 {
368 	unsigned long i;
369 	struct folio *folio;
370 	unsigned int nr;
371 
372 	for (i = 0; i < npages; i += nr) {
373 		folio = gup_folio_range_next(page, npages, i, &nr);
374 		if (make_dirty && !folio_test_dirty(folio)) {
375 			folio_lock(folio);
376 			folio_mark_dirty(folio);
377 			folio_unlock(folio);
378 		}
379 		gup_put_folio(folio, nr, FOLL_PIN);
380 	}
381 }
382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
383 
384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
385 {
386 	unsigned long i;
387 	struct folio *folio;
388 	unsigned int nr;
389 
390 	/*
391 	 * Don't perform any sanity checks because we might have raced with
392 	 * fork() and some anonymous pages might now actually be shared --
393 	 * which is why we're unpinning after all.
394 	 */
395 	for (i = 0; i < npages; i += nr) {
396 		folio = gup_folio_next(pages, npages, i, &nr);
397 		gup_put_folio(folio, nr, FOLL_PIN);
398 	}
399 }
400 
401 /**
402  * unpin_user_pages() - release an array of gup-pinned pages.
403  * @pages:  array of pages to be marked dirty and released.
404  * @npages: number of pages in the @pages array.
405  *
406  * For each page in the @pages array, release the page using unpin_user_page().
407  *
408  * Please see the unpin_user_page() documentation for details.
409  */
410 void unpin_user_pages(struct page **pages, unsigned long npages)
411 {
412 	unsigned long i;
413 	struct folio *folio;
414 	unsigned int nr;
415 
416 	/*
417 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
418 	 * leaving them pinned), but probably not. More likely, gup/pup returned
419 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
420 	 */
421 	if (WARN_ON(IS_ERR_VALUE(npages)))
422 		return;
423 
424 	sanity_check_pinned_pages(pages, npages);
425 	for (i = 0; i < npages; i += nr) {
426 		folio = gup_folio_next(pages, npages, i, &nr);
427 		gup_put_folio(folio, nr, FOLL_PIN);
428 	}
429 }
430 EXPORT_SYMBOL(unpin_user_pages);
431 
432 /*
433  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
434  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
435  * cache bouncing on large SMP machines for concurrent pinned gups.
436  */
437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
438 {
439 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
440 		set_bit(MMF_HAS_PINNED, mm_flags);
441 }
442 
443 #ifdef CONFIG_MMU
444 static struct page *no_page_table(struct vm_area_struct *vma,
445 		unsigned int flags)
446 {
447 	/*
448 	 * When core dumping an enormous anonymous area that nobody
449 	 * has touched so far, we don't want to allocate unnecessary pages or
450 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
451 	 * then get_dump_page() will return NULL to leave a hole in the dump.
452 	 * But we can only make this optimization where a hole would surely
453 	 * be zero-filled if handle_mm_fault() actually did handle it.
454 	 */
455 	if ((flags & FOLL_DUMP) &&
456 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
457 		return ERR_PTR(-EFAULT);
458 	return NULL;
459 }
460 
461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
462 		pte_t *pte, unsigned int flags)
463 {
464 	if (flags & FOLL_TOUCH) {
465 		pte_t entry = *pte;
466 
467 		if (flags & FOLL_WRITE)
468 			entry = pte_mkdirty(entry);
469 		entry = pte_mkyoung(entry);
470 
471 		if (!pte_same(*pte, entry)) {
472 			set_pte_at(vma->vm_mm, address, pte, entry);
473 			update_mmu_cache(vma, address, pte);
474 		}
475 	}
476 
477 	/* Proper page table entry exists, but no corresponding struct page */
478 	return -EEXIST;
479 }
480 
481 /*
482  * FOLL_FORCE can write to even unwritable pte's, but only
483  * after we've gone through a COW cycle and they are dirty.
484  */
485 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
486 {
487 	return pte_write(pte) ||
488 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
489 }
490 
491 static struct page *follow_page_pte(struct vm_area_struct *vma,
492 		unsigned long address, pmd_t *pmd, unsigned int flags,
493 		struct dev_pagemap **pgmap)
494 {
495 	struct mm_struct *mm = vma->vm_mm;
496 	struct page *page;
497 	spinlock_t *ptl;
498 	pte_t *ptep, pte;
499 	int ret;
500 
501 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
502 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
503 			 (FOLL_PIN | FOLL_GET)))
504 		return ERR_PTR(-EINVAL);
505 retry:
506 	if (unlikely(pmd_bad(*pmd)))
507 		return no_page_table(vma, flags);
508 
509 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
510 	pte = *ptep;
511 	if (!pte_present(pte)) {
512 		swp_entry_t entry;
513 		/*
514 		 * KSM's break_ksm() relies upon recognizing a ksm page
515 		 * even while it is being migrated, so for that case we
516 		 * need migration_entry_wait().
517 		 */
518 		if (likely(!(flags & FOLL_MIGRATION)))
519 			goto no_page;
520 		if (pte_none(pte))
521 			goto no_page;
522 		entry = pte_to_swp_entry(pte);
523 		if (!is_migration_entry(entry))
524 			goto no_page;
525 		pte_unmap_unlock(ptep, ptl);
526 		migration_entry_wait(mm, pmd, address);
527 		goto retry;
528 	}
529 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
530 		goto no_page;
531 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
532 		pte_unmap_unlock(ptep, ptl);
533 		return NULL;
534 	}
535 
536 	page = vm_normal_page(vma, address, pte);
537 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
538 		/*
539 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
540 		 * case since they are only valid while holding the pgmap
541 		 * reference.
542 		 */
543 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
544 		if (*pgmap)
545 			page = pte_page(pte);
546 		else
547 			goto no_page;
548 	} else if (unlikely(!page)) {
549 		if (flags & FOLL_DUMP) {
550 			/* Avoid special (like zero) pages in core dumps */
551 			page = ERR_PTR(-EFAULT);
552 			goto out;
553 		}
554 
555 		if (is_zero_pfn(pte_pfn(pte))) {
556 			page = pte_page(pte);
557 		} else {
558 			ret = follow_pfn_pte(vma, address, ptep, flags);
559 			page = ERR_PTR(ret);
560 			goto out;
561 		}
562 	}
563 
564 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
565 		page = ERR_PTR(-EMLINK);
566 		goto out;
567 	}
568 
569 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
570 		       !PageAnonExclusive(page), page);
571 
572 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
573 	if (unlikely(!try_grab_page(page, flags))) {
574 		page = ERR_PTR(-ENOMEM);
575 		goto out;
576 	}
577 	/*
578 	 * We need to make the page accessible if and only if we are going
579 	 * to access its content (the FOLL_PIN case).  Please see
580 	 * Documentation/core-api/pin_user_pages.rst for details.
581 	 */
582 	if (flags & FOLL_PIN) {
583 		ret = arch_make_page_accessible(page);
584 		if (ret) {
585 			unpin_user_page(page);
586 			page = ERR_PTR(ret);
587 			goto out;
588 		}
589 	}
590 	if (flags & FOLL_TOUCH) {
591 		if ((flags & FOLL_WRITE) &&
592 		    !pte_dirty(pte) && !PageDirty(page))
593 			set_page_dirty(page);
594 		/*
595 		 * pte_mkyoung() would be more correct here, but atomic care
596 		 * is needed to avoid losing the dirty bit: it is easier to use
597 		 * mark_page_accessed().
598 		 */
599 		mark_page_accessed(page);
600 	}
601 out:
602 	pte_unmap_unlock(ptep, ptl);
603 	return page;
604 no_page:
605 	pte_unmap_unlock(ptep, ptl);
606 	if (!pte_none(pte))
607 		return NULL;
608 	return no_page_table(vma, flags);
609 }
610 
611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 				    unsigned long address, pud_t *pudp,
613 				    unsigned int flags,
614 				    struct follow_page_context *ctx)
615 {
616 	pmd_t *pmd, pmdval;
617 	spinlock_t *ptl;
618 	struct page *page;
619 	struct mm_struct *mm = vma->vm_mm;
620 
621 	pmd = pmd_offset(pudp, address);
622 	/*
623 	 * The READ_ONCE() will stabilize the pmdval in a register or
624 	 * on the stack so that it will stop changing under the code.
625 	 */
626 	pmdval = READ_ONCE(*pmd);
627 	if (pmd_none(pmdval))
628 		return no_page_table(vma, flags);
629 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 		page = follow_huge_pmd(mm, address, pmd, flags);
631 		if (page)
632 			return page;
633 		return no_page_table(vma, flags);
634 	}
635 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 		page = follow_huge_pd(vma, address,
637 				      __hugepd(pmd_val(pmdval)), flags,
638 				      PMD_SHIFT);
639 		if (page)
640 			return page;
641 		return no_page_table(vma, flags);
642 	}
643 retry:
644 	if (!pmd_present(pmdval)) {
645 		/*
646 		 * Should never reach here, if thp migration is not supported;
647 		 * Otherwise, it must be a thp migration entry.
648 		 */
649 		VM_BUG_ON(!thp_migration_supported() ||
650 				  !is_pmd_migration_entry(pmdval));
651 
652 		if (likely(!(flags & FOLL_MIGRATION)))
653 			return no_page_table(vma, flags);
654 
655 		pmd_migration_entry_wait(mm, pmd);
656 		pmdval = READ_ONCE(*pmd);
657 		/*
658 		 * MADV_DONTNEED may convert the pmd to null because
659 		 * mmap_lock is held in read mode
660 		 */
661 		if (pmd_none(pmdval))
662 			return no_page_table(vma, flags);
663 		goto retry;
664 	}
665 	if (pmd_devmap(pmdval)) {
666 		ptl = pmd_lock(mm, pmd);
667 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
668 		spin_unlock(ptl);
669 		if (page)
670 			return page;
671 	}
672 	if (likely(!pmd_trans_huge(pmdval)))
673 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
674 
675 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
676 		return no_page_table(vma, flags);
677 
678 retry_locked:
679 	ptl = pmd_lock(mm, pmd);
680 	if (unlikely(pmd_none(*pmd))) {
681 		spin_unlock(ptl);
682 		return no_page_table(vma, flags);
683 	}
684 	if (unlikely(!pmd_present(*pmd))) {
685 		spin_unlock(ptl);
686 		if (likely(!(flags & FOLL_MIGRATION)))
687 			return no_page_table(vma, flags);
688 		pmd_migration_entry_wait(mm, pmd);
689 		goto retry_locked;
690 	}
691 	if (unlikely(!pmd_trans_huge(*pmd))) {
692 		spin_unlock(ptl);
693 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
694 	}
695 	if (flags & FOLL_SPLIT_PMD) {
696 		int ret;
697 		page = pmd_page(*pmd);
698 		if (is_huge_zero_page(page)) {
699 			spin_unlock(ptl);
700 			ret = 0;
701 			split_huge_pmd(vma, pmd, address);
702 			if (pmd_trans_unstable(pmd))
703 				ret = -EBUSY;
704 		} else {
705 			spin_unlock(ptl);
706 			split_huge_pmd(vma, pmd, address);
707 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
708 		}
709 
710 		return ret ? ERR_PTR(ret) :
711 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
712 	}
713 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
714 	spin_unlock(ptl);
715 	ctx->page_mask = HPAGE_PMD_NR - 1;
716 	return page;
717 }
718 
719 static struct page *follow_pud_mask(struct vm_area_struct *vma,
720 				    unsigned long address, p4d_t *p4dp,
721 				    unsigned int flags,
722 				    struct follow_page_context *ctx)
723 {
724 	pud_t *pud;
725 	spinlock_t *ptl;
726 	struct page *page;
727 	struct mm_struct *mm = vma->vm_mm;
728 
729 	pud = pud_offset(p4dp, address);
730 	if (pud_none(*pud))
731 		return no_page_table(vma, flags);
732 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
733 		page = follow_huge_pud(mm, address, pud, flags);
734 		if (page)
735 			return page;
736 		return no_page_table(vma, flags);
737 	}
738 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
739 		page = follow_huge_pd(vma, address,
740 				      __hugepd(pud_val(*pud)), flags,
741 				      PUD_SHIFT);
742 		if (page)
743 			return page;
744 		return no_page_table(vma, flags);
745 	}
746 	if (pud_devmap(*pud)) {
747 		ptl = pud_lock(mm, pud);
748 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
749 		spin_unlock(ptl);
750 		if (page)
751 			return page;
752 	}
753 	if (unlikely(pud_bad(*pud)))
754 		return no_page_table(vma, flags);
755 
756 	return follow_pmd_mask(vma, address, pud, flags, ctx);
757 }
758 
759 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
760 				    unsigned long address, pgd_t *pgdp,
761 				    unsigned int flags,
762 				    struct follow_page_context *ctx)
763 {
764 	p4d_t *p4d;
765 	struct page *page;
766 
767 	p4d = p4d_offset(pgdp, address);
768 	if (p4d_none(*p4d))
769 		return no_page_table(vma, flags);
770 	BUILD_BUG_ON(p4d_huge(*p4d));
771 	if (unlikely(p4d_bad(*p4d)))
772 		return no_page_table(vma, flags);
773 
774 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
775 		page = follow_huge_pd(vma, address,
776 				      __hugepd(p4d_val(*p4d)), flags,
777 				      P4D_SHIFT);
778 		if (page)
779 			return page;
780 		return no_page_table(vma, flags);
781 	}
782 	return follow_pud_mask(vma, address, p4d, flags, ctx);
783 }
784 
785 /**
786  * follow_page_mask - look up a page descriptor from a user-virtual address
787  * @vma: vm_area_struct mapping @address
788  * @address: virtual address to look up
789  * @flags: flags modifying lookup behaviour
790  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791  *       pointer to output page_mask
792  *
793  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794  *
795  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797  *
798  * When getting an anonymous page and the caller has to trigger unsharing
799  * of a shared anonymous page first, -EMLINK is returned. The caller should
800  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801  * relevant with FOLL_PIN and !FOLL_WRITE.
802  *
803  * On output, the @ctx->page_mask is set according to the size of the page.
804  *
805  * Return: the mapped (struct page *), %NULL if no mapping exists, or
806  * an error pointer if there is a mapping to something not represented
807  * by a page descriptor (see also vm_normal_page()).
808  */
809 static struct page *follow_page_mask(struct vm_area_struct *vma,
810 			      unsigned long address, unsigned int flags,
811 			      struct follow_page_context *ctx)
812 {
813 	pgd_t *pgd;
814 	struct page *page;
815 	struct mm_struct *mm = vma->vm_mm;
816 
817 	ctx->page_mask = 0;
818 
819 	/* make this handle hugepd */
820 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
821 	if (!IS_ERR(page)) {
822 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
823 		return page;
824 	}
825 
826 	pgd = pgd_offset(mm, address);
827 
828 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
829 		return no_page_table(vma, flags);
830 
831 	if (pgd_huge(*pgd)) {
832 		page = follow_huge_pgd(mm, address, pgd, flags);
833 		if (page)
834 			return page;
835 		return no_page_table(vma, flags);
836 	}
837 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
838 		page = follow_huge_pd(vma, address,
839 				      __hugepd(pgd_val(*pgd)), flags,
840 				      PGDIR_SHIFT);
841 		if (page)
842 			return page;
843 		return no_page_table(vma, flags);
844 	}
845 
846 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
847 }
848 
849 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
850 			 unsigned int foll_flags)
851 {
852 	struct follow_page_context ctx = { NULL };
853 	struct page *page;
854 
855 	if (vma_is_secretmem(vma))
856 		return NULL;
857 
858 	if (foll_flags & FOLL_PIN)
859 		return NULL;
860 
861 	page = follow_page_mask(vma, address, foll_flags, &ctx);
862 	if (ctx.pgmap)
863 		put_dev_pagemap(ctx.pgmap);
864 	return page;
865 }
866 
867 static int get_gate_page(struct mm_struct *mm, unsigned long address,
868 		unsigned int gup_flags, struct vm_area_struct **vma,
869 		struct page **page)
870 {
871 	pgd_t *pgd;
872 	p4d_t *p4d;
873 	pud_t *pud;
874 	pmd_t *pmd;
875 	pte_t *pte;
876 	int ret = -EFAULT;
877 
878 	/* user gate pages are read-only */
879 	if (gup_flags & FOLL_WRITE)
880 		return -EFAULT;
881 	if (address > TASK_SIZE)
882 		pgd = pgd_offset_k(address);
883 	else
884 		pgd = pgd_offset_gate(mm, address);
885 	if (pgd_none(*pgd))
886 		return -EFAULT;
887 	p4d = p4d_offset(pgd, address);
888 	if (p4d_none(*p4d))
889 		return -EFAULT;
890 	pud = pud_offset(p4d, address);
891 	if (pud_none(*pud))
892 		return -EFAULT;
893 	pmd = pmd_offset(pud, address);
894 	if (!pmd_present(*pmd))
895 		return -EFAULT;
896 	VM_BUG_ON(pmd_trans_huge(*pmd));
897 	pte = pte_offset_map(pmd, address);
898 	if (pte_none(*pte))
899 		goto unmap;
900 	*vma = get_gate_vma(mm);
901 	if (!page)
902 		goto out;
903 	*page = vm_normal_page(*vma, address, *pte);
904 	if (!*page) {
905 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
906 			goto unmap;
907 		*page = pte_page(*pte);
908 	}
909 	if (unlikely(!try_grab_page(*page, gup_flags))) {
910 		ret = -ENOMEM;
911 		goto unmap;
912 	}
913 out:
914 	ret = 0;
915 unmap:
916 	pte_unmap(pte);
917 	return ret;
918 }
919 
920 /*
921  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
922  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
923  * is, *@locked will be set to 0 and -EBUSY returned.
924  */
925 static int faultin_page(struct vm_area_struct *vma,
926 		unsigned long address, unsigned int *flags, bool unshare,
927 		int *locked)
928 {
929 	unsigned int fault_flags = 0;
930 	vm_fault_t ret;
931 
932 	if (*flags & FOLL_NOFAULT)
933 		return -EFAULT;
934 	if (*flags & FOLL_WRITE)
935 		fault_flags |= FAULT_FLAG_WRITE;
936 	if (*flags & FOLL_REMOTE)
937 		fault_flags |= FAULT_FLAG_REMOTE;
938 	if (locked)
939 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
940 	if (*flags & FOLL_NOWAIT)
941 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 	if (*flags & FOLL_TRIED) {
943 		/*
944 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 		 * can co-exist
946 		 */
947 		fault_flags |= FAULT_FLAG_TRIED;
948 	}
949 	if (unshare) {
950 		fault_flags |= FAULT_FLAG_UNSHARE;
951 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
952 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 	}
954 
955 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
956 	if (ret & VM_FAULT_ERROR) {
957 		int err = vm_fault_to_errno(ret, *flags);
958 
959 		if (err)
960 			return err;
961 		BUG();
962 	}
963 
964 	if (ret & VM_FAULT_RETRY) {
965 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
966 			*locked = 0;
967 		return -EBUSY;
968 	}
969 
970 	/*
971 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
972 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
973 	 * can thus safely do subsequent page lookups as if they were reads.
974 	 * But only do so when looping for pte_write is futile: in some cases
975 	 * userspace may also be wanting to write to the gotten user page,
976 	 * which a read fault here might prevent (a readonly page might get
977 	 * reCOWed by userspace write).
978 	 */
979 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
980 		*flags |= FOLL_COW;
981 	return 0;
982 }
983 
984 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
985 {
986 	vm_flags_t vm_flags = vma->vm_flags;
987 	int write = (gup_flags & FOLL_WRITE);
988 	int foreign = (gup_flags & FOLL_REMOTE);
989 
990 	if (vm_flags & (VM_IO | VM_PFNMAP))
991 		return -EFAULT;
992 
993 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
994 		return -EFAULT;
995 
996 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
997 		return -EOPNOTSUPP;
998 
999 	if (vma_is_secretmem(vma))
1000 		return -EFAULT;
1001 
1002 	if (write) {
1003 		if (!(vm_flags & VM_WRITE)) {
1004 			if (!(gup_flags & FOLL_FORCE))
1005 				return -EFAULT;
1006 			/*
1007 			 * We used to let the write,force case do COW in a
1008 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1009 			 * set a breakpoint in a read-only mapping of an
1010 			 * executable, without corrupting the file (yet only
1011 			 * when that file had been opened for writing!).
1012 			 * Anon pages in shared mappings are surprising: now
1013 			 * just reject it.
1014 			 */
1015 			if (!is_cow_mapping(vm_flags))
1016 				return -EFAULT;
1017 		}
1018 	} else if (!(vm_flags & VM_READ)) {
1019 		if (!(gup_flags & FOLL_FORCE))
1020 			return -EFAULT;
1021 		/*
1022 		 * Is there actually any vma we can reach here which does not
1023 		 * have VM_MAYREAD set?
1024 		 */
1025 		if (!(vm_flags & VM_MAYREAD))
1026 			return -EFAULT;
1027 	}
1028 	/*
1029 	 * gups are always data accesses, not instruction
1030 	 * fetches, so execute=false here
1031 	 */
1032 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1033 		return -EFAULT;
1034 	return 0;
1035 }
1036 
1037 /**
1038  * __get_user_pages() - pin user pages in memory
1039  * @mm:		mm_struct of target mm
1040  * @start:	starting user address
1041  * @nr_pages:	number of pages from start to pin
1042  * @gup_flags:	flags modifying pin behaviour
1043  * @pages:	array that receives pointers to the pages pinned.
1044  *		Should be at least nr_pages long. Or NULL, if caller
1045  *		only intends to ensure the pages are faulted in.
1046  * @vmas:	array of pointers to vmas corresponding to each page.
1047  *		Or NULL if the caller does not require them.
1048  * @locked:     whether we're still with the mmap_lock held
1049  *
1050  * Returns either number of pages pinned (which may be less than the
1051  * number requested), or an error. Details about the return value:
1052  *
1053  * -- If nr_pages is 0, returns 0.
1054  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1055  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1056  *    pages pinned. Again, this may be less than nr_pages.
1057  * -- 0 return value is possible when the fault would need to be retried.
1058  *
1059  * The caller is responsible for releasing returned @pages, via put_page().
1060  *
1061  * @vmas are valid only as long as mmap_lock is held.
1062  *
1063  * Must be called with mmap_lock held.  It may be released.  See below.
1064  *
1065  * __get_user_pages walks a process's page tables and takes a reference to
1066  * each struct page that each user address corresponds to at a given
1067  * instant. That is, it takes the page that would be accessed if a user
1068  * thread accesses the given user virtual address at that instant.
1069  *
1070  * This does not guarantee that the page exists in the user mappings when
1071  * __get_user_pages returns, and there may even be a completely different
1072  * page there in some cases (eg. if mmapped pagecache has been invalidated
1073  * and subsequently re faulted). However it does guarantee that the page
1074  * won't be freed completely. And mostly callers simply care that the page
1075  * contains data that was valid *at some point in time*. Typically, an IO
1076  * or similar operation cannot guarantee anything stronger anyway because
1077  * locks can't be held over the syscall boundary.
1078  *
1079  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1080  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1081  * appropriate) must be called after the page is finished with, and
1082  * before put_page is called.
1083  *
1084  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1085  * released by an up_read().  That can happen if @gup_flags does not
1086  * have FOLL_NOWAIT.
1087  *
1088  * A caller using such a combination of @locked and @gup_flags
1089  * must therefore hold the mmap_lock for reading only, and recognize
1090  * when it's been released.  Otherwise, it must be held for either
1091  * reading or writing and will not be released.
1092  *
1093  * In most cases, get_user_pages or get_user_pages_fast should be used
1094  * instead of __get_user_pages. __get_user_pages should be used only if
1095  * you need some special @gup_flags.
1096  */
1097 static long __get_user_pages(struct mm_struct *mm,
1098 		unsigned long start, unsigned long nr_pages,
1099 		unsigned int gup_flags, struct page **pages,
1100 		struct vm_area_struct **vmas, int *locked)
1101 {
1102 	long ret = 0, i = 0;
1103 	struct vm_area_struct *vma = NULL;
1104 	struct follow_page_context ctx = { NULL };
1105 
1106 	if (!nr_pages)
1107 		return 0;
1108 
1109 	start = untagged_addr(start);
1110 
1111 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1112 
1113 	/*
1114 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1115 	 * fault information is unrelated to the reference behaviour of a task
1116 	 * using the address space
1117 	 */
1118 	if (!(gup_flags & FOLL_FORCE))
1119 		gup_flags |= FOLL_NUMA;
1120 
1121 	do {
1122 		struct page *page;
1123 		unsigned int foll_flags = gup_flags;
1124 		unsigned int page_increm;
1125 
1126 		/* first iteration or cross vma bound */
1127 		if (!vma || start >= vma->vm_end) {
1128 			vma = find_extend_vma(mm, start);
1129 			if (!vma && in_gate_area(mm, start)) {
1130 				ret = get_gate_page(mm, start & PAGE_MASK,
1131 						gup_flags, &vma,
1132 						pages ? &pages[i] : NULL);
1133 				if (ret)
1134 					goto out;
1135 				ctx.page_mask = 0;
1136 				goto next_page;
1137 			}
1138 
1139 			if (!vma) {
1140 				ret = -EFAULT;
1141 				goto out;
1142 			}
1143 			ret = check_vma_flags(vma, gup_flags);
1144 			if (ret)
1145 				goto out;
1146 
1147 			if (is_vm_hugetlb_page(vma)) {
1148 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1149 						&start, &nr_pages, i,
1150 						gup_flags, locked);
1151 				if (locked && *locked == 0) {
1152 					/*
1153 					 * We've got a VM_FAULT_RETRY
1154 					 * and we've lost mmap_lock.
1155 					 * We must stop here.
1156 					 */
1157 					BUG_ON(gup_flags & FOLL_NOWAIT);
1158 					goto out;
1159 				}
1160 				continue;
1161 			}
1162 		}
1163 retry:
1164 		/*
1165 		 * If we have a pending SIGKILL, don't keep faulting pages and
1166 		 * potentially allocating memory.
1167 		 */
1168 		if (fatal_signal_pending(current)) {
1169 			ret = -EINTR;
1170 			goto out;
1171 		}
1172 		cond_resched();
1173 
1174 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1175 		if (!page || PTR_ERR(page) == -EMLINK) {
1176 			ret = faultin_page(vma, start, &foll_flags,
1177 					   PTR_ERR(page) == -EMLINK, locked);
1178 			switch (ret) {
1179 			case 0:
1180 				goto retry;
1181 			case -EBUSY:
1182 				ret = 0;
1183 				fallthrough;
1184 			case -EFAULT:
1185 			case -ENOMEM:
1186 			case -EHWPOISON:
1187 				goto out;
1188 			}
1189 			BUG();
1190 		} else if (PTR_ERR(page) == -EEXIST) {
1191 			/*
1192 			 * Proper page table entry exists, but no corresponding
1193 			 * struct page. If the caller expects **pages to be
1194 			 * filled in, bail out now, because that can't be done
1195 			 * for this page.
1196 			 */
1197 			if (pages) {
1198 				ret = PTR_ERR(page);
1199 				goto out;
1200 			}
1201 
1202 			goto next_page;
1203 		} else if (IS_ERR(page)) {
1204 			ret = PTR_ERR(page);
1205 			goto out;
1206 		}
1207 		if (pages) {
1208 			pages[i] = page;
1209 			flush_anon_page(vma, page, start);
1210 			flush_dcache_page(page);
1211 			ctx.page_mask = 0;
1212 		}
1213 next_page:
1214 		if (vmas) {
1215 			vmas[i] = vma;
1216 			ctx.page_mask = 0;
1217 		}
1218 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1219 		if (page_increm > nr_pages)
1220 			page_increm = nr_pages;
1221 		i += page_increm;
1222 		start += page_increm * PAGE_SIZE;
1223 		nr_pages -= page_increm;
1224 	} while (nr_pages);
1225 out:
1226 	if (ctx.pgmap)
1227 		put_dev_pagemap(ctx.pgmap);
1228 	return i ? i : ret;
1229 }
1230 
1231 static bool vma_permits_fault(struct vm_area_struct *vma,
1232 			      unsigned int fault_flags)
1233 {
1234 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1235 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1236 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1237 
1238 	if (!(vm_flags & vma->vm_flags))
1239 		return false;
1240 
1241 	/*
1242 	 * The architecture might have a hardware protection
1243 	 * mechanism other than read/write that can deny access.
1244 	 *
1245 	 * gup always represents data access, not instruction
1246 	 * fetches, so execute=false here:
1247 	 */
1248 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1249 		return false;
1250 
1251 	return true;
1252 }
1253 
1254 /**
1255  * fixup_user_fault() - manually resolve a user page fault
1256  * @mm:		mm_struct of target mm
1257  * @address:	user address
1258  * @fault_flags:flags to pass down to handle_mm_fault()
1259  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1260  *		does not allow retry. If NULL, the caller must guarantee
1261  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1262  *
1263  * This is meant to be called in the specific scenario where for locking reasons
1264  * we try to access user memory in atomic context (within a pagefault_disable()
1265  * section), this returns -EFAULT, and we want to resolve the user fault before
1266  * trying again.
1267  *
1268  * Typically this is meant to be used by the futex code.
1269  *
1270  * The main difference with get_user_pages() is that this function will
1271  * unconditionally call handle_mm_fault() which will in turn perform all the
1272  * necessary SW fixup of the dirty and young bits in the PTE, while
1273  * get_user_pages() only guarantees to update these in the struct page.
1274  *
1275  * This is important for some architectures where those bits also gate the
1276  * access permission to the page because they are maintained in software.  On
1277  * such architectures, gup() will not be enough to make a subsequent access
1278  * succeed.
1279  *
1280  * This function will not return with an unlocked mmap_lock. So it has not the
1281  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1282  */
1283 int fixup_user_fault(struct mm_struct *mm,
1284 		     unsigned long address, unsigned int fault_flags,
1285 		     bool *unlocked)
1286 {
1287 	struct vm_area_struct *vma;
1288 	vm_fault_t ret;
1289 
1290 	address = untagged_addr(address);
1291 
1292 	if (unlocked)
1293 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1294 
1295 retry:
1296 	vma = find_extend_vma(mm, address);
1297 	if (!vma || address < vma->vm_start)
1298 		return -EFAULT;
1299 
1300 	if (!vma_permits_fault(vma, fault_flags))
1301 		return -EFAULT;
1302 
1303 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1304 	    fatal_signal_pending(current))
1305 		return -EINTR;
1306 
1307 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1308 	if (ret & VM_FAULT_ERROR) {
1309 		int err = vm_fault_to_errno(ret, 0);
1310 
1311 		if (err)
1312 			return err;
1313 		BUG();
1314 	}
1315 
1316 	if (ret & VM_FAULT_RETRY) {
1317 		mmap_read_lock(mm);
1318 		*unlocked = true;
1319 		fault_flags |= FAULT_FLAG_TRIED;
1320 		goto retry;
1321 	}
1322 
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(fixup_user_fault);
1326 
1327 /*
1328  * Please note that this function, unlike __get_user_pages will not
1329  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1330  */
1331 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1332 						unsigned long start,
1333 						unsigned long nr_pages,
1334 						struct page **pages,
1335 						struct vm_area_struct **vmas,
1336 						int *locked,
1337 						unsigned int flags)
1338 {
1339 	long ret, pages_done;
1340 	bool lock_dropped;
1341 
1342 	if (locked) {
1343 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1344 		BUG_ON(vmas);
1345 		/* check caller initialized locked */
1346 		BUG_ON(*locked != 1);
1347 	}
1348 
1349 	if (flags & FOLL_PIN)
1350 		mm_set_has_pinned_flag(&mm->flags);
1351 
1352 	/*
1353 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1354 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1355 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1356 	 * for FOLL_GET, not for the newer FOLL_PIN.
1357 	 *
1358 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1359 	 * that here, as any failures will be obvious enough.
1360 	 */
1361 	if (pages && !(flags & FOLL_PIN))
1362 		flags |= FOLL_GET;
1363 
1364 	pages_done = 0;
1365 	lock_dropped = false;
1366 	for (;;) {
1367 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1368 				       vmas, locked);
1369 		if (!locked)
1370 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1371 			return ret;
1372 
1373 		/* VM_FAULT_RETRY cannot return errors */
1374 		if (!*locked) {
1375 			BUG_ON(ret < 0);
1376 			BUG_ON(ret >= nr_pages);
1377 		}
1378 
1379 		if (ret > 0) {
1380 			nr_pages -= ret;
1381 			pages_done += ret;
1382 			if (!nr_pages)
1383 				break;
1384 		}
1385 		if (*locked) {
1386 			/*
1387 			 * VM_FAULT_RETRY didn't trigger or it was a
1388 			 * FOLL_NOWAIT.
1389 			 */
1390 			if (!pages_done)
1391 				pages_done = ret;
1392 			break;
1393 		}
1394 		/*
1395 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1396 		 * For the prefault case (!pages) we only update counts.
1397 		 */
1398 		if (likely(pages))
1399 			pages += ret;
1400 		start += ret << PAGE_SHIFT;
1401 		lock_dropped = true;
1402 
1403 retry:
1404 		/*
1405 		 * Repeat on the address that fired VM_FAULT_RETRY
1406 		 * with both FAULT_FLAG_ALLOW_RETRY and
1407 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1408 		 * by fatal signals, so we need to check it before we
1409 		 * start trying again otherwise it can loop forever.
1410 		 */
1411 
1412 		if (fatal_signal_pending(current)) {
1413 			if (!pages_done)
1414 				pages_done = -EINTR;
1415 			break;
1416 		}
1417 
1418 		ret = mmap_read_lock_killable(mm);
1419 		if (ret) {
1420 			BUG_ON(ret > 0);
1421 			if (!pages_done)
1422 				pages_done = ret;
1423 			break;
1424 		}
1425 
1426 		*locked = 1;
1427 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1428 				       pages, NULL, locked);
1429 		if (!*locked) {
1430 			/* Continue to retry until we succeeded */
1431 			BUG_ON(ret != 0);
1432 			goto retry;
1433 		}
1434 		if (ret != 1) {
1435 			BUG_ON(ret > 1);
1436 			if (!pages_done)
1437 				pages_done = ret;
1438 			break;
1439 		}
1440 		nr_pages--;
1441 		pages_done++;
1442 		if (!nr_pages)
1443 			break;
1444 		if (likely(pages))
1445 			pages++;
1446 		start += PAGE_SIZE;
1447 	}
1448 	if (lock_dropped && *locked) {
1449 		/*
1450 		 * We must let the caller know we temporarily dropped the lock
1451 		 * and so the critical section protected by it was lost.
1452 		 */
1453 		mmap_read_unlock(mm);
1454 		*locked = 0;
1455 	}
1456 	return pages_done;
1457 }
1458 
1459 /**
1460  * populate_vma_page_range() -  populate a range of pages in the vma.
1461  * @vma:   target vma
1462  * @start: start address
1463  * @end:   end address
1464  * @locked: whether the mmap_lock is still held
1465  *
1466  * This takes care of mlocking the pages too if VM_LOCKED is set.
1467  *
1468  * Return either number of pages pinned in the vma, or a negative error
1469  * code on error.
1470  *
1471  * vma->vm_mm->mmap_lock must be held.
1472  *
1473  * If @locked is NULL, it may be held for read or write and will
1474  * be unperturbed.
1475  *
1476  * If @locked is non-NULL, it must held for read only and may be
1477  * released.  If it's released, *@locked will be set to 0.
1478  */
1479 long populate_vma_page_range(struct vm_area_struct *vma,
1480 		unsigned long start, unsigned long end, int *locked)
1481 {
1482 	struct mm_struct *mm = vma->vm_mm;
1483 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1484 	int gup_flags;
1485 	long ret;
1486 
1487 	VM_BUG_ON(!PAGE_ALIGNED(start));
1488 	VM_BUG_ON(!PAGE_ALIGNED(end));
1489 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1490 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1491 	mmap_assert_locked(mm);
1492 
1493 	/*
1494 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1495 	 * faultin_page() to break COW, so it has no work to do here.
1496 	 */
1497 	if (vma->vm_flags & VM_LOCKONFAULT)
1498 		return nr_pages;
1499 
1500 	gup_flags = FOLL_TOUCH;
1501 	/*
1502 	 * We want to touch writable mappings with a write fault in order
1503 	 * to break COW, except for shared mappings because these don't COW
1504 	 * and we would not want to dirty them for nothing.
1505 	 */
1506 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1507 		gup_flags |= FOLL_WRITE;
1508 
1509 	/*
1510 	 * We want mlock to succeed for regions that have any permissions
1511 	 * other than PROT_NONE.
1512 	 */
1513 	if (vma_is_accessible(vma))
1514 		gup_flags |= FOLL_FORCE;
1515 
1516 	/*
1517 	 * We made sure addr is within a VMA, so the following will
1518 	 * not result in a stack expansion that recurses back here.
1519 	 */
1520 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1521 				NULL, NULL, locked);
1522 	lru_add_drain();
1523 	return ret;
1524 }
1525 
1526 /*
1527  * faultin_vma_page_range() - populate (prefault) page tables inside the
1528  *			      given VMA range readable/writable
1529  *
1530  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1531  *
1532  * @vma: target vma
1533  * @start: start address
1534  * @end: end address
1535  * @write: whether to prefault readable or writable
1536  * @locked: whether the mmap_lock is still held
1537  *
1538  * Returns either number of processed pages in the vma, or a negative error
1539  * code on error (see __get_user_pages()).
1540  *
1541  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1542  * covered by the VMA.
1543  *
1544  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1545  *
1546  * If @locked is non-NULL, it must held for read only and may be released.  If
1547  * it's released, *@locked will be set to 0.
1548  */
1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1550 			    unsigned long end, bool write, int *locked)
1551 {
1552 	struct mm_struct *mm = vma->vm_mm;
1553 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554 	int gup_flags;
1555 	long ret;
1556 
1557 	VM_BUG_ON(!PAGE_ALIGNED(start));
1558 	VM_BUG_ON(!PAGE_ALIGNED(end));
1559 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1560 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1561 	mmap_assert_locked(mm);
1562 
1563 	/*
1564 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1565 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1566 	 *	       difference with !FOLL_FORCE, because the page is writable
1567 	 *	       in the page table.
1568 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1569 	 *		  a poisoned page.
1570 	 * !FOLL_FORCE: Require proper access permissions.
1571 	 */
1572 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1573 	if (write)
1574 		gup_flags |= FOLL_WRITE;
1575 
1576 	/*
1577 	 * We want to report -EINVAL instead of -EFAULT for any permission
1578 	 * problems or incompatible mappings.
1579 	 */
1580 	if (check_vma_flags(vma, gup_flags))
1581 		return -EINVAL;
1582 
1583 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1584 				NULL, NULL, locked);
1585 	lru_add_drain();
1586 	return ret;
1587 }
1588 
1589 /*
1590  * __mm_populate - populate and/or mlock pages within a range of address space.
1591  *
1592  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1593  * flags. VMAs must be already marked with the desired vm_flags, and
1594  * mmap_lock must not be held.
1595  */
1596 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1597 {
1598 	struct mm_struct *mm = current->mm;
1599 	unsigned long end, nstart, nend;
1600 	struct vm_area_struct *vma = NULL;
1601 	int locked = 0;
1602 	long ret = 0;
1603 
1604 	end = start + len;
1605 
1606 	for (nstart = start; nstart < end; nstart = nend) {
1607 		/*
1608 		 * We want to fault in pages for [nstart; end) address range.
1609 		 * Find first corresponding VMA.
1610 		 */
1611 		if (!locked) {
1612 			locked = 1;
1613 			mmap_read_lock(mm);
1614 			vma = find_vma(mm, nstart);
1615 		} else if (nstart >= vma->vm_end)
1616 			vma = vma->vm_next;
1617 		if (!vma || vma->vm_start >= end)
1618 			break;
1619 		/*
1620 		 * Set [nstart; nend) to intersection of desired address
1621 		 * range with the first VMA. Also, skip undesirable VMA types.
1622 		 */
1623 		nend = min(end, vma->vm_end);
1624 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1625 			continue;
1626 		if (nstart < vma->vm_start)
1627 			nstart = vma->vm_start;
1628 		/*
1629 		 * Now fault in a range of pages. populate_vma_page_range()
1630 		 * double checks the vma flags, so that it won't mlock pages
1631 		 * if the vma was already munlocked.
1632 		 */
1633 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1634 		if (ret < 0) {
1635 			if (ignore_errors) {
1636 				ret = 0;
1637 				continue;	/* continue at next VMA */
1638 			}
1639 			break;
1640 		}
1641 		nend = nstart + ret * PAGE_SIZE;
1642 		ret = 0;
1643 	}
1644 	if (locked)
1645 		mmap_read_unlock(mm);
1646 	return ret;	/* 0 or negative error code */
1647 }
1648 #else /* CONFIG_MMU */
1649 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1650 		unsigned long nr_pages, struct page **pages,
1651 		struct vm_area_struct **vmas, int *locked,
1652 		unsigned int foll_flags)
1653 {
1654 	struct vm_area_struct *vma;
1655 	unsigned long vm_flags;
1656 	long i;
1657 
1658 	/* calculate required read or write permissions.
1659 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1660 	 */
1661 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1662 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1663 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1664 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1665 
1666 	for (i = 0; i < nr_pages; i++) {
1667 		vma = find_vma(mm, start);
1668 		if (!vma)
1669 			goto finish_or_fault;
1670 
1671 		/* protect what we can, including chardevs */
1672 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1673 		    !(vm_flags & vma->vm_flags))
1674 			goto finish_or_fault;
1675 
1676 		if (pages) {
1677 			pages[i] = virt_to_page(start);
1678 			if (pages[i])
1679 				get_page(pages[i]);
1680 		}
1681 		if (vmas)
1682 			vmas[i] = vma;
1683 		start = (start + PAGE_SIZE) & PAGE_MASK;
1684 	}
1685 
1686 	return i;
1687 
1688 finish_or_fault:
1689 	return i ? : -EFAULT;
1690 }
1691 #endif /* !CONFIG_MMU */
1692 
1693 /**
1694  * fault_in_writeable - fault in userspace address range for writing
1695  * @uaddr: start of address range
1696  * @size: size of address range
1697  *
1698  * Returns the number of bytes not faulted in (like copy_to_user() and
1699  * copy_from_user()).
1700  */
1701 size_t fault_in_writeable(char __user *uaddr, size_t size)
1702 {
1703 	char __user *start = uaddr, *end;
1704 
1705 	if (unlikely(size == 0))
1706 		return 0;
1707 	if (!user_write_access_begin(uaddr, size))
1708 		return size;
1709 	if (!PAGE_ALIGNED(uaddr)) {
1710 		unsafe_put_user(0, uaddr, out);
1711 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1712 	}
1713 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1714 	if (unlikely(end < start))
1715 		end = NULL;
1716 	while (uaddr != end) {
1717 		unsafe_put_user(0, uaddr, out);
1718 		uaddr += PAGE_SIZE;
1719 	}
1720 
1721 out:
1722 	user_write_access_end();
1723 	if (size > uaddr - start)
1724 		return size - (uaddr - start);
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(fault_in_writeable);
1728 
1729 /**
1730  * fault_in_subpage_writeable - fault in an address range for writing
1731  * @uaddr: start of address range
1732  * @size: size of address range
1733  *
1734  * Fault in a user address range for writing while checking for permissions at
1735  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1736  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1737  *
1738  * Returns the number of bytes not faulted in (like copy_to_user() and
1739  * copy_from_user()).
1740  */
1741 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1742 {
1743 	size_t faulted_in;
1744 
1745 	/*
1746 	 * Attempt faulting in at page granularity first for page table
1747 	 * permission checking. The arch-specific probe_subpage_writeable()
1748 	 * functions may not check for this.
1749 	 */
1750 	faulted_in = size - fault_in_writeable(uaddr, size);
1751 	if (faulted_in)
1752 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1753 
1754 	return size - faulted_in;
1755 }
1756 EXPORT_SYMBOL(fault_in_subpage_writeable);
1757 
1758 /*
1759  * fault_in_safe_writeable - fault in an address range for writing
1760  * @uaddr: start of address range
1761  * @size: length of address range
1762  *
1763  * Faults in an address range for writing.  This is primarily useful when we
1764  * already know that some or all of the pages in the address range aren't in
1765  * memory.
1766  *
1767  * Unlike fault_in_writeable(), this function is non-destructive.
1768  *
1769  * Note that we don't pin or otherwise hold the pages referenced that we fault
1770  * in.  There's no guarantee that they'll stay in memory for any duration of
1771  * time.
1772  *
1773  * Returns the number of bytes not faulted in, like copy_to_user() and
1774  * copy_from_user().
1775  */
1776 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1777 {
1778 	unsigned long start = (unsigned long)uaddr, end;
1779 	struct mm_struct *mm = current->mm;
1780 	bool unlocked = false;
1781 
1782 	if (unlikely(size == 0))
1783 		return 0;
1784 	end = PAGE_ALIGN(start + size);
1785 	if (end < start)
1786 		end = 0;
1787 
1788 	mmap_read_lock(mm);
1789 	do {
1790 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1791 			break;
1792 		start = (start + PAGE_SIZE) & PAGE_MASK;
1793 	} while (start != end);
1794 	mmap_read_unlock(mm);
1795 
1796 	if (size > (unsigned long)uaddr - start)
1797 		return size - ((unsigned long)uaddr - start);
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(fault_in_safe_writeable);
1801 
1802 /**
1803  * fault_in_readable - fault in userspace address range for reading
1804  * @uaddr: start of user address range
1805  * @size: size of user address range
1806  *
1807  * Returns the number of bytes not faulted in (like copy_to_user() and
1808  * copy_from_user()).
1809  */
1810 size_t fault_in_readable(const char __user *uaddr, size_t size)
1811 {
1812 	const char __user *start = uaddr, *end;
1813 	volatile char c;
1814 
1815 	if (unlikely(size == 0))
1816 		return 0;
1817 	if (!user_read_access_begin(uaddr, size))
1818 		return size;
1819 	if (!PAGE_ALIGNED(uaddr)) {
1820 		unsafe_get_user(c, uaddr, out);
1821 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1822 	}
1823 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1824 	if (unlikely(end < start))
1825 		end = NULL;
1826 	while (uaddr != end) {
1827 		unsafe_get_user(c, uaddr, out);
1828 		uaddr += PAGE_SIZE;
1829 	}
1830 
1831 out:
1832 	user_read_access_end();
1833 	(void)c;
1834 	if (size > uaddr - start)
1835 		return size - (uaddr - start);
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL(fault_in_readable);
1839 
1840 /**
1841  * get_dump_page() - pin user page in memory while writing it to core dump
1842  * @addr: user address
1843  *
1844  * Returns struct page pointer of user page pinned for dump,
1845  * to be freed afterwards by put_page().
1846  *
1847  * Returns NULL on any kind of failure - a hole must then be inserted into
1848  * the corefile, to preserve alignment with its headers; and also returns
1849  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1850  * allowing a hole to be left in the corefile to save disk space.
1851  *
1852  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1853  */
1854 #ifdef CONFIG_ELF_CORE
1855 struct page *get_dump_page(unsigned long addr)
1856 {
1857 	struct mm_struct *mm = current->mm;
1858 	struct page *page;
1859 	int locked = 1;
1860 	int ret;
1861 
1862 	if (mmap_read_lock_killable(mm))
1863 		return NULL;
1864 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1865 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1866 	if (locked)
1867 		mmap_read_unlock(mm);
1868 	return (ret == 1) ? page : NULL;
1869 }
1870 #endif /* CONFIG_ELF_CORE */
1871 
1872 #ifdef CONFIG_MIGRATION
1873 /*
1874  * Check whether all pages are pinnable, if so return number of pages.  If some
1875  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1876  * pages were migrated, or if some pages were not successfully isolated.
1877  * Return negative error if migration fails.
1878  */
1879 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1880 					    struct page **pages,
1881 					    unsigned int gup_flags)
1882 {
1883 	unsigned long isolation_error_count = 0, i;
1884 	struct folio *prev_folio = NULL;
1885 	LIST_HEAD(movable_page_list);
1886 	bool drain_allow = true;
1887 	int ret = 0;
1888 
1889 	for (i = 0; i < nr_pages; i++) {
1890 		struct folio *folio = page_folio(pages[i]);
1891 
1892 		if (folio == prev_folio)
1893 			continue;
1894 		prev_folio = folio;
1895 
1896 		if (folio_is_pinnable(folio))
1897 			continue;
1898 
1899 		/*
1900 		 * Try to move out any movable page before pinning the range.
1901 		 */
1902 		if (folio_test_hugetlb(folio)) {
1903 			if (!isolate_huge_page(&folio->page,
1904 						&movable_page_list))
1905 				isolation_error_count++;
1906 			continue;
1907 		}
1908 
1909 		if (!folio_test_lru(folio) && drain_allow) {
1910 			lru_add_drain_all();
1911 			drain_allow = false;
1912 		}
1913 
1914 		if (folio_isolate_lru(folio)) {
1915 			isolation_error_count++;
1916 			continue;
1917 		}
1918 		list_add_tail(&folio->lru, &movable_page_list);
1919 		node_stat_mod_folio(folio,
1920 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1921 				    folio_nr_pages(folio));
1922 	}
1923 
1924 	if (!list_empty(&movable_page_list) || isolation_error_count)
1925 		goto unpin_pages;
1926 
1927 	/*
1928 	 * If list is empty, and no isolation errors, means that all pages are
1929 	 * in the correct zone.
1930 	 */
1931 	return nr_pages;
1932 
1933 unpin_pages:
1934 	if (gup_flags & FOLL_PIN) {
1935 		unpin_user_pages(pages, nr_pages);
1936 	} else {
1937 		for (i = 0; i < nr_pages; i++)
1938 			put_page(pages[i]);
1939 	}
1940 
1941 	if (!list_empty(&movable_page_list)) {
1942 		struct migration_target_control mtc = {
1943 			.nid = NUMA_NO_NODE,
1944 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1945 		};
1946 
1947 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1948 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1949 				    MR_LONGTERM_PIN, NULL);
1950 		if (ret > 0) /* number of pages not migrated */
1951 			ret = -ENOMEM;
1952 	}
1953 
1954 	if (ret && !list_empty(&movable_page_list))
1955 		putback_movable_pages(&movable_page_list);
1956 	return ret;
1957 }
1958 #else
1959 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1960 					    struct page **pages,
1961 					    unsigned int gup_flags)
1962 {
1963 	return nr_pages;
1964 }
1965 #endif /* CONFIG_MIGRATION */
1966 
1967 /*
1968  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1969  * allows us to process the FOLL_LONGTERM flag.
1970  */
1971 static long __gup_longterm_locked(struct mm_struct *mm,
1972 				  unsigned long start,
1973 				  unsigned long nr_pages,
1974 				  struct page **pages,
1975 				  struct vm_area_struct **vmas,
1976 				  unsigned int gup_flags)
1977 {
1978 	unsigned int flags;
1979 	long rc;
1980 
1981 	if (!(gup_flags & FOLL_LONGTERM))
1982 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1983 					       NULL, gup_flags);
1984 	flags = memalloc_pin_save();
1985 	do {
1986 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1987 					     NULL, gup_flags);
1988 		if (rc <= 0)
1989 			break;
1990 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1991 	} while (!rc);
1992 	memalloc_pin_restore(flags);
1993 
1994 	return rc;
1995 }
1996 
1997 static bool is_valid_gup_flags(unsigned int gup_flags)
1998 {
1999 	/*
2000 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2001 	 * never directly by the caller, so enforce that with an assertion:
2002 	 */
2003 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2004 		return false;
2005 	/*
2006 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2007 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2008 	 * FOLL_PIN.
2009 	 */
2010 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2011 		return false;
2012 
2013 	return true;
2014 }
2015 
2016 #ifdef CONFIG_MMU
2017 static long __get_user_pages_remote(struct mm_struct *mm,
2018 				    unsigned long start, unsigned long nr_pages,
2019 				    unsigned int gup_flags, struct page **pages,
2020 				    struct vm_area_struct **vmas, int *locked)
2021 {
2022 	/*
2023 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2024 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2025 	 * vmas. However, this only comes up if locked is set, and there are
2026 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2027 	 * allow what we can.
2028 	 */
2029 	if (gup_flags & FOLL_LONGTERM) {
2030 		if (WARN_ON_ONCE(locked))
2031 			return -EINVAL;
2032 		/*
2033 		 * This will check the vmas (even if our vmas arg is NULL)
2034 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2035 		 */
2036 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2037 					     vmas, gup_flags | FOLL_TOUCH |
2038 					     FOLL_REMOTE);
2039 	}
2040 
2041 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2042 				       locked,
2043 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2044 }
2045 
2046 /**
2047  * get_user_pages_remote() - pin user pages in memory
2048  * @mm:		mm_struct of target mm
2049  * @start:	starting user address
2050  * @nr_pages:	number of pages from start to pin
2051  * @gup_flags:	flags modifying lookup behaviour
2052  * @pages:	array that receives pointers to the pages pinned.
2053  *		Should be at least nr_pages long. Or NULL, if caller
2054  *		only intends to ensure the pages are faulted in.
2055  * @vmas:	array of pointers to vmas corresponding to each page.
2056  *		Or NULL if the caller does not require them.
2057  * @locked:	pointer to lock flag indicating whether lock is held and
2058  *		subsequently whether VM_FAULT_RETRY functionality can be
2059  *		utilised. Lock must initially be held.
2060  *
2061  * Returns either number of pages pinned (which may be less than the
2062  * number requested), or an error. Details about the return value:
2063  *
2064  * -- If nr_pages is 0, returns 0.
2065  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2066  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2067  *    pages pinned. Again, this may be less than nr_pages.
2068  *
2069  * The caller is responsible for releasing returned @pages, via put_page().
2070  *
2071  * @vmas are valid only as long as mmap_lock is held.
2072  *
2073  * Must be called with mmap_lock held for read or write.
2074  *
2075  * get_user_pages_remote walks a process's page tables and takes a reference
2076  * to each struct page that each user address corresponds to at a given
2077  * instant. That is, it takes the page that would be accessed if a user
2078  * thread accesses the given user virtual address at that instant.
2079  *
2080  * This does not guarantee that the page exists in the user mappings when
2081  * get_user_pages_remote returns, and there may even be a completely different
2082  * page there in some cases (eg. if mmapped pagecache has been invalidated
2083  * and subsequently re faulted). However it does guarantee that the page
2084  * won't be freed completely. And mostly callers simply care that the page
2085  * contains data that was valid *at some point in time*. Typically, an IO
2086  * or similar operation cannot guarantee anything stronger anyway because
2087  * locks can't be held over the syscall boundary.
2088  *
2089  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2090  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2091  * be called after the page is finished with, and before put_page is called.
2092  *
2093  * get_user_pages_remote is typically used for fewer-copy IO operations,
2094  * to get a handle on the memory by some means other than accesses
2095  * via the user virtual addresses. The pages may be submitted for
2096  * DMA to devices or accessed via their kernel linear mapping (via the
2097  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2098  *
2099  * See also get_user_pages_fast, for performance critical applications.
2100  *
2101  * get_user_pages_remote should be phased out in favor of
2102  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2103  * should use get_user_pages_remote because it cannot pass
2104  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2105  */
2106 long get_user_pages_remote(struct mm_struct *mm,
2107 		unsigned long start, unsigned long nr_pages,
2108 		unsigned int gup_flags, struct page **pages,
2109 		struct vm_area_struct **vmas, int *locked)
2110 {
2111 	if (!is_valid_gup_flags(gup_flags))
2112 		return -EINVAL;
2113 
2114 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2115 				       pages, vmas, locked);
2116 }
2117 EXPORT_SYMBOL(get_user_pages_remote);
2118 
2119 #else /* CONFIG_MMU */
2120 long get_user_pages_remote(struct mm_struct *mm,
2121 			   unsigned long start, unsigned long nr_pages,
2122 			   unsigned int gup_flags, struct page **pages,
2123 			   struct vm_area_struct **vmas, int *locked)
2124 {
2125 	return 0;
2126 }
2127 
2128 static long __get_user_pages_remote(struct mm_struct *mm,
2129 				    unsigned long start, unsigned long nr_pages,
2130 				    unsigned int gup_flags, struct page **pages,
2131 				    struct vm_area_struct **vmas, int *locked)
2132 {
2133 	return 0;
2134 }
2135 #endif /* !CONFIG_MMU */
2136 
2137 /**
2138  * get_user_pages() - pin user pages in memory
2139  * @start:      starting user address
2140  * @nr_pages:   number of pages from start to pin
2141  * @gup_flags:  flags modifying lookup behaviour
2142  * @pages:      array that receives pointers to the pages pinned.
2143  *              Should be at least nr_pages long. Or NULL, if caller
2144  *              only intends to ensure the pages are faulted in.
2145  * @vmas:       array of pointers to vmas corresponding to each page.
2146  *              Or NULL if the caller does not require them.
2147  *
2148  * This is the same as get_user_pages_remote(), just with a less-flexible
2149  * calling convention where we assume that the mm being operated on belongs to
2150  * the current task, and doesn't allow passing of a locked parameter.  We also
2151  * obviously don't pass FOLL_REMOTE in here.
2152  */
2153 long get_user_pages(unsigned long start, unsigned long nr_pages,
2154 		unsigned int gup_flags, struct page **pages,
2155 		struct vm_area_struct **vmas)
2156 {
2157 	if (!is_valid_gup_flags(gup_flags))
2158 		return -EINVAL;
2159 
2160 	return __gup_longterm_locked(current->mm, start, nr_pages,
2161 				     pages, vmas, gup_flags | FOLL_TOUCH);
2162 }
2163 EXPORT_SYMBOL(get_user_pages);
2164 
2165 /*
2166  * get_user_pages_unlocked() is suitable to replace the form:
2167  *
2168  *      mmap_read_lock(mm);
2169  *      get_user_pages(mm, ..., pages, NULL);
2170  *      mmap_read_unlock(mm);
2171  *
2172  *  with:
2173  *
2174  *      get_user_pages_unlocked(mm, ..., pages);
2175  *
2176  * It is functionally equivalent to get_user_pages_fast so
2177  * get_user_pages_fast should be used instead if specific gup_flags
2178  * (e.g. FOLL_FORCE) are not required.
2179  */
2180 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2181 			     struct page **pages, unsigned int gup_flags)
2182 {
2183 	struct mm_struct *mm = current->mm;
2184 	int locked = 1;
2185 	long ret;
2186 
2187 	/*
2188 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2189 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2190 	 * vmas.  As there are no users of this flag in this call we simply
2191 	 * disallow this option for now.
2192 	 */
2193 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2194 		return -EINVAL;
2195 
2196 	mmap_read_lock(mm);
2197 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2198 				      &locked, gup_flags | FOLL_TOUCH);
2199 	if (locked)
2200 		mmap_read_unlock(mm);
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL(get_user_pages_unlocked);
2204 
2205 /*
2206  * Fast GUP
2207  *
2208  * get_user_pages_fast attempts to pin user pages by walking the page
2209  * tables directly and avoids taking locks. Thus the walker needs to be
2210  * protected from page table pages being freed from under it, and should
2211  * block any THP splits.
2212  *
2213  * One way to achieve this is to have the walker disable interrupts, and
2214  * rely on IPIs from the TLB flushing code blocking before the page table
2215  * pages are freed. This is unsuitable for architectures that do not need
2216  * to broadcast an IPI when invalidating TLBs.
2217  *
2218  * Another way to achieve this is to batch up page table containing pages
2219  * belonging to more than one mm_user, then rcu_sched a callback to free those
2220  * pages. Disabling interrupts will allow the fast_gup walker to both block
2221  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2222  * (which is a relatively rare event). The code below adopts this strategy.
2223  *
2224  * Before activating this code, please be aware that the following assumptions
2225  * are currently made:
2226  *
2227  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2228  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2229  *
2230  *  *) ptes can be read atomically by the architecture.
2231  *
2232  *  *) access_ok is sufficient to validate userspace address ranges.
2233  *
2234  * The last two assumptions can be relaxed by the addition of helper functions.
2235  *
2236  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2237  */
2238 #ifdef CONFIG_HAVE_FAST_GUP
2239 
2240 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2241 					    unsigned int flags,
2242 					    struct page **pages)
2243 {
2244 	while ((*nr) - nr_start) {
2245 		struct page *page = pages[--(*nr)];
2246 
2247 		ClearPageReferenced(page);
2248 		if (flags & FOLL_PIN)
2249 			unpin_user_page(page);
2250 		else
2251 			put_page(page);
2252 	}
2253 }
2254 
2255 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2256 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2257 			 unsigned int flags, struct page **pages, int *nr)
2258 {
2259 	struct dev_pagemap *pgmap = NULL;
2260 	int nr_start = *nr, ret = 0;
2261 	pte_t *ptep, *ptem;
2262 
2263 	ptem = ptep = pte_offset_map(&pmd, addr);
2264 	do {
2265 		pte_t pte = ptep_get_lockless(ptep);
2266 		struct page *page;
2267 		struct folio *folio;
2268 
2269 		/*
2270 		 * Similar to the PMD case below, NUMA hinting must take slow
2271 		 * path using the pte_protnone check.
2272 		 */
2273 		if (pte_protnone(pte))
2274 			goto pte_unmap;
2275 
2276 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2277 			goto pte_unmap;
2278 
2279 		if (pte_devmap(pte)) {
2280 			if (unlikely(flags & FOLL_LONGTERM))
2281 				goto pte_unmap;
2282 
2283 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2284 			if (unlikely(!pgmap)) {
2285 				undo_dev_pagemap(nr, nr_start, flags, pages);
2286 				goto pte_unmap;
2287 			}
2288 		} else if (pte_special(pte))
2289 			goto pte_unmap;
2290 
2291 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2292 		page = pte_page(pte);
2293 
2294 		folio = try_grab_folio(page, 1, flags);
2295 		if (!folio)
2296 			goto pte_unmap;
2297 
2298 		if (unlikely(page_is_secretmem(page))) {
2299 			gup_put_folio(folio, 1, flags);
2300 			goto pte_unmap;
2301 		}
2302 
2303 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2304 			gup_put_folio(folio, 1, flags);
2305 			goto pte_unmap;
2306 		}
2307 
2308 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2309 			gup_put_folio(folio, 1, flags);
2310 			goto pte_unmap;
2311 		}
2312 
2313 		/*
2314 		 * We need to make the page accessible if and only if we are
2315 		 * going to access its content (the FOLL_PIN case).  Please
2316 		 * see Documentation/core-api/pin_user_pages.rst for
2317 		 * details.
2318 		 */
2319 		if (flags & FOLL_PIN) {
2320 			ret = arch_make_page_accessible(page);
2321 			if (ret) {
2322 				gup_put_folio(folio, 1, flags);
2323 				goto pte_unmap;
2324 			}
2325 		}
2326 		folio_set_referenced(folio);
2327 		pages[*nr] = page;
2328 		(*nr)++;
2329 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2330 
2331 	ret = 1;
2332 
2333 pte_unmap:
2334 	if (pgmap)
2335 		put_dev_pagemap(pgmap);
2336 	pte_unmap(ptem);
2337 	return ret;
2338 }
2339 #else
2340 
2341 /*
2342  * If we can't determine whether or not a pte is special, then fail immediately
2343  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2344  * to be special.
2345  *
2346  * For a futex to be placed on a THP tail page, get_futex_key requires a
2347  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2348  * useful to have gup_huge_pmd even if we can't operate on ptes.
2349  */
2350 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2351 			 unsigned int flags, struct page **pages, int *nr)
2352 {
2353 	return 0;
2354 }
2355 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2356 
2357 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2358 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2359 			     unsigned long end, unsigned int flags,
2360 			     struct page **pages, int *nr)
2361 {
2362 	int nr_start = *nr;
2363 	struct dev_pagemap *pgmap = NULL;
2364 
2365 	do {
2366 		struct page *page = pfn_to_page(pfn);
2367 
2368 		pgmap = get_dev_pagemap(pfn, pgmap);
2369 		if (unlikely(!pgmap)) {
2370 			undo_dev_pagemap(nr, nr_start, flags, pages);
2371 			break;
2372 		}
2373 		SetPageReferenced(page);
2374 		pages[*nr] = page;
2375 		if (unlikely(!try_grab_page(page, flags))) {
2376 			undo_dev_pagemap(nr, nr_start, flags, pages);
2377 			break;
2378 		}
2379 		(*nr)++;
2380 		pfn++;
2381 	} while (addr += PAGE_SIZE, addr != end);
2382 
2383 	put_dev_pagemap(pgmap);
2384 	return addr == end;
2385 }
2386 
2387 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2388 				 unsigned long end, unsigned int flags,
2389 				 struct page **pages, int *nr)
2390 {
2391 	unsigned long fault_pfn;
2392 	int nr_start = *nr;
2393 
2394 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2395 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2396 		return 0;
2397 
2398 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2399 		undo_dev_pagemap(nr, nr_start, flags, pages);
2400 		return 0;
2401 	}
2402 	return 1;
2403 }
2404 
2405 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2406 				 unsigned long end, unsigned int flags,
2407 				 struct page **pages, int *nr)
2408 {
2409 	unsigned long fault_pfn;
2410 	int nr_start = *nr;
2411 
2412 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2413 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2414 		return 0;
2415 
2416 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2417 		undo_dev_pagemap(nr, nr_start, flags, pages);
2418 		return 0;
2419 	}
2420 	return 1;
2421 }
2422 #else
2423 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2424 				 unsigned long end, unsigned int flags,
2425 				 struct page **pages, int *nr)
2426 {
2427 	BUILD_BUG();
2428 	return 0;
2429 }
2430 
2431 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2432 				 unsigned long end, unsigned int flags,
2433 				 struct page **pages, int *nr)
2434 {
2435 	BUILD_BUG();
2436 	return 0;
2437 }
2438 #endif
2439 
2440 static int record_subpages(struct page *page, unsigned long addr,
2441 			   unsigned long end, struct page **pages)
2442 {
2443 	int nr;
2444 
2445 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2446 		pages[nr] = nth_page(page, nr);
2447 
2448 	return nr;
2449 }
2450 
2451 #ifdef CONFIG_ARCH_HAS_HUGEPD
2452 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2453 				      unsigned long sz)
2454 {
2455 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2456 	return (__boundary - 1 < end - 1) ? __boundary : end;
2457 }
2458 
2459 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2460 		       unsigned long end, unsigned int flags,
2461 		       struct page **pages, int *nr)
2462 {
2463 	unsigned long pte_end;
2464 	struct page *page;
2465 	struct folio *folio;
2466 	pte_t pte;
2467 	int refs;
2468 
2469 	pte_end = (addr + sz) & ~(sz-1);
2470 	if (pte_end < end)
2471 		end = pte_end;
2472 
2473 	pte = huge_ptep_get(ptep);
2474 
2475 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2476 		return 0;
2477 
2478 	/* hugepages are never "special" */
2479 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2480 
2481 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2482 	refs = record_subpages(page, addr, end, pages + *nr);
2483 
2484 	folio = try_grab_folio(page, refs, flags);
2485 	if (!folio)
2486 		return 0;
2487 
2488 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2489 		gup_put_folio(folio, refs, flags);
2490 		return 0;
2491 	}
2492 
2493 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2494 		gup_put_folio(folio, refs, flags);
2495 		return 0;
2496 	}
2497 
2498 	*nr += refs;
2499 	folio_set_referenced(folio);
2500 	return 1;
2501 }
2502 
2503 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2504 		unsigned int pdshift, unsigned long end, unsigned int flags,
2505 		struct page **pages, int *nr)
2506 {
2507 	pte_t *ptep;
2508 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2509 	unsigned long next;
2510 
2511 	ptep = hugepte_offset(hugepd, addr, pdshift);
2512 	do {
2513 		next = hugepte_addr_end(addr, end, sz);
2514 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2515 			return 0;
2516 	} while (ptep++, addr = next, addr != end);
2517 
2518 	return 1;
2519 }
2520 #else
2521 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2522 		unsigned int pdshift, unsigned long end, unsigned int flags,
2523 		struct page **pages, int *nr)
2524 {
2525 	return 0;
2526 }
2527 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2528 
2529 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2530 			unsigned long end, unsigned int flags,
2531 			struct page **pages, int *nr)
2532 {
2533 	struct page *page;
2534 	struct folio *folio;
2535 	int refs;
2536 
2537 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2538 		return 0;
2539 
2540 	if (pmd_devmap(orig)) {
2541 		if (unlikely(flags & FOLL_LONGTERM))
2542 			return 0;
2543 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2544 					     pages, nr);
2545 	}
2546 
2547 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2548 	refs = record_subpages(page, addr, end, pages + *nr);
2549 
2550 	folio = try_grab_folio(page, refs, flags);
2551 	if (!folio)
2552 		return 0;
2553 
2554 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2555 		gup_put_folio(folio, refs, flags);
2556 		return 0;
2557 	}
2558 
2559 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2560 		gup_put_folio(folio, refs, flags);
2561 		return 0;
2562 	}
2563 
2564 	*nr += refs;
2565 	folio_set_referenced(folio);
2566 	return 1;
2567 }
2568 
2569 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2570 			unsigned long end, unsigned int flags,
2571 			struct page **pages, int *nr)
2572 {
2573 	struct page *page;
2574 	struct folio *folio;
2575 	int refs;
2576 
2577 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2578 		return 0;
2579 
2580 	if (pud_devmap(orig)) {
2581 		if (unlikely(flags & FOLL_LONGTERM))
2582 			return 0;
2583 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2584 					     pages, nr);
2585 	}
2586 
2587 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2588 	refs = record_subpages(page, addr, end, pages + *nr);
2589 
2590 	folio = try_grab_folio(page, refs, flags);
2591 	if (!folio)
2592 		return 0;
2593 
2594 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2595 		gup_put_folio(folio, refs, flags);
2596 		return 0;
2597 	}
2598 
2599 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2600 		gup_put_folio(folio, refs, flags);
2601 		return 0;
2602 	}
2603 
2604 	*nr += refs;
2605 	folio_set_referenced(folio);
2606 	return 1;
2607 }
2608 
2609 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2610 			unsigned long end, unsigned int flags,
2611 			struct page **pages, int *nr)
2612 {
2613 	int refs;
2614 	struct page *page;
2615 	struct folio *folio;
2616 
2617 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2618 		return 0;
2619 
2620 	BUILD_BUG_ON(pgd_devmap(orig));
2621 
2622 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2623 	refs = record_subpages(page, addr, end, pages + *nr);
2624 
2625 	folio = try_grab_folio(page, refs, flags);
2626 	if (!folio)
2627 		return 0;
2628 
2629 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2630 		gup_put_folio(folio, refs, flags);
2631 		return 0;
2632 	}
2633 
2634 	*nr += refs;
2635 	folio_set_referenced(folio);
2636 	return 1;
2637 }
2638 
2639 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2640 		unsigned int flags, struct page **pages, int *nr)
2641 {
2642 	unsigned long next;
2643 	pmd_t *pmdp;
2644 
2645 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2646 	do {
2647 		pmd_t pmd = READ_ONCE(*pmdp);
2648 
2649 		next = pmd_addr_end(addr, end);
2650 		if (!pmd_present(pmd))
2651 			return 0;
2652 
2653 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2654 			     pmd_devmap(pmd))) {
2655 			/*
2656 			 * NUMA hinting faults need to be handled in the GUP
2657 			 * slowpath for accounting purposes and so that they
2658 			 * can be serialised against THP migration.
2659 			 */
2660 			if (pmd_protnone(pmd))
2661 				return 0;
2662 
2663 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2664 				pages, nr))
2665 				return 0;
2666 
2667 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2668 			/*
2669 			 * architecture have different format for hugetlbfs
2670 			 * pmd format and THP pmd format
2671 			 */
2672 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2673 					 PMD_SHIFT, next, flags, pages, nr))
2674 				return 0;
2675 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2676 			return 0;
2677 	} while (pmdp++, addr = next, addr != end);
2678 
2679 	return 1;
2680 }
2681 
2682 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2683 			 unsigned int flags, struct page **pages, int *nr)
2684 {
2685 	unsigned long next;
2686 	pud_t *pudp;
2687 
2688 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2689 	do {
2690 		pud_t pud = READ_ONCE(*pudp);
2691 
2692 		next = pud_addr_end(addr, end);
2693 		if (unlikely(!pud_present(pud)))
2694 			return 0;
2695 		if (unlikely(pud_huge(pud))) {
2696 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2697 					  pages, nr))
2698 				return 0;
2699 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2700 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2701 					 PUD_SHIFT, next, flags, pages, nr))
2702 				return 0;
2703 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2704 			return 0;
2705 	} while (pudp++, addr = next, addr != end);
2706 
2707 	return 1;
2708 }
2709 
2710 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2711 			 unsigned int flags, struct page **pages, int *nr)
2712 {
2713 	unsigned long next;
2714 	p4d_t *p4dp;
2715 
2716 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2717 	do {
2718 		p4d_t p4d = READ_ONCE(*p4dp);
2719 
2720 		next = p4d_addr_end(addr, end);
2721 		if (p4d_none(p4d))
2722 			return 0;
2723 		BUILD_BUG_ON(p4d_huge(p4d));
2724 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2725 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2726 					 P4D_SHIFT, next, flags, pages, nr))
2727 				return 0;
2728 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2729 			return 0;
2730 	} while (p4dp++, addr = next, addr != end);
2731 
2732 	return 1;
2733 }
2734 
2735 static void gup_pgd_range(unsigned long addr, unsigned long end,
2736 		unsigned int flags, struct page **pages, int *nr)
2737 {
2738 	unsigned long next;
2739 	pgd_t *pgdp;
2740 
2741 	pgdp = pgd_offset(current->mm, addr);
2742 	do {
2743 		pgd_t pgd = READ_ONCE(*pgdp);
2744 
2745 		next = pgd_addr_end(addr, end);
2746 		if (pgd_none(pgd))
2747 			return;
2748 		if (unlikely(pgd_huge(pgd))) {
2749 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2750 					  pages, nr))
2751 				return;
2752 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2753 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2754 					 PGDIR_SHIFT, next, flags, pages, nr))
2755 				return;
2756 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2757 			return;
2758 	} while (pgdp++, addr = next, addr != end);
2759 }
2760 #else
2761 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2762 		unsigned int flags, struct page **pages, int *nr)
2763 {
2764 }
2765 #endif /* CONFIG_HAVE_FAST_GUP */
2766 
2767 #ifndef gup_fast_permitted
2768 /*
2769  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2770  * we need to fall back to the slow version:
2771  */
2772 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2773 {
2774 	return true;
2775 }
2776 #endif
2777 
2778 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2779 				   unsigned int gup_flags, struct page **pages)
2780 {
2781 	int ret;
2782 
2783 	/*
2784 	 * FIXME: FOLL_LONGTERM does not work with
2785 	 * get_user_pages_unlocked() (see comments in that function)
2786 	 */
2787 	if (gup_flags & FOLL_LONGTERM) {
2788 		mmap_read_lock(current->mm);
2789 		ret = __gup_longterm_locked(current->mm,
2790 					    start, nr_pages,
2791 					    pages, NULL, gup_flags);
2792 		mmap_read_unlock(current->mm);
2793 	} else {
2794 		ret = get_user_pages_unlocked(start, nr_pages,
2795 					      pages, gup_flags);
2796 	}
2797 
2798 	return ret;
2799 }
2800 
2801 static unsigned long lockless_pages_from_mm(unsigned long start,
2802 					    unsigned long end,
2803 					    unsigned int gup_flags,
2804 					    struct page **pages)
2805 {
2806 	unsigned long flags;
2807 	int nr_pinned = 0;
2808 	unsigned seq;
2809 
2810 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2811 	    !gup_fast_permitted(start, end))
2812 		return 0;
2813 
2814 	if (gup_flags & FOLL_PIN) {
2815 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2816 		if (seq & 1)
2817 			return 0;
2818 	}
2819 
2820 	/*
2821 	 * Disable interrupts. The nested form is used, in order to allow full,
2822 	 * general purpose use of this routine.
2823 	 *
2824 	 * With interrupts disabled, we block page table pages from being freed
2825 	 * from under us. See struct mmu_table_batch comments in
2826 	 * include/asm-generic/tlb.h for more details.
2827 	 *
2828 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2829 	 * that come from THPs splitting.
2830 	 */
2831 	local_irq_save(flags);
2832 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2833 	local_irq_restore(flags);
2834 
2835 	/*
2836 	 * When pinning pages for DMA there could be a concurrent write protect
2837 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2838 	 */
2839 	if (gup_flags & FOLL_PIN) {
2840 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2841 			unpin_user_pages_lockless(pages, nr_pinned);
2842 			return 0;
2843 		} else {
2844 			sanity_check_pinned_pages(pages, nr_pinned);
2845 		}
2846 	}
2847 	return nr_pinned;
2848 }
2849 
2850 static int internal_get_user_pages_fast(unsigned long start,
2851 					unsigned long nr_pages,
2852 					unsigned int gup_flags,
2853 					struct page **pages)
2854 {
2855 	unsigned long len, end;
2856 	unsigned long nr_pinned;
2857 	int ret;
2858 
2859 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2860 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2861 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2862 		return -EINVAL;
2863 
2864 	if (gup_flags & FOLL_PIN)
2865 		mm_set_has_pinned_flag(&current->mm->flags);
2866 
2867 	if (!(gup_flags & FOLL_FAST_ONLY))
2868 		might_lock_read(&current->mm->mmap_lock);
2869 
2870 	start = untagged_addr(start) & PAGE_MASK;
2871 	len = nr_pages << PAGE_SHIFT;
2872 	if (check_add_overflow(start, len, &end))
2873 		return 0;
2874 	if (unlikely(!access_ok((void __user *)start, len)))
2875 		return -EFAULT;
2876 
2877 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2878 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2879 		return nr_pinned;
2880 
2881 	/* Slow path: try to get the remaining pages with get_user_pages */
2882 	start += nr_pinned << PAGE_SHIFT;
2883 	pages += nr_pinned;
2884 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2885 				      pages);
2886 	if (ret < 0) {
2887 		/*
2888 		 * The caller has to unpin the pages we already pinned so
2889 		 * returning -errno is not an option
2890 		 */
2891 		if (nr_pinned)
2892 			return nr_pinned;
2893 		return ret;
2894 	}
2895 	return ret + nr_pinned;
2896 }
2897 
2898 /**
2899  * get_user_pages_fast_only() - pin user pages in memory
2900  * @start:      starting user address
2901  * @nr_pages:   number of pages from start to pin
2902  * @gup_flags:  flags modifying pin behaviour
2903  * @pages:      array that receives pointers to the pages pinned.
2904  *              Should be at least nr_pages long.
2905  *
2906  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2907  * the regular GUP.
2908  * Note a difference with get_user_pages_fast: this always returns the
2909  * number of pages pinned, 0 if no pages were pinned.
2910  *
2911  * If the architecture does not support this function, simply return with no
2912  * pages pinned.
2913  *
2914  * Careful, careful! COW breaking can go either way, so a non-write
2915  * access can get ambiguous page results. If you call this function without
2916  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2917  */
2918 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2919 			     unsigned int gup_flags, struct page **pages)
2920 {
2921 	int nr_pinned;
2922 	/*
2923 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2924 	 * because gup fast is always a "pin with a +1 page refcount" request.
2925 	 *
2926 	 * FOLL_FAST_ONLY is required in order to match the API description of
2927 	 * this routine: no fall back to regular ("slow") GUP.
2928 	 */
2929 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2930 
2931 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2932 						 pages);
2933 
2934 	/*
2935 	 * As specified in the API description above, this routine is not
2936 	 * allowed to return negative values. However, the common core
2937 	 * routine internal_get_user_pages_fast() *can* return -errno.
2938 	 * Therefore, correct for that here:
2939 	 */
2940 	if (nr_pinned < 0)
2941 		nr_pinned = 0;
2942 
2943 	return nr_pinned;
2944 }
2945 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2946 
2947 /**
2948  * get_user_pages_fast() - pin user pages in memory
2949  * @start:      starting user address
2950  * @nr_pages:   number of pages from start to pin
2951  * @gup_flags:  flags modifying pin behaviour
2952  * @pages:      array that receives pointers to the pages pinned.
2953  *              Should be at least nr_pages long.
2954  *
2955  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2956  * If not successful, it will fall back to taking the lock and
2957  * calling get_user_pages().
2958  *
2959  * Returns number of pages pinned. This may be fewer than the number requested.
2960  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2961  * -errno.
2962  */
2963 int get_user_pages_fast(unsigned long start, int nr_pages,
2964 			unsigned int gup_flags, struct page **pages)
2965 {
2966 	if (!is_valid_gup_flags(gup_flags))
2967 		return -EINVAL;
2968 
2969 	/*
2970 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2971 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2972 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2973 	 * request.
2974 	 */
2975 	gup_flags |= FOLL_GET;
2976 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2977 }
2978 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2979 
2980 /**
2981  * pin_user_pages_fast() - pin user pages in memory without taking locks
2982  *
2983  * @start:      starting user address
2984  * @nr_pages:   number of pages from start to pin
2985  * @gup_flags:  flags modifying pin behaviour
2986  * @pages:      array that receives pointers to the pages pinned.
2987  *              Should be at least nr_pages long.
2988  *
2989  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2990  * get_user_pages_fast() for documentation on the function arguments, because
2991  * the arguments here are identical.
2992  *
2993  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2994  * see Documentation/core-api/pin_user_pages.rst for further details.
2995  */
2996 int pin_user_pages_fast(unsigned long start, int nr_pages,
2997 			unsigned int gup_flags, struct page **pages)
2998 {
2999 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 		return -EINVAL;
3002 
3003 	if (WARN_ON_ONCE(!pages))
3004 		return -EINVAL;
3005 
3006 	gup_flags |= FOLL_PIN;
3007 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3008 }
3009 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3010 
3011 /*
3012  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3013  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3014  *
3015  * The API rules are the same, too: no negative values may be returned.
3016  */
3017 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3018 			     unsigned int gup_flags, struct page **pages)
3019 {
3020 	int nr_pinned;
3021 
3022 	/*
3023 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3024 	 * rules require returning 0, rather than -errno:
3025 	 */
3026 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3027 		return 0;
3028 
3029 	if (WARN_ON_ONCE(!pages))
3030 		return 0;
3031 	/*
3032 	 * FOLL_FAST_ONLY is required in order to match the API description of
3033 	 * this routine: no fall back to regular ("slow") GUP.
3034 	 */
3035 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3036 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3037 						 pages);
3038 	/*
3039 	 * This routine is not allowed to return negative values. However,
3040 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3041 	 * correct for that here:
3042 	 */
3043 	if (nr_pinned < 0)
3044 		nr_pinned = 0;
3045 
3046 	return nr_pinned;
3047 }
3048 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3049 
3050 /**
3051  * pin_user_pages_remote() - pin pages of a remote process
3052  *
3053  * @mm:		mm_struct of target mm
3054  * @start:	starting user address
3055  * @nr_pages:	number of pages from start to pin
3056  * @gup_flags:	flags modifying lookup behaviour
3057  * @pages:	array that receives pointers to the pages pinned.
3058  *		Should be at least nr_pages long.
3059  * @vmas:	array of pointers to vmas corresponding to each page.
3060  *		Or NULL if the caller does not require them.
3061  * @locked:	pointer to lock flag indicating whether lock is held and
3062  *		subsequently whether VM_FAULT_RETRY functionality can be
3063  *		utilised. Lock must initially be held.
3064  *
3065  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3066  * get_user_pages_remote() for documentation on the function arguments, because
3067  * the arguments here are identical.
3068  *
3069  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3070  * see Documentation/core-api/pin_user_pages.rst for details.
3071  */
3072 long pin_user_pages_remote(struct mm_struct *mm,
3073 			   unsigned long start, unsigned long nr_pages,
3074 			   unsigned int gup_flags, struct page **pages,
3075 			   struct vm_area_struct **vmas, int *locked)
3076 {
3077 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3078 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3079 		return -EINVAL;
3080 
3081 	if (WARN_ON_ONCE(!pages))
3082 		return -EINVAL;
3083 
3084 	gup_flags |= FOLL_PIN;
3085 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3086 				       pages, vmas, locked);
3087 }
3088 EXPORT_SYMBOL(pin_user_pages_remote);
3089 
3090 /**
3091  * pin_user_pages() - pin user pages in memory for use by other devices
3092  *
3093  * @start:	starting user address
3094  * @nr_pages:	number of pages from start to pin
3095  * @gup_flags:	flags modifying lookup behaviour
3096  * @pages:	array that receives pointers to the pages pinned.
3097  *		Should be at least nr_pages long.
3098  * @vmas:	array of pointers to vmas corresponding to each page.
3099  *		Or NULL if the caller does not require them.
3100  *
3101  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3102  * FOLL_PIN is set.
3103  *
3104  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3105  * see Documentation/core-api/pin_user_pages.rst for details.
3106  */
3107 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3108 		    unsigned int gup_flags, struct page **pages,
3109 		    struct vm_area_struct **vmas)
3110 {
3111 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3112 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3113 		return -EINVAL;
3114 
3115 	if (WARN_ON_ONCE(!pages))
3116 		return -EINVAL;
3117 
3118 	gup_flags |= FOLL_PIN;
3119 	return __gup_longterm_locked(current->mm, start, nr_pages,
3120 				     pages, vmas, gup_flags);
3121 }
3122 EXPORT_SYMBOL(pin_user_pages);
3123 
3124 /*
3125  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3126  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3127  * FOLL_PIN and rejects FOLL_GET.
3128  */
3129 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3130 			     struct page **pages, unsigned int gup_flags)
3131 {
3132 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3133 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3134 		return -EINVAL;
3135 
3136 	if (WARN_ON_ONCE(!pages))
3137 		return -EINVAL;
3138 
3139 	gup_flags |= FOLL_PIN;
3140 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3141 }
3142 EXPORT_SYMBOL(pin_user_pages_unlocked);
3143