1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (flags & FOLL_GET) 127 return try_get_folio(page, refs); 128 else if (flags & FOLL_PIN) { 129 struct folio *folio; 130 131 /* 132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 133 * right zone, so fail and let the caller fall back to the slow 134 * path. 135 */ 136 if (unlikely((flags & FOLL_LONGTERM) && 137 !is_pinnable_page(page))) 138 return NULL; 139 140 /* 141 * CAUTION: Don't use compound_head() on the page before this 142 * point, the result won't be stable. 143 */ 144 folio = try_get_folio(page, refs); 145 if (!folio) 146 return NULL; 147 148 /* 149 * When pinning a large folio, use an exact count to track it. 150 * 151 * However, be sure to *also* increment the normal folio 152 * refcount field at least once, so that the folio really 153 * is pinned. That's why the refcount from the earlier 154 * try_get_folio() is left intact. 155 */ 156 if (folio_test_large(folio)) 157 atomic_add(refs, folio_pincount_ptr(folio)); 158 else 159 folio_ref_add(folio, 160 refs * (GUP_PIN_COUNTING_BIAS - 1)); 161 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 162 163 return folio; 164 } 165 166 WARN_ON_ONCE(1); 167 return NULL; 168 } 169 170 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 171 { 172 if (flags & FOLL_PIN) { 173 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 174 if (folio_test_large(folio)) 175 atomic_sub(refs, folio_pincount_ptr(folio)); 176 else 177 refs *= GUP_PIN_COUNTING_BIAS; 178 } 179 180 if (!put_devmap_managed_page_refs(&folio->page, refs)) 181 folio_put_refs(folio, refs); 182 } 183 184 /** 185 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 186 * @page: pointer to page to be grabbed 187 * @flags: gup flags: these are the FOLL_* flag values. 188 * 189 * This might not do anything at all, depending on the flags argument. 190 * 191 * "grab" names in this file mean, "look at flags to decide whether to use 192 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 193 * 194 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 195 * time. Cases: please see the try_grab_folio() documentation, with 196 * "refs=1". 197 * 198 * Return: true for success, or if no action was required (if neither FOLL_PIN 199 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 200 * FOLL_PIN was set, but the page could not be grabbed. 201 */ 202 bool __must_check try_grab_page(struct page *page, unsigned int flags) 203 { 204 struct folio *folio = page_folio(page); 205 206 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 207 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 208 return false; 209 210 if (flags & FOLL_GET) 211 folio_ref_inc(folio); 212 else if (flags & FOLL_PIN) { 213 /* 214 * Similar to try_grab_folio(): be sure to *also* 215 * increment the normal page refcount field at least once, 216 * so that the page really is pinned. 217 */ 218 if (folio_test_large(folio)) { 219 folio_ref_add(folio, 1); 220 atomic_add(1, folio_pincount_ptr(folio)); 221 } else { 222 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 223 } 224 225 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 226 } 227 228 return true; 229 } 230 231 /** 232 * unpin_user_page() - release a dma-pinned page 233 * @page: pointer to page to be released 234 * 235 * Pages that were pinned via pin_user_pages*() must be released via either 236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 237 * that such pages can be separately tracked and uniquely handled. In 238 * particular, interactions with RDMA and filesystems need special handling. 239 */ 240 void unpin_user_page(struct page *page) 241 { 242 sanity_check_pinned_pages(&page, 1); 243 gup_put_folio(page_folio(page), 1, FOLL_PIN); 244 } 245 EXPORT_SYMBOL(unpin_user_page); 246 247 static inline struct folio *gup_folio_range_next(struct page *start, 248 unsigned long npages, unsigned long i, unsigned int *ntails) 249 { 250 struct page *next = nth_page(start, i); 251 struct folio *folio = page_folio(next); 252 unsigned int nr = 1; 253 254 if (folio_test_large(folio)) 255 nr = min_t(unsigned int, npages - i, 256 folio_nr_pages(folio) - folio_page_idx(folio, next)); 257 258 *ntails = nr; 259 return folio; 260 } 261 262 static inline struct folio *gup_folio_next(struct page **list, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct folio *folio = page_folio(list[i]); 266 unsigned int nr; 267 268 for (nr = i + 1; nr < npages; nr++) { 269 if (page_folio(list[nr]) != folio) 270 break; 271 } 272 273 *ntails = nr - i; 274 return folio; 275 } 276 277 /** 278 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 279 * @pages: array of pages to be maybe marked dirty, and definitely released. 280 * @npages: number of pages in the @pages array. 281 * @make_dirty: whether to mark the pages dirty 282 * 283 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 284 * variants called on that page. 285 * 286 * For each page in the @pages array, make that page (or its head page, if a 287 * compound page) dirty, if @make_dirty is true, and if the page was previously 288 * listed as clean. In any case, releases all pages using unpin_user_page(), 289 * possibly via unpin_user_pages(), for the non-dirty case. 290 * 291 * Please see the unpin_user_page() documentation for details. 292 * 293 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 294 * required, then the caller should a) verify that this is really correct, 295 * because _lock() is usually required, and b) hand code it: 296 * set_page_dirty_lock(), unpin_user_page(). 297 * 298 */ 299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 300 bool make_dirty) 301 { 302 unsigned long i; 303 struct folio *folio; 304 unsigned int nr; 305 306 if (!make_dirty) { 307 unpin_user_pages(pages, npages); 308 return; 309 } 310 311 sanity_check_pinned_pages(pages, npages); 312 for (i = 0; i < npages; i += nr) { 313 folio = gup_folio_next(pages, npages, i, &nr); 314 /* 315 * Checking PageDirty at this point may race with 316 * clear_page_dirty_for_io(), but that's OK. Two key 317 * cases: 318 * 319 * 1) This code sees the page as already dirty, so it 320 * skips the call to set_page_dirty(). That could happen 321 * because clear_page_dirty_for_io() called 322 * page_mkclean(), followed by set_page_dirty(). 323 * However, now the page is going to get written back, 324 * which meets the original intention of setting it 325 * dirty, so all is well: clear_page_dirty_for_io() goes 326 * on to call TestClearPageDirty(), and write the page 327 * back. 328 * 329 * 2) This code sees the page as clean, so it calls 330 * set_page_dirty(). The page stays dirty, despite being 331 * written back, so it gets written back again in the 332 * next writeback cycle. This is harmless. 333 */ 334 if (!folio_test_dirty(folio)) { 335 folio_lock(folio); 336 folio_mark_dirty(folio); 337 folio_unlock(folio); 338 } 339 gup_put_folio(folio, nr, FOLL_PIN); 340 } 341 } 342 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 343 344 /** 345 * unpin_user_page_range_dirty_lock() - release and optionally dirty 346 * gup-pinned page range 347 * 348 * @page: the starting page of a range maybe marked dirty, and definitely released. 349 * @npages: number of consecutive pages to release. 350 * @make_dirty: whether to mark the pages dirty 351 * 352 * "gup-pinned page range" refers to a range of pages that has had one of the 353 * pin_user_pages() variants called on that page. 354 * 355 * For the page ranges defined by [page .. page+npages], make that range (or 356 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 357 * page range was previously listed as clean. 358 * 359 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 360 * required, then the caller should a) verify that this is really correct, 361 * because _lock() is usually required, and b) hand code it: 362 * set_page_dirty_lock(), unpin_user_page(). 363 * 364 */ 365 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 366 bool make_dirty) 367 { 368 unsigned long i; 369 struct folio *folio; 370 unsigned int nr; 371 372 for (i = 0; i < npages; i += nr) { 373 folio = gup_folio_range_next(page, npages, i, &nr); 374 if (make_dirty && !folio_test_dirty(folio)) { 375 folio_lock(folio); 376 folio_mark_dirty(folio); 377 folio_unlock(folio); 378 } 379 gup_put_folio(folio, nr, FOLL_PIN); 380 } 381 } 382 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 383 384 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 385 { 386 unsigned long i; 387 struct folio *folio; 388 unsigned int nr; 389 390 /* 391 * Don't perform any sanity checks because we might have raced with 392 * fork() and some anonymous pages might now actually be shared -- 393 * which is why we're unpinning after all. 394 */ 395 for (i = 0; i < npages; i += nr) { 396 folio = gup_folio_next(pages, npages, i, &nr); 397 gup_put_folio(folio, nr, FOLL_PIN); 398 } 399 } 400 401 /** 402 * unpin_user_pages() - release an array of gup-pinned pages. 403 * @pages: array of pages to be marked dirty and released. 404 * @npages: number of pages in the @pages array. 405 * 406 * For each page in the @pages array, release the page using unpin_user_page(). 407 * 408 * Please see the unpin_user_page() documentation for details. 409 */ 410 void unpin_user_pages(struct page **pages, unsigned long npages) 411 { 412 unsigned long i; 413 struct folio *folio; 414 unsigned int nr; 415 416 /* 417 * If this WARN_ON() fires, then the system *might* be leaking pages (by 418 * leaving them pinned), but probably not. More likely, gup/pup returned 419 * a hard -ERRNO error to the caller, who erroneously passed it here. 420 */ 421 if (WARN_ON(IS_ERR_VALUE(npages))) 422 return; 423 424 sanity_check_pinned_pages(pages, npages); 425 for (i = 0; i < npages; i += nr) { 426 folio = gup_folio_next(pages, npages, i, &nr); 427 gup_put_folio(folio, nr, FOLL_PIN); 428 } 429 } 430 EXPORT_SYMBOL(unpin_user_pages); 431 432 /* 433 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 434 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 435 * cache bouncing on large SMP machines for concurrent pinned gups. 436 */ 437 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 438 { 439 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 440 set_bit(MMF_HAS_PINNED, mm_flags); 441 } 442 443 #ifdef CONFIG_MMU 444 static struct page *no_page_table(struct vm_area_struct *vma, 445 unsigned int flags) 446 { 447 /* 448 * When core dumping an enormous anonymous area that nobody 449 * has touched so far, we don't want to allocate unnecessary pages or 450 * page tables. Return error instead of NULL to skip handle_mm_fault, 451 * then get_dump_page() will return NULL to leave a hole in the dump. 452 * But we can only make this optimization where a hole would surely 453 * be zero-filled if handle_mm_fault() actually did handle it. 454 */ 455 if ((flags & FOLL_DUMP) && 456 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 457 return ERR_PTR(-EFAULT); 458 return NULL; 459 } 460 461 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 462 pte_t *pte, unsigned int flags) 463 { 464 if (flags & FOLL_TOUCH) { 465 pte_t entry = *pte; 466 467 if (flags & FOLL_WRITE) 468 entry = pte_mkdirty(entry); 469 entry = pte_mkyoung(entry); 470 471 if (!pte_same(*pte, entry)) { 472 set_pte_at(vma->vm_mm, address, pte, entry); 473 update_mmu_cache(vma, address, pte); 474 } 475 } 476 477 /* Proper page table entry exists, but no corresponding struct page */ 478 return -EEXIST; 479 } 480 481 /* 482 * FOLL_FORCE can write to even unwritable pte's, but only 483 * after we've gone through a COW cycle and they are dirty. 484 */ 485 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 486 { 487 return pte_write(pte) || 488 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 489 } 490 491 static struct page *follow_page_pte(struct vm_area_struct *vma, 492 unsigned long address, pmd_t *pmd, unsigned int flags, 493 struct dev_pagemap **pgmap) 494 { 495 struct mm_struct *mm = vma->vm_mm; 496 struct page *page; 497 spinlock_t *ptl; 498 pte_t *ptep, pte; 499 int ret; 500 501 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 502 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 503 (FOLL_PIN | FOLL_GET))) 504 return ERR_PTR(-EINVAL); 505 retry: 506 if (unlikely(pmd_bad(*pmd))) 507 return no_page_table(vma, flags); 508 509 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 510 pte = *ptep; 511 if (!pte_present(pte)) { 512 swp_entry_t entry; 513 /* 514 * KSM's break_ksm() relies upon recognizing a ksm page 515 * even while it is being migrated, so for that case we 516 * need migration_entry_wait(). 517 */ 518 if (likely(!(flags & FOLL_MIGRATION))) 519 goto no_page; 520 if (pte_none(pte)) 521 goto no_page; 522 entry = pte_to_swp_entry(pte); 523 if (!is_migration_entry(entry)) 524 goto no_page; 525 pte_unmap_unlock(ptep, ptl); 526 migration_entry_wait(mm, pmd, address); 527 goto retry; 528 } 529 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 530 goto no_page; 531 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 532 pte_unmap_unlock(ptep, ptl); 533 return NULL; 534 } 535 536 page = vm_normal_page(vma, address, pte); 537 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 538 /* 539 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 540 * case since they are only valid while holding the pgmap 541 * reference. 542 */ 543 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 544 if (*pgmap) 545 page = pte_page(pte); 546 else 547 goto no_page; 548 } else if (unlikely(!page)) { 549 if (flags & FOLL_DUMP) { 550 /* Avoid special (like zero) pages in core dumps */ 551 page = ERR_PTR(-EFAULT); 552 goto out; 553 } 554 555 if (is_zero_pfn(pte_pfn(pte))) { 556 page = pte_page(pte); 557 } else { 558 ret = follow_pfn_pte(vma, address, ptep, flags); 559 page = ERR_PTR(ret); 560 goto out; 561 } 562 } 563 564 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 565 page = ERR_PTR(-EMLINK); 566 goto out; 567 } 568 569 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 570 !PageAnonExclusive(page), page); 571 572 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 573 if (unlikely(!try_grab_page(page, flags))) { 574 page = ERR_PTR(-ENOMEM); 575 goto out; 576 } 577 /* 578 * We need to make the page accessible if and only if we are going 579 * to access its content (the FOLL_PIN case). Please see 580 * Documentation/core-api/pin_user_pages.rst for details. 581 */ 582 if (flags & FOLL_PIN) { 583 ret = arch_make_page_accessible(page); 584 if (ret) { 585 unpin_user_page(page); 586 page = ERR_PTR(ret); 587 goto out; 588 } 589 } 590 if (flags & FOLL_TOUCH) { 591 if ((flags & FOLL_WRITE) && 592 !pte_dirty(pte) && !PageDirty(page)) 593 set_page_dirty(page); 594 /* 595 * pte_mkyoung() would be more correct here, but atomic care 596 * is needed to avoid losing the dirty bit: it is easier to use 597 * mark_page_accessed(). 598 */ 599 mark_page_accessed(page); 600 } 601 out: 602 pte_unmap_unlock(ptep, ptl); 603 return page; 604 no_page: 605 pte_unmap_unlock(ptep, ptl); 606 if (!pte_none(pte)) 607 return NULL; 608 return no_page_table(vma, flags); 609 } 610 611 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 612 unsigned long address, pud_t *pudp, 613 unsigned int flags, 614 struct follow_page_context *ctx) 615 { 616 pmd_t *pmd, pmdval; 617 spinlock_t *ptl; 618 struct page *page; 619 struct mm_struct *mm = vma->vm_mm; 620 621 pmd = pmd_offset(pudp, address); 622 /* 623 * The READ_ONCE() will stabilize the pmdval in a register or 624 * on the stack so that it will stop changing under the code. 625 */ 626 pmdval = READ_ONCE(*pmd); 627 if (pmd_none(pmdval)) 628 return no_page_table(vma, flags); 629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 630 page = follow_huge_pmd(mm, address, pmd, flags); 631 if (page) 632 return page; 633 return no_page_table(vma, flags); 634 } 635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 636 page = follow_huge_pd(vma, address, 637 __hugepd(pmd_val(pmdval)), flags, 638 PMD_SHIFT); 639 if (page) 640 return page; 641 return no_page_table(vma, flags); 642 } 643 retry: 644 if (!pmd_present(pmdval)) { 645 /* 646 * Should never reach here, if thp migration is not supported; 647 * Otherwise, it must be a thp migration entry. 648 */ 649 VM_BUG_ON(!thp_migration_supported() || 650 !is_pmd_migration_entry(pmdval)); 651 652 if (likely(!(flags & FOLL_MIGRATION))) 653 return no_page_table(vma, flags); 654 655 pmd_migration_entry_wait(mm, pmd); 656 pmdval = READ_ONCE(*pmd); 657 /* 658 * MADV_DONTNEED may convert the pmd to null because 659 * mmap_lock is held in read mode 660 */ 661 if (pmd_none(pmdval)) 662 return no_page_table(vma, flags); 663 goto retry; 664 } 665 if (pmd_devmap(pmdval)) { 666 ptl = pmd_lock(mm, pmd); 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 668 spin_unlock(ptl); 669 if (page) 670 return page; 671 } 672 if (likely(!pmd_trans_huge(pmdval))) 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 674 675 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 676 return no_page_table(vma, flags); 677 678 retry_locked: 679 ptl = pmd_lock(mm, pmd); 680 if (unlikely(pmd_none(*pmd))) { 681 spin_unlock(ptl); 682 return no_page_table(vma, flags); 683 } 684 if (unlikely(!pmd_present(*pmd))) { 685 spin_unlock(ptl); 686 if (likely(!(flags & FOLL_MIGRATION))) 687 return no_page_table(vma, flags); 688 pmd_migration_entry_wait(mm, pmd); 689 goto retry_locked; 690 } 691 if (unlikely(!pmd_trans_huge(*pmd))) { 692 spin_unlock(ptl); 693 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 694 } 695 if (flags & FOLL_SPLIT_PMD) { 696 int ret; 697 page = pmd_page(*pmd); 698 if (is_huge_zero_page(page)) { 699 spin_unlock(ptl); 700 ret = 0; 701 split_huge_pmd(vma, pmd, address); 702 if (pmd_trans_unstable(pmd)) 703 ret = -EBUSY; 704 } else { 705 spin_unlock(ptl); 706 split_huge_pmd(vma, pmd, address); 707 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 708 } 709 710 return ret ? ERR_PTR(ret) : 711 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 712 } 713 page = follow_trans_huge_pmd(vma, address, pmd, flags); 714 spin_unlock(ptl); 715 ctx->page_mask = HPAGE_PMD_NR - 1; 716 return page; 717 } 718 719 static struct page *follow_pud_mask(struct vm_area_struct *vma, 720 unsigned long address, p4d_t *p4dp, 721 unsigned int flags, 722 struct follow_page_context *ctx) 723 { 724 pud_t *pud; 725 spinlock_t *ptl; 726 struct page *page; 727 struct mm_struct *mm = vma->vm_mm; 728 729 pud = pud_offset(p4dp, address); 730 if (pud_none(*pud)) 731 return no_page_table(vma, flags); 732 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 733 page = follow_huge_pud(mm, address, pud, flags); 734 if (page) 735 return page; 736 return no_page_table(vma, flags); 737 } 738 if (is_hugepd(__hugepd(pud_val(*pud)))) { 739 page = follow_huge_pd(vma, address, 740 __hugepd(pud_val(*pud)), flags, 741 PUD_SHIFT); 742 if (page) 743 return page; 744 return no_page_table(vma, flags); 745 } 746 if (pud_devmap(*pud)) { 747 ptl = pud_lock(mm, pud); 748 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 749 spin_unlock(ptl); 750 if (page) 751 return page; 752 } 753 if (unlikely(pud_bad(*pud))) 754 return no_page_table(vma, flags); 755 756 return follow_pmd_mask(vma, address, pud, flags, ctx); 757 } 758 759 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 760 unsigned long address, pgd_t *pgdp, 761 unsigned int flags, 762 struct follow_page_context *ctx) 763 { 764 p4d_t *p4d; 765 struct page *page; 766 767 p4d = p4d_offset(pgdp, address); 768 if (p4d_none(*p4d)) 769 return no_page_table(vma, flags); 770 BUILD_BUG_ON(p4d_huge(*p4d)); 771 if (unlikely(p4d_bad(*p4d))) 772 return no_page_table(vma, flags); 773 774 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 775 page = follow_huge_pd(vma, address, 776 __hugepd(p4d_val(*p4d)), flags, 777 P4D_SHIFT); 778 if (page) 779 return page; 780 return no_page_table(vma, flags); 781 } 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct page *page; 815 struct mm_struct *mm = vma->vm_mm; 816 817 ctx->page_mask = 0; 818 819 /* make this handle hugepd */ 820 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 821 if (!IS_ERR(page)) { 822 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 823 return page; 824 } 825 826 pgd = pgd_offset(mm, address); 827 828 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 829 return no_page_table(vma, flags); 830 831 if (pgd_huge(*pgd)) { 832 page = follow_huge_pgd(mm, address, pgd, flags); 833 if (page) 834 return page; 835 return no_page_table(vma, flags); 836 } 837 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 838 page = follow_huge_pd(vma, address, 839 __hugepd(pgd_val(*pgd)), flags, 840 PGDIR_SHIFT); 841 if (page) 842 return page; 843 return no_page_table(vma, flags); 844 } 845 846 return follow_p4d_mask(vma, address, pgd, flags, ctx); 847 } 848 849 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 850 unsigned int foll_flags) 851 { 852 struct follow_page_context ctx = { NULL }; 853 struct page *page; 854 855 if (vma_is_secretmem(vma)) 856 return NULL; 857 858 if (foll_flags & FOLL_PIN) 859 return NULL; 860 861 page = follow_page_mask(vma, address, foll_flags, &ctx); 862 if (ctx.pgmap) 863 put_dev_pagemap(ctx.pgmap); 864 return page; 865 } 866 867 static int get_gate_page(struct mm_struct *mm, unsigned long address, 868 unsigned int gup_flags, struct vm_area_struct **vma, 869 struct page **page) 870 { 871 pgd_t *pgd; 872 p4d_t *p4d; 873 pud_t *pud; 874 pmd_t *pmd; 875 pte_t *pte; 876 int ret = -EFAULT; 877 878 /* user gate pages are read-only */ 879 if (gup_flags & FOLL_WRITE) 880 return -EFAULT; 881 if (address > TASK_SIZE) 882 pgd = pgd_offset_k(address); 883 else 884 pgd = pgd_offset_gate(mm, address); 885 if (pgd_none(*pgd)) 886 return -EFAULT; 887 p4d = p4d_offset(pgd, address); 888 if (p4d_none(*p4d)) 889 return -EFAULT; 890 pud = pud_offset(p4d, address); 891 if (pud_none(*pud)) 892 return -EFAULT; 893 pmd = pmd_offset(pud, address); 894 if (!pmd_present(*pmd)) 895 return -EFAULT; 896 VM_BUG_ON(pmd_trans_huge(*pmd)); 897 pte = pte_offset_map(pmd, address); 898 if (pte_none(*pte)) 899 goto unmap; 900 *vma = get_gate_vma(mm); 901 if (!page) 902 goto out; 903 *page = vm_normal_page(*vma, address, *pte); 904 if (!*page) { 905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 906 goto unmap; 907 *page = pte_page(*pte); 908 } 909 if (unlikely(!try_grab_page(*page, gup_flags))) { 910 ret = -ENOMEM; 911 goto unmap; 912 } 913 out: 914 ret = 0; 915 unmap: 916 pte_unmap(pte); 917 return ret; 918 } 919 920 /* 921 * mmap_lock must be held on entry. If @locked != NULL and *@flags 922 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 923 * is, *@locked will be set to 0 and -EBUSY returned. 924 */ 925 static int faultin_page(struct vm_area_struct *vma, 926 unsigned long address, unsigned int *flags, bool unshare, 927 int *locked) 928 { 929 unsigned int fault_flags = 0; 930 vm_fault_t ret; 931 932 if (*flags & FOLL_NOFAULT) 933 return -EFAULT; 934 if (*flags & FOLL_WRITE) 935 fault_flags |= FAULT_FLAG_WRITE; 936 if (*flags & FOLL_REMOTE) 937 fault_flags |= FAULT_FLAG_REMOTE; 938 if (locked) 939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 940 if (*flags & FOLL_NOWAIT) 941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 942 if (*flags & FOLL_TRIED) { 943 /* 944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 945 * can co-exist 946 */ 947 fault_flags |= FAULT_FLAG_TRIED; 948 } 949 if (unshare) { 950 fault_flags |= FAULT_FLAG_UNSHARE; 951 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 952 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 953 } 954 955 ret = handle_mm_fault(vma, address, fault_flags, NULL); 956 if (ret & VM_FAULT_ERROR) { 957 int err = vm_fault_to_errno(ret, *flags); 958 959 if (err) 960 return err; 961 BUG(); 962 } 963 964 if (ret & VM_FAULT_RETRY) { 965 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 966 *locked = 0; 967 return -EBUSY; 968 } 969 970 /* 971 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 972 * necessary, even if maybe_mkwrite decided not to set pte_write. We 973 * can thus safely do subsequent page lookups as if they were reads. 974 * But only do so when looping for pte_write is futile: in some cases 975 * userspace may also be wanting to write to the gotten user page, 976 * which a read fault here might prevent (a readonly page might get 977 * reCOWed by userspace write). 978 */ 979 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 980 *flags |= FOLL_COW; 981 return 0; 982 } 983 984 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 985 { 986 vm_flags_t vm_flags = vma->vm_flags; 987 int write = (gup_flags & FOLL_WRITE); 988 int foreign = (gup_flags & FOLL_REMOTE); 989 990 if (vm_flags & (VM_IO | VM_PFNMAP)) 991 return -EFAULT; 992 993 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 994 return -EFAULT; 995 996 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 997 return -EOPNOTSUPP; 998 999 if (vma_is_secretmem(vma)) 1000 return -EFAULT; 1001 1002 if (write) { 1003 if (!(vm_flags & VM_WRITE)) { 1004 if (!(gup_flags & FOLL_FORCE)) 1005 return -EFAULT; 1006 /* 1007 * We used to let the write,force case do COW in a 1008 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1009 * set a breakpoint in a read-only mapping of an 1010 * executable, without corrupting the file (yet only 1011 * when that file had been opened for writing!). 1012 * Anon pages in shared mappings are surprising: now 1013 * just reject it. 1014 */ 1015 if (!is_cow_mapping(vm_flags)) 1016 return -EFAULT; 1017 } 1018 } else if (!(vm_flags & VM_READ)) { 1019 if (!(gup_flags & FOLL_FORCE)) 1020 return -EFAULT; 1021 /* 1022 * Is there actually any vma we can reach here which does not 1023 * have VM_MAYREAD set? 1024 */ 1025 if (!(vm_flags & VM_MAYREAD)) 1026 return -EFAULT; 1027 } 1028 /* 1029 * gups are always data accesses, not instruction 1030 * fetches, so execute=false here 1031 */ 1032 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1033 return -EFAULT; 1034 return 0; 1035 } 1036 1037 /** 1038 * __get_user_pages() - pin user pages in memory 1039 * @mm: mm_struct of target mm 1040 * @start: starting user address 1041 * @nr_pages: number of pages from start to pin 1042 * @gup_flags: flags modifying pin behaviour 1043 * @pages: array that receives pointers to the pages pinned. 1044 * Should be at least nr_pages long. Or NULL, if caller 1045 * only intends to ensure the pages are faulted in. 1046 * @vmas: array of pointers to vmas corresponding to each page. 1047 * Or NULL if the caller does not require them. 1048 * @locked: whether we're still with the mmap_lock held 1049 * 1050 * Returns either number of pages pinned (which may be less than the 1051 * number requested), or an error. Details about the return value: 1052 * 1053 * -- If nr_pages is 0, returns 0. 1054 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1055 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1056 * pages pinned. Again, this may be less than nr_pages. 1057 * -- 0 return value is possible when the fault would need to be retried. 1058 * 1059 * The caller is responsible for releasing returned @pages, via put_page(). 1060 * 1061 * @vmas are valid only as long as mmap_lock is held. 1062 * 1063 * Must be called with mmap_lock held. It may be released. See below. 1064 * 1065 * __get_user_pages walks a process's page tables and takes a reference to 1066 * each struct page that each user address corresponds to at a given 1067 * instant. That is, it takes the page that would be accessed if a user 1068 * thread accesses the given user virtual address at that instant. 1069 * 1070 * This does not guarantee that the page exists in the user mappings when 1071 * __get_user_pages returns, and there may even be a completely different 1072 * page there in some cases (eg. if mmapped pagecache has been invalidated 1073 * and subsequently re faulted). However it does guarantee that the page 1074 * won't be freed completely. And mostly callers simply care that the page 1075 * contains data that was valid *at some point in time*. Typically, an IO 1076 * or similar operation cannot guarantee anything stronger anyway because 1077 * locks can't be held over the syscall boundary. 1078 * 1079 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1080 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1081 * appropriate) must be called after the page is finished with, and 1082 * before put_page is called. 1083 * 1084 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1085 * released by an up_read(). That can happen if @gup_flags does not 1086 * have FOLL_NOWAIT. 1087 * 1088 * A caller using such a combination of @locked and @gup_flags 1089 * must therefore hold the mmap_lock for reading only, and recognize 1090 * when it's been released. Otherwise, it must be held for either 1091 * reading or writing and will not be released. 1092 * 1093 * In most cases, get_user_pages or get_user_pages_fast should be used 1094 * instead of __get_user_pages. __get_user_pages should be used only if 1095 * you need some special @gup_flags. 1096 */ 1097 static long __get_user_pages(struct mm_struct *mm, 1098 unsigned long start, unsigned long nr_pages, 1099 unsigned int gup_flags, struct page **pages, 1100 struct vm_area_struct **vmas, int *locked) 1101 { 1102 long ret = 0, i = 0; 1103 struct vm_area_struct *vma = NULL; 1104 struct follow_page_context ctx = { NULL }; 1105 1106 if (!nr_pages) 1107 return 0; 1108 1109 start = untagged_addr(start); 1110 1111 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1112 1113 /* 1114 * If FOLL_FORCE is set then do not force a full fault as the hinting 1115 * fault information is unrelated to the reference behaviour of a task 1116 * using the address space 1117 */ 1118 if (!(gup_flags & FOLL_FORCE)) 1119 gup_flags |= FOLL_NUMA; 1120 1121 do { 1122 struct page *page; 1123 unsigned int foll_flags = gup_flags; 1124 unsigned int page_increm; 1125 1126 /* first iteration or cross vma bound */ 1127 if (!vma || start >= vma->vm_end) { 1128 vma = find_extend_vma(mm, start); 1129 if (!vma && in_gate_area(mm, start)) { 1130 ret = get_gate_page(mm, start & PAGE_MASK, 1131 gup_flags, &vma, 1132 pages ? &pages[i] : NULL); 1133 if (ret) 1134 goto out; 1135 ctx.page_mask = 0; 1136 goto next_page; 1137 } 1138 1139 if (!vma) { 1140 ret = -EFAULT; 1141 goto out; 1142 } 1143 ret = check_vma_flags(vma, gup_flags); 1144 if (ret) 1145 goto out; 1146 1147 if (is_vm_hugetlb_page(vma)) { 1148 i = follow_hugetlb_page(mm, vma, pages, vmas, 1149 &start, &nr_pages, i, 1150 gup_flags, locked); 1151 if (locked && *locked == 0) { 1152 /* 1153 * We've got a VM_FAULT_RETRY 1154 * and we've lost mmap_lock. 1155 * We must stop here. 1156 */ 1157 BUG_ON(gup_flags & FOLL_NOWAIT); 1158 goto out; 1159 } 1160 continue; 1161 } 1162 } 1163 retry: 1164 /* 1165 * If we have a pending SIGKILL, don't keep faulting pages and 1166 * potentially allocating memory. 1167 */ 1168 if (fatal_signal_pending(current)) { 1169 ret = -EINTR; 1170 goto out; 1171 } 1172 cond_resched(); 1173 1174 page = follow_page_mask(vma, start, foll_flags, &ctx); 1175 if (!page || PTR_ERR(page) == -EMLINK) { 1176 ret = faultin_page(vma, start, &foll_flags, 1177 PTR_ERR(page) == -EMLINK, locked); 1178 switch (ret) { 1179 case 0: 1180 goto retry; 1181 case -EBUSY: 1182 ret = 0; 1183 fallthrough; 1184 case -EFAULT: 1185 case -ENOMEM: 1186 case -EHWPOISON: 1187 goto out; 1188 } 1189 BUG(); 1190 } else if (PTR_ERR(page) == -EEXIST) { 1191 /* 1192 * Proper page table entry exists, but no corresponding 1193 * struct page. If the caller expects **pages to be 1194 * filled in, bail out now, because that can't be done 1195 * for this page. 1196 */ 1197 if (pages) { 1198 ret = PTR_ERR(page); 1199 goto out; 1200 } 1201 1202 goto next_page; 1203 } else if (IS_ERR(page)) { 1204 ret = PTR_ERR(page); 1205 goto out; 1206 } 1207 if (pages) { 1208 pages[i] = page; 1209 flush_anon_page(vma, page, start); 1210 flush_dcache_page(page); 1211 ctx.page_mask = 0; 1212 } 1213 next_page: 1214 if (vmas) { 1215 vmas[i] = vma; 1216 ctx.page_mask = 0; 1217 } 1218 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1219 if (page_increm > nr_pages) 1220 page_increm = nr_pages; 1221 i += page_increm; 1222 start += page_increm * PAGE_SIZE; 1223 nr_pages -= page_increm; 1224 } while (nr_pages); 1225 out: 1226 if (ctx.pgmap) 1227 put_dev_pagemap(ctx.pgmap); 1228 return i ? i : ret; 1229 } 1230 1231 static bool vma_permits_fault(struct vm_area_struct *vma, 1232 unsigned int fault_flags) 1233 { 1234 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1235 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1236 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1237 1238 if (!(vm_flags & vma->vm_flags)) 1239 return false; 1240 1241 /* 1242 * The architecture might have a hardware protection 1243 * mechanism other than read/write that can deny access. 1244 * 1245 * gup always represents data access, not instruction 1246 * fetches, so execute=false here: 1247 */ 1248 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1249 return false; 1250 1251 return true; 1252 } 1253 1254 /** 1255 * fixup_user_fault() - manually resolve a user page fault 1256 * @mm: mm_struct of target mm 1257 * @address: user address 1258 * @fault_flags:flags to pass down to handle_mm_fault() 1259 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1260 * does not allow retry. If NULL, the caller must guarantee 1261 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1262 * 1263 * This is meant to be called in the specific scenario where for locking reasons 1264 * we try to access user memory in atomic context (within a pagefault_disable() 1265 * section), this returns -EFAULT, and we want to resolve the user fault before 1266 * trying again. 1267 * 1268 * Typically this is meant to be used by the futex code. 1269 * 1270 * The main difference with get_user_pages() is that this function will 1271 * unconditionally call handle_mm_fault() which will in turn perform all the 1272 * necessary SW fixup of the dirty and young bits in the PTE, while 1273 * get_user_pages() only guarantees to update these in the struct page. 1274 * 1275 * This is important for some architectures where those bits also gate the 1276 * access permission to the page because they are maintained in software. On 1277 * such architectures, gup() will not be enough to make a subsequent access 1278 * succeed. 1279 * 1280 * This function will not return with an unlocked mmap_lock. So it has not the 1281 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1282 */ 1283 int fixup_user_fault(struct mm_struct *mm, 1284 unsigned long address, unsigned int fault_flags, 1285 bool *unlocked) 1286 { 1287 struct vm_area_struct *vma; 1288 vm_fault_t ret; 1289 1290 address = untagged_addr(address); 1291 1292 if (unlocked) 1293 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1294 1295 retry: 1296 vma = find_extend_vma(mm, address); 1297 if (!vma || address < vma->vm_start) 1298 return -EFAULT; 1299 1300 if (!vma_permits_fault(vma, fault_flags)) 1301 return -EFAULT; 1302 1303 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1304 fatal_signal_pending(current)) 1305 return -EINTR; 1306 1307 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1308 if (ret & VM_FAULT_ERROR) { 1309 int err = vm_fault_to_errno(ret, 0); 1310 1311 if (err) 1312 return err; 1313 BUG(); 1314 } 1315 1316 if (ret & VM_FAULT_RETRY) { 1317 mmap_read_lock(mm); 1318 *unlocked = true; 1319 fault_flags |= FAULT_FLAG_TRIED; 1320 goto retry; 1321 } 1322 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(fixup_user_fault); 1326 1327 /* 1328 * Please note that this function, unlike __get_user_pages will not 1329 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1330 */ 1331 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1332 unsigned long start, 1333 unsigned long nr_pages, 1334 struct page **pages, 1335 struct vm_area_struct **vmas, 1336 int *locked, 1337 unsigned int flags) 1338 { 1339 long ret, pages_done; 1340 bool lock_dropped; 1341 1342 if (locked) { 1343 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1344 BUG_ON(vmas); 1345 /* check caller initialized locked */ 1346 BUG_ON(*locked != 1); 1347 } 1348 1349 if (flags & FOLL_PIN) 1350 mm_set_has_pinned_flag(&mm->flags); 1351 1352 /* 1353 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1354 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1355 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1356 * for FOLL_GET, not for the newer FOLL_PIN. 1357 * 1358 * FOLL_PIN always expects pages to be non-null, but no need to assert 1359 * that here, as any failures will be obvious enough. 1360 */ 1361 if (pages && !(flags & FOLL_PIN)) 1362 flags |= FOLL_GET; 1363 1364 pages_done = 0; 1365 lock_dropped = false; 1366 for (;;) { 1367 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1368 vmas, locked); 1369 if (!locked) 1370 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1371 return ret; 1372 1373 /* VM_FAULT_RETRY cannot return errors */ 1374 if (!*locked) { 1375 BUG_ON(ret < 0); 1376 BUG_ON(ret >= nr_pages); 1377 } 1378 1379 if (ret > 0) { 1380 nr_pages -= ret; 1381 pages_done += ret; 1382 if (!nr_pages) 1383 break; 1384 } 1385 if (*locked) { 1386 /* 1387 * VM_FAULT_RETRY didn't trigger or it was a 1388 * FOLL_NOWAIT. 1389 */ 1390 if (!pages_done) 1391 pages_done = ret; 1392 break; 1393 } 1394 /* 1395 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1396 * For the prefault case (!pages) we only update counts. 1397 */ 1398 if (likely(pages)) 1399 pages += ret; 1400 start += ret << PAGE_SHIFT; 1401 lock_dropped = true; 1402 1403 retry: 1404 /* 1405 * Repeat on the address that fired VM_FAULT_RETRY 1406 * with both FAULT_FLAG_ALLOW_RETRY and 1407 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1408 * by fatal signals, so we need to check it before we 1409 * start trying again otherwise it can loop forever. 1410 */ 1411 1412 if (fatal_signal_pending(current)) { 1413 if (!pages_done) 1414 pages_done = -EINTR; 1415 break; 1416 } 1417 1418 ret = mmap_read_lock_killable(mm); 1419 if (ret) { 1420 BUG_ON(ret > 0); 1421 if (!pages_done) 1422 pages_done = ret; 1423 break; 1424 } 1425 1426 *locked = 1; 1427 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1428 pages, NULL, locked); 1429 if (!*locked) { 1430 /* Continue to retry until we succeeded */ 1431 BUG_ON(ret != 0); 1432 goto retry; 1433 } 1434 if (ret != 1) { 1435 BUG_ON(ret > 1); 1436 if (!pages_done) 1437 pages_done = ret; 1438 break; 1439 } 1440 nr_pages--; 1441 pages_done++; 1442 if (!nr_pages) 1443 break; 1444 if (likely(pages)) 1445 pages++; 1446 start += PAGE_SIZE; 1447 } 1448 if (lock_dropped && *locked) { 1449 /* 1450 * We must let the caller know we temporarily dropped the lock 1451 * and so the critical section protected by it was lost. 1452 */ 1453 mmap_read_unlock(mm); 1454 *locked = 0; 1455 } 1456 return pages_done; 1457 } 1458 1459 /** 1460 * populate_vma_page_range() - populate a range of pages in the vma. 1461 * @vma: target vma 1462 * @start: start address 1463 * @end: end address 1464 * @locked: whether the mmap_lock is still held 1465 * 1466 * This takes care of mlocking the pages too if VM_LOCKED is set. 1467 * 1468 * Return either number of pages pinned in the vma, or a negative error 1469 * code on error. 1470 * 1471 * vma->vm_mm->mmap_lock must be held. 1472 * 1473 * If @locked is NULL, it may be held for read or write and will 1474 * be unperturbed. 1475 * 1476 * If @locked is non-NULL, it must held for read only and may be 1477 * released. If it's released, *@locked will be set to 0. 1478 */ 1479 long populate_vma_page_range(struct vm_area_struct *vma, 1480 unsigned long start, unsigned long end, int *locked) 1481 { 1482 struct mm_struct *mm = vma->vm_mm; 1483 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1484 int gup_flags; 1485 long ret; 1486 1487 VM_BUG_ON(!PAGE_ALIGNED(start)); 1488 VM_BUG_ON(!PAGE_ALIGNED(end)); 1489 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1490 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1491 mmap_assert_locked(mm); 1492 1493 /* 1494 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1495 * faultin_page() to break COW, so it has no work to do here. 1496 */ 1497 if (vma->vm_flags & VM_LOCKONFAULT) 1498 return nr_pages; 1499 1500 gup_flags = FOLL_TOUCH; 1501 /* 1502 * We want to touch writable mappings with a write fault in order 1503 * to break COW, except for shared mappings because these don't COW 1504 * and we would not want to dirty them for nothing. 1505 */ 1506 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1507 gup_flags |= FOLL_WRITE; 1508 1509 /* 1510 * We want mlock to succeed for regions that have any permissions 1511 * other than PROT_NONE. 1512 */ 1513 if (vma_is_accessible(vma)) 1514 gup_flags |= FOLL_FORCE; 1515 1516 /* 1517 * We made sure addr is within a VMA, so the following will 1518 * not result in a stack expansion that recurses back here. 1519 */ 1520 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1521 NULL, NULL, locked); 1522 lru_add_drain(); 1523 return ret; 1524 } 1525 1526 /* 1527 * faultin_vma_page_range() - populate (prefault) page tables inside the 1528 * given VMA range readable/writable 1529 * 1530 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1531 * 1532 * @vma: target vma 1533 * @start: start address 1534 * @end: end address 1535 * @write: whether to prefault readable or writable 1536 * @locked: whether the mmap_lock is still held 1537 * 1538 * Returns either number of processed pages in the vma, or a negative error 1539 * code on error (see __get_user_pages()). 1540 * 1541 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1542 * covered by the VMA. 1543 * 1544 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1545 * 1546 * If @locked is non-NULL, it must held for read only and may be released. If 1547 * it's released, *@locked will be set to 0. 1548 */ 1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1550 unsigned long end, bool write, int *locked) 1551 { 1552 struct mm_struct *mm = vma->vm_mm; 1553 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1554 int gup_flags; 1555 long ret; 1556 1557 VM_BUG_ON(!PAGE_ALIGNED(start)); 1558 VM_BUG_ON(!PAGE_ALIGNED(end)); 1559 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1560 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1561 mmap_assert_locked(mm); 1562 1563 /* 1564 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1565 * the page dirty with FOLL_WRITE -- which doesn't make a 1566 * difference with !FOLL_FORCE, because the page is writable 1567 * in the page table. 1568 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1569 * a poisoned page. 1570 * !FOLL_FORCE: Require proper access permissions. 1571 */ 1572 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1573 if (write) 1574 gup_flags |= FOLL_WRITE; 1575 1576 /* 1577 * We want to report -EINVAL instead of -EFAULT for any permission 1578 * problems or incompatible mappings. 1579 */ 1580 if (check_vma_flags(vma, gup_flags)) 1581 return -EINVAL; 1582 1583 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1584 NULL, NULL, locked); 1585 lru_add_drain(); 1586 return ret; 1587 } 1588 1589 /* 1590 * __mm_populate - populate and/or mlock pages within a range of address space. 1591 * 1592 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1593 * flags. VMAs must be already marked with the desired vm_flags, and 1594 * mmap_lock must not be held. 1595 */ 1596 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1597 { 1598 struct mm_struct *mm = current->mm; 1599 unsigned long end, nstart, nend; 1600 struct vm_area_struct *vma = NULL; 1601 int locked = 0; 1602 long ret = 0; 1603 1604 end = start + len; 1605 1606 for (nstart = start; nstart < end; nstart = nend) { 1607 /* 1608 * We want to fault in pages for [nstart; end) address range. 1609 * Find first corresponding VMA. 1610 */ 1611 if (!locked) { 1612 locked = 1; 1613 mmap_read_lock(mm); 1614 vma = find_vma(mm, nstart); 1615 } else if (nstart >= vma->vm_end) 1616 vma = vma->vm_next; 1617 if (!vma || vma->vm_start >= end) 1618 break; 1619 /* 1620 * Set [nstart; nend) to intersection of desired address 1621 * range with the first VMA. Also, skip undesirable VMA types. 1622 */ 1623 nend = min(end, vma->vm_end); 1624 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1625 continue; 1626 if (nstart < vma->vm_start) 1627 nstart = vma->vm_start; 1628 /* 1629 * Now fault in a range of pages. populate_vma_page_range() 1630 * double checks the vma flags, so that it won't mlock pages 1631 * if the vma was already munlocked. 1632 */ 1633 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1634 if (ret < 0) { 1635 if (ignore_errors) { 1636 ret = 0; 1637 continue; /* continue at next VMA */ 1638 } 1639 break; 1640 } 1641 nend = nstart + ret * PAGE_SIZE; 1642 ret = 0; 1643 } 1644 if (locked) 1645 mmap_read_unlock(mm); 1646 return ret; /* 0 or negative error code */ 1647 } 1648 #else /* CONFIG_MMU */ 1649 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1650 unsigned long nr_pages, struct page **pages, 1651 struct vm_area_struct **vmas, int *locked, 1652 unsigned int foll_flags) 1653 { 1654 struct vm_area_struct *vma; 1655 unsigned long vm_flags; 1656 long i; 1657 1658 /* calculate required read or write permissions. 1659 * If FOLL_FORCE is set, we only require the "MAY" flags. 1660 */ 1661 vm_flags = (foll_flags & FOLL_WRITE) ? 1662 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1663 vm_flags &= (foll_flags & FOLL_FORCE) ? 1664 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1665 1666 for (i = 0; i < nr_pages; i++) { 1667 vma = find_vma(mm, start); 1668 if (!vma) 1669 goto finish_or_fault; 1670 1671 /* protect what we can, including chardevs */ 1672 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1673 !(vm_flags & vma->vm_flags)) 1674 goto finish_or_fault; 1675 1676 if (pages) { 1677 pages[i] = virt_to_page(start); 1678 if (pages[i]) 1679 get_page(pages[i]); 1680 } 1681 if (vmas) 1682 vmas[i] = vma; 1683 start = (start + PAGE_SIZE) & PAGE_MASK; 1684 } 1685 1686 return i; 1687 1688 finish_or_fault: 1689 return i ? : -EFAULT; 1690 } 1691 #endif /* !CONFIG_MMU */ 1692 1693 /** 1694 * fault_in_writeable - fault in userspace address range for writing 1695 * @uaddr: start of address range 1696 * @size: size of address range 1697 * 1698 * Returns the number of bytes not faulted in (like copy_to_user() and 1699 * copy_from_user()). 1700 */ 1701 size_t fault_in_writeable(char __user *uaddr, size_t size) 1702 { 1703 char __user *start = uaddr, *end; 1704 1705 if (unlikely(size == 0)) 1706 return 0; 1707 if (!user_write_access_begin(uaddr, size)) 1708 return size; 1709 if (!PAGE_ALIGNED(uaddr)) { 1710 unsafe_put_user(0, uaddr, out); 1711 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1712 } 1713 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1714 if (unlikely(end < start)) 1715 end = NULL; 1716 while (uaddr != end) { 1717 unsafe_put_user(0, uaddr, out); 1718 uaddr += PAGE_SIZE; 1719 } 1720 1721 out: 1722 user_write_access_end(); 1723 if (size > uaddr - start) 1724 return size - (uaddr - start); 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(fault_in_writeable); 1728 1729 /** 1730 * fault_in_subpage_writeable - fault in an address range for writing 1731 * @uaddr: start of address range 1732 * @size: size of address range 1733 * 1734 * Fault in a user address range for writing while checking for permissions at 1735 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1736 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1737 * 1738 * Returns the number of bytes not faulted in (like copy_to_user() and 1739 * copy_from_user()). 1740 */ 1741 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1742 { 1743 size_t faulted_in; 1744 1745 /* 1746 * Attempt faulting in at page granularity first for page table 1747 * permission checking. The arch-specific probe_subpage_writeable() 1748 * functions may not check for this. 1749 */ 1750 faulted_in = size - fault_in_writeable(uaddr, size); 1751 if (faulted_in) 1752 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1753 1754 return size - faulted_in; 1755 } 1756 EXPORT_SYMBOL(fault_in_subpage_writeable); 1757 1758 /* 1759 * fault_in_safe_writeable - fault in an address range for writing 1760 * @uaddr: start of address range 1761 * @size: length of address range 1762 * 1763 * Faults in an address range for writing. This is primarily useful when we 1764 * already know that some or all of the pages in the address range aren't in 1765 * memory. 1766 * 1767 * Unlike fault_in_writeable(), this function is non-destructive. 1768 * 1769 * Note that we don't pin or otherwise hold the pages referenced that we fault 1770 * in. There's no guarantee that they'll stay in memory for any duration of 1771 * time. 1772 * 1773 * Returns the number of bytes not faulted in, like copy_to_user() and 1774 * copy_from_user(). 1775 */ 1776 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1777 { 1778 unsigned long start = (unsigned long)uaddr, end; 1779 struct mm_struct *mm = current->mm; 1780 bool unlocked = false; 1781 1782 if (unlikely(size == 0)) 1783 return 0; 1784 end = PAGE_ALIGN(start + size); 1785 if (end < start) 1786 end = 0; 1787 1788 mmap_read_lock(mm); 1789 do { 1790 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1791 break; 1792 start = (start + PAGE_SIZE) & PAGE_MASK; 1793 } while (start != end); 1794 mmap_read_unlock(mm); 1795 1796 if (size > (unsigned long)uaddr - start) 1797 return size - ((unsigned long)uaddr - start); 1798 return 0; 1799 } 1800 EXPORT_SYMBOL(fault_in_safe_writeable); 1801 1802 /** 1803 * fault_in_readable - fault in userspace address range for reading 1804 * @uaddr: start of user address range 1805 * @size: size of user address range 1806 * 1807 * Returns the number of bytes not faulted in (like copy_to_user() and 1808 * copy_from_user()). 1809 */ 1810 size_t fault_in_readable(const char __user *uaddr, size_t size) 1811 { 1812 const char __user *start = uaddr, *end; 1813 volatile char c; 1814 1815 if (unlikely(size == 0)) 1816 return 0; 1817 if (!user_read_access_begin(uaddr, size)) 1818 return size; 1819 if (!PAGE_ALIGNED(uaddr)) { 1820 unsafe_get_user(c, uaddr, out); 1821 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1822 } 1823 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1824 if (unlikely(end < start)) 1825 end = NULL; 1826 while (uaddr != end) { 1827 unsafe_get_user(c, uaddr, out); 1828 uaddr += PAGE_SIZE; 1829 } 1830 1831 out: 1832 user_read_access_end(); 1833 (void)c; 1834 if (size > uaddr - start) 1835 return size - (uaddr - start); 1836 return 0; 1837 } 1838 EXPORT_SYMBOL(fault_in_readable); 1839 1840 /** 1841 * get_dump_page() - pin user page in memory while writing it to core dump 1842 * @addr: user address 1843 * 1844 * Returns struct page pointer of user page pinned for dump, 1845 * to be freed afterwards by put_page(). 1846 * 1847 * Returns NULL on any kind of failure - a hole must then be inserted into 1848 * the corefile, to preserve alignment with its headers; and also returns 1849 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1850 * allowing a hole to be left in the corefile to save disk space. 1851 * 1852 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1853 */ 1854 #ifdef CONFIG_ELF_CORE 1855 struct page *get_dump_page(unsigned long addr) 1856 { 1857 struct mm_struct *mm = current->mm; 1858 struct page *page; 1859 int locked = 1; 1860 int ret; 1861 1862 if (mmap_read_lock_killable(mm)) 1863 return NULL; 1864 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1865 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1866 if (locked) 1867 mmap_read_unlock(mm); 1868 return (ret == 1) ? page : NULL; 1869 } 1870 #endif /* CONFIG_ELF_CORE */ 1871 1872 #ifdef CONFIG_MIGRATION 1873 /* 1874 * Check whether all pages are pinnable, if so return number of pages. If some 1875 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1876 * pages were migrated, or if some pages were not successfully isolated. 1877 * Return negative error if migration fails. 1878 */ 1879 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1880 struct page **pages, 1881 unsigned int gup_flags) 1882 { 1883 unsigned long isolation_error_count = 0, i; 1884 struct folio *prev_folio = NULL; 1885 LIST_HEAD(movable_page_list); 1886 bool drain_allow = true; 1887 int ret = 0; 1888 1889 for (i = 0; i < nr_pages; i++) { 1890 struct folio *folio = page_folio(pages[i]); 1891 1892 if (folio == prev_folio) 1893 continue; 1894 prev_folio = folio; 1895 1896 if (folio_is_pinnable(folio)) 1897 continue; 1898 1899 /* 1900 * Try to move out any movable page before pinning the range. 1901 */ 1902 if (folio_test_hugetlb(folio)) { 1903 if (!isolate_huge_page(&folio->page, 1904 &movable_page_list)) 1905 isolation_error_count++; 1906 continue; 1907 } 1908 1909 if (!folio_test_lru(folio) && drain_allow) { 1910 lru_add_drain_all(); 1911 drain_allow = false; 1912 } 1913 1914 if (folio_isolate_lru(folio)) { 1915 isolation_error_count++; 1916 continue; 1917 } 1918 list_add_tail(&folio->lru, &movable_page_list); 1919 node_stat_mod_folio(folio, 1920 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1921 folio_nr_pages(folio)); 1922 } 1923 1924 if (!list_empty(&movable_page_list) || isolation_error_count) 1925 goto unpin_pages; 1926 1927 /* 1928 * If list is empty, and no isolation errors, means that all pages are 1929 * in the correct zone. 1930 */ 1931 return nr_pages; 1932 1933 unpin_pages: 1934 if (gup_flags & FOLL_PIN) { 1935 unpin_user_pages(pages, nr_pages); 1936 } else { 1937 for (i = 0; i < nr_pages; i++) 1938 put_page(pages[i]); 1939 } 1940 1941 if (!list_empty(&movable_page_list)) { 1942 struct migration_target_control mtc = { 1943 .nid = NUMA_NO_NODE, 1944 .gfp_mask = GFP_USER | __GFP_NOWARN, 1945 }; 1946 1947 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1948 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1949 MR_LONGTERM_PIN, NULL); 1950 if (ret > 0) /* number of pages not migrated */ 1951 ret = -ENOMEM; 1952 } 1953 1954 if (ret && !list_empty(&movable_page_list)) 1955 putback_movable_pages(&movable_page_list); 1956 return ret; 1957 } 1958 #else 1959 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1960 struct page **pages, 1961 unsigned int gup_flags) 1962 { 1963 return nr_pages; 1964 } 1965 #endif /* CONFIG_MIGRATION */ 1966 1967 /* 1968 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1969 * allows us to process the FOLL_LONGTERM flag. 1970 */ 1971 static long __gup_longterm_locked(struct mm_struct *mm, 1972 unsigned long start, 1973 unsigned long nr_pages, 1974 struct page **pages, 1975 struct vm_area_struct **vmas, 1976 unsigned int gup_flags) 1977 { 1978 unsigned int flags; 1979 long rc; 1980 1981 if (!(gup_flags & FOLL_LONGTERM)) 1982 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1983 NULL, gup_flags); 1984 flags = memalloc_pin_save(); 1985 do { 1986 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1987 NULL, gup_flags); 1988 if (rc <= 0) 1989 break; 1990 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1991 } while (!rc); 1992 memalloc_pin_restore(flags); 1993 1994 return rc; 1995 } 1996 1997 static bool is_valid_gup_flags(unsigned int gup_flags) 1998 { 1999 /* 2000 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2001 * never directly by the caller, so enforce that with an assertion: 2002 */ 2003 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2004 return false; 2005 /* 2006 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2007 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2008 * FOLL_PIN. 2009 */ 2010 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 #ifdef CONFIG_MMU 2017 static long __get_user_pages_remote(struct mm_struct *mm, 2018 unsigned long start, unsigned long nr_pages, 2019 unsigned int gup_flags, struct page **pages, 2020 struct vm_area_struct **vmas, int *locked) 2021 { 2022 /* 2023 * Parts of FOLL_LONGTERM behavior are incompatible with 2024 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2025 * vmas. However, this only comes up if locked is set, and there are 2026 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2027 * allow what we can. 2028 */ 2029 if (gup_flags & FOLL_LONGTERM) { 2030 if (WARN_ON_ONCE(locked)) 2031 return -EINVAL; 2032 /* 2033 * This will check the vmas (even if our vmas arg is NULL) 2034 * and return -ENOTSUPP if DAX isn't allowed in this case: 2035 */ 2036 return __gup_longterm_locked(mm, start, nr_pages, pages, 2037 vmas, gup_flags | FOLL_TOUCH | 2038 FOLL_REMOTE); 2039 } 2040 2041 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2042 locked, 2043 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2044 } 2045 2046 /** 2047 * get_user_pages_remote() - pin user pages in memory 2048 * @mm: mm_struct of target mm 2049 * @start: starting user address 2050 * @nr_pages: number of pages from start to pin 2051 * @gup_flags: flags modifying lookup behaviour 2052 * @pages: array that receives pointers to the pages pinned. 2053 * Should be at least nr_pages long. Or NULL, if caller 2054 * only intends to ensure the pages are faulted in. 2055 * @vmas: array of pointers to vmas corresponding to each page. 2056 * Or NULL if the caller does not require them. 2057 * @locked: pointer to lock flag indicating whether lock is held and 2058 * subsequently whether VM_FAULT_RETRY functionality can be 2059 * utilised. Lock must initially be held. 2060 * 2061 * Returns either number of pages pinned (which may be less than the 2062 * number requested), or an error. Details about the return value: 2063 * 2064 * -- If nr_pages is 0, returns 0. 2065 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2066 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2067 * pages pinned. Again, this may be less than nr_pages. 2068 * 2069 * The caller is responsible for releasing returned @pages, via put_page(). 2070 * 2071 * @vmas are valid only as long as mmap_lock is held. 2072 * 2073 * Must be called with mmap_lock held for read or write. 2074 * 2075 * get_user_pages_remote walks a process's page tables and takes a reference 2076 * to each struct page that each user address corresponds to at a given 2077 * instant. That is, it takes the page that would be accessed if a user 2078 * thread accesses the given user virtual address at that instant. 2079 * 2080 * This does not guarantee that the page exists in the user mappings when 2081 * get_user_pages_remote returns, and there may even be a completely different 2082 * page there in some cases (eg. if mmapped pagecache has been invalidated 2083 * and subsequently re faulted). However it does guarantee that the page 2084 * won't be freed completely. And mostly callers simply care that the page 2085 * contains data that was valid *at some point in time*. Typically, an IO 2086 * or similar operation cannot guarantee anything stronger anyway because 2087 * locks can't be held over the syscall boundary. 2088 * 2089 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2090 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2091 * be called after the page is finished with, and before put_page is called. 2092 * 2093 * get_user_pages_remote is typically used for fewer-copy IO operations, 2094 * to get a handle on the memory by some means other than accesses 2095 * via the user virtual addresses. The pages may be submitted for 2096 * DMA to devices or accessed via their kernel linear mapping (via the 2097 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2098 * 2099 * See also get_user_pages_fast, for performance critical applications. 2100 * 2101 * get_user_pages_remote should be phased out in favor of 2102 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2103 * should use get_user_pages_remote because it cannot pass 2104 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2105 */ 2106 long get_user_pages_remote(struct mm_struct *mm, 2107 unsigned long start, unsigned long nr_pages, 2108 unsigned int gup_flags, struct page **pages, 2109 struct vm_area_struct **vmas, int *locked) 2110 { 2111 if (!is_valid_gup_flags(gup_flags)) 2112 return -EINVAL; 2113 2114 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2115 pages, vmas, locked); 2116 } 2117 EXPORT_SYMBOL(get_user_pages_remote); 2118 2119 #else /* CONFIG_MMU */ 2120 long get_user_pages_remote(struct mm_struct *mm, 2121 unsigned long start, unsigned long nr_pages, 2122 unsigned int gup_flags, struct page **pages, 2123 struct vm_area_struct **vmas, int *locked) 2124 { 2125 return 0; 2126 } 2127 2128 static long __get_user_pages_remote(struct mm_struct *mm, 2129 unsigned long start, unsigned long nr_pages, 2130 unsigned int gup_flags, struct page **pages, 2131 struct vm_area_struct **vmas, int *locked) 2132 { 2133 return 0; 2134 } 2135 #endif /* !CONFIG_MMU */ 2136 2137 /** 2138 * get_user_pages() - pin user pages in memory 2139 * @start: starting user address 2140 * @nr_pages: number of pages from start to pin 2141 * @gup_flags: flags modifying lookup behaviour 2142 * @pages: array that receives pointers to the pages pinned. 2143 * Should be at least nr_pages long. Or NULL, if caller 2144 * only intends to ensure the pages are faulted in. 2145 * @vmas: array of pointers to vmas corresponding to each page. 2146 * Or NULL if the caller does not require them. 2147 * 2148 * This is the same as get_user_pages_remote(), just with a less-flexible 2149 * calling convention where we assume that the mm being operated on belongs to 2150 * the current task, and doesn't allow passing of a locked parameter. We also 2151 * obviously don't pass FOLL_REMOTE in here. 2152 */ 2153 long get_user_pages(unsigned long start, unsigned long nr_pages, 2154 unsigned int gup_flags, struct page **pages, 2155 struct vm_area_struct **vmas) 2156 { 2157 if (!is_valid_gup_flags(gup_flags)) 2158 return -EINVAL; 2159 2160 return __gup_longterm_locked(current->mm, start, nr_pages, 2161 pages, vmas, gup_flags | FOLL_TOUCH); 2162 } 2163 EXPORT_SYMBOL(get_user_pages); 2164 2165 /* 2166 * get_user_pages_unlocked() is suitable to replace the form: 2167 * 2168 * mmap_read_lock(mm); 2169 * get_user_pages(mm, ..., pages, NULL); 2170 * mmap_read_unlock(mm); 2171 * 2172 * with: 2173 * 2174 * get_user_pages_unlocked(mm, ..., pages); 2175 * 2176 * It is functionally equivalent to get_user_pages_fast so 2177 * get_user_pages_fast should be used instead if specific gup_flags 2178 * (e.g. FOLL_FORCE) are not required. 2179 */ 2180 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2181 struct page **pages, unsigned int gup_flags) 2182 { 2183 struct mm_struct *mm = current->mm; 2184 int locked = 1; 2185 long ret; 2186 2187 /* 2188 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2189 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2190 * vmas. As there are no users of this flag in this call we simply 2191 * disallow this option for now. 2192 */ 2193 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2194 return -EINVAL; 2195 2196 mmap_read_lock(mm); 2197 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2198 &locked, gup_flags | FOLL_TOUCH); 2199 if (locked) 2200 mmap_read_unlock(mm); 2201 return ret; 2202 } 2203 EXPORT_SYMBOL(get_user_pages_unlocked); 2204 2205 /* 2206 * Fast GUP 2207 * 2208 * get_user_pages_fast attempts to pin user pages by walking the page 2209 * tables directly and avoids taking locks. Thus the walker needs to be 2210 * protected from page table pages being freed from under it, and should 2211 * block any THP splits. 2212 * 2213 * One way to achieve this is to have the walker disable interrupts, and 2214 * rely on IPIs from the TLB flushing code blocking before the page table 2215 * pages are freed. This is unsuitable for architectures that do not need 2216 * to broadcast an IPI when invalidating TLBs. 2217 * 2218 * Another way to achieve this is to batch up page table containing pages 2219 * belonging to more than one mm_user, then rcu_sched a callback to free those 2220 * pages. Disabling interrupts will allow the fast_gup walker to both block 2221 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2222 * (which is a relatively rare event). The code below adopts this strategy. 2223 * 2224 * Before activating this code, please be aware that the following assumptions 2225 * are currently made: 2226 * 2227 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2228 * free pages containing page tables or TLB flushing requires IPI broadcast. 2229 * 2230 * *) ptes can be read atomically by the architecture. 2231 * 2232 * *) access_ok is sufficient to validate userspace address ranges. 2233 * 2234 * The last two assumptions can be relaxed by the addition of helper functions. 2235 * 2236 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2237 */ 2238 #ifdef CONFIG_HAVE_FAST_GUP 2239 2240 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2241 unsigned int flags, 2242 struct page **pages) 2243 { 2244 while ((*nr) - nr_start) { 2245 struct page *page = pages[--(*nr)]; 2246 2247 ClearPageReferenced(page); 2248 if (flags & FOLL_PIN) 2249 unpin_user_page(page); 2250 else 2251 put_page(page); 2252 } 2253 } 2254 2255 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2256 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2257 unsigned int flags, struct page **pages, int *nr) 2258 { 2259 struct dev_pagemap *pgmap = NULL; 2260 int nr_start = *nr, ret = 0; 2261 pte_t *ptep, *ptem; 2262 2263 ptem = ptep = pte_offset_map(&pmd, addr); 2264 do { 2265 pte_t pte = ptep_get_lockless(ptep); 2266 struct page *page; 2267 struct folio *folio; 2268 2269 /* 2270 * Similar to the PMD case below, NUMA hinting must take slow 2271 * path using the pte_protnone check. 2272 */ 2273 if (pte_protnone(pte)) 2274 goto pte_unmap; 2275 2276 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2277 goto pte_unmap; 2278 2279 if (pte_devmap(pte)) { 2280 if (unlikely(flags & FOLL_LONGTERM)) 2281 goto pte_unmap; 2282 2283 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2284 if (unlikely(!pgmap)) { 2285 undo_dev_pagemap(nr, nr_start, flags, pages); 2286 goto pte_unmap; 2287 } 2288 } else if (pte_special(pte)) 2289 goto pte_unmap; 2290 2291 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2292 page = pte_page(pte); 2293 2294 folio = try_grab_folio(page, 1, flags); 2295 if (!folio) 2296 goto pte_unmap; 2297 2298 if (unlikely(page_is_secretmem(page))) { 2299 gup_put_folio(folio, 1, flags); 2300 goto pte_unmap; 2301 } 2302 2303 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2304 gup_put_folio(folio, 1, flags); 2305 goto pte_unmap; 2306 } 2307 2308 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2309 gup_put_folio(folio, 1, flags); 2310 goto pte_unmap; 2311 } 2312 2313 /* 2314 * We need to make the page accessible if and only if we are 2315 * going to access its content (the FOLL_PIN case). Please 2316 * see Documentation/core-api/pin_user_pages.rst for 2317 * details. 2318 */ 2319 if (flags & FOLL_PIN) { 2320 ret = arch_make_page_accessible(page); 2321 if (ret) { 2322 gup_put_folio(folio, 1, flags); 2323 goto pte_unmap; 2324 } 2325 } 2326 folio_set_referenced(folio); 2327 pages[*nr] = page; 2328 (*nr)++; 2329 } while (ptep++, addr += PAGE_SIZE, addr != end); 2330 2331 ret = 1; 2332 2333 pte_unmap: 2334 if (pgmap) 2335 put_dev_pagemap(pgmap); 2336 pte_unmap(ptem); 2337 return ret; 2338 } 2339 #else 2340 2341 /* 2342 * If we can't determine whether or not a pte is special, then fail immediately 2343 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2344 * to be special. 2345 * 2346 * For a futex to be placed on a THP tail page, get_futex_key requires a 2347 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2348 * useful to have gup_huge_pmd even if we can't operate on ptes. 2349 */ 2350 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2351 unsigned int flags, struct page **pages, int *nr) 2352 { 2353 return 0; 2354 } 2355 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2356 2357 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2358 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2359 unsigned long end, unsigned int flags, 2360 struct page **pages, int *nr) 2361 { 2362 int nr_start = *nr; 2363 struct dev_pagemap *pgmap = NULL; 2364 2365 do { 2366 struct page *page = pfn_to_page(pfn); 2367 2368 pgmap = get_dev_pagemap(pfn, pgmap); 2369 if (unlikely(!pgmap)) { 2370 undo_dev_pagemap(nr, nr_start, flags, pages); 2371 break; 2372 } 2373 SetPageReferenced(page); 2374 pages[*nr] = page; 2375 if (unlikely(!try_grab_page(page, flags))) { 2376 undo_dev_pagemap(nr, nr_start, flags, pages); 2377 break; 2378 } 2379 (*nr)++; 2380 pfn++; 2381 } while (addr += PAGE_SIZE, addr != end); 2382 2383 put_dev_pagemap(pgmap); 2384 return addr == end; 2385 } 2386 2387 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2388 unsigned long end, unsigned int flags, 2389 struct page **pages, int *nr) 2390 { 2391 unsigned long fault_pfn; 2392 int nr_start = *nr; 2393 2394 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2395 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2396 return 0; 2397 2398 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2399 undo_dev_pagemap(nr, nr_start, flags, pages); 2400 return 0; 2401 } 2402 return 1; 2403 } 2404 2405 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2406 unsigned long end, unsigned int flags, 2407 struct page **pages, int *nr) 2408 { 2409 unsigned long fault_pfn; 2410 int nr_start = *nr; 2411 2412 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2413 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2414 return 0; 2415 2416 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2417 undo_dev_pagemap(nr, nr_start, flags, pages); 2418 return 0; 2419 } 2420 return 1; 2421 } 2422 #else 2423 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2424 unsigned long end, unsigned int flags, 2425 struct page **pages, int *nr) 2426 { 2427 BUILD_BUG(); 2428 return 0; 2429 } 2430 2431 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2432 unsigned long end, unsigned int flags, 2433 struct page **pages, int *nr) 2434 { 2435 BUILD_BUG(); 2436 return 0; 2437 } 2438 #endif 2439 2440 static int record_subpages(struct page *page, unsigned long addr, 2441 unsigned long end, struct page **pages) 2442 { 2443 int nr; 2444 2445 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2446 pages[nr] = nth_page(page, nr); 2447 2448 return nr; 2449 } 2450 2451 #ifdef CONFIG_ARCH_HAS_HUGEPD 2452 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2453 unsigned long sz) 2454 { 2455 unsigned long __boundary = (addr + sz) & ~(sz-1); 2456 return (__boundary - 1 < end - 1) ? __boundary : end; 2457 } 2458 2459 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2460 unsigned long end, unsigned int flags, 2461 struct page **pages, int *nr) 2462 { 2463 unsigned long pte_end; 2464 struct page *page; 2465 struct folio *folio; 2466 pte_t pte; 2467 int refs; 2468 2469 pte_end = (addr + sz) & ~(sz-1); 2470 if (pte_end < end) 2471 end = pte_end; 2472 2473 pte = huge_ptep_get(ptep); 2474 2475 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2476 return 0; 2477 2478 /* hugepages are never "special" */ 2479 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2480 2481 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2482 refs = record_subpages(page, addr, end, pages + *nr); 2483 2484 folio = try_grab_folio(page, refs, flags); 2485 if (!folio) 2486 return 0; 2487 2488 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2489 gup_put_folio(folio, refs, flags); 2490 return 0; 2491 } 2492 2493 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2494 gup_put_folio(folio, refs, flags); 2495 return 0; 2496 } 2497 2498 *nr += refs; 2499 folio_set_referenced(folio); 2500 return 1; 2501 } 2502 2503 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2504 unsigned int pdshift, unsigned long end, unsigned int flags, 2505 struct page **pages, int *nr) 2506 { 2507 pte_t *ptep; 2508 unsigned long sz = 1UL << hugepd_shift(hugepd); 2509 unsigned long next; 2510 2511 ptep = hugepte_offset(hugepd, addr, pdshift); 2512 do { 2513 next = hugepte_addr_end(addr, end, sz); 2514 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2515 return 0; 2516 } while (ptep++, addr = next, addr != end); 2517 2518 return 1; 2519 } 2520 #else 2521 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2522 unsigned int pdshift, unsigned long end, unsigned int flags, 2523 struct page **pages, int *nr) 2524 { 2525 return 0; 2526 } 2527 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2528 2529 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2530 unsigned long end, unsigned int flags, 2531 struct page **pages, int *nr) 2532 { 2533 struct page *page; 2534 struct folio *folio; 2535 int refs; 2536 2537 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2538 return 0; 2539 2540 if (pmd_devmap(orig)) { 2541 if (unlikely(flags & FOLL_LONGTERM)) 2542 return 0; 2543 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2544 pages, nr); 2545 } 2546 2547 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2548 refs = record_subpages(page, addr, end, pages + *nr); 2549 2550 folio = try_grab_folio(page, refs, flags); 2551 if (!folio) 2552 return 0; 2553 2554 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2555 gup_put_folio(folio, refs, flags); 2556 return 0; 2557 } 2558 2559 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2560 gup_put_folio(folio, refs, flags); 2561 return 0; 2562 } 2563 2564 *nr += refs; 2565 folio_set_referenced(folio); 2566 return 1; 2567 } 2568 2569 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2570 unsigned long end, unsigned int flags, 2571 struct page **pages, int *nr) 2572 { 2573 struct page *page; 2574 struct folio *folio; 2575 int refs; 2576 2577 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2578 return 0; 2579 2580 if (pud_devmap(orig)) { 2581 if (unlikely(flags & FOLL_LONGTERM)) 2582 return 0; 2583 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2584 pages, nr); 2585 } 2586 2587 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2588 refs = record_subpages(page, addr, end, pages + *nr); 2589 2590 folio = try_grab_folio(page, refs, flags); 2591 if (!folio) 2592 return 0; 2593 2594 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2595 gup_put_folio(folio, refs, flags); 2596 return 0; 2597 } 2598 2599 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2600 gup_put_folio(folio, refs, flags); 2601 return 0; 2602 } 2603 2604 *nr += refs; 2605 folio_set_referenced(folio); 2606 return 1; 2607 } 2608 2609 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2610 unsigned long end, unsigned int flags, 2611 struct page **pages, int *nr) 2612 { 2613 int refs; 2614 struct page *page; 2615 struct folio *folio; 2616 2617 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2618 return 0; 2619 2620 BUILD_BUG_ON(pgd_devmap(orig)); 2621 2622 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2623 refs = record_subpages(page, addr, end, pages + *nr); 2624 2625 folio = try_grab_folio(page, refs, flags); 2626 if (!folio) 2627 return 0; 2628 2629 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2630 gup_put_folio(folio, refs, flags); 2631 return 0; 2632 } 2633 2634 *nr += refs; 2635 folio_set_referenced(folio); 2636 return 1; 2637 } 2638 2639 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2640 unsigned int flags, struct page **pages, int *nr) 2641 { 2642 unsigned long next; 2643 pmd_t *pmdp; 2644 2645 pmdp = pmd_offset_lockless(pudp, pud, addr); 2646 do { 2647 pmd_t pmd = READ_ONCE(*pmdp); 2648 2649 next = pmd_addr_end(addr, end); 2650 if (!pmd_present(pmd)) 2651 return 0; 2652 2653 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2654 pmd_devmap(pmd))) { 2655 /* 2656 * NUMA hinting faults need to be handled in the GUP 2657 * slowpath for accounting purposes and so that they 2658 * can be serialised against THP migration. 2659 */ 2660 if (pmd_protnone(pmd)) 2661 return 0; 2662 2663 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2664 pages, nr)) 2665 return 0; 2666 2667 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2668 /* 2669 * architecture have different format for hugetlbfs 2670 * pmd format and THP pmd format 2671 */ 2672 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2673 PMD_SHIFT, next, flags, pages, nr)) 2674 return 0; 2675 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2676 return 0; 2677 } while (pmdp++, addr = next, addr != end); 2678 2679 return 1; 2680 } 2681 2682 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2683 unsigned int flags, struct page **pages, int *nr) 2684 { 2685 unsigned long next; 2686 pud_t *pudp; 2687 2688 pudp = pud_offset_lockless(p4dp, p4d, addr); 2689 do { 2690 pud_t pud = READ_ONCE(*pudp); 2691 2692 next = pud_addr_end(addr, end); 2693 if (unlikely(!pud_present(pud))) 2694 return 0; 2695 if (unlikely(pud_huge(pud))) { 2696 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2697 pages, nr)) 2698 return 0; 2699 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2700 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2701 PUD_SHIFT, next, flags, pages, nr)) 2702 return 0; 2703 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2704 return 0; 2705 } while (pudp++, addr = next, addr != end); 2706 2707 return 1; 2708 } 2709 2710 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2711 unsigned int flags, struct page **pages, int *nr) 2712 { 2713 unsigned long next; 2714 p4d_t *p4dp; 2715 2716 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2717 do { 2718 p4d_t p4d = READ_ONCE(*p4dp); 2719 2720 next = p4d_addr_end(addr, end); 2721 if (p4d_none(p4d)) 2722 return 0; 2723 BUILD_BUG_ON(p4d_huge(p4d)); 2724 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2725 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2726 P4D_SHIFT, next, flags, pages, nr)) 2727 return 0; 2728 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2729 return 0; 2730 } while (p4dp++, addr = next, addr != end); 2731 2732 return 1; 2733 } 2734 2735 static void gup_pgd_range(unsigned long addr, unsigned long end, 2736 unsigned int flags, struct page **pages, int *nr) 2737 { 2738 unsigned long next; 2739 pgd_t *pgdp; 2740 2741 pgdp = pgd_offset(current->mm, addr); 2742 do { 2743 pgd_t pgd = READ_ONCE(*pgdp); 2744 2745 next = pgd_addr_end(addr, end); 2746 if (pgd_none(pgd)) 2747 return; 2748 if (unlikely(pgd_huge(pgd))) { 2749 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2750 pages, nr)) 2751 return; 2752 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2753 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2754 PGDIR_SHIFT, next, flags, pages, nr)) 2755 return; 2756 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2757 return; 2758 } while (pgdp++, addr = next, addr != end); 2759 } 2760 #else 2761 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2762 unsigned int flags, struct page **pages, int *nr) 2763 { 2764 } 2765 #endif /* CONFIG_HAVE_FAST_GUP */ 2766 2767 #ifndef gup_fast_permitted 2768 /* 2769 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2770 * we need to fall back to the slow version: 2771 */ 2772 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2773 { 2774 return true; 2775 } 2776 #endif 2777 2778 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2779 unsigned int gup_flags, struct page **pages) 2780 { 2781 int ret; 2782 2783 /* 2784 * FIXME: FOLL_LONGTERM does not work with 2785 * get_user_pages_unlocked() (see comments in that function) 2786 */ 2787 if (gup_flags & FOLL_LONGTERM) { 2788 mmap_read_lock(current->mm); 2789 ret = __gup_longterm_locked(current->mm, 2790 start, nr_pages, 2791 pages, NULL, gup_flags); 2792 mmap_read_unlock(current->mm); 2793 } else { 2794 ret = get_user_pages_unlocked(start, nr_pages, 2795 pages, gup_flags); 2796 } 2797 2798 return ret; 2799 } 2800 2801 static unsigned long lockless_pages_from_mm(unsigned long start, 2802 unsigned long end, 2803 unsigned int gup_flags, 2804 struct page **pages) 2805 { 2806 unsigned long flags; 2807 int nr_pinned = 0; 2808 unsigned seq; 2809 2810 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2811 !gup_fast_permitted(start, end)) 2812 return 0; 2813 2814 if (gup_flags & FOLL_PIN) { 2815 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2816 if (seq & 1) 2817 return 0; 2818 } 2819 2820 /* 2821 * Disable interrupts. The nested form is used, in order to allow full, 2822 * general purpose use of this routine. 2823 * 2824 * With interrupts disabled, we block page table pages from being freed 2825 * from under us. See struct mmu_table_batch comments in 2826 * include/asm-generic/tlb.h for more details. 2827 * 2828 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2829 * that come from THPs splitting. 2830 */ 2831 local_irq_save(flags); 2832 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2833 local_irq_restore(flags); 2834 2835 /* 2836 * When pinning pages for DMA there could be a concurrent write protect 2837 * from fork() via copy_page_range(), in this case always fail fast GUP. 2838 */ 2839 if (gup_flags & FOLL_PIN) { 2840 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2841 unpin_user_pages_lockless(pages, nr_pinned); 2842 return 0; 2843 } else { 2844 sanity_check_pinned_pages(pages, nr_pinned); 2845 } 2846 } 2847 return nr_pinned; 2848 } 2849 2850 static int internal_get_user_pages_fast(unsigned long start, 2851 unsigned long nr_pages, 2852 unsigned int gup_flags, 2853 struct page **pages) 2854 { 2855 unsigned long len, end; 2856 unsigned long nr_pinned; 2857 int ret; 2858 2859 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2860 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2861 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2862 return -EINVAL; 2863 2864 if (gup_flags & FOLL_PIN) 2865 mm_set_has_pinned_flag(¤t->mm->flags); 2866 2867 if (!(gup_flags & FOLL_FAST_ONLY)) 2868 might_lock_read(¤t->mm->mmap_lock); 2869 2870 start = untagged_addr(start) & PAGE_MASK; 2871 len = nr_pages << PAGE_SHIFT; 2872 if (check_add_overflow(start, len, &end)) 2873 return 0; 2874 if (unlikely(!access_ok((void __user *)start, len))) 2875 return -EFAULT; 2876 2877 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2878 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2879 return nr_pinned; 2880 2881 /* Slow path: try to get the remaining pages with get_user_pages */ 2882 start += nr_pinned << PAGE_SHIFT; 2883 pages += nr_pinned; 2884 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2885 pages); 2886 if (ret < 0) { 2887 /* 2888 * The caller has to unpin the pages we already pinned so 2889 * returning -errno is not an option 2890 */ 2891 if (nr_pinned) 2892 return nr_pinned; 2893 return ret; 2894 } 2895 return ret + nr_pinned; 2896 } 2897 2898 /** 2899 * get_user_pages_fast_only() - pin user pages in memory 2900 * @start: starting user address 2901 * @nr_pages: number of pages from start to pin 2902 * @gup_flags: flags modifying pin behaviour 2903 * @pages: array that receives pointers to the pages pinned. 2904 * Should be at least nr_pages long. 2905 * 2906 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2907 * the regular GUP. 2908 * Note a difference with get_user_pages_fast: this always returns the 2909 * number of pages pinned, 0 if no pages were pinned. 2910 * 2911 * If the architecture does not support this function, simply return with no 2912 * pages pinned. 2913 * 2914 * Careful, careful! COW breaking can go either way, so a non-write 2915 * access can get ambiguous page results. If you call this function without 2916 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2917 */ 2918 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2919 unsigned int gup_flags, struct page **pages) 2920 { 2921 int nr_pinned; 2922 /* 2923 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2924 * because gup fast is always a "pin with a +1 page refcount" request. 2925 * 2926 * FOLL_FAST_ONLY is required in order to match the API description of 2927 * this routine: no fall back to regular ("slow") GUP. 2928 */ 2929 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2930 2931 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2932 pages); 2933 2934 /* 2935 * As specified in the API description above, this routine is not 2936 * allowed to return negative values. However, the common core 2937 * routine internal_get_user_pages_fast() *can* return -errno. 2938 * Therefore, correct for that here: 2939 */ 2940 if (nr_pinned < 0) 2941 nr_pinned = 0; 2942 2943 return nr_pinned; 2944 } 2945 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2946 2947 /** 2948 * get_user_pages_fast() - pin user pages in memory 2949 * @start: starting user address 2950 * @nr_pages: number of pages from start to pin 2951 * @gup_flags: flags modifying pin behaviour 2952 * @pages: array that receives pointers to the pages pinned. 2953 * Should be at least nr_pages long. 2954 * 2955 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2956 * If not successful, it will fall back to taking the lock and 2957 * calling get_user_pages(). 2958 * 2959 * Returns number of pages pinned. This may be fewer than the number requested. 2960 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2961 * -errno. 2962 */ 2963 int get_user_pages_fast(unsigned long start, int nr_pages, 2964 unsigned int gup_flags, struct page **pages) 2965 { 2966 if (!is_valid_gup_flags(gup_flags)) 2967 return -EINVAL; 2968 2969 /* 2970 * The caller may or may not have explicitly set FOLL_GET; either way is 2971 * OK. However, internally (within mm/gup.c), gup fast variants must set 2972 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2973 * request. 2974 */ 2975 gup_flags |= FOLL_GET; 2976 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2977 } 2978 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2979 2980 /** 2981 * pin_user_pages_fast() - pin user pages in memory without taking locks 2982 * 2983 * @start: starting user address 2984 * @nr_pages: number of pages from start to pin 2985 * @gup_flags: flags modifying pin behaviour 2986 * @pages: array that receives pointers to the pages pinned. 2987 * Should be at least nr_pages long. 2988 * 2989 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2990 * get_user_pages_fast() for documentation on the function arguments, because 2991 * the arguments here are identical. 2992 * 2993 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2994 * see Documentation/core-api/pin_user_pages.rst for further details. 2995 */ 2996 int pin_user_pages_fast(unsigned long start, int nr_pages, 2997 unsigned int gup_flags, struct page **pages) 2998 { 2999 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3000 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3001 return -EINVAL; 3002 3003 if (WARN_ON_ONCE(!pages)) 3004 return -EINVAL; 3005 3006 gup_flags |= FOLL_PIN; 3007 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3008 } 3009 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3010 3011 /* 3012 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3013 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3014 * 3015 * The API rules are the same, too: no negative values may be returned. 3016 */ 3017 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3018 unsigned int gup_flags, struct page **pages) 3019 { 3020 int nr_pinned; 3021 3022 /* 3023 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3024 * rules require returning 0, rather than -errno: 3025 */ 3026 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3027 return 0; 3028 3029 if (WARN_ON_ONCE(!pages)) 3030 return 0; 3031 /* 3032 * FOLL_FAST_ONLY is required in order to match the API description of 3033 * this routine: no fall back to regular ("slow") GUP. 3034 */ 3035 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3036 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3037 pages); 3038 /* 3039 * This routine is not allowed to return negative values. However, 3040 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3041 * correct for that here: 3042 */ 3043 if (nr_pinned < 0) 3044 nr_pinned = 0; 3045 3046 return nr_pinned; 3047 } 3048 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3049 3050 /** 3051 * pin_user_pages_remote() - pin pages of a remote process 3052 * 3053 * @mm: mm_struct of target mm 3054 * @start: starting user address 3055 * @nr_pages: number of pages from start to pin 3056 * @gup_flags: flags modifying lookup behaviour 3057 * @pages: array that receives pointers to the pages pinned. 3058 * Should be at least nr_pages long. 3059 * @vmas: array of pointers to vmas corresponding to each page. 3060 * Or NULL if the caller does not require them. 3061 * @locked: pointer to lock flag indicating whether lock is held and 3062 * subsequently whether VM_FAULT_RETRY functionality can be 3063 * utilised. Lock must initially be held. 3064 * 3065 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3066 * get_user_pages_remote() for documentation on the function arguments, because 3067 * the arguments here are identical. 3068 * 3069 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3070 * see Documentation/core-api/pin_user_pages.rst for details. 3071 */ 3072 long pin_user_pages_remote(struct mm_struct *mm, 3073 unsigned long start, unsigned long nr_pages, 3074 unsigned int gup_flags, struct page **pages, 3075 struct vm_area_struct **vmas, int *locked) 3076 { 3077 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3078 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3079 return -EINVAL; 3080 3081 if (WARN_ON_ONCE(!pages)) 3082 return -EINVAL; 3083 3084 gup_flags |= FOLL_PIN; 3085 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3086 pages, vmas, locked); 3087 } 3088 EXPORT_SYMBOL(pin_user_pages_remote); 3089 3090 /** 3091 * pin_user_pages() - pin user pages in memory for use by other devices 3092 * 3093 * @start: starting user address 3094 * @nr_pages: number of pages from start to pin 3095 * @gup_flags: flags modifying lookup behaviour 3096 * @pages: array that receives pointers to the pages pinned. 3097 * Should be at least nr_pages long. 3098 * @vmas: array of pointers to vmas corresponding to each page. 3099 * Or NULL if the caller does not require them. 3100 * 3101 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3102 * FOLL_PIN is set. 3103 * 3104 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3105 * see Documentation/core-api/pin_user_pages.rst for details. 3106 */ 3107 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3108 unsigned int gup_flags, struct page **pages, 3109 struct vm_area_struct **vmas) 3110 { 3111 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3112 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3113 return -EINVAL; 3114 3115 if (WARN_ON_ONCE(!pages)) 3116 return -EINVAL; 3117 3118 gup_flags |= FOLL_PIN; 3119 return __gup_longterm_locked(current->mm, start, nr_pages, 3120 pages, vmas, gup_flags); 3121 } 3122 EXPORT_SYMBOL(pin_user_pages); 3123 3124 /* 3125 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3126 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3127 * FOLL_PIN and rejects FOLL_GET. 3128 */ 3129 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3130 struct page **pages, unsigned int gup_flags) 3131 { 3132 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3133 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3134 return -EINVAL; 3135 3136 if (WARN_ON_ONCE(!pages)) 3137 return -EINVAL; 3138 3139 gup_flags |= FOLL_PIN; 3140 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3141 } 3142 EXPORT_SYMBOL(pin_user_pages_unlocked); 3143