xref: /openbmc/linux/mm/gup.c (revision e5c86679)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
211 /**
212  * follow_page_mask - look up a page descriptor from a user-virtual address
213  * @vma: vm_area_struct mapping @address
214  * @address: virtual address to look up
215  * @flags: flags modifying lookup behaviour
216  * @page_mask: on output, *page_mask is set according to the size of the page
217  *
218  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219  *
220  * Returns the mapped (struct page *), %NULL if no mapping exists, or
221  * an error pointer if there is a mapping to something not represented
222  * by a page descriptor (see also vm_normal_page()).
223  */
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 			      unsigned long address, unsigned int flags,
226 			      unsigned int *page_mask)
227 {
228 	pgd_t *pgd;
229 	p4d_t *p4d;
230 	pud_t *pud;
231 	pmd_t *pmd;
232 	spinlock_t *ptl;
233 	struct page *page;
234 	struct mm_struct *mm = vma->vm_mm;
235 
236 	*page_mask = 0;
237 
238 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
239 	if (!IS_ERR(page)) {
240 		BUG_ON(flags & FOLL_GET);
241 		return page;
242 	}
243 
244 	pgd = pgd_offset(mm, address);
245 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
246 		return no_page_table(vma, flags);
247 	p4d = p4d_offset(pgd, address);
248 	if (p4d_none(*p4d))
249 		return no_page_table(vma, flags);
250 	BUILD_BUG_ON(p4d_huge(*p4d));
251 	if (unlikely(p4d_bad(*p4d)))
252 		return no_page_table(vma, flags);
253 	pud = pud_offset(p4d, address);
254 	if (pud_none(*pud))
255 		return no_page_table(vma, flags);
256 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
257 		page = follow_huge_pud(mm, address, pud, flags);
258 		if (page)
259 			return page;
260 		return no_page_table(vma, flags);
261 	}
262 	if (pud_devmap(*pud)) {
263 		ptl = pud_lock(mm, pud);
264 		page = follow_devmap_pud(vma, address, pud, flags);
265 		spin_unlock(ptl);
266 		if (page)
267 			return page;
268 	}
269 	if (unlikely(pud_bad(*pud)))
270 		return no_page_table(vma, flags);
271 
272 	pmd = pmd_offset(pud, address);
273 	if (pmd_none(*pmd))
274 		return no_page_table(vma, flags);
275 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
276 		page = follow_huge_pmd(mm, address, pmd, flags);
277 		if (page)
278 			return page;
279 		return no_page_table(vma, flags);
280 	}
281 	if (pmd_devmap(*pmd)) {
282 		ptl = pmd_lock(mm, pmd);
283 		page = follow_devmap_pmd(vma, address, pmd, flags);
284 		spin_unlock(ptl);
285 		if (page)
286 			return page;
287 	}
288 	if (likely(!pmd_trans_huge(*pmd)))
289 		return follow_page_pte(vma, address, pmd, flags);
290 
291 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
292 		return no_page_table(vma, flags);
293 
294 	ptl = pmd_lock(mm, pmd);
295 	if (unlikely(!pmd_trans_huge(*pmd))) {
296 		spin_unlock(ptl);
297 		return follow_page_pte(vma, address, pmd, flags);
298 	}
299 	if (flags & FOLL_SPLIT) {
300 		int ret;
301 		page = pmd_page(*pmd);
302 		if (is_huge_zero_page(page)) {
303 			spin_unlock(ptl);
304 			ret = 0;
305 			split_huge_pmd(vma, pmd, address);
306 			if (pmd_trans_unstable(pmd))
307 				ret = -EBUSY;
308 		} else {
309 			get_page(page);
310 			spin_unlock(ptl);
311 			lock_page(page);
312 			ret = split_huge_page(page);
313 			unlock_page(page);
314 			put_page(page);
315 			if (pmd_none(*pmd))
316 				return no_page_table(vma, flags);
317 		}
318 
319 		return ret ? ERR_PTR(ret) :
320 			follow_page_pte(vma, address, pmd, flags);
321 	}
322 
323 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
324 	spin_unlock(ptl);
325 	*page_mask = HPAGE_PMD_NR - 1;
326 	return page;
327 }
328 
329 static int get_gate_page(struct mm_struct *mm, unsigned long address,
330 		unsigned int gup_flags, struct vm_area_struct **vma,
331 		struct page **page)
332 {
333 	pgd_t *pgd;
334 	p4d_t *p4d;
335 	pud_t *pud;
336 	pmd_t *pmd;
337 	pte_t *pte;
338 	int ret = -EFAULT;
339 
340 	/* user gate pages are read-only */
341 	if (gup_flags & FOLL_WRITE)
342 		return -EFAULT;
343 	if (address > TASK_SIZE)
344 		pgd = pgd_offset_k(address);
345 	else
346 		pgd = pgd_offset_gate(mm, address);
347 	BUG_ON(pgd_none(*pgd));
348 	p4d = p4d_offset(pgd, address);
349 	BUG_ON(p4d_none(*p4d));
350 	pud = pud_offset(p4d, address);
351 	BUG_ON(pud_none(*pud));
352 	pmd = pmd_offset(pud, address);
353 	if (pmd_none(*pmd))
354 		return -EFAULT;
355 	VM_BUG_ON(pmd_trans_huge(*pmd));
356 	pte = pte_offset_map(pmd, address);
357 	if (pte_none(*pte))
358 		goto unmap;
359 	*vma = get_gate_vma(mm);
360 	if (!page)
361 		goto out;
362 	*page = vm_normal_page(*vma, address, *pte);
363 	if (!*page) {
364 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
365 			goto unmap;
366 		*page = pte_page(*pte);
367 	}
368 	get_page(*page);
369 out:
370 	ret = 0;
371 unmap:
372 	pte_unmap(pte);
373 	return ret;
374 }
375 
376 /*
377  * mmap_sem must be held on entry.  If @nonblocking != NULL and
378  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
380  */
381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
382 		unsigned long address, unsigned int *flags, int *nonblocking)
383 {
384 	unsigned int fault_flags = 0;
385 	int ret;
386 
387 	/* mlock all present pages, but do not fault in new pages */
388 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
389 		return -ENOENT;
390 	/* For mm_populate(), just skip the stack guard page. */
391 	if ((*flags & FOLL_POPULATE) &&
392 			(stack_guard_page_start(vma, address) ||
393 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
394 		return -ENOENT;
395 	if (*flags & FOLL_WRITE)
396 		fault_flags |= FAULT_FLAG_WRITE;
397 	if (*flags & FOLL_REMOTE)
398 		fault_flags |= FAULT_FLAG_REMOTE;
399 	if (nonblocking)
400 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
401 	if (*flags & FOLL_NOWAIT)
402 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
403 	if (*flags & FOLL_TRIED) {
404 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
405 		fault_flags |= FAULT_FLAG_TRIED;
406 	}
407 
408 	ret = handle_mm_fault(vma, address, fault_flags);
409 	if (ret & VM_FAULT_ERROR) {
410 		if (ret & VM_FAULT_OOM)
411 			return -ENOMEM;
412 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
413 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
414 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
415 			return -EFAULT;
416 		BUG();
417 	}
418 
419 	if (tsk) {
420 		if (ret & VM_FAULT_MAJOR)
421 			tsk->maj_flt++;
422 		else
423 			tsk->min_flt++;
424 	}
425 
426 	if (ret & VM_FAULT_RETRY) {
427 		if (nonblocking)
428 			*nonblocking = 0;
429 		return -EBUSY;
430 	}
431 
432 	/*
433 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
434 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
435 	 * can thus safely do subsequent page lookups as if they were reads.
436 	 * But only do so when looping for pte_write is futile: in some cases
437 	 * userspace may also be wanting to write to the gotten user page,
438 	 * which a read fault here might prevent (a readonly page might get
439 	 * reCOWed by userspace write).
440 	 */
441 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
442 	        *flags |= FOLL_COW;
443 	return 0;
444 }
445 
446 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
447 {
448 	vm_flags_t vm_flags = vma->vm_flags;
449 	int write = (gup_flags & FOLL_WRITE);
450 	int foreign = (gup_flags & FOLL_REMOTE);
451 
452 	if (vm_flags & (VM_IO | VM_PFNMAP))
453 		return -EFAULT;
454 
455 	if (write) {
456 		if (!(vm_flags & VM_WRITE)) {
457 			if (!(gup_flags & FOLL_FORCE))
458 				return -EFAULT;
459 			/*
460 			 * We used to let the write,force case do COW in a
461 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
462 			 * set a breakpoint in a read-only mapping of an
463 			 * executable, without corrupting the file (yet only
464 			 * when that file had been opened for writing!).
465 			 * Anon pages in shared mappings are surprising: now
466 			 * just reject it.
467 			 */
468 			if (!is_cow_mapping(vm_flags))
469 				return -EFAULT;
470 		}
471 	} else if (!(vm_flags & VM_READ)) {
472 		if (!(gup_flags & FOLL_FORCE))
473 			return -EFAULT;
474 		/*
475 		 * Is there actually any vma we can reach here which does not
476 		 * have VM_MAYREAD set?
477 		 */
478 		if (!(vm_flags & VM_MAYREAD))
479 			return -EFAULT;
480 	}
481 	/*
482 	 * gups are always data accesses, not instruction
483 	 * fetches, so execute=false here
484 	 */
485 	if (!arch_vma_access_permitted(vma, write, false, foreign))
486 		return -EFAULT;
487 	return 0;
488 }
489 
490 /**
491  * __get_user_pages() - pin user pages in memory
492  * @tsk:	task_struct of target task
493  * @mm:		mm_struct of target mm
494  * @start:	starting user address
495  * @nr_pages:	number of pages from start to pin
496  * @gup_flags:	flags modifying pin behaviour
497  * @pages:	array that receives pointers to the pages pinned.
498  *		Should be at least nr_pages long. Or NULL, if caller
499  *		only intends to ensure the pages are faulted in.
500  * @vmas:	array of pointers to vmas corresponding to each page.
501  *		Or NULL if the caller does not require them.
502  * @nonblocking: whether waiting for disk IO or mmap_sem contention
503  *
504  * Returns number of pages pinned. This may be fewer than the number
505  * requested. If nr_pages is 0 or negative, returns 0. If no pages
506  * were pinned, returns -errno. Each page returned must be released
507  * with a put_page() call when it is finished with. vmas will only
508  * remain valid while mmap_sem is held.
509  *
510  * Must be called with mmap_sem held.  It may be released.  See below.
511  *
512  * __get_user_pages walks a process's page tables and takes a reference to
513  * each struct page that each user address corresponds to at a given
514  * instant. That is, it takes the page that would be accessed if a user
515  * thread accesses the given user virtual address at that instant.
516  *
517  * This does not guarantee that the page exists in the user mappings when
518  * __get_user_pages returns, and there may even be a completely different
519  * page there in some cases (eg. if mmapped pagecache has been invalidated
520  * and subsequently re faulted). However it does guarantee that the page
521  * won't be freed completely. And mostly callers simply care that the page
522  * contains data that was valid *at some point in time*. Typically, an IO
523  * or similar operation cannot guarantee anything stronger anyway because
524  * locks can't be held over the syscall boundary.
525  *
526  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
527  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
528  * appropriate) must be called after the page is finished with, and
529  * before put_page is called.
530  *
531  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
532  * or mmap_sem contention, and if waiting is needed to pin all pages,
533  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
534  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
535  * this case.
536  *
537  * A caller using such a combination of @nonblocking and @gup_flags
538  * must therefore hold the mmap_sem for reading only, and recognize
539  * when it's been released.  Otherwise, it must be held for either
540  * reading or writing and will not be released.
541  *
542  * In most cases, get_user_pages or get_user_pages_fast should be used
543  * instead of __get_user_pages. __get_user_pages should be used only if
544  * you need some special @gup_flags.
545  */
546 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
547 		unsigned long start, unsigned long nr_pages,
548 		unsigned int gup_flags, struct page **pages,
549 		struct vm_area_struct **vmas, int *nonblocking)
550 {
551 	long i = 0;
552 	unsigned int page_mask;
553 	struct vm_area_struct *vma = NULL;
554 
555 	if (!nr_pages)
556 		return 0;
557 
558 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
559 
560 	/*
561 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
562 	 * fault information is unrelated to the reference behaviour of a task
563 	 * using the address space
564 	 */
565 	if (!(gup_flags & FOLL_FORCE))
566 		gup_flags |= FOLL_NUMA;
567 
568 	do {
569 		struct page *page;
570 		unsigned int foll_flags = gup_flags;
571 		unsigned int page_increm;
572 
573 		/* first iteration or cross vma bound */
574 		if (!vma || start >= vma->vm_end) {
575 			vma = find_extend_vma(mm, start);
576 			if (!vma && in_gate_area(mm, start)) {
577 				int ret;
578 				ret = get_gate_page(mm, start & PAGE_MASK,
579 						gup_flags, &vma,
580 						pages ? &pages[i] : NULL);
581 				if (ret)
582 					return i ? : ret;
583 				page_mask = 0;
584 				goto next_page;
585 			}
586 
587 			if (!vma || check_vma_flags(vma, gup_flags))
588 				return i ? : -EFAULT;
589 			if (is_vm_hugetlb_page(vma)) {
590 				i = follow_hugetlb_page(mm, vma, pages, vmas,
591 						&start, &nr_pages, i,
592 						gup_flags, nonblocking);
593 				continue;
594 			}
595 		}
596 retry:
597 		/*
598 		 * If we have a pending SIGKILL, don't keep faulting pages and
599 		 * potentially allocating memory.
600 		 */
601 		if (unlikely(fatal_signal_pending(current)))
602 			return i ? i : -ERESTARTSYS;
603 		cond_resched();
604 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
605 		if (!page) {
606 			int ret;
607 			ret = faultin_page(tsk, vma, start, &foll_flags,
608 					nonblocking);
609 			switch (ret) {
610 			case 0:
611 				goto retry;
612 			case -EFAULT:
613 			case -ENOMEM:
614 			case -EHWPOISON:
615 				return i ? i : ret;
616 			case -EBUSY:
617 				return i;
618 			case -ENOENT:
619 				goto next_page;
620 			}
621 			BUG();
622 		} else if (PTR_ERR(page) == -EEXIST) {
623 			/*
624 			 * Proper page table entry exists, but no corresponding
625 			 * struct page.
626 			 */
627 			goto next_page;
628 		} else if (IS_ERR(page)) {
629 			return i ? i : PTR_ERR(page);
630 		}
631 		if (pages) {
632 			pages[i] = page;
633 			flush_anon_page(vma, page, start);
634 			flush_dcache_page(page);
635 			page_mask = 0;
636 		}
637 next_page:
638 		if (vmas) {
639 			vmas[i] = vma;
640 			page_mask = 0;
641 		}
642 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
643 		if (page_increm > nr_pages)
644 			page_increm = nr_pages;
645 		i += page_increm;
646 		start += page_increm * PAGE_SIZE;
647 		nr_pages -= page_increm;
648 	} while (nr_pages);
649 	return i;
650 }
651 
652 static bool vma_permits_fault(struct vm_area_struct *vma,
653 			      unsigned int fault_flags)
654 {
655 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
656 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
657 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
658 
659 	if (!(vm_flags & vma->vm_flags))
660 		return false;
661 
662 	/*
663 	 * The architecture might have a hardware protection
664 	 * mechanism other than read/write that can deny access.
665 	 *
666 	 * gup always represents data access, not instruction
667 	 * fetches, so execute=false here:
668 	 */
669 	if (!arch_vma_access_permitted(vma, write, false, foreign))
670 		return false;
671 
672 	return true;
673 }
674 
675 /*
676  * fixup_user_fault() - manually resolve a user page fault
677  * @tsk:	the task_struct to use for page fault accounting, or
678  *		NULL if faults are not to be recorded.
679  * @mm:		mm_struct of target mm
680  * @address:	user address
681  * @fault_flags:flags to pass down to handle_mm_fault()
682  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
683  *		does not allow retry
684  *
685  * This is meant to be called in the specific scenario where for locking reasons
686  * we try to access user memory in atomic context (within a pagefault_disable()
687  * section), this returns -EFAULT, and we want to resolve the user fault before
688  * trying again.
689  *
690  * Typically this is meant to be used by the futex code.
691  *
692  * The main difference with get_user_pages() is that this function will
693  * unconditionally call handle_mm_fault() which will in turn perform all the
694  * necessary SW fixup of the dirty and young bits in the PTE, while
695  * get_user_pages() only guarantees to update these in the struct page.
696  *
697  * This is important for some architectures where those bits also gate the
698  * access permission to the page because they are maintained in software.  On
699  * such architectures, gup() will not be enough to make a subsequent access
700  * succeed.
701  *
702  * This function will not return with an unlocked mmap_sem. So it has not the
703  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
704  */
705 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
706 		     unsigned long address, unsigned int fault_flags,
707 		     bool *unlocked)
708 {
709 	struct vm_area_struct *vma;
710 	int ret, major = 0;
711 
712 	if (unlocked)
713 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
714 
715 retry:
716 	vma = find_extend_vma(mm, address);
717 	if (!vma || address < vma->vm_start)
718 		return -EFAULT;
719 
720 	if (!vma_permits_fault(vma, fault_flags))
721 		return -EFAULT;
722 
723 	ret = handle_mm_fault(vma, address, fault_flags);
724 	major |= ret & VM_FAULT_MAJOR;
725 	if (ret & VM_FAULT_ERROR) {
726 		if (ret & VM_FAULT_OOM)
727 			return -ENOMEM;
728 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
729 			return -EHWPOISON;
730 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
731 			return -EFAULT;
732 		BUG();
733 	}
734 
735 	if (ret & VM_FAULT_RETRY) {
736 		down_read(&mm->mmap_sem);
737 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
738 			*unlocked = true;
739 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
740 			fault_flags |= FAULT_FLAG_TRIED;
741 			goto retry;
742 		}
743 	}
744 
745 	if (tsk) {
746 		if (major)
747 			tsk->maj_flt++;
748 		else
749 			tsk->min_flt++;
750 	}
751 	return 0;
752 }
753 EXPORT_SYMBOL_GPL(fixup_user_fault);
754 
755 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
756 						struct mm_struct *mm,
757 						unsigned long start,
758 						unsigned long nr_pages,
759 						struct page **pages,
760 						struct vm_area_struct **vmas,
761 						int *locked, bool notify_drop,
762 						unsigned int flags)
763 {
764 	long ret, pages_done;
765 	bool lock_dropped;
766 
767 	if (locked) {
768 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
769 		BUG_ON(vmas);
770 		/* check caller initialized locked */
771 		BUG_ON(*locked != 1);
772 	}
773 
774 	if (pages)
775 		flags |= FOLL_GET;
776 
777 	pages_done = 0;
778 	lock_dropped = false;
779 	for (;;) {
780 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
781 				       vmas, locked);
782 		if (!locked)
783 			/* VM_FAULT_RETRY couldn't trigger, bypass */
784 			return ret;
785 
786 		/* VM_FAULT_RETRY cannot return errors */
787 		if (!*locked) {
788 			BUG_ON(ret < 0);
789 			BUG_ON(ret >= nr_pages);
790 		}
791 
792 		if (!pages)
793 			/* If it's a prefault don't insist harder */
794 			return ret;
795 
796 		if (ret > 0) {
797 			nr_pages -= ret;
798 			pages_done += ret;
799 			if (!nr_pages)
800 				break;
801 		}
802 		if (*locked) {
803 			/* VM_FAULT_RETRY didn't trigger */
804 			if (!pages_done)
805 				pages_done = ret;
806 			break;
807 		}
808 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
809 		pages += ret;
810 		start += ret << PAGE_SHIFT;
811 
812 		/*
813 		 * Repeat on the address that fired VM_FAULT_RETRY
814 		 * without FAULT_FLAG_ALLOW_RETRY but with
815 		 * FAULT_FLAG_TRIED.
816 		 */
817 		*locked = 1;
818 		lock_dropped = true;
819 		down_read(&mm->mmap_sem);
820 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
821 				       pages, NULL, NULL);
822 		if (ret != 1) {
823 			BUG_ON(ret > 1);
824 			if (!pages_done)
825 				pages_done = ret;
826 			break;
827 		}
828 		nr_pages--;
829 		pages_done++;
830 		if (!nr_pages)
831 			break;
832 		pages++;
833 		start += PAGE_SIZE;
834 	}
835 	if (notify_drop && lock_dropped && *locked) {
836 		/*
837 		 * We must let the caller know we temporarily dropped the lock
838 		 * and so the critical section protected by it was lost.
839 		 */
840 		up_read(&mm->mmap_sem);
841 		*locked = 0;
842 	}
843 	return pages_done;
844 }
845 
846 /*
847  * We can leverage the VM_FAULT_RETRY functionality in the page fault
848  * paths better by using either get_user_pages_locked() or
849  * get_user_pages_unlocked().
850  *
851  * get_user_pages_locked() is suitable to replace the form:
852  *
853  *      down_read(&mm->mmap_sem);
854  *      do_something()
855  *      get_user_pages(tsk, mm, ..., pages, NULL);
856  *      up_read(&mm->mmap_sem);
857  *
858  *  to:
859  *
860  *      int locked = 1;
861  *      down_read(&mm->mmap_sem);
862  *      do_something()
863  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
864  *      if (locked)
865  *          up_read(&mm->mmap_sem);
866  */
867 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
868 			   unsigned int gup_flags, struct page **pages,
869 			   int *locked)
870 {
871 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
872 				       pages, NULL, locked, true,
873 				       gup_flags | FOLL_TOUCH);
874 }
875 EXPORT_SYMBOL(get_user_pages_locked);
876 
877 /*
878  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
879  * tsk, mm to be specified.
880  *
881  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
882  * caller if required (just like with __get_user_pages). "FOLL_GET"
883  * is set implicitly if "pages" is non-NULL.
884  */
885 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
886 		struct mm_struct *mm, unsigned long start,
887 		unsigned long nr_pages, struct page **pages,
888 		unsigned int gup_flags)
889 {
890 	long ret;
891 	int locked = 1;
892 
893 	down_read(&mm->mmap_sem);
894 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
895 				      &locked, false, gup_flags);
896 	if (locked)
897 		up_read(&mm->mmap_sem);
898 	return ret;
899 }
900 
901 /*
902  * get_user_pages_unlocked() is suitable to replace the form:
903  *
904  *      down_read(&mm->mmap_sem);
905  *      get_user_pages(tsk, mm, ..., pages, NULL);
906  *      up_read(&mm->mmap_sem);
907  *
908  *  with:
909  *
910  *      get_user_pages_unlocked(tsk, mm, ..., pages);
911  *
912  * It is functionally equivalent to get_user_pages_fast so
913  * get_user_pages_fast should be used instead if specific gup_flags
914  * (e.g. FOLL_FORCE) are not required.
915  */
916 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
917 			     struct page **pages, unsigned int gup_flags)
918 {
919 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
920 					 pages, gup_flags | FOLL_TOUCH);
921 }
922 EXPORT_SYMBOL(get_user_pages_unlocked);
923 
924 /*
925  * get_user_pages_remote() - pin user pages in memory
926  * @tsk:	the task_struct to use for page fault accounting, or
927  *		NULL if faults are not to be recorded.
928  * @mm:		mm_struct of target mm
929  * @start:	starting user address
930  * @nr_pages:	number of pages from start to pin
931  * @gup_flags:	flags modifying lookup behaviour
932  * @pages:	array that receives pointers to the pages pinned.
933  *		Should be at least nr_pages long. Or NULL, if caller
934  *		only intends to ensure the pages are faulted in.
935  * @vmas:	array of pointers to vmas corresponding to each page.
936  *		Or NULL if the caller does not require them.
937  * @locked:	pointer to lock flag indicating whether lock is held and
938  *		subsequently whether VM_FAULT_RETRY functionality can be
939  *		utilised. Lock must initially be held.
940  *
941  * Returns number of pages pinned. This may be fewer than the number
942  * requested. If nr_pages is 0 or negative, returns 0. If no pages
943  * were pinned, returns -errno. Each page returned must be released
944  * with a put_page() call when it is finished with. vmas will only
945  * remain valid while mmap_sem is held.
946  *
947  * Must be called with mmap_sem held for read or write.
948  *
949  * get_user_pages walks a process's page tables and takes a reference to
950  * each struct page that each user address corresponds to at a given
951  * instant. That is, it takes the page that would be accessed if a user
952  * thread accesses the given user virtual address at that instant.
953  *
954  * This does not guarantee that the page exists in the user mappings when
955  * get_user_pages returns, and there may even be a completely different
956  * page there in some cases (eg. if mmapped pagecache has been invalidated
957  * and subsequently re faulted). However it does guarantee that the page
958  * won't be freed completely. And mostly callers simply care that the page
959  * contains data that was valid *at some point in time*. Typically, an IO
960  * or similar operation cannot guarantee anything stronger anyway because
961  * locks can't be held over the syscall boundary.
962  *
963  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
964  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
965  * be called after the page is finished with, and before put_page is called.
966  *
967  * get_user_pages is typically used for fewer-copy IO operations, to get a
968  * handle on the memory by some means other than accesses via the user virtual
969  * addresses. The pages may be submitted for DMA to devices or accessed via
970  * their kernel linear mapping (via the kmap APIs). Care should be taken to
971  * use the correct cache flushing APIs.
972  *
973  * See also get_user_pages_fast, for performance critical applications.
974  *
975  * get_user_pages should be phased out in favor of
976  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
977  * should use get_user_pages because it cannot pass
978  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
979  */
980 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
981 		unsigned long start, unsigned long nr_pages,
982 		unsigned int gup_flags, struct page **pages,
983 		struct vm_area_struct **vmas, int *locked)
984 {
985 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
986 				       locked, true,
987 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
988 }
989 EXPORT_SYMBOL(get_user_pages_remote);
990 
991 /*
992  * This is the same as get_user_pages_remote(), just with a
993  * less-flexible calling convention where we assume that the task
994  * and mm being operated on are the current task's and don't allow
995  * passing of a locked parameter.  We also obviously don't pass
996  * FOLL_REMOTE in here.
997  */
998 long get_user_pages(unsigned long start, unsigned long nr_pages,
999 		unsigned int gup_flags, struct page **pages,
1000 		struct vm_area_struct **vmas)
1001 {
1002 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1003 				       pages, vmas, NULL, false,
1004 				       gup_flags | FOLL_TOUCH);
1005 }
1006 EXPORT_SYMBOL(get_user_pages);
1007 
1008 /**
1009  * populate_vma_page_range() -  populate a range of pages in the vma.
1010  * @vma:   target vma
1011  * @start: start address
1012  * @end:   end address
1013  * @nonblocking:
1014  *
1015  * This takes care of mlocking the pages too if VM_LOCKED is set.
1016  *
1017  * return 0 on success, negative error code on error.
1018  *
1019  * vma->vm_mm->mmap_sem must be held.
1020  *
1021  * If @nonblocking is NULL, it may be held for read or write and will
1022  * be unperturbed.
1023  *
1024  * If @nonblocking is non-NULL, it must held for read only and may be
1025  * released.  If it's released, *@nonblocking will be set to 0.
1026  */
1027 long populate_vma_page_range(struct vm_area_struct *vma,
1028 		unsigned long start, unsigned long end, int *nonblocking)
1029 {
1030 	struct mm_struct *mm = vma->vm_mm;
1031 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1032 	int gup_flags;
1033 
1034 	VM_BUG_ON(start & ~PAGE_MASK);
1035 	VM_BUG_ON(end   & ~PAGE_MASK);
1036 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1037 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1038 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1039 
1040 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1041 	if (vma->vm_flags & VM_LOCKONFAULT)
1042 		gup_flags &= ~FOLL_POPULATE;
1043 	/*
1044 	 * We want to touch writable mappings with a write fault in order
1045 	 * to break COW, except for shared mappings because these don't COW
1046 	 * and we would not want to dirty them for nothing.
1047 	 */
1048 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1049 		gup_flags |= FOLL_WRITE;
1050 
1051 	/*
1052 	 * We want mlock to succeed for regions that have any permissions
1053 	 * other than PROT_NONE.
1054 	 */
1055 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1056 		gup_flags |= FOLL_FORCE;
1057 
1058 	/*
1059 	 * We made sure addr is within a VMA, so the following will
1060 	 * not result in a stack expansion that recurses back here.
1061 	 */
1062 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1063 				NULL, NULL, nonblocking);
1064 }
1065 
1066 /*
1067  * __mm_populate - populate and/or mlock pages within a range of address space.
1068  *
1069  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1070  * flags. VMAs must be already marked with the desired vm_flags, and
1071  * mmap_sem must not be held.
1072  */
1073 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1074 {
1075 	struct mm_struct *mm = current->mm;
1076 	unsigned long end, nstart, nend;
1077 	struct vm_area_struct *vma = NULL;
1078 	int locked = 0;
1079 	long ret = 0;
1080 
1081 	VM_BUG_ON(start & ~PAGE_MASK);
1082 	VM_BUG_ON(len != PAGE_ALIGN(len));
1083 	end = start + len;
1084 
1085 	for (nstart = start; nstart < end; nstart = nend) {
1086 		/*
1087 		 * We want to fault in pages for [nstart; end) address range.
1088 		 * Find first corresponding VMA.
1089 		 */
1090 		if (!locked) {
1091 			locked = 1;
1092 			down_read(&mm->mmap_sem);
1093 			vma = find_vma(mm, nstart);
1094 		} else if (nstart >= vma->vm_end)
1095 			vma = vma->vm_next;
1096 		if (!vma || vma->vm_start >= end)
1097 			break;
1098 		/*
1099 		 * Set [nstart; nend) to intersection of desired address
1100 		 * range with the first VMA. Also, skip undesirable VMA types.
1101 		 */
1102 		nend = min(end, vma->vm_end);
1103 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1104 			continue;
1105 		if (nstart < vma->vm_start)
1106 			nstart = vma->vm_start;
1107 		/*
1108 		 * Now fault in a range of pages. populate_vma_page_range()
1109 		 * double checks the vma flags, so that it won't mlock pages
1110 		 * if the vma was already munlocked.
1111 		 */
1112 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1113 		if (ret < 0) {
1114 			if (ignore_errors) {
1115 				ret = 0;
1116 				continue;	/* continue at next VMA */
1117 			}
1118 			break;
1119 		}
1120 		nend = nstart + ret * PAGE_SIZE;
1121 		ret = 0;
1122 	}
1123 	if (locked)
1124 		up_read(&mm->mmap_sem);
1125 	return ret;	/* 0 or negative error code */
1126 }
1127 
1128 /**
1129  * get_dump_page() - pin user page in memory while writing it to core dump
1130  * @addr: user address
1131  *
1132  * Returns struct page pointer of user page pinned for dump,
1133  * to be freed afterwards by put_page().
1134  *
1135  * Returns NULL on any kind of failure - a hole must then be inserted into
1136  * the corefile, to preserve alignment with its headers; and also returns
1137  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1138  * allowing a hole to be left in the corefile to save diskspace.
1139  *
1140  * Called without mmap_sem, but after all other threads have been killed.
1141  */
1142 #ifdef CONFIG_ELF_CORE
1143 struct page *get_dump_page(unsigned long addr)
1144 {
1145 	struct vm_area_struct *vma;
1146 	struct page *page;
1147 
1148 	if (__get_user_pages(current, current->mm, addr, 1,
1149 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1150 			     NULL) < 1)
1151 		return NULL;
1152 	flush_cache_page(vma, addr, page_to_pfn(page));
1153 	return page;
1154 }
1155 #endif /* CONFIG_ELF_CORE */
1156 
1157 /*
1158  * Generic RCU Fast GUP
1159  *
1160  * get_user_pages_fast attempts to pin user pages by walking the page
1161  * tables directly and avoids taking locks. Thus the walker needs to be
1162  * protected from page table pages being freed from under it, and should
1163  * block any THP splits.
1164  *
1165  * One way to achieve this is to have the walker disable interrupts, and
1166  * rely on IPIs from the TLB flushing code blocking before the page table
1167  * pages are freed. This is unsuitable for architectures that do not need
1168  * to broadcast an IPI when invalidating TLBs.
1169  *
1170  * Another way to achieve this is to batch up page table containing pages
1171  * belonging to more than one mm_user, then rcu_sched a callback to free those
1172  * pages. Disabling interrupts will allow the fast_gup walker to both block
1173  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1174  * (which is a relatively rare event). The code below adopts this strategy.
1175  *
1176  * Before activating this code, please be aware that the following assumptions
1177  * are currently made:
1178  *
1179  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1180  *      pages containing page tables.
1181  *
1182  *  *) ptes can be read atomically by the architecture.
1183  *
1184  *  *) access_ok is sufficient to validate userspace address ranges.
1185  *
1186  * The last two assumptions can be relaxed by the addition of helper functions.
1187  *
1188  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1189  */
1190 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1191 
1192 #ifdef __HAVE_ARCH_PTE_SPECIAL
1193 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1194 			 int write, struct page **pages, int *nr)
1195 {
1196 	pte_t *ptep, *ptem;
1197 	int ret = 0;
1198 
1199 	ptem = ptep = pte_offset_map(&pmd, addr);
1200 	do {
1201 		/*
1202 		 * In the line below we are assuming that the pte can be read
1203 		 * atomically. If this is not the case for your architecture,
1204 		 * please wrap this in a helper function!
1205 		 *
1206 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1207 		 */
1208 		pte_t pte = READ_ONCE(*ptep);
1209 		struct page *head, *page;
1210 
1211 		/*
1212 		 * Similar to the PMD case below, NUMA hinting must take slow
1213 		 * path using the pte_protnone check.
1214 		 */
1215 		if (!pte_present(pte) || pte_special(pte) ||
1216 			pte_protnone(pte) || (write && !pte_write(pte)))
1217 			goto pte_unmap;
1218 
1219 		if (!arch_pte_access_permitted(pte, write))
1220 			goto pte_unmap;
1221 
1222 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1223 		page = pte_page(pte);
1224 		head = compound_head(page);
1225 
1226 		if (!page_cache_get_speculative(head))
1227 			goto pte_unmap;
1228 
1229 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1230 			put_page(head);
1231 			goto pte_unmap;
1232 		}
1233 
1234 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1235 		pages[*nr] = page;
1236 		(*nr)++;
1237 
1238 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1239 
1240 	ret = 1;
1241 
1242 pte_unmap:
1243 	pte_unmap(ptem);
1244 	return ret;
1245 }
1246 #else
1247 
1248 /*
1249  * If we can't determine whether or not a pte is special, then fail immediately
1250  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1251  * to be special.
1252  *
1253  * For a futex to be placed on a THP tail page, get_futex_key requires a
1254  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1255  * useful to have gup_huge_pmd even if we can't operate on ptes.
1256  */
1257 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1258 			 int write, struct page **pages, int *nr)
1259 {
1260 	return 0;
1261 }
1262 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1263 
1264 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1265 		unsigned long end, int write, struct page **pages, int *nr)
1266 {
1267 	struct page *head, *page;
1268 	int refs;
1269 
1270 	if (write && !pmd_write(orig))
1271 		return 0;
1272 
1273 	refs = 0;
1274 	head = pmd_page(orig);
1275 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1276 	do {
1277 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1278 		pages[*nr] = page;
1279 		(*nr)++;
1280 		page++;
1281 		refs++;
1282 	} while (addr += PAGE_SIZE, addr != end);
1283 
1284 	if (!page_cache_add_speculative(head, refs)) {
1285 		*nr -= refs;
1286 		return 0;
1287 	}
1288 
1289 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1290 		*nr -= refs;
1291 		while (refs--)
1292 			put_page(head);
1293 		return 0;
1294 	}
1295 
1296 	return 1;
1297 }
1298 
1299 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1300 		unsigned long end, int write, struct page **pages, int *nr)
1301 {
1302 	struct page *head, *page;
1303 	int refs;
1304 
1305 	if (write && !pud_write(orig))
1306 		return 0;
1307 
1308 	refs = 0;
1309 	head = pud_page(orig);
1310 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1311 	do {
1312 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1313 		pages[*nr] = page;
1314 		(*nr)++;
1315 		page++;
1316 		refs++;
1317 	} while (addr += PAGE_SIZE, addr != end);
1318 
1319 	if (!page_cache_add_speculative(head, refs)) {
1320 		*nr -= refs;
1321 		return 0;
1322 	}
1323 
1324 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1325 		*nr -= refs;
1326 		while (refs--)
1327 			put_page(head);
1328 		return 0;
1329 	}
1330 
1331 	return 1;
1332 }
1333 
1334 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1335 			unsigned long end, int write,
1336 			struct page **pages, int *nr)
1337 {
1338 	int refs;
1339 	struct page *head, *page;
1340 
1341 	if (write && !pgd_write(orig))
1342 		return 0;
1343 
1344 	refs = 0;
1345 	head = pgd_page(orig);
1346 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1347 	do {
1348 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1349 		pages[*nr] = page;
1350 		(*nr)++;
1351 		page++;
1352 		refs++;
1353 	} while (addr += PAGE_SIZE, addr != end);
1354 
1355 	if (!page_cache_add_speculative(head, refs)) {
1356 		*nr -= refs;
1357 		return 0;
1358 	}
1359 
1360 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1361 		*nr -= refs;
1362 		while (refs--)
1363 			put_page(head);
1364 		return 0;
1365 	}
1366 
1367 	return 1;
1368 }
1369 
1370 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1371 		int write, struct page **pages, int *nr)
1372 {
1373 	unsigned long next;
1374 	pmd_t *pmdp;
1375 
1376 	pmdp = pmd_offset(&pud, addr);
1377 	do {
1378 		pmd_t pmd = READ_ONCE(*pmdp);
1379 
1380 		next = pmd_addr_end(addr, end);
1381 		if (pmd_none(pmd))
1382 			return 0;
1383 
1384 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1385 			/*
1386 			 * NUMA hinting faults need to be handled in the GUP
1387 			 * slowpath for accounting purposes and so that they
1388 			 * can be serialised against THP migration.
1389 			 */
1390 			if (pmd_protnone(pmd))
1391 				return 0;
1392 
1393 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1394 				pages, nr))
1395 				return 0;
1396 
1397 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1398 			/*
1399 			 * architecture have different format for hugetlbfs
1400 			 * pmd format and THP pmd format
1401 			 */
1402 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1403 					 PMD_SHIFT, next, write, pages, nr))
1404 				return 0;
1405 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1406 				return 0;
1407 	} while (pmdp++, addr = next, addr != end);
1408 
1409 	return 1;
1410 }
1411 
1412 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1413 			 int write, struct page **pages, int *nr)
1414 {
1415 	unsigned long next;
1416 	pud_t *pudp;
1417 
1418 	pudp = pud_offset(&p4d, addr);
1419 	do {
1420 		pud_t pud = READ_ONCE(*pudp);
1421 
1422 		next = pud_addr_end(addr, end);
1423 		if (pud_none(pud))
1424 			return 0;
1425 		if (unlikely(pud_huge(pud))) {
1426 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1427 					  pages, nr))
1428 				return 0;
1429 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1430 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1431 					 PUD_SHIFT, next, write, pages, nr))
1432 				return 0;
1433 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1434 			return 0;
1435 	} while (pudp++, addr = next, addr != end);
1436 
1437 	return 1;
1438 }
1439 
1440 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1441 			 int write, struct page **pages, int *nr)
1442 {
1443 	unsigned long next;
1444 	p4d_t *p4dp;
1445 
1446 	p4dp = p4d_offset(&pgd, addr);
1447 	do {
1448 		p4d_t p4d = READ_ONCE(*p4dp);
1449 
1450 		next = p4d_addr_end(addr, end);
1451 		if (p4d_none(p4d))
1452 			return 0;
1453 		BUILD_BUG_ON(p4d_huge(p4d));
1454 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1455 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1456 					 P4D_SHIFT, next, write, pages, nr))
1457 				return 0;
1458 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1459 			return 0;
1460 	} while (p4dp++, addr = next, addr != end);
1461 
1462 	return 1;
1463 }
1464 
1465 /*
1466  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1467  * the regular GUP. It will only return non-negative values.
1468  */
1469 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1470 			  struct page **pages)
1471 {
1472 	struct mm_struct *mm = current->mm;
1473 	unsigned long addr, len, end;
1474 	unsigned long next, flags;
1475 	pgd_t *pgdp;
1476 	int nr = 0;
1477 
1478 	start &= PAGE_MASK;
1479 	addr = start;
1480 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1481 	end = start + len;
1482 
1483 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1484 					start, len)))
1485 		return 0;
1486 
1487 	/*
1488 	 * Disable interrupts.  We use the nested form as we can already have
1489 	 * interrupts disabled by get_futex_key.
1490 	 *
1491 	 * With interrupts disabled, we block page table pages from being
1492 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1493 	 * for more details.
1494 	 *
1495 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1496 	 * block IPIs that come from THPs splitting.
1497 	 */
1498 
1499 	local_irq_save(flags);
1500 	pgdp = pgd_offset(mm, addr);
1501 	do {
1502 		pgd_t pgd = READ_ONCE(*pgdp);
1503 
1504 		next = pgd_addr_end(addr, end);
1505 		if (pgd_none(pgd))
1506 			break;
1507 		if (unlikely(pgd_huge(pgd))) {
1508 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1509 					  pages, &nr))
1510 				break;
1511 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1512 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1513 					 PGDIR_SHIFT, next, write, pages, &nr))
1514 				break;
1515 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
1516 			break;
1517 	} while (pgdp++, addr = next, addr != end);
1518 	local_irq_restore(flags);
1519 
1520 	return nr;
1521 }
1522 
1523 /**
1524  * get_user_pages_fast() - pin user pages in memory
1525  * @start:	starting user address
1526  * @nr_pages:	number of pages from start to pin
1527  * @write:	whether pages will be written to
1528  * @pages:	array that receives pointers to the pages pinned.
1529  *		Should be at least nr_pages long.
1530  *
1531  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1532  * If not successful, it will fall back to taking the lock and
1533  * calling get_user_pages().
1534  *
1535  * Returns number of pages pinned. This may be fewer than the number
1536  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1537  * were pinned, returns -errno.
1538  */
1539 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1540 			struct page **pages)
1541 {
1542 	int nr, ret;
1543 
1544 	start &= PAGE_MASK;
1545 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1546 	ret = nr;
1547 
1548 	if (nr < nr_pages) {
1549 		/* Try to get the remaining pages with get_user_pages */
1550 		start += nr << PAGE_SHIFT;
1551 		pages += nr;
1552 
1553 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1554 				write ? FOLL_WRITE : 0);
1555 
1556 		/* Have to be a bit careful with return values */
1557 		if (nr > 0) {
1558 			if (ret < 0)
1559 				ret = nr;
1560 			else
1561 				ret += nr;
1562 		}
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1569