xref: /openbmc/linux/mm/gup.c (revision e58e871b)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
211 /**
212  * follow_page_mask - look up a page descriptor from a user-virtual address
213  * @vma: vm_area_struct mapping @address
214  * @address: virtual address to look up
215  * @flags: flags modifying lookup behaviour
216  * @page_mask: on output, *page_mask is set according to the size of the page
217  *
218  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219  *
220  * Returns the mapped (struct page *), %NULL if no mapping exists, or
221  * an error pointer if there is a mapping to something not represented
222  * by a page descriptor (see also vm_normal_page()).
223  */
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 			      unsigned long address, unsigned int flags,
226 			      unsigned int *page_mask)
227 {
228 	pgd_t *pgd;
229 	p4d_t *p4d;
230 	pud_t *pud;
231 	pmd_t *pmd;
232 	spinlock_t *ptl;
233 	struct page *page;
234 	struct mm_struct *mm = vma->vm_mm;
235 
236 	*page_mask = 0;
237 
238 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
239 	if (!IS_ERR(page)) {
240 		BUG_ON(flags & FOLL_GET);
241 		return page;
242 	}
243 
244 	pgd = pgd_offset(mm, address);
245 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
246 		return no_page_table(vma, flags);
247 	p4d = p4d_offset(pgd, address);
248 	if (p4d_none(*p4d))
249 		return no_page_table(vma, flags);
250 	BUILD_BUG_ON(p4d_huge(*p4d));
251 	if (unlikely(p4d_bad(*p4d)))
252 		return no_page_table(vma, flags);
253 	pud = pud_offset(p4d, address);
254 	if (pud_none(*pud))
255 		return no_page_table(vma, flags);
256 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
257 		page = follow_huge_pud(mm, address, pud, flags);
258 		if (page)
259 			return page;
260 		return no_page_table(vma, flags);
261 	}
262 	if (pud_devmap(*pud)) {
263 		ptl = pud_lock(mm, pud);
264 		page = follow_devmap_pud(vma, address, pud, flags);
265 		spin_unlock(ptl);
266 		if (page)
267 			return page;
268 	}
269 	if (unlikely(pud_bad(*pud)))
270 		return no_page_table(vma, flags);
271 
272 	pmd = pmd_offset(pud, address);
273 	if (pmd_none(*pmd))
274 		return no_page_table(vma, flags);
275 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
276 		page = follow_huge_pmd(mm, address, pmd, flags);
277 		if (page)
278 			return page;
279 		return no_page_table(vma, flags);
280 	}
281 	if (pmd_devmap(*pmd)) {
282 		ptl = pmd_lock(mm, pmd);
283 		page = follow_devmap_pmd(vma, address, pmd, flags);
284 		spin_unlock(ptl);
285 		if (page)
286 			return page;
287 	}
288 	if (likely(!pmd_trans_huge(*pmd)))
289 		return follow_page_pte(vma, address, pmd, flags);
290 
291 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
292 		return no_page_table(vma, flags);
293 
294 	ptl = pmd_lock(mm, pmd);
295 	if (unlikely(!pmd_trans_huge(*pmd))) {
296 		spin_unlock(ptl);
297 		return follow_page_pte(vma, address, pmd, flags);
298 	}
299 	if (flags & FOLL_SPLIT) {
300 		int ret;
301 		page = pmd_page(*pmd);
302 		if (is_huge_zero_page(page)) {
303 			spin_unlock(ptl);
304 			ret = 0;
305 			split_huge_pmd(vma, pmd, address);
306 			if (pmd_trans_unstable(pmd))
307 				ret = -EBUSY;
308 		} else {
309 			get_page(page);
310 			spin_unlock(ptl);
311 			lock_page(page);
312 			ret = split_huge_page(page);
313 			unlock_page(page);
314 			put_page(page);
315 			if (pmd_none(*pmd))
316 				return no_page_table(vma, flags);
317 		}
318 
319 		return ret ? ERR_PTR(ret) :
320 			follow_page_pte(vma, address, pmd, flags);
321 	}
322 
323 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
324 	spin_unlock(ptl);
325 	*page_mask = HPAGE_PMD_NR - 1;
326 	return page;
327 }
328 
329 static int get_gate_page(struct mm_struct *mm, unsigned long address,
330 		unsigned int gup_flags, struct vm_area_struct **vma,
331 		struct page **page)
332 {
333 	pgd_t *pgd;
334 	p4d_t *p4d;
335 	pud_t *pud;
336 	pmd_t *pmd;
337 	pte_t *pte;
338 	int ret = -EFAULT;
339 
340 	/* user gate pages are read-only */
341 	if (gup_flags & FOLL_WRITE)
342 		return -EFAULT;
343 	if (address > TASK_SIZE)
344 		pgd = pgd_offset_k(address);
345 	else
346 		pgd = pgd_offset_gate(mm, address);
347 	BUG_ON(pgd_none(*pgd));
348 	p4d = p4d_offset(pgd, address);
349 	BUG_ON(p4d_none(*p4d));
350 	pud = pud_offset(p4d, address);
351 	BUG_ON(pud_none(*pud));
352 	pmd = pmd_offset(pud, address);
353 	if (pmd_none(*pmd))
354 		return -EFAULT;
355 	VM_BUG_ON(pmd_trans_huge(*pmd));
356 	pte = pte_offset_map(pmd, address);
357 	if (pte_none(*pte))
358 		goto unmap;
359 	*vma = get_gate_vma(mm);
360 	if (!page)
361 		goto out;
362 	*page = vm_normal_page(*vma, address, *pte);
363 	if (!*page) {
364 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
365 			goto unmap;
366 		*page = pte_page(*pte);
367 	}
368 	get_page(*page);
369 out:
370 	ret = 0;
371 unmap:
372 	pte_unmap(pte);
373 	return ret;
374 }
375 
376 /*
377  * mmap_sem must be held on entry.  If @nonblocking != NULL and
378  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
379  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
380  */
381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
382 		unsigned long address, unsigned int *flags, int *nonblocking)
383 {
384 	unsigned int fault_flags = 0;
385 	int ret;
386 
387 	/* mlock all present pages, but do not fault in new pages */
388 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
389 		return -ENOENT;
390 	/* For mm_populate(), just skip the stack guard page. */
391 	if ((*flags & FOLL_POPULATE) &&
392 			(stack_guard_page_start(vma, address) ||
393 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
394 		return -ENOENT;
395 	if (*flags & FOLL_WRITE)
396 		fault_flags |= FAULT_FLAG_WRITE;
397 	if (*flags & FOLL_REMOTE)
398 		fault_flags |= FAULT_FLAG_REMOTE;
399 	if (nonblocking)
400 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
401 	if (*flags & FOLL_NOWAIT)
402 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
403 	if (*flags & FOLL_TRIED) {
404 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
405 		fault_flags |= FAULT_FLAG_TRIED;
406 	}
407 
408 	ret = handle_mm_fault(vma, address, fault_flags);
409 	if (ret & VM_FAULT_ERROR) {
410 		int err = vm_fault_to_errno(ret, *flags);
411 
412 		if (err)
413 			return err;
414 		BUG();
415 	}
416 
417 	if (tsk) {
418 		if (ret & VM_FAULT_MAJOR)
419 			tsk->maj_flt++;
420 		else
421 			tsk->min_flt++;
422 	}
423 
424 	if (ret & VM_FAULT_RETRY) {
425 		if (nonblocking)
426 			*nonblocking = 0;
427 		return -EBUSY;
428 	}
429 
430 	/*
431 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
432 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
433 	 * can thus safely do subsequent page lookups as if they were reads.
434 	 * But only do so when looping for pte_write is futile: in some cases
435 	 * userspace may also be wanting to write to the gotten user page,
436 	 * which a read fault here might prevent (a readonly page might get
437 	 * reCOWed by userspace write).
438 	 */
439 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
440 	        *flags |= FOLL_COW;
441 	return 0;
442 }
443 
444 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
445 {
446 	vm_flags_t vm_flags = vma->vm_flags;
447 	int write = (gup_flags & FOLL_WRITE);
448 	int foreign = (gup_flags & FOLL_REMOTE);
449 
450 	if (vm_flags & (VM_IO | VM_PFNMAP))
451 		return -EFAULT;
452 
453 	if (write) {
454 		if (!(vm_flags & VM_WRITE)) {
455 			if (!(gup_flags & FOLL_FORCE))
456 				return -EFAULT;
457 			/*
458 			 * We used to let the write,force case do COW in a
459 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
460 			 * set a breakpoint in a read-only mapping of an
461 			 * executable, without corrupting the file (yet only
462 			 * when that file had been opened for writing!).
463 			 * Anon pages in shared mappings are surprising: now
464 			 * just reject it.
465 			 */
466 			if (!is_cow_mapping(vm_flags))
467 				return -EFAULT;
468 		}
469 	} else if (!(vm_flags & VM_READ)) {
470 		if (!(gup_flags & FOLL_FORCE))
471 			return -EFAULT;
472 		/*
473 		 * Is there actually any vma we can reach here which does not
474 		 * have VM_MAYREAD set?
475 		 */
476 		if (!(vm_flags & VM_MAYREAD))
477 			return -EFAULT;
478 	}
479 	/*
480 	 * gups are always data accesses, not instruction
481 	 * fetches, so execute=false here
482 	 */
483 	if (!arch_vma_access_permitted(vma, write, false, foreign))
484 		return -EFAULT;
485 	return 0;
486 }
487 
488 /**
489  * __get_user_pages() - pin user pages in memory
490  * @tsk:	task_struct of target task
491  * @mm:		mm_struct of target mm
492  * @start:	starting user address
493  * @nr_pages:	number of pages from start to pin
494  * @gup_flags:	flags modifying pin behaviour
495  * @pages:	array that receives pointers to the pages pinned.
496  *		Should be at least nr_pages long. Or NULL, if caller
497  *		only intends to ensure the pages are faulted in.
498  * @vmas:	array of pointers to vmas corresponding to each page.
499  *		Or NULL if the caller does not require them.
500  * @nonblocking: whether waiting for disk IO or mmap_sem contention
501  *
502  * Returns number of pages pinned. This may be fewer than the number
503  * requested. If nr_pages is 0 or negative, returns 0. If no pages
504  * were pinned, returns -errno. Each page returned must be released
505  * with a put_page() call when it is finished with. vmas will only
506  * remain valid while mmap_sem is held.
507  *
508  * Must be called with mmap_sem held.  It may be released.  See below.
509  *
510  * __get_user_pages walks a process's page tables and takes a reference to
511  * each struct page that each user address corresponds to at a given
512  * instant. That is, it takes the page that would be accessed if a user
513  * thread accesses the given user virtual address at that instant.
514  *
515  * This does not guarantee that the page exists in the user mappings when
516  * __get_user_pages returns, and there may even be a completely different
517  * page there in some cases (eg. if mmapped pagecache has been invalidated
518  * and subsequently re faulted). However it does guarantee that the page
519  * won't be freed completely. And mostly callers simply care that the page
520  * contains data that was valid *at some point in time*. Typically, an IO
521  * or similar operation cannot guarantee anything stronger anyway because
522  * locks can't be held over the syscall boundary.
523  *
524  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
525  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
526  * appropriate) must be called after the page is finished with, and
527  * before put_page is called.
528  *
529  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
530  * or mmap_sem contention, and if waiting is needed to pin all pages,
531  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
532  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
533  * this case.
534  *
535  * A caller using such a combination of @nonblocking and @gup_flags
536  * must therefore hold the mmap_sem for reading only, and recognize
537  * when it's been released.  Otherwise, it must be held for either
538  * reading or writing and will not be released.
539  *
540  * In most cases, get_user_pages or get_user_pages_fast should be used
541  * instead of __get_user_pages. __get_user_pages should be used only if
542  * you need some special @gup_flags.
543  */
544 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
545 		unsigned long start, unsigned long nr_pages,
546 		unsigned int gup_flags, struct page **pages,
547 		struct vm_area_struct **vmas, int *nonblocking)
548 {
549 	long i = 0;
550 	unsigned int page_mask;
551 	struct vm_area_struct *vma = NULL;
552 
553 	if (!nr_pages)
554 		return 0;
555 
556 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
557 
558 	/*
559 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
560 	 * fault information is unrelated to the reference behaviour of a task
561 	 * using the address space
562 	 */
563 	if (!(gup_flags & FOLL_FORCE))
564 		gup_flags |= FOLL_NUMA;
565 
566 	do {
567 		struct page *page;
568 		unsigned int foll_flags = gup_flags;
569 		unsigned int page_increm;
570 
571 		/* first iteration or cross vma bound */
572 		if (!vma || start >= vma->vm_end) {
573 			vma = find_extend_vma(mm, start);
574 			if (!vma && in_gate_area(mm, start)) {
575 				int ret;
576 				ret = get_gate_page(mm, start & PAGE_MASK,
577 						gup_flags, &vma,
578 						pages ? &pages[i] : NULL);
579 				if (ret)
580 					return i ? : ret;
581 				page_mask = 0;
582 				goto next_page;
583 			}
584 
585 			if (!vma || check_vma_flags(vma, gup_flags))
586 				return i ? : -EFAULT;
587 			if (is_vm_hugetlb_page(vma)) {
588 				i = follow_hugetlb_page(mm, vma, pages, vmas,
589 						&start, &nr_pages, i,
590 						gup_flags, nonblocking);
591 				continue;
592 			}
593 		}
594 retry:
595 		/*
596 		 * If we have a pending SIGKILL, don't keep faulting pages and
597 		 * potentially allocating memory.
598 		 */
599 		if (unlikely(fatal_signal_pending(current)))
600 			return i ? i : -ERESTARTSYS;
601 		cond_resched();
602 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
603 		if (!page) {
604 			int ret;
605 			ret = faultin_page(tsk, vma, start, &foll_flags,
606 					nonblocking);
607 			switch (ret) {
608 			case 0:
609 				goto retry;
610 			case -EFAULT:
611 			case -ENOMEM:
612 			case -EHWPOISON:
613 				return i ? i : ret;
614 			case -EBUSY:
615 				return i;
616 			case -ENOENT:
617 				goto next_page;
618 			}
619 			BUG();
620 		} else if (PTR_ERR(page) == -EEXIST) {
621 			/*
622 			 * Proper page table entry exists, but no corresponding
623 			 * struct page.
624 			 */
625 			goto next_page;
626 		} else if (IS_ERR(page)) {
627 			return i ? i : PTR_ERR(page);
628 		}
629 		if (pages) {
630 			pages[i] = page;
631 			flush_anon_page(vma, page, start);
632 			flush_dcache_page(page);
633 			page_mask = 0;
634 		}
635 next_page:
636 		if (vmas) {
637 			vmas[i] = vma;
638 			page_mask = 0;
639 		}
640 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
641 		if (page_increm > nr_pages)
642 			page_increm = nr_pages;
643 		i += page_increm;
644 		start += page_increm * PAGE_SIZE;
645 		nr_pages -= page_increm;
646 	} while (nr_pages);
647 	return i;
648 }
649 
650 static bool vma_permits_fault(struct vm_area_struct *vma,
651 			      unsigned int fault_flags)
652 {
653 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
654 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
655 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
656 
657 	if (!(vm_flags & vma->vm_flags))
658 		return false;
659 
660 	/*
661 	 * The architecture might have a hardware protection
662 	 * mechanism other than read/write that can deny access.
663 	 *
664 	 * gup always represents data access, not instruction
665 	 * fetches, so execute=false here:
666 	 */
667 	if (!arch_vma_access_permitted(vma, write, false, foreign))
668 		return false;
669 
670 	return true;
671 }
672 
673 /*
674  * fixup_user_fault() - manually resolve a user page fault
675  * @tsk:	the task_struct to use for page fault accounting, or
676  *		NULL if faults are not to be recorded.
677  * @mm:		mm_struct of target mm
678  * @address:	user address
679  * @fault_flags:flags to pass down to handle_mm_fault()
680  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
681  *		does not allow retry
682  *
683  * This is meant to be called in the specific scenario where for locking reasons
684  * we try to access user memory in atomic context (within a pagefault_disable()
685  * section), this returns -EFAULT, and we want to resolve the user fault before
686  * trying again.
687  *
688  * Typically this is meant to be used by the futex code.
689  *
690  * The main difference with get_user_pages() is that this function will
691  * unconditionally call handle_mm_fault() which will in turn perform all the
692  * necessary SW fixup of the dirty and young bits in the PTE, while
693  * get_user_pages() only guarantees to update these in the struct page.
694  *
695  * This is important for some architectures where those bits also gate the
696  * access permission to the page because they are maintained in software.  On
697  * such architectures, gup() will not be enough to make a subsequent access
698  * succeed.
699  *
700  * This function will not return with an unlocked mmap_sem. So it has not the
701  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
702  */
703 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
704 		     unsigned long address, unsigned int fault_flags,
705 		     bool *unlocked)
706 {
707 	struct vm_area_struct *vma;
708 	int ret, major = 0;
709 
710 	if (unlocked)
711 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
712 
713 retry:
714 	vma = find_extend_vma(mm, address);
715 	if (!vma || address < vma->vm_start)
716 		return -EFAULT;
717 
718 	if (!vma_permits_fault(vma, fault_flags))
719 		return -EFAULT;
720 
721 	ret = handle_mm_fault(vma, address, fault_flags);
722 	major |= ret & VM_FAULT_MAJOR;
723 	if (ret & VM_FAULT_ERROR) {
724 		int err = vm_fault_to_errno(ret, 0);
725 
726 		if (err)
727 			return err;
728 		BUG();
729 	}
730 
731 	if (ret & VM_FAULT_RETRY) {
732 		down_read(&mm->mmap_sem);
733 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
734 			*unlocked = true;
735 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
736 			fault_flags |= FAULT_FLAG_TRIED;
737 			goto retry;
738 		}
739 	}
740 
741 	if (tsk) {
742 		if (major)
743 			tsk->maj_flt++;
744 		else
745 			tsk->min_flt++;
746 	}
747 	return 0;
748 }
749 EXPORT_SYMBOL_GPL(fixup_user_fault);
750 
751 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
752 						struct mm_struct *mm,
753 						unsigned long start,
754 						unsigned long nr_pages,
755 						struct page **pages,
756 						struct vm_area_struct **vmas,
757 						int *locked, bool notify_drop,
758 						unsigned int flags)
759 {
760 	long ret, pages_done;
761 	bool lock_dropped;
762 
763 	if (locked) {
764 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
765 		BUG_ON(vmas);
766 		/* check caller initialized locked */
767 		BUG_ON(*locked != 1);
768 	}
769 
770 	if (pages)
771 		flags |= FOLL_GET;
772 
773 	pages_done = 0;
774 	lock_dropped = false;
775 	for (;;) {
776 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
777 				       vmas, locked);
778 		if (!locked)
779 			/* VM_FAULT_RETRY couldn't trigger, bypass */
780 			return ret;
781 
782 		/* VM_FAULT_RETRY cannot return errors */
783 		if (!*locked) {
784 			BUG_ON(ret < 0);
785 			BUG_ON(ret >= nr_pages);
786 		}
787 
788 		if (!pages)
789 			/* If it's a prefault don't insist harder */
790 			return ret;
791 
792 		if (ret > 0) {
793 			nr_pages -= ret;
794 			pages_done += ret;
795 			if (!nr_pages)
796 				break;
797 		}
798 		if (*locked) {
799 			/* VM_FAULT_RETRY didn't trigger */
800 			if (!pages_done)
801 				pages_done = ret;
802 			break;
803 		}
804 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
805 		pages += ret;
806 		start += ret << PAGE_SHIFT;
807 
808 		/*
809 		 * Repeat on the address that fired VM_FAULT_RETRY
810 		 * without FAULT_FLAG_ALLOW_RETRY but with
811 		 * FAULT_FLAG_TRIED.
812 		 */
813 		*locked = 1;
814 		lock_dropped = true;
815 		down_read(&mm->mmap_sem);
816 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
817 				       pages, NULL, NULL);
818 		if (ret != 1) {
819 			BUG_ON(ret > 1);
820 			if (!pages_done)
821 				pages_done = ret;
822 			break;
823 		}
824 		nr_pages--;
825 		pages_done++;
826 		if (!nr_pages)
827 			break;
828 		pages++;
829 		start += PAGE_SIZE;
830 	}
831 	if (notify_drop && lock_dropped && *locked) {
832 		/*
833 		 * We must let the caller know we temporarily dropped the lock
834 		 * and so the critical section protected by it was lost.
835 		 */
836 		up_read(&mm->mmap_sem);
837 		*locked = 0;
838 	}
839 	return pages_done;
840 }
841 
842 /*
843  * We can leverage the VM_FAULT_RETRY functionality in the page fault
844  * paths better by using either get_user_pages_locked() or
845  * get_user_pages_unlocked().
846  *
847  * get_user_pages_locked() is suitable to replace the form:
848  *
849  *      down_read(&mm->mmap_sem);
850  *      do_something()
851  *      get_user_pages(tsk, mm, ..., pages, NULL);
852  *      up_read(&mm->mmap_sem);
853  *
854  *  to:
855  *
856  *      int locked = 1;
857  *      down_read(&mm->mmap_sem);
858  *      do_something()
859  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
860  *      if (locked)
861  *          up_read(&mm->mmap_sem);
862  */
863 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
864 			   unsigned int gup_flags, struct page **pages,
865 			   int *locked)
866 {
867 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
868 				       pages, NULL, locked, true,
869 				       gup_flags | FOLL_TOUCH);
870 }
871 EXPORT_SYMBOL(get_user_pages_locked);
872 
873 /*
874  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
875  * tsk, mm to be specified.
876  *
877  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
878  * caller if required (just like with __get_user_pages). "FOLL_GET"
879  * is set implicitly if "pages" is non-NULL.
880  */
881 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
882 		struct mm_struct *mm, unsigned long start,
883 		unsigned long nr_pages, struct page **pages,
884 		unsigned int gup_flags)
885 {
886 	long ret;
887 	int locked = 1;
888 
889 	down_read(&mm->mmap_sem);
890 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
891 				      &locked, false, gup_flags);
892 	if (locked)
893 		up_read(&mm->mmap_sem);
894 	return ret;
895 }
896 
897 /*
898  * get_user_pages_unlocked() is suitable to replace the form:
899  *
900  *      down_read(&mm->mmap_sem);
901  *      get_user_pages(tsk, mm, ..., pages, NULL);
902  *      up_read(&mm->mmap_sem);
903  *
904  *  with:
905  *
906  *      get_user_pages_unlocked(tsk, mm, ..., pages);
907  *
908  * It is functionally equivalent to get_user_pages_fast so
909  * get_user_pages_fast should be used instead if specific gup_flags
910  * (e.g. FOLL_FORCE) are not required.
911  */
912 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
913 			     struct page **pages, unsigned int gup_flags)
914 {
915 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
916 					 pages, gup_flags | FOLL_TOUCH);
917 }
918 EXPORT_SYMBOL(get_user_pages_unlocked);
919 
920 /*
921  * get_user_pages_remote() - pin user pages in memory
922  * @tsk:	the task_struct to use for page fault accounting, or
923  *		NULL if faults are not to be recorded.
924  * @mm:		mm_struct of target mm
925  * @start:	starting user address
926  * @nr_pages:	number of pages from start to pin
927  * @gup_flags:	flags modifying lookup behaviour
928  * @pages:	array that receives pointers to the pages pinned.
929  *		Should be at least nr_pages long. Or NULL, if caller
930  *		only intends to ensure the pages are faulted in.
931  * @vmas:	array of pointers to vmas corresponding to each page.
932  *		Or NULL if the caller does not require them.
933  * @locked:	pointer to lock flag indicating whether lock is held and
934  *		subsequently whether VM_FAULT_RETRY functionality can be
935  *		utilised. Lock must initially be held.
936  *
937  * Returns number of pages pinned. This may be fewer than the number
938  * requested. If nr_pages is 0 or negative, returns 0. If no pages
939  * were pinned, returns -errno. Each page returned must be released
940  * with a put_page() call when it is finished with. vmas will only
941  * remain valid while mmap_sem is held.
942  *
943  * Must be called with mmap_sem held for read or write.
944  *
945  * get_user_pages walks a process's page tables and takes a reference to
946  * each struct page that each user address corresponds to at a given
947  * instant. That is, it takes the page that would be accessed if a user
948  * thread accesses the given user virtual address at that instant.
949  *
950  * This does not guarantee that the page exists in the user mappings when
951  * get_user_pages returns, and there may even be a completely different
952  * page there in some cases (eg. if mmapped pagecache has been invalidated
953  * and subsequently re faulted). However it does guarantee that the page
954  * won't be freed completely. And mostly callers simply care that the page
955  * contains data that was valid *at some point in time*. Typically, an IO
956  * or similar operation cannot guarantee anything stronger anyway because
957  * locks can't be held over the syscall boundary.
958  *
959  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
960  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
961  * be called after the page is finished with, and before put_page is called.
962  *
963  * get_user_pages is typically used for fewer-copy IO operations, to get a
964  * handle on the memory by some means other than accesses via the user virtual
965  * addresses. The pages may be submitted for DMA to devices or accessed via
966  * their kernel linear mapping (via the kmap APIs). Care should be taken to
967  * use the correct cache flushing APIs.
968  *
969  * See also get_user_pages_fast, for performance critical applications.
970  *
971  * get_user_pages should be phased out in favor of
972  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
973  * should use get_user_pages because it cannot pass
974  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
975  */
976 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
977 		unsigned long start, unsigned long nr_pages,
978 		unsigned int gup_flags, struct page **pages,
979 		struct vm_area_struct **vmas, int *locked)
980 {
981 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
982 				       locked, true,
983 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
984 }
985 EXPORT_SYMBOL(get_user_pages_remote);
986 
987 /*
988  * This is the same as get_user_pages_remote(), just with a
989  * less-flexible calling convention where we assume that the task
990  * and mm being operated on are the current task's and don't allow
991  * passing of a locked parameter.  We also obviously don't pass
992  * FOLL_REMOTE in here.
993  */
994 long get_user_pages(unsigned long start, unsigned long nr_pages,
995 		unsigned int gup_flags, struct page **pages,
996 		struct vm_area_struct **vmas)
997 {
998 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
999 				       pages, vmas, NULL, false,
1000 				       gup_flags | FOLL_TOUCH);
1001 }
1002 EXPORT_SYMBOL(get_user_pages);
1003 
1004 /**
1005  * populate_vma_page_range() -  populate a range of pages in the vma.
1006  * @vma:   target vma
1007  * @start: start address
1008  * @end:   end address
1009  * @nonblocking:
1010  *
1011  * This takes care of mlocking the pages too if VM_LOCKED is set.
1012  *
1013  * return 0 on success, negative error code on error.
1014  *
1015  * vma->vm_mm->mmap_sem must be held.
1016  *
1017  * If @nonblocking is NULL, it may be held for read or write and will
1018  * be unperturbed.
1019  *
1020  * If @nonblocking is non-NULL, it must held for read only and may be
1021  * released.  If it's released, *@nonblocking will be set to 0.
1022  */
1023 long populate_vma_page_range(struct vm_area_struct *vma,
1024 		unsigned long start, unsigned long end, int *nonblocking)
1025 {
1026 	struct mm_struct *mm = vma->vm_mm;
1027 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1028 	int gup_flags;
1029 
1030 	VM_BUG_ON(start & ~PAGE_MASK);
1031 	VM_BUG_ON(end   & ~PAGE_MASK);
1032 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1033 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1034 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1035 
1036 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1037 	if (vma->vm_flags & VM_LOCKONFAULT)
1038 		gup_flags &= ~FOLL_POPULATE;
1039 	/*
1040 	 * We want to touch writable mappings with a write fault in order
1041 	 * to break COW, except for shared mappings because these don't COW
1042 	 * and we would not want to dirty them for nothing.
1043 	 */
1044 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1045 		gup_flags |= FOLL_WRITE;
1046 
1047 	/*
1048 	 * We want mlock to succeed for regions that have any permissions
1049 	 * other than PROT_NONE.
1050 	 */
1051 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1052 		gup_flags |= FOLL_FORCE;
1053 
1054 	/*
1055 	 * We made sure addr is within a VMA, so the following will
1056 	 * not result in a stack expansion that recurses back here.
1057 	 */
1058 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1059 				NULL, NULL, nonblocking);
1060 }
1061 
1062 /*
1063  * __mm_populate - populate and/or mlock pages within a range of address space.
1064  *
1065  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1066  * flags. VMAs must be already marked with the desired vm_flags, and
1067  * mmap_sem must not be held.
1068  */
1069 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1070 {
1071 	struct mm_struct *mm = current->mm;
1072 	unsigned long end, nstart, nend;
1073 	struct vm_area_struct *vma = NULL;
1074 	int locked = 0;
1075 	long ret = 0;
1076 
1077 	VM_BUG_ON(start & ~PAGE_MASK);
1078 	VM_BUG_ON(len != PAGE_ALIGN(len));
1079 	end = start + len;
1080 
1081 	for (nstart = start; nstart < end; nstart = nend) {
1082 		/*
1083 		 * We want to fault in pages for [nstart; end) address range.
1084 		 * Find first corresponding VMA.
1085 		 */
1086 		if (!locked) {
1087 			locked = 1;
1088 			down_read(&mm->mmap_sem);
1089 			vma = find_vma(mm, nstart);
1090 		} else if (nstart >= vma->vm_end)
1091 			vma = vma->vm_next;
1092 		if (!vma || vma->vm_start >= end)
1093 			break;
1094 		/*
1095 		 * Set [nstart; nend) to intersection of desired address
1096 		 * range with the first VMA. Also, skip undesirable VMA types.
1097 		 */
1098 		nend = min(end, vma->vm_end);
1099 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1100 			continue;
1101 		if (nstart < vma->vm_start)
1102 			nstart = vma->vm_start;
1103 		/*
1104 		 * Now fault in a range of pages. populate_vma_page_range()
1105 		 * double checks the vma flags, so that it won't mlock pages
1106 		 * if the vma was already munlocked.
1107 		 */
1108 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1109 		if (ret < 0) {
1110 			if (ignore_errors) {
1111 				ret = 0;
1112 				continue;	/* continue at next VMA */
1113 			}
1114 			break;
1115 		}
1116 		nend = nstart + ret * PAGE_SIZE;
1117 		ret = 0;
1118 	}
1119 	if (locked)
1120 		up_read(&mm->mmap_sem);
1121 	return ret;	/* 0 or negative error code */
1122 }
1123 
1124 /**
1125  * get_dump_page() - pin user page in memory while writing it to core dump
1126  * @addr: user address
1127  *
1128  * Returns struct page pointer of user page pinned for dump,
1129  * to be freed afterwards by put_page().
1130  *
1131  * Returns NULL on any kind of failure - a hole must then be inserted into
1132  * the corefile, to preserve alignment with its headers; and also returns
1133  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1134  * allowing a hole to be left in the corefile to save diskspace.
1135  *
1136  * Called without mmap_sem, but after all other threads have been killed.
1137  */
1138 #ifdef CONFIG_ELF_CORE
1139 struct page *get_dump_page(unsigned long addr)
1140 {
1141 	struct vm_area_struct *vma;
1142 	struct page *page;
1143 
1144 	if (__get_user_pages(current, current->mm, addr, 1,
1145 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1146 			     NULL) < 1)
1147 		return NULL;
1148 	flush_cache_page(vma, addr, page_to_pfn(page));
1149 	return page;
1150 }
1151 #endif /* CONFIG_ELF_CORE */
1152 
1153 /*
1154  * Generic RCU Fast GUP
1155  *
1156  * get_user_pages_fast attempts to pin user pages by walking the page
1157  * tables directly and avoids taking locks. Thus the walker needs to be
1158  * protected from page table pages being freed from under it, and should
1159  * block any THP splits.
1160  *
1161  * One way to achieve this is to have the walker disable interrupts, and
1162  * rely on IPIs from the TLB flushing code blocking before the page table
1163  * pages are freed. This is unsuitable for architectures that do not need
1164  * to broadcast an IPI when invalidating TLBs.
1165  *
1166  * Another way to achieve this is to batch up page table containing pages
1167  * belonging to more than one mm_user, then rcu_sched a callback to free those
1168  * pages. Disabling interrupts will allow the fast_gup walker to both block
1169  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1170  * (which is a relatively rare event). The code below adopts this strategy.
1171  *
1172  * Before activating this code, please be aware that the following assumptions
1173  * are currently made:
1174  *
1175  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1176  *      pages containing page tables.
1177  *
1178  *  *) ptes can be read atomically by the architecture.
1179  *
1180  *  *) access_ok is sufficient to validate userspace address ranges.
1181  *
1182  * The last two assumptions can be relaxed by the addition of helper functions.
1183  *
1184  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1185  */
1186 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1187 
1188 #ifndef gup_get_pte
1189 /*
1190  * We assume that the PTE can be read atomically. If this is not the case for
1191  * your architecture, please provide the helper.
1192  */
1193 static inline pte_t gup_get_pte(pte_t *ptep)
1194 {
1195 	return READ_ONCE(*ptep);
1196 }
1197 #endif
1198 
1199 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1200 {
1201 	while ((*nr) - nr_start) {
1202 		struct page *page = pages[--(*nr)];
1203 
1204 		ClearPageReferenced(page);
1205 		put_page(page);
1206 	}
1207 }
1208 
1209 #ifdef __HAVE_ARCH_PTE_SPECIAL
1210 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1211 			 int write, struct page **pages, int *nr)
1212 {
1213 	struct dev_pagemap *pgmap = NULL;
1214 	int nr_start = *nr, ret = 0;
1215 	pte_t *ptep, *ptem;
1216 
1217 	ptem = ptep = pte_offset_map(&pmd, addr);
1218 	do {
1219 		pte_t pte = gup_get_pte(ptep);
1220 		struct page *head, *page;
1221 
1222 		/*
1223 		 * Similar to the PMD case below, NUMA hinting must take slow
1224 		 * path using the pte_protnone check.
1225 		 */
1226 		if (pte_protnone(pte))
1227 			goto pte_unmap;
1228 
1229 		if (!pte_access_permitted(pte, write))
1230 			goto pte_unmap;
1231 
1232 		if (pte_devmap(pte)) {
1233 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1234 			if (unlikely(!pgmap)) {
1235 				undo_dev_pagemap(nr, nr_start, pages);
1236 				goto pte_unmap;
1237 			}
1238 		} else if (pte_special(pte))
1239 			goto pte_unmap;
1240 
1241 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1242 		page = pte_page(pte);
1243 		head = compound_head(page);
1244 
1245 		if (!page_cache_get_speculative(head))
1246 			goto pte_unmap;
1247 
1248 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1249 			put_page(head);
1250 			goto pte_unmap;
1251 		}
1252 
1253 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1254 
1255 		put_dev_pagemap(pgmap);
1256 		SetPageReferenced(page);
1257 		pages[*nr] = page;
1258 		(*nr)++;
1259 
1260 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1261 
1262 	ret = 1;
1263 
1264 pte_unmap:
1265 	pte_unmap(ptem);
1266 	return ret;
1267 }
1268 #else
1269 
1270 /*
1271  * If we can't determine whether or not a pte is special, then fail immediately
1272  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1273  * to be special.
1274  *
1275  * For a futex to be placed on a THP tail page, get_futex_key requires a
1276  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1277  * useful to have gup_huge_pmd even if we can't operate on ptes.
1278  */
1279 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1280 			 int write, struct page **pages, int *nr)
1281 {
1282 	return 0;
1283 }
1284 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1285 
1286 #ifdef __HAVE_ARCH_PTE_DEVMAP
1287 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1288 		unsigned long end, struct page **pages, int *nr)
1289 {
1290 	int nr_start = *nr;
1291 	struct dev_pagemap *pgmap = NULL;
1292 
1293 	do {
1294 		struct page *page = pfn_to_page(pfn);
1295 
1296 		pgmap = get_dev_pagemap(pfn, pgmap);
1297 		if (unlikely(!pgmap)) {
1298 			undo_dev_pagemap(nr, nr_start, pages);
1299 			return 0;
1300 		}
1301 		SetPageReferenced(page);
1302 		pages[*nr] = page;
1303 		get_page(page);
1304 		put_dev_pagemap(pgmap);
1305 		(*nr)++;
1306 		pfn++;
1307 	} while (addr += PAGE_SIZE, addr != end);
1308 	return 1;
1309 }
1310 
1311 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1312 		unsigned long end, struct page **pages, int *nr)
1313 {
1314 	unsigned long fault_pfn;
1315 
1316 	fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1317 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1318 }
1319 
1320 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1321 		unsigned long end, struct page **pages, int *nr)
1322 {
1323 	unsigned long fault_pfn;
1324 
1325 	fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1326 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1327 }
1328 #else
1329 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1330 		unsigned long end, struct page **pages, int *nr)
1331 {
1332 	BUILD_BUG();
1333 	return 0;
1334 }
1335 
1336 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1337 		unsigned long end, struct page **pages, int *nr)
1338 {
1339 	BUILD_BUG();
1340 	return 0;
1341 }
1342 #endif
1343 
1344 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1345 		unsigned long end, int write, struct page **pages, int *nr)
1346 {
1347 	struct page *head, *page;
1348 	int refs;
1349 
1350 	if (!pmd_access_permitted(orig, write))
1351 		return 0;
1352 
1353 	if (pmd_devmap(orig))
1354 		return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1355 
1356 	refs = 0;
1357 	head = pmd_page(orig);
1358 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1359 	do {
1360 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1361 		pages[*nr] = page;
1362 		(*nr)++;
1363 		page++;
1364 		refs++;
1365 	} while (addr += PAGE_SIZE, addr != end);
1366 
1367 	if (!page_cache_add_speculative(head, refs)) {
1368 		*nr -= refs;
1369 		return 0;
1370 	}
1371 
1372 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1373 		*nr -= refs;
1374 		while (refs--)
1375 			put_page(head);
1376 		return 0;
1377 	}
1378 
1379 	SetPageReferenced(head);
1380 	return 1;
1381 }
1382 
1383 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1384 		unsigned long end, int write, struct page **pages, int *nr)
1385 {
1386 	struct page *head, *page;
1387 	int refs;
1388 
1389 	if (!pud_access_permitted(orig, write))
1390 		return 0;
1391 
1392 	if (pud_devmap(orig))
1393 		return __gup_device_huge_pud(orig, addr, end, pages, nr);
1394 
1395 	refs = 0;
1396 	head = pud_page(orig);
1397 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1398 	do {
1399 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1400 		pages[*nr] = page;
1401 		(*nr)++;
1402 		page++;
1403 		refs++;
1404 	} while (addr += PAGE_SIZE, addr != end);
1405 
1406 	if (!page_cache_add_speculative(head, refs)) {
1407 		*nr -= refs;
1408 		return 0;
1409 	}
1410 
1411 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1412 		*nr -= refs;
1413 		while (refs--)
1414 			put_page(head);
1415 		return 0;
1416 	}
1417 
1418 	SetPageReferenced(head);
1419 	return 1;
1420 }
1421 
1422 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1423 			unsigned long end, int write,
1424 			struct page **pages, int *nr)
1425 {
1426 	int refs;
1427 	struct page *head, *page;
1428 
1429 	if (!pgd_access_permitted(orig, write))
1430 		return 0;
1431 
1432 	BUILD_BUG_ON(pgd_devmap(orig));
1433 	refs = 0;
1434 	head = pgd_page(orig);
1435 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1436 	do {
1437 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1438 		pages[*nr] = page;
1439 		(*nr)++;
1440 		page++;
1441 		refs++;
1442 	} while (addr += PAGE_SIZE, addr != end);
1443 
1444 	if (!page_cache_add_speculative(head, refs)) {
1445 		*nr -= refs;
1446 		return 0;
1447 	}
1448 
1449 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1450 		*nr -= refs;
1451 		while (refs--)
1452 			put_page(head);
1453 		return 0;
1454 	}
1455 
1456 	SetPageReferenced(head);
1457 	return 1;
1458 }
1459 
1460 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1461 		int write, struct page **pages, int *nr)
1462 {
1463 	unsigned long next;
1464 	pmd_t *pmdp;
1465 
1466 	pmdp = pmd_offset(&pud, addr);
1467 	do {
1468 		pmd_t pmd = READ_ONCE(*pmdp);
1469 
1470 		next = pmd_addr_end(addr, end);
1471 		if (pmd_none(pmd))
1472 			return 0;
1473 
1474 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1475 			/*
1476 			 * NUMA hinting faults need to be handled in the GUP
1477 			 * slowpath for accounting purposes and so that they
1478 			 * can be serialised against THP migration.
1479 			 */
1480 			if (pmd_protnone(pmd))
1481 				return 0;
1482 
1483 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1484 				pages, nr))
1485 				return 0;
1486 
1487 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1488 			/*
1489 			 * architecture have different format for hugetlbfs
1490 			 * pmd format and THP pmd format
1491 			 */
1492 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1493 					 PMD_SHIFT, next, write, pages, nr))
1494 				return 0;
1495 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1496 				return 0;
1497 	} while (pmdp++, addr = next, addr != end);
1498 
1499 	return 1;
1500 }
1501 
1502 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1503 			 int write, struct page **pages, int *nr)
1504 {
1505 	unsigned long next;
1506 	pud_t *pudp;
1507 
1508 	pudp = pud_offset(&p4d, addr);
1509 	do {
1510 		pud_t pud = READ_ONCE(*pudp);
1511 
1512 		next = pud_addr_end(addr, end);
1513 		if (pud_none(pud))
1514 			return 0;
1515 		if (unlikely(pud_huge(pud))) {
1516 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1517 					  pages, nr))
1518 				return 0;
1519 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1520 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1521 					 PUD_SHIFT, next, write, pages, nr))
1522 				return 0;
1523 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1524 			return 0;
1525 	} while (pudp++, addr = next, addr != end);
1526 
1527 	return 1;
1528 }
1529 
1530 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1531 			 int write, struct page **pages, int *nr)
1532 {
1533 	unsigned long next;
1534 	p4d_t *p4dp;
1535 
1536 	p4dp = p4d_offset(&pgd, addr);
1537 	do {
1538 		p4d_t p4d = READ_ONCE(*p4dp);
1539 
1540 		next = p4d_addr_end(addr, end);
1541 		if (p4d_none(p4d))
1542 			return 0;
1543 		BUILD_BUG_ON(p4d_huge(p4d));
1544 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1545 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1546 					 P4D_SHIFT, next, write, pages, nr))
1547 				return 0;
1548 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1549 			return 0;
1550 	} while (p4dp++, addr = next, addr != end);
1551 
1552 	return 1;
1553 }
1554 
1555 /*
1556  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1557  * the regular GUP. It will only return non-negative values.
1558  */
1559 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1560 			  struct page **pages)
1561 {
1562 	struct mm_struct *mm = current->mm;
1563 	unsigned long addr, len, end;
1564 	unsigned long next, flags;
1565 	pgd_t *pgdp;
1566 	int nr = 0;
1567 
1568 	start &= PAGE_MASK;
1569 	addr = start;
1570 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1571 	end = start + len;
1572 
1573 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1574 					(void __user *)start, len)))
1575 		return 0;
1576 
1577 	/*
1578 	 * Disable interrupts.  We use the nested form as we can already have
1579 	 * interrupts disabled by get_futex_key.
1580 	 *
1581 	 * With interrupts disabled, we block page table pages from being
1582 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1583 	 * for more details.
1584 	 *
1585 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1586 	 * block IPIs that come from THPs splitting.
1587 	 */
1588 
1589 	local_irq_save(flags);
1590 	pgdp = pgd_offset(mm, addr);
1591 	do {
1592 		pgd_t pgd = READ_ONCE(*pgdp);
1593 
1594 		next = pgd_addr_end(addr, end);
1595 		if (pgd_none(pgd))
1596 			break;
1597 		if (unlikely(pgd_huge(pgd))) {
1598 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1599 					  pages, &nr))
1600 				break;
1601 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1602 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1603 					 PGDIR_SHIFT, next, write, pages, &nr))
1604 				break;
1605 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
1606 			break;
1607 	} while (pgdp++, addr = next, addr != end);
1608 	local_irq_restore(flags);
1609 
1610 	return nr;
1611 }
1612 
1613 #ifndef gup_fast_permitted
1614 /*
1615  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1616  * we need to fall back to the slow version:
1617  */
1618 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1619 {
1620 	unsigned long len, end;
1621 
1622 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1623 	end = start + len;
1624 	return end >= start;
1625 }
1626 #endif
1627 
1628 /**
1629  * get_user_pages_fast() - pin user pages in memory
1630  * @start:	starting user address
1631  * @nr_pages:	number of pages from start to pin
1632  * @write:	whether pages will be written to
1633  * @pages:	array that receives pointers to the pages pinned.
1634  *		Should be at least nr_pages long.
1635  *
1636  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1637  * If not successful, it will fall back to taking the lock and
1638  * calling get_user_pages().
1639  *
1640  * Returns number of pages pinned. This may be fewer than the number
1641  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1642  * were pinned, returns -errno.
1643  */
1644 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1645 			struct page **pages)
1646 {
1647 	int nr = 0, ret = 0;
1648 
1649 	start &= PAGE_MASK;
1650 
1651 	if (gup_fast_permitted(start, nr_pages, write)) {
1652 		nr = __get_user_pages_fast(start, nr_pages, write, pages);
1653 		ret = nr;
1654 	}
1655 
1656 	if (nr < nr_pages) {
1657 		/* Try to get the remaining pages with get_user_pages */
1658 		start += nr << PAGE_SHIFT;
1659 		pages += nr;
1660 
1661 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1662 				write ? FOLL_WRITE : 0);
1663 
1664 		/* Have to be a bit careful with return values */
1665 		if (nr > 0) {
1666 			if (ret < 0)
1667 				ret = nr;
1668 			else
1669 				ret += nr;
1670 		}
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1677