xref: /openbmc/linux/mm/gup.c (revision e3b9f1e8)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
211 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 				    unsigned long address, pud_t *pudp,
213 				    unsigned int flags, unsigned int *page_mask)
214 {
215 	pmd_t *pmd;
216 	spinlock_t *ptl;
217 	struct page *page;
218 	struct mm_struct *mm = vma->vm_mm;
219 
220 	pmd = pmd_offset(pudp, address);
221 	if (pmd_none(*pmd))
222 		return no_page_table(vma, flags);
223 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
224 		page = follow_huge_pmd(mm, address, pmd, flags);
225 		if (page)
226 			return page;
227 		return no_page_table(vma, flags);
228 	}
229 	if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
230 		page = follow_huge_pd(vma, address,
231 				      __hugepd(pmd_val(*pmd)), flags,
232 				      PMD_SHIFT);
233 		if (page)
234 			return page;
235 		return no_page_table(vma, flags);
236 	}
237 retry:
238 	if (!pmd_present(*pmd)) {
239 		if (likely(!(flags & FOLL_MIGRATION)))
240 			return no_page_table(vma, flags);
241 		VM_BUG_ON(thp_migration_supported() &&
242 				  !is_pmd_migration_entry(*pmd));
243 		if (is_pmd_migration_entry(*pmd))
244 			pmd_migration_entry_wait(mm, pmd);
245 		goto retry;
246 	}
247 	if (pmd_devmap(*pmd)) {
248 		ptl = pmd_lock(mm, pmd);
249 		page = follow_devmap_pmd(vma, address, pmd, flags);
250 		spin_unlock(ptl);
251 		if (page)
252 			return page;
253 	}
254 	if (likely(!pmd_trans_huge(*pmd)))
255 		return follow_page_pte(vma, address, pmd, flags);
256 
257 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
258 		return no_page_table(vma, flags);
259 
260 retry_locked:
261 	ptl = pmd_lock(mm, pmd);
262 	if (unlikely(!pmd_present(*pmd))) {
263 		spin_unlock(ptl);
264 		if (likely(!(flags & FOLL_MIGRATION)))
265 			return no_page_table(vma, flags);
266 		pmd_migration_entry_wait(mm, pmd);
267 		goto retry_locked;
268 	}
269 	if (unlikely(!pmd_trans_huge(*pmd))) {
270 		spin_unlock(ptl);
271 		return follow_page_pte(vma, address, pmd, flags);
272 	}
273 	if (flags & FOLL_SPLIT) {
274 		int ret;
275 		page = pmd_page(*pmd);
276 		if (is_huge_zero_page(page)) {
277 			spin_unlock(ptl);
278 			ret = 0;
279 			split_huge_pmd(vma, pmd, address);
280 			if (pmd_trans_unstable(pmd))
281 				ret = -EBUSY;
282 		} else {
283 			get_page(page);
284 			spin_unlock(ptl);
285 			lock_page(page);
286 			ret = split_huge_page(page);
287 			unlock_page(page);
288 			put_page(page);
289 			if (pmd_none(*pmd))
290 				return no_page_table(vma, flags);
291 		}
292 
293 		return ret ? ERR_PTR(ret) :
294 			follow_page_pte(vma, address, pmd, flags);
295 	}
296 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 	spin_unlock(ptl);
298 	*page_mask = HPAGE_PMD_NR - 1;
299 	return page;
300 }
301 
302 
303 static struct page *follow_pud_mask(struct vm_area_struct *vma,
304 				    unsigned long address, p4d_t *p4dp,
305 				    unsigned int flags, unsigned int *page_mask)
306 {
307 	pud_t *pud;
308 	spinlock_t *ptl;
309 	struct page *page;
310 	struct mm_struct *mm = vma->vm_mm;
311 
312 	pud = pud_offset(p4dp, address);
313 	if (pud_none(*pud))
314 		return no_page_table(vma, flags);
315 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
316 		page = follow_huge_pud(mm, address, pud, flags);
317 		if (page)
318 			return page;
319 		return no_page_table(vma, flags);
320 	}
321 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
322 		page = follow_huge_pd(vma, address,
323 				      __hugepd(pud_val(*pud)), flags,
324 				      PUD_SHIFT);
325 		if (page)
326 			return page;
327 		return no_page_table(vma, flags);
328 	}
329 	if (pud_devmap(*pud)) {
330 		ptl = pud_lock(mm, pud);
331 		page = follow_devmap_pud(vma, address, pud, flags);
332 		spin_unlock(ptl);
333 		if (page)
334 			return page;
335 	}
336 	if (unlikely(pud_bad(*pud)))
337 		return no_page_table(vma, flags);
338 
339 	return follow_pmd_mask(vma, address, pud, flags, page_mask);
340 }
341 
342 
343 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
344 				    unsigned long address, pgd_t *pgdp,
345 				    unsigned int flags, unsigned int *page_mask)
346 {
347 	p4d_t *p4d;
348 	struct page *page;
349 
350 	p4d = p4d_offset(pgdp, address);
351 	if (p4d_none(*p4d))
352 		return no_page_table(vma, flags);
353 	BUILD_BUG_ON(p4d_huge(*p4d));
354 	if (unlikely(p4d_bad(*p4d)))
355 		return no_page_table(vma, flags);
356 
357 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
358 		page = follow_huge_pd(vma, address,
359 				      __hugepd(p4d_val(*p4d)), flags,
360 				      P4D_SHIFT);
361 		if (page)
362 			return page;
363 		return no_page_table(vma, flags);
364 	}
365 	return follow_pud_mask(vma, address, p4d, flags, page_mask);
366 }
367 
368 /**
369  * follow_page_mask - look up a page descriptor from a user-virtual address
370  * @vma: vm_area_struct mapping @address
371  * @address: virtual address to look up
372  * @flags: flags modifying lookup behaviour
373  * @page_mask: on output, *page_mask is set according to the size of the page
374  *
375  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
376  *
377  * Returns the mapped (struct page *), %NULL if no mapping exists, or
378  * an error pointer if there is a mapping to something not represented
379  * by a page descriptor (see also vm_normal_page()).
380  */
381 struct page *follow_page_mask(struct vm_area_struct *vma,
382 			      unsigned long address, unsigned int flags,
383 			      unsigned int *page_mask)
384 {
385 	pgd_t *pgd;
386 	struct page *page;
387 	struct mm_struct *mm = vma->vm_mm;
388 
389 	*page_mask = 0;
390 
391 	/* make this handle hugepd */
392 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
393 	if (!IS_ERR(page)) {
394 		BUG_ON(flags & FOLL_GET);
395 		return page;
396 	}
397 
398 	pgd = pgd_offset(mm, address);
399 
400 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
401 		return no_page_table(vma, flags);
402 
403 	if (pgd_huge(*pgd)) {
404 		page = follow_huge_pgd(mm, address, pgd, flags);
405 		if (page)
406 			return page;
407 		return no_page_table(vma, flags);
408 	}
409 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
410 		page = follow_huge_pd(vma, address,
411 				      __hugepd(pgd_val(*pgd)), flags,
412 				      PGDIR_SHIFT);
413 		if (page)
414 			return page;
415 		return no_page_table(vma, flags);
416 	}
417 
418 	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
419 }
420 
421 static int get_gate_page(struct mm_struct *mm, unsigned long address,
422 		unsigned int gup_flags, struct vm_area_struct **vma,
423 		struct page **page)
424 {
425 	pgd_t *pgd;
426 	p4d_t *p4d;
427 	pud_t *pud;
428 	pmd_t *pmd;
429 	pte_t *pte;
430 	int ret = -EFAULT;
431 
432 	/* user gate pages are read-only */
433 	if (gup_flags & FOLL_WRITE)
434 		return -EFAULT;
435 	if (address > TASK_SIZE)
436 		pgd = pgd_offset_k(address);
437 	else
438 		pgd = pgd_offset_gate(mm, address);
439 	BUG_ON(pgd_none(*pgd));
440 	p4d = p4d_offset(pgd, address);
441 	BUG_ON(p4d_none(*p4d));
442 	pud = pud_offset(p4d, address);
443 	BUG_ON(pud_none(*pud));
444 	pmd = pmd_offset(pud, address);
445 	if (!pmd_present(*pmd))
446 		return -EFAULT;
447 	VM_BUG_ON(pmd_trans_huge(*pmd));
448 	pte = pte_offset_map(pmd, address);
449 	if (pte_none(*pte))
450 		goto unmap;
451 	*vma = get_gate_vma(mm);
452 	if (!page)
453 		goto out;
454 	*page = vm_normal_page(*vma, address, *pte);
455 	if (!*page) {
456 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
457 			goto unmap;
458 		*page = pte_page(*pte);
459 
460 		/*
461 		 * This should never happen (a device public page in the gate
462 		 * area).
463 		 */
464 		if (is_device_public_page(*page))
465 			goto unmap;
466 	}
467 	get_page(*page);
468 out:
469 	ret = 0;
470 unmap:
471 	pte_unmap(pte);
472 	return ret;
473 }
474 
475 /*
476  * mmap_sem must be held on entry.  If @nonblocking != NULL and
477  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
478  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
479  */
480 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
481 		unsigned long address, unsigned int *flags, int *nonblocking)
482 {
483 	unsigned int fault_flags = 0;
484 	int ret;
485 
486 	/* mlock all present pages, but do not fault in new pages */
487 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
488 		return -ENOENT;
489 	if (*flags & FOLL_WRITE)
490 		fault_flags |= FAULT_FLAG_WRITE;
491 	if (*flags & FOLL_REMOTE)
492 		fault_flags |= FAULT_FLAG_REMOTE;
493 	if (nonblocking)
494 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
495 	if (*flags & FOLL_NOWAIT)
496 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
497 	if (*flags & FOLL_TRIED) {
498 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
499 		fault_flags |= FAULT_FLAG_TRIED;
500 	}
501 
502 	ret = handle_mm_fault(vma, address, fault_flags);
503 	if (ret & VM_FAULT_ERROR) {
504 		int err = vm_fault_to_errno(ret, *flags);
505 
506 		if (err)
507 			return err;
508 		BUG();
509 	}
510 
511 	if (tsk) {
512 		if (ret & VM_FAULT_MAJOR)
513 			tsk->maj_flt++;
514 		else
515 			tsk->min_flt++;
516 	}
517 
518 	if (ret & VM_FAULT_RETRY) {
519 		if (nonblocking)
520 			*nonblocking = 0;
521 		return -EBUSY;
522 	}
523 
524 	/*
525 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
526 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
527 	 * can thus safely do subsequent page lookups as if they were reads.
528 	 * But only do so when looping for pte_write is futile: in some cases
529 	 * userspace may also be wanting to write to the gotten user page,
530 	 * which a read fault here might prevent (a readonly page might get
531 	 * reCOWed by userspace write).
532 	 */
533 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
534 	        *flags |= FOLL_COW;
535 	return 0;
536 }
537 
538 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
539 {
540 	vm_flags_t vm_flags = vma->vm_flags;
541 	int write = (gup_flags & FOLL_WRITE);
542 	int foreign = (gup_flags & FOLL_REMOTE);
543 
544 	if (vm_flags & (VM_IO | VM_PFNMAP))
545 		return -EFAULT;
546 
547 	if (write) {
548 		if (!(vm_flags & VM_WRITE)) {
549 			if (!(gup_flags & FOLL_FORCE))
550 				return -EFAULT;
551 			/*
552 			 * We used to let the write,force case do COW in a
553 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
554 			 * set a breakpoint in a read-only mapping of an
555 			 * executable, without corrupting the file (yet only
556 			 * when that file had been opened for writing!).
557 			 * Anon pages in shared mappings are surprising: now
558 			 * just reject it.
559 			 */
560 			if (!is_cow_mapping(vm_flags))
561 				return -EFAULT;
562 		}
563 	} else if (!(vm_flags & VM_READ)) {
564 		if (!(gup_flags & FOLL_FORCE))
565 			return -EFAULT;
566 		/*
567 		 * Is there actually any vma we can reach here which does not
568 		 * have VM_MAYREAD set?
569 		 */
570 		if (!(vm_flags & VM_MAYREAD))
571 			return -EFAULT;
572 	}
573 	/*
574 	 * gups are always data accesses, not instruction
575 	 * fetches, so execute=false here
576 	 */
577 	if (!arch_vma_access_permitted(vma, write, false, foreign))
578 		return -EFAULT;
579 	return 0;
580 }
581 
582 /**
583  * __get_user_pages() - pin user pages in memory
584  * @tsk:	task_struct of target task
585  * @mm:		mm_struct of target mm
586  * @start:	starting user address
587  * @nr_pages:	number of pages from start to pin
588  * @gup_flags:	flags modifying pin behaviour
589  * @pages:	array that receives pointers to the pages pinned.
590  *		Should be at least nr_pages long. Or NULL, if caller
591  *		only intends to ensure the pages are faulted in.
592  * @vmas:	array of pointers to vmas corresponding to each page.
593  *		Or NULL if the caller does not require them.
594  * @nonblocking: whether waiting for disk IO or mmap_sem contention
595  *
596  * Returns number of pages pinned. This may be fewer than the number
597  * requested. If nr_pages is 0 or negative, returns 0. If no pages
598  * were pinned, returns -errno. Each page returned must be released
599  * with a put_page() call when it is finished with. vmas will only
600  * remain valid while mmap_sem is held.
601  *
602  * Must be called with mmap_sem held.  It may be released.  See below.
603  *
604  * __get_user_pages walks a process's page tables and takes a reference to
605  * each struct page that each user address corresponds to at a given
606  * instant. That is, it takes the page that would be accessed if a user
607  * thread accesses the given user virtual address at that instant.
608  *
609  * This does not guarantee that the page exists in the user mappings when
610  * __get_user_pages returns, and there may even be a completely different
611  * page there in some cases (eg. if mmapped pagecache has been invalidated
612  * and subsequently re faulted). However it does guarantee that the page
613  * won't be freed completely. And mostly callers simply care that the page
614  * contains data that was valid *at some point in time*. Typically, an IO
615  * or similar operation cannot guarantee anything stronger anyway because
616  * locks can't be held over the syscall boundary.
617  *
618  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
619  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
620  * appropriate) must be called after the page is finished with, and
621  * before put_page is called.
622  *
623  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
624  * or mmap_sem contention, and if waiting is needed to pin all pages,
625  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
626  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
627  * this case.
628  *
629  * A caller using such a combination of @nonblocking and @gup_flags
630  * must therefore hold the mmap_sem for reading only, and recognize
631  * when it's been released.  Otherwise, it must be held for either
632  * reading or writing and will not be released.
633  *
634  * In most cases, get_user_pages or get_user_pages_fast should be used
635  * instead of __get_user_pages. __get_user_pages should be used only if
636  * you need some special @gup_flags.
637  */
638 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
639 		unsigned long start, unsigned long nr_pages,
640 		unsigned int gup_flags, struct page **pages,
641 		struct vm_area_struct **vmas, int *nonblocking)
642 {
643 	long i = 0;
644 	unsigned int page_mask;
645 	struct vm_area_struct *vma = NULL;
646 
647 	if (!nr_pages)
648 		return 0;
649 
650 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
651 
652 	/*
653 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
654 	 * fault information is unrelated to the reference behaviour of a task
655 	 * using the address space
656 	 */
657 	if (!(gup_flags & FOLL_FORCE))
658 		gup_flags |= FOLL_NUMA;
659 
660 	do {
661 		struct page *page;
662 		unsigned int foll_flags = gup_flags;
663 		unsigned int page_increm;
664 
665 		/* first iteration or cross vma bound */
666 		if (!vma || start >= vma->vm_end) {
667 			vma = find_extend_vma(mm, start);
668 			if (!vma && in_gate_area(mm, start)) {
669 				int ret;
670 				ret = get_gate_page(mm, start & PAGE_MASK,
671 						gup_flags, &vma,
672 						pages ? &pages[i] : NULL);
673 				if (ret)
674 					return i ? : ret;
675 				page_mask = 0;
676 				goto next_page;
677 			}
678 
679 			if (!vma || check_vma_flags(vma, gup_flags))
680 				return i ? : -EFAULT;
681 			if (is_vm_hugetlb_page(vma)) {
682 				i = follow_hugetlb_page(mm, vma, pages, vmas,
683 						&start, &nr_pages, i,
684 						gup_flags, nonblocking);
685 				continue;
686 			}
687 		}
688 retry:
689 		/*
690 		 * If we have a pending SIGKILL, don't keep faulting pages and
691 		 * potentially allocating memory.
692 		 */
693 		if (unlikely(fatal_signal_pending(current)))
694 			return i ? i : -ERESTARTSYS;
695 		cond_resched();
696 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
697 		if (!page) {
698 			int ret;
699 			ret = faultin_page(tsk, vma, start, &foll_flags,
700 					nonblocking);
701 			switch (ret) {
702 			case 0:
703 				goto retry;
704 			case -EFAULT:
705 			case -ENOMEM:
706 			case -EHWPOISON:
707 				return i ? i : ret;
708 			case -EBUSY:
709 				return i;
710 			case -ENOENT:
711 				goto next_page;
712 			}
713 			BUG();
714 		} else if (PTR_ERR(page) == -EEXIST) {
715 			/*
716 			 * Proper page table entry exists, but no corresponding
717 			 * struct page.
718 			 */
719 			goto next_page;
720 		} else if (IS_ERR(page)) {
721 			return i ? i : PTR_ERR(page);
722 		}
723 		if (pages) {
724 			pages[i] = page;
725 			flush_anon_page(vma, page, start);
726 			flush_dcache_page(page);
727 			page_mask = 0;
728 		}
729 next_page:
730 		if (vmas) {
731 			vmas[i] = vma;
732 			page_mask = 0;
733 		}
734 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
735 		if (page_increm > nr_pages)
736 			page_increm = nr_pages;
737 		i += page_increm;
738 		start += page_increm * PAGE_SIZE;
739 		nr_pages -= page_increm;
740 	} while (nr_pages);
741 	return i;
742 }
743 
744 static bool vma_permits_fault(struct vm_area_struct *vma,
745 			      unsigned int fault_flags)
746 {
747 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
748 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
749 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
750 
751 	if (!(vm_flags & vma->vm_flags))
752 		return false;
753 
754 	/*
755 	 * The architecture might have a hardware protection
756 	 * mechanism other than read/write that can deny access.
757 	 *
758 	 * gup always represents data access, not instruction
759 	 * fetches, so execute=false here:
760 	 */
761 	if (!arch_vma_access_permitted(vma, write, false, foreign))
762 		return false;
763 
764 	return true;
765 }
766 
767 /*
768  * fixup_user_fault() - manually resolve a user page fault
769  * @tsk:	the task_struct to use for page fault accounting, or
770  *		NULL if faults are not to be recorded.
771  * @mm:		mm_struct of target mm
772  * @address:	user address
773  * @fault_flags:flags to pass down to handle_mm_fault()
774  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
775  *		does not allow retry
776  *
777  * This is meant to be called in the specific scenario where for locking reasons
778  * we try to access user memory in atomic context (within a pagefault_disable()
779  * section), this returns -EFAULT, and we want to resolve the user fault before
780  * trying again.
781  *
782  * Typically this is meant to be used by the futex code.
783  *
784  * The main difference with get_user_pages() is that this function will
785  * unconditionally call handle_mm_fault() which will in turn perform all the
786  * necessary SW fixup of the dirty and young bits in the PTE, while
787  * get_user_pages() only guarantees to update these in the struct page.
788  *
789  * This is important for some architectures where those bits also gate the
790  * access permission to the page because they are maintained in software.  On
791  * such architectures, gup() will not be enough to make a subsequent access
792  * succeed.
793  *
794  * This function will not return with an unlocked mmap_sem. So it has not the
795  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
796  */
797 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
798 		     unsigned long address, unsigned int fault_flags,
799 		     bool *unlocked)
800 {
801 	struct vm_area_struct *vma;
802 	int ret, major = 0;
803 
804 	if (unlocked)
805 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
806 
807 retry:
808 	vma = find_extend_vma(mm, address);
809 	if (!vma || address < vma->vm_start)
810 		return -EFAULT;
811 
812 	if (!vma_permits_fault(vma, fault_flags))
813 		return -EFAULT;
814 
815 	ret = handle_mm_fault(vma, address, fault_flags);
816 	major |= ret & VM_FAULT_MAJOR;
817 	if (ret & VM_FAULT_ERROR) {
818 		int err = vm_fault_to_errno(ret, 0);
819 
820 		if (err)
821 			return err;
822 		BUG();
823 	}
824 
825 	if (ret & VM_FAULT_RETRY) {
826 		down_read(&mm->mmap_sem);
827 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
828 			*unlocked = true;
829 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
830 			fault_flags |= FAULT_FLAG_TRIED;
831 			goto retry;
832 		}
833 	}
834 
835 	if (tsk) {
836 		if (major)
837 			tsk->maj_flt++;
838 		else
839 			tsk->min_flt++;
840 	}
841 	return 0;
842 }
843 EXPORT_SYMBOL_GPL(fixup_user_fault);
844 
845 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
846 						struct mm_struct *mm,
847 						unsigned long start,
848 						unsigned long nr_pages,
849 						struct page **pages,
850 						struct vm_area_struct **vmas,
851 						int *locked,
852 						unsigned int flags)
853 {
854 	long ret, pages_done;
855 	bool lock_dropped;
856 
857 	if (locked) {
858 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
859 		BUG_ON(vmas);
860 		/* check caller initialized locked */
861 		BUG_ON(*locked != 1);
862 	}
863 
864 	if (pages)
865 		flags |= FOLL_GET;
866 
867 	pages_done = 0;
868 	lock_dropped = false;
869 	for (;;) {
870 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
871 				       vmas, locked);
872 		if (!locked)
873 			/* VM_FAULT_RETRY couldn't trigger, bypass */
874 			return ret;
875 
876 		/* VM_FAULT_RETRY cannot return errors */
877 		if (!*locked) {
878 			BUG_ON(ret < 0);
879 			BUG_ON(ret >= nr_pages);
880 		}
881 
882 		if (!pages)
883 			/* If it's a prefault don't insist harder */
884 			return ret;
885 
886 		if (ret > 0) {
887 			nr_pages -= ret;
888 			pages_done += ret;
889 			if (!nr_pages)
890 				break;
891 		}
892 		if (*locked) {
893 			/* VM_FAULT_RETRY didn't trigger */
894 			if (!pages_done)
895 				pages_done = ret;
896 			break;
897 		}
898 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
899 		pages += ret;
900 		start += ret << PAGE_SHIFT;
901 
902 		/*
903 		 * Repeat on the address that fired VM_FAULT_RETRY
904 		 * without FAULT_FLAG_ALLOW_RETRY but with
905 		 * FAULT_FLAG_TRIED.
906 		 */
907 		*locked = 1;
908 		lock_dropped = true;
909 		down_read(&mm->mmap_sem);
910 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
911 				       pages, NULL, NULL);
912 		if (ret != 1) {
913 			BUG_ON(ret > 1);
914 			if (!pages_done)
915 				pages_done = ret;
916 			break;
917 		}
918 		nr_pages--;
919 		pages_done++;
920 		if (!nr_pages)
921 			break;
922 		pages++;
923 		start += PAGE_SIZE;
924 	}
925 	if (lock_dropped && *locked) {
926 		/*
927 		 * We must let the caller know we temporarily dropped the lock
928 		 * and so the critical section protected by it was lost.
929 		 */
930 		up_read(&mm->mmap_sem);
931 		*locked = 0;
932 	}
933 	return pages_done;
934 }
935 
936 /*
937  * We can leverage the VM_FAULT_RETRY functionality in the page fault
938  * paths better by using either get_user_pages_locked() or
939  * get_user_pages_unlocked().
940  *
941  * get_user_pages_locked() is suitable to replace the form:
942  *
943  *      down_read(&mm->mmap_sem);
944  *      do_something()
945  *      get_user_pages(tsk, mm, ..., pages, NULL);
946  *      up_read(&mm->mmap_sem);
947  *
948  *  to:
949  *
950  *      int locked = 1;
951  *      down_read(&mm->mmap_sem);
952  *      do_something()
953  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
954  *      if (locked)
955  *          up_read(&mm->mmap_sem);
956  */
957 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
958 			   unsigned int gup_flags, struct page **pages,
959 			   int *locked)
960 {
961 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
962 				       pages, NULL, locked,
963 				       gup_flags | FOLL_TOUCH);
964 }
965 EXPORT_SYMBOL(get_user_pages_locked);
966 
967 /*
968  * get_user_pages_unlocked() is suitable to replace the form:
969  *
970  *      down_read(&mm->mmap_sem);
971  *      get_user_pages(tsk, mm, ..., pages, NULL);
972  *      up_read(&mm->mmap_sem);
973  *
974  *  with:
975  *
976  *      get_user_pages_unlocked(tsk, mm, ..., pages);
977  *
978  * It is functionally equivalent to get_user_pages_fast so
979  * get_user_pages_fast should be used instead if specific gup_flags
980  * (e.g. FOLL_FORCE) are not required.
981  */
982 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
983 			     struct page **pages, unsigned int gup_flags)
984 {
985 	struct mm_struct *mm = current->mm;
986 	int locked = 1;
987 	long ret;
988 
989 	down_read(&mm->mmap_sem);
990 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
991 				      &locked, gup_flags | FOLL_TOUCH);
992 	if (locked)
993 		up_read(&mm->mmap_sem);
994 	return ret;
995 }
996 EXPORT_SYMBOL(get_user_pages_unlocked);
997 
998 /*
999  * get_user_pages_remote() - pin user pages in memory
1000  * @tsk:	the task_struct to use for page fault accounting, or
1001  *		NULL if faults are not to be recorded.
1002  * @mm:		mm_struct of target mm
1003  * @start:	starting user address
1004  * @nr_pages:	number of pages from start to pin
1005  * @gup_flags:	flags modifying lookup behaviour
1006  * @pages:	array that receives pointers to the pages pinned.
1007  *		Should be at least nr_pages long. Or NULL, if caller
1008  *		only intends to ensure the pages are faulted in.
1009  * @vmas:	array of pointers to vmas corresponding to each page.
1010  *		Or NULL if the caller does not require them.
1011  * @locked:	pointer to lock flag indicating whether lock is held and
1012  *		subsequently whether VM_FAULT_RETRY functionality can be
1013  *		utilised. Lock must initially be held.
1014  *
1015  * Returns number of pages pinned. This may be fewer than the number
1016  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1017  * were pinned, returns -errno. Each page returned must be released
1018  * with a put_page() call when it is finished with. vmas will only
1019  * remain valid while mmap_sem is held.
1020  *
1021  * Must be called with mmap_sem held for read or write.
1022  *
1023  * get_user_pages walks a process's page tables and takes a reference to
1024  * each struct page that each user address corresponds to at a given
1025  * instant. That is, it takes the page that would be accessed if a user
1026  * thread accesses the given user virtual address at that instant.
1027  *
1028  * This does not guarantee that the page exists in the user mappings when
1029  * get_user_pages returns, and there may even be a completely different
1030  * page there in some cases (eg. if mmapped pagecache has been invalidated
1031  * and subsequently re faulted). However it does guarantee that the page
1032  * won't be freed completely. And mostly callers simply care that the page
1033  * contains data that was valid *at some point in time*. Typically, an IO
1034  * or similar operation cannot guarantee anything stronger anyway because
1035  * locks can't be held over the syscall boundary.
1036  *
1037  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1038  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1039  * be called after the page is finished with, and before put_page is called.
1040  *
1041  * get_user_pages is typically used for fewer-copy IO operations, to get a
1042  * handle on the memory by some means other than accesses via the user virtual
1043  * addresses. The pages may be submitted for DMA to devices or accessed via
1044  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1045  * use the correct cache flushing APIs.
1046  *
1047  * See also get_user_pages_fast, for performance critical applications.
1048  *
1049  * get_user_pages should be phased out in favor of
1050  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1051  * should use get_user_pages because it cannot pass
1052  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1053  */
1054 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1055 		unsigned long start, unsigned long nr_pages,
1056 		unsigned int gup_flags, struct page **pages,
1057 		struct vm_area_struct **vmas, int *locked)
1058 {
1059 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1060 				       locked,
1061 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1062 }
1063 EXPORT_SYMBOL(get_user_pages_remote);
1064 
1065 /*
1066  * This is the same as get_user_pages_remote(), just with a
1067  * less-flexible calling convention where we assume that the task
1068  * and mm being operated on are the current task's and don't allow
1069  * passing of a locked parameter.  We also obviously don't pass
1070  * FOLL_REMOTE in here.
1071  */
1072 long get_user_pages(unsigned long start, unsigned long nr_pages,
1073 		unsigned int gup_flags, struct page **pages,
1074 		struct vm_area_struct **vmas)
1075 {
1076 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1077 				       pages, vmas, NULL,
1078 				       gup_flags | FOLL_TOUCH);
1079 }
1080 EXPORT_SYMBOL(get_user_pages);
1081 
1082 #ifdef CONFIG_FS_DAX
1083 /*
1084  * This is the same as get_user_pages() in that it assumes we are
1085  * operating on the current task's mm, but it goes further to validate
1086  * that the vmas associated with the address range are suitable for
1087  * longterm elevated page reference counts. For example, filesystem-dax
1088  * mappings are subject to the lifetime enforced by the filesystem and
1089  * we need guarantees that longterm users like RDMA and V4L2 only
1090  * establish mappings that have a kernel enforced revocation mechanism.
1091  *
1092  * "longterm" == userspace controlled elevated page count lifetime.
1093  * Contrast this to iov_iter_get_pages() usages which are transient.
1094  */
1095 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1096 		unsigned int gup_flags, struct page **pages,
1097 		struct vm_area_struct **vmas_arg)
1098 {
1099 	struct vm_area_struct **vmas = vmas_arg;
1100 	struct vm_area_struct *vma_prev = NULL;
1101 	long rc, i;
1102 
1103 	if (!pages)
1104 		return -EINVAL;
1105 
1106 	if (!vmas) {
1107 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1108 			       GFP_KERNEL);
1109 		if (!vmas)
1110 			return -ENOMEM;
1111 	}
1112 
1113 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1114 
1115 	for (i = 0; i < rc; i++) {
1116 		struct vm_area_struct *vma = vmas[i];
1117 
1118 		if (vma == vma_prev)
1119 			continue;
1120 
1121 		vma_prev = vma;
1122 
1123 		if (vma_is_fsdax(vma))
1124 			break;
1125 	}
1126 
1127 	/*
1128 	 * Either get_user_pages() failed, or the vma validation
1129 	 * succeeded, in either case we don't need to put_page() before
1130 	 * returning.
1131 	 */
1132 	if (i >= rc)
1133 		goto out;
1134 
1135 	for (i = 0; i < rc; i++)
1136 		put_page(pages[i]);
1137 	rc = -EOPNOTSUPP;
1138 out:
1139 	if (vmas != vmas_arg)
1140 		kfree(vmas);
1141 	return rc;
1142 }
1143 EXPORT_SYMBOL(get_user_pages_longterm);
1144 #endif /* CONFIG_FS_DAX */
1145 
1146 /**
1147  * populate_vma_page_range() -  populate a range of pages in the vma.
1148  * @vma:   target vma
1149  * @start: start address
1150  * @end:   end address
1151  * @nonblocking:
1152  *
1153  * This takes care of mlocking the pages too if VM_LOCKED is set.
1154  *
1155  * return 0 on success, negative error code on error.
1156  *
1157  * vma->vm_mm->mmap_sem must be held.
1158  *
1159  * If @nonblocking is NULL, it may be held for read or write and will
1160  * be unperturbed.
1161  *
1162  * If @nonblocking is non-NULL, it must held for read only and may be
1163  * released.  If it's released, *@nonblocking will be set to 0.
1164  */
1165 long populate_vma_page_range(struct vm_area_struct *vma,
1166 		unsigned long start, unsigned long end, int *nonblocking)
1167 {
1168 	struct mm_struct *mm = vma->vm_mm;
1169 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1170 	int gup_flags;
1171 
1172 	VM_BUG_ON(start & ~PAGE_MASK);
1173 	VM_BUG_ON(end   & ~PAGE_MASK);
1174 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1175 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1176 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1177 
1178 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1179 	if (vma->vm_flags & VM_LOCKONFAULT)
1180 		gup_flags &= ~FOLL_POPULATE;
1181 	/*
1182 	 * We want to touch writable mappings with a write fault in order
1183 	 * to break COW, except for shared mappings because these don't COW
1184 	 * and we would not want to dirty them for nothing.
1185 	 */
1186 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1187 		gup_flags |= FOLL_WRITE;
1188 
1189 	/*
1190 	 * We want mlock to succeed for regions that have any permissions
1191 	 * other than PROT_NONE.
1192 	 */
1193 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1194 		gup_flags |= FOLL_FORCE;
1195 
1196 	/*
1197 	 * We made sure addr is within a VMA, so the following will
1198 	 * not result in a stack expansion that recurses back here.
1199 	 */
1200 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1201 				NULL, NULL, nonblocking);
1202 }
1203 
1204 /*
1205  * __mm_populate - populate and/or mlock pages within a range of address space.
1206  *
1207  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1208  * flags. VMAs must be already marked with the desired vm_flags, and
1209  * mmap_sem must not be held.
1210  */
1211 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1212 {
1213 	struct mm_struct *mm = current->mm;
1214 	unsigned long end, nstart, nend;
1215 	struct vm_area_struct *vma = NULL;
1216 	int locked = 0;
1217 	long ret = 0;
1218 
1219 	VM_BUG_ON(start & ~PAGE_MASK);
1220 	VM_BUG_ON(len != PAGE_ALIGN(len));
1221 	end = start + len;
1222 
1223 	for (nstart = start; nstart < end; nstart = nend) {
1224 		/*
1225 		 * We want to fault in pages for [nstart; end) address range.
1226 		 * Find first corresponding VMA.
1227 		 */
1228 		if (!locked) {
1229 			locked = 1;
1230 			down_read(&mm->mmap_sem);
1231 			vma = find_vma(mm, nstart);
1232 		} else if (nstart >= vma->vm_end)
1233 			vma = vma->vm_next;
1234 		if (!vma || vma->vm_start >= end)
1235 			break;
1236 		/*
1237 		 * Set [nstart; nend) to intersection of desired address
1238 		 * range with the first VMA. Also, skip undesirable VMA types.
1239 		 */
1240 		nend = min(end, vma->vm_end);
1241 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1242 			continue;
1243 		if (nstart < vma->vm_start)
1244 			nstart = vma->vm_start;
1245 		/*
1246 		 * Now fault in a range of pages. populate_vma_page_range()
1247 		 * double checks the vma flags, so that it won't mlock pages
1248 		 * if the vma was already munlocked.
1249 		 */
1250 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1251 		if (ret < 0) {
1252 			if (ignore_errors) {
1253 				ret = 0;
1254 				continue;	/* continue at next VMA */
1255 			}
1256 			break;
1257 		}
1258 		nend = nstart + ret * PAGE_SIZE;
1259 		ret = 0;
1260 	}
1261 	if (locked)
1262 		up_read(&mm->mmap_sem);
1263 	return ret;	/* 0 or negative error code */
1264 }
1265 
1266 /**
1267  * get_dump_page() - pin user page in memory while writing it to core dump
1268  * @addr: user address
1269  *
1270  * Returns struct page pointer of user page pinned for dump,
1271  * to be freed afterwards by put_page().
1272  *
1273  * Returns NULL on any kind of failure - a hole must then be inserted into
1274  * the corefile, to preserve alignment with its headers; and also returns
1275  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1276  * allowing a hole to be left in the corefile to save diskspace.
1277  *
1278  * Called without mmap_sem, but after all other threads have been killed.
1279  */
1280 #ifdef CONFIG_ELF_CORE
1281 struct page *get_dump_page(unsigned long addr)
1282 {
1283 	struct vm_area_struct *vma;
1284 	struct page *page;
1285 
1286 	if (__get_user_pages(current, current->mm, addr, 1,
1287 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1288 			     NULL) < 1)
1289 		return NULL;
1290 	flush_cache_page(vma, addr, page_to_pfn(page));
1291 	return page;
1292 }
1293 #endif /* CONFIG_ELF_CORE */
1294 
1295 /*
1296  * Generic Fast GUP
1297  *
1298  * get_user_pages_fast attempts to pin user pages by walking the page
1299  * tables directly and avoids taking locks. Thus the walker needs to be
1300  * protected from page table pages being freed from under it, and should
1301  * block any THP splits.
1302  *
1303  * One way to achieve this is to have the walker disable interrupts, and
1304  * rely on IPIs from the TLB flushing code blocking before the page table
1305  * pages are freed. This is unsuitable for architectures that do not need
1306  * to broadcast an IPI when invalidating TLBs.
1307  *
1308  * Another way to achieve this is to batch up page table containing pages
1309  * belonging to more than one mm_user, then rcu_sched a callback to free those
1310  * pages. Disabling interrupts will allow the fast_gup walker to both block
1311  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1312  * (which is a relatively rare event). The code below adopts this strategy.
1313  *
1314  * Before activating this code, please be aware that the following assumptions
1315  * are currently made:
1316  *
1317  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1318  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1319  *
1320  *  *) ptes can be read atomically by the architecture.
1321  *
1322  *  *) access_ok is sufficient to validate userspace address ranges.
1323  *
1324  * The last two assumptions can be relaxed by the addition of helper functions.
1325  *
1326  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1327  */
1328 #ifdef CONFIG_HAVE_GENERIC_GUP
1329 
1330 #ifndef gup_get_pte
1331 /*
1332  * We assume that the PTE can be read atomically. If this is not the case for
1333  * your architecture, please provide the helper.
1334  */
1335 static inline pte_t gup_get_pte(pte_t *ptep)
1336 {
1337 	return READ_ONCE(*ptep);
1338 }
1339 #endif
1340 
1341 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1342 {
1343 	while ((*nr) - nr_start) {
1344 		struct page *page = pages[--(*nr)];
1345 
1346 		ClearPageReferenced(page);
1347 		put_page(page);
1348 	}
1349 }
1350 
1351 #ifdef __HAVE_ARCH_PTE_SPECIAL
1352 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1353 			 int write, struct page **pages, int *nr)
1354 {
1355 	struct dev_pagemap *pgmap = NULL;
1356 	int nr_start = *nr, ret = 0;
1357 	pte_t *ptep, *ptem;
1358 
1359 	ptem = ptep = pte_offset_map(&pmd, addr);
1360 	do {
1361 		pte_t pte = gup_get_pte(ptep);
1362 		struct page *head, *page;
1363 
1364 		/*
1365 		 * Similar to the PMD case below, NUMA hinting must take slow
1366 		 * path using the pte_protnone check.
1367 		 */
1368 		if (pte_protnone(pte))
1369 			goto pte_unmap;
1370 
1371 		if (!pte_access_permitted(pte, write))
1372 			goto pte_unmap;
1373 
1374 		if (pte_devmap(pte)) {
1375 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1376 			if (unlikely(!pgmap)) {
1377 				undo_dev_pagemap(nr, nr_start, pages);
1378 				goto pte_unmap;
1379 			}
1380 		} else if (pte_special(pte))
1381 			goto pte_unmap;
1382 
1383 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1384 		page = pte_page(pte);
1385 		head = compound_head(page);
1386 
1387 		if (!page_cache_get_speculative(head))
1388 			goto pte_unmap;
1389 
1390 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1391 			put_page(head);
1392 			goto pte_unmap;
1393 		}
1394 
1395 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1396 
1397 		SetPageReferenced(page);
1398 		pages[*nr] = page;
1399 		(*nr)++;
1400 
1401 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1402 
1403 	ret = 1;
1404 
1405 pte_unmap:
1406 	if (pgmap)
1407 		put_dev_pagemap(pgmap);
1408 	pte_unmap(ptem);
1409 	return ret;
1410 }
1411 #else
1412 
1413 /*
1414  * If we can't determine whether or not a pte is special, then fail immediately
1415  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1416  * to be special.
1417  *
1418  * For a futex to be placed on a THP tail page, get_futex_key requires a
1419  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1420  * useful to have gup_huge_pmd even if we can't operate on ptes.
1421  */
1422 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1423 			 int write, struct page **pages, int *nr)
1424 {
1425 	return 0;
1426 }
1427 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1428 
1429 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1430 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1431 		unsigned long end, struct page **pages, int *nr)
1432 {
1433 	int nr_start = *nr;
1434 	struct dev_pagemap *pgmap = NULL;
1435 
1436 	do {
1437 		struct page *page = pfn_to_page(pfn);
1438 
1439 		pgmap = get_dev_pagemap(pfn, pgmap);
1440 		if (unlikely(!pgmap)) {
1441 			undo_dev_pagemap(nr, nr_start, pages);
1442 			return 0;
1443 		}
1444 		SetPageReferenced(page);
1445 		pages[*nr] = page;
1446 		get_page(page);
1447 		(*nr)++;
1448 		pfn++;
1449 	} while (addr += PAGE_SIZE, addr != end);
1450 
1451 	if (pgmap)
1452 		put_dev_pagemap(pgmap);
1453 	return 1;
1454 }
1455 
1456 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1457 		unsigned long end, struct page **pages, int *nr)
1458 {
1459 	unsigned long fault_pfn;
1460 
1461 	fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1462 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1463 }
1464 
1465 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1466 		unsigned long end, struct page **pages, int *nr)
1467 {
1468 	unsigned long fault_pfn;
1469 
1470 	fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1471 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1472 }
1473 #else
1474 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1475 		unsigned long end, struct page **pages, int *nr)
1476 {
1477 	BUILD_BUG();
1478 	return 0;
1479 }
1480 
1481 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1482 		unsigned long end, struct page **pages, int *nr)
1483 {
1484 	BUILD_BUG();
1485 	return 0;
1486 }
1487 #endif
1488 
1489 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1490 		unsigned long end, int write, struct page **pages, int *nr)
1491 {
1492 	struct page *head, *page;
1493 	int refs;
1494 
1495 	if (!pmd_access_permitted(orig, write))
1496 		return 0;
1497 
1498 	if (pmd_devmap(orig))
1499 		return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1500 
1501 	refs = 0;
1502 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1503 	do {
1504 		pages[*nr] = page;
1505 		(*nr)++;
1506 		page++;
1507 		refs++;
1508 	} while (addr += PAGE_SIZE, addr != end);
1509 
1510 	head = compound_head(pmd_page(orig));
1511 	if (!page_cache_add_speculative(head, refs)) {
1512 		*nr -= refs;
1513 		return 0;
1514 	}
1515 
1516 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1517 		*nr -= refs;
1518 		while (refs--)
1519 			put_page(head);
1520 		return 0;
1521 	}
1522 
1523 	SetPageReferenced(head);
1524 	return 1;
1525 }
1526 
1527 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1528 		unsigned long end, int write, struct page **pages, int *nr)
1529 {
1530 	struct page *head, *page;
1531 	int refs;
1532 
1533 	if (!pud_access_permitted(orig, write))
1534 		return 0;
1535 
1536 	if (pud_devmap(orig))
1537 		return __gup_device_huge_pud(orig, addr, end, pages, nr);
1538 
1539 	refs = 0;
1540 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1541 	do {
1542 		pages[*nr] = page;
1543 		(*nr)++;
1544 		page++;
1545 		refs++;
1546 	} while (addr += PAGE_SIZE, addr != end);
1547 
1548 	head = compound_head(pud_page(orig));
1549 	if (!page_cache_add_speculative(head, refs)) {
1550 		*nr -= refs;
1551 		return 0;
1552 	}
1553 
1554 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1555 		*nr -= refs;
1556 		while (refs--)
1557 			put_page(head);
1558 		return 0;
1559 	}
1560 
1561 	SetPageReferenced(head);
1562 	return 1;
1563 }
1564 
1565 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1566 			unsigned long end, int write,
1567 			struct page **pages, int *nr)
1568 {
1569 	int refs;
1570 	struct page *head, *page;
1571 
1572 	if (!pgd_access_permitted(orig, write))
1573 		return 0;
1574 
1575 	BUILD_BUG_ON(pgd_devmap(orig));
1576 	refs = 0;
1577 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1578 	do {
1579 		pages[*nr] = page;
1580 		(*nr)++;
1581 		page++;
1582 		refs++;
1583 	} while (addr += PAGE_SIZE, addr != end);
1584 
1585 	head = compound_head(pgd_page(orig));
1586 	if (!page_cache_add_speculative(head, refs)) {
1587 		*nr -= refs;
1588 		return 0;
1589 	}
1590 
1591 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1592 		*nr -= refs;
1593 		while (refs--)
1594 			put_page(head);
1595 		return 0;
1596 	}
1597 
1598 	SetPageReferenced(head);
1599 	return 1;
1600 }
1601 
1602 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1603 		int write, struct page **pages, int *nr)
1604 {
1605 	unsigned long next;
1606 	pmd_t *pmdp;
1607 
1608 	pmdp = pmd_offset(&pud, addr);
1609 	do {
1610 		pmd_t pmd = READ_ONCE(*pmdp);
1611 
1612 		next = pmd_addr_end(addr, end);
1613 		if (!pmd_present(pmd))
1614 			return 0;
1615 
1616 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1617 			/*
1618 			 * NUMA hinting faults need to be handled in the GUP
1619 			 * slowpath for accounting purposes and so that they
1620 			 * can be serialised against THP migration.
1621 			 */
1622 			if (pmd_protnone(pmd))
1623 				return 0;
1624 
1625 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1626 				pages, nr))
1627 				return 0;
1628 
1629 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1630 			/*
1631 			 * architecture have different format for hugetlbfs
1632 			 * pmd format and THP pmd format
1633 			 */
1634 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1635 					 PMD_SHIFT, next, write, pages, nr))
1636 				return 0;
1637 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1638 				return 0;
1639 	} while (pmdp++, addr = next, addr != end);
1640 
1641 	return 1;
1642 }
1643 
1644 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1645 			 int write, struct page **pages, int *nr)
1646 {
1647 	unsigned long next;
1648 	pud_t *pudp;
1649 
1650 	pudp = pud_offset(&p4d, addr);
1651 	do {
1652 		pud_t pud = READ_ONCE(*pudp);
1653 
1654 		next = pud_addr_end(addr, end);
1655 		if (pud_none(pud))
1656 			return 0;
1657 		if (unlikely(pud_huge(pud))) {
1658 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1659 					  pages, nr))
1660 				return 0;
1661 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1662 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1663 					 PUD_SHIFT, next, write, pages, nr))
1664 				return 0;
1665 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1666 			return 0;
1667 	} while (pudp++, addr = next, addr != end);
1668 
1669 	return 1;
1670 }
1671 
1672 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1673 			 int write, struct page **pages, int *nr)
1674 {
1675 	unsigned long next;
1676 	p4d_t *p4dp;
1677 
1678 	p4dp = p4d_offset(&pgd, addr);
1679 	do {
1680 		p4d_t p4d = READ_ONCE(*p4dp);
1681 
1682 		next = p4d_addr_end(addr, end);
1683 		if (p4d_none(p4d))
1684 			return 0;
1685 		BUILD_BUG_ON(p4d_huge(p4d));
1686 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1687 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1688 					 P4D_SHIFT, next, write, pages, nr))
1689 				return 0;
1690 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1691 			return 0;
1692 	} while (p4dp++, addr = next, addr != end);
1693 
1694 	return 1;
1695 }
1696 
1697 static void gup_pgd_range(unsigned long addr, unsigned long end,
1698 		int write, struct page **pages, int *nr)
1699 {
1700 	unsigned long next;
1701 	pgd_t *pgdp;
1702 
1703 	pgdp = pgd_offset(current->mm, addr);
1704 	do {
1705 		pgd_t pgd = READ_ONCE(*pgdp);
1706 
1707 		next = pgd_addr_end(addr, end);
1708 		if (pgd_none(pgd))
1709 			return;
1710 		if (unlikely(pgd_huge(pgd))) {
1711 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1712 					  pages, nr))
1713 				return;
1714 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1715 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1716 					 PGDIR_SHIFT, next, write, pages, nr))
1717 				return;
1718 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1719 			return;
1720 	} while (pgdp++, addr = next, addr != end);
1721 }
1722 
1723 #ifndef gup_fast_permitted
1724 /*
1725  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1726  * we need to fall back to the slow version:
1727  */
1728 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1729 {
1730 	unsigned long len, end;
1731 
1732 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1733 	end = start + len;
1734 	return end >= start;
1735 }
1736 #endif
1737 
1738 /*
1739  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1740  * the regular GUP. It will only return non-negative values.
1741  */
1742 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1743 			  struct page **pages)
1744 {
1745 	unsigned long addr, len, end;
1746 	unsigned long flags;
1747 	int nr = 0;
1748 
1749 	start &= PAGE_MASK;
1750 	addr = start;
1751 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1752 	end = start + len;
1753 
1754 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1755 					(void __user *)start, len)))
1756 		return 0;
1757 
1758 	/*
1759 	 * Disable interrupts.  We use the nested form as we can already have
1760 	 * interrupts disabled by get_futex_key.
1761 	 *
1762 	 * With interrupts disabled, we block page table pages from being
1763 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1764 	 * for more details.
1765 	 *
1766 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1767 	 * block IPIs that come from THPs splitting.
1768 	 */
1769 
1770 	if (gup_fast_permitted(start, nr_pages, write)) {
1771 		local_irq_save(flags);
1772 		gup_pgd_range(addr, end, write, pages, &nr);
1773 		local_irq_restore(flags);
1774 	}
1775 
1776 	return nr;
1777 }
1778 
1779 /**
1780  * get_user_pages_fast() - pin user pages in memory
1781  * @start:	starting user address
1782  * @nr_pages:	number of pages from start to pin
1783  * @write:	whether pages will be written to
1784  * @pages:	array that receives pointers to the pages pinned.
1785  *		Should be at least nr_pages long.
1786  *
1787  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1788  * If not successful, it will fall back to taking the lock and
1789  * calling get_user_pages().
1790  *
1791  * Returns number of pages pinned. This may be fewer than the number
1792  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1793  * were pinned, returns -errno.
1794  */
1795 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1796 			struct page **pages)
1797 {
1798 	unsigned long addr, len, end;
1799 	int nr = 0, ret = 0;
1800 
1801 	start &= PAGE_MASK;
1802 	addr = start;
1803 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1804 	end = start + len;
1805 
1806 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1807 					(void __user *)start, len)))
1808 		return 0;
1809 
1810 	if (gup_fast_permitted(start, nr_pages, write)) {
1811 		local_irq_disable();
1812 		gup_pgd_range(addr, end, write, pages, &nr);
1813 		local_irq_enable();
1814 		ret = nr;
1815 	}
1816 
1817 	if (nr < nr_pages) {
1818 		/* Try to get the remaining pages with get_user_pages */
1819 		start += nr << PAGE_SHIFT;
1820 		pages += nr;
1821 
1822 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1823 				write ? FOLL_WRITE : 0);
1824 
1825 		/* Have to be a bit careful with return values */
1826 		if (nr > 0) {
1827 			if (ret < 0)
1828 				ret = nr;
1829 			else
1830 				ret += nr;
1831 		}
1832 	}
1833 
1834 	return ret;
1835 }
1836 
1837 #endif /* CONFIG_HAVE_GENERIC_GUP */
1838