1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 212 unsigned long address, pud_t *pudp, 213 unsigned int flags, unsigned int *page_mask) 214 { 215 pmd_t *pmd; 216 spinlock_t *ptl; 217 struct page *page; 218 struct mm_struct *mm = vma->vm_mm; 219 220 pmd = pmd_offset(pudp, address); 221 if (pmd_none(*pmd)) 222 return no_page_table(vma, flags); 223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 224 page = follow_huge_pmd(mm, address, pmd, flags); 225 if (page) 226 return page; 227 return no_page_table(vma, flags); 228 } 229 if (is_hugepd(__hugepd(pmd_val(*pmd)))) { 230 page = follow_huge_pd(vma, address, 231 __hugepd(pmd_val(*pmd)), flags, 232 PMD_SHIFT); 233 if (page) 234 return page; 235 return no_page_table(vma, flags); 236 } 237 retry: 238 if (!pmd_present(*pmd)) { 239 if (likely(!(flags & FOLL_MIGRATION))) 240 return no_page_table(vma, flags); 241 VM_BUG_ON(thp_migration_supported() && 242 !is_pmd_migration_entry(*pmd)); 243 if (is_pmd_migration_entry(*pmd)) 244 pmd_migration_entry_wait(mm, pmd); 245 goto retry; 246 } 247 if (pmd_devmap(*pmd)) { 248 ptl = pmd_lock(mm, pmd); 249 page = follow_devmap_pmd(vma, address, pmd, flags); 250 spin_unlock(ptl); 251 if (page) 252 return page; 253 } 254 if (likely(!pmd_trans_huge(*pmd))) 255 return follow_page_pte(vma, address, pmd, flags); 256 257 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 258 return no_page_table(vma, flags); 259 260 retry_locked: 261 ptl = pmd_lock(mm, pmd); 262 if (unlikely(!pmd_present(*pmd))) { 263 spin_unlock(ptl); 264 if (likely(!(flags & FOLL_MIGRATION))) 265 return no_page_table(vma, flags); 266 pmd_migration_entry_wait(mm, pmd); 267 goto retry_locked; 268 } 269 if (unlikely(!pmd_trans_huge(*pmd))) { 270 spin_unlock(ptl); 271 return follow_page_pte(vma, address, pmd, flags); 272 } 273 if (flags & FOLL_SPLIT) { 274 int ret; 275 page = pmd_page(*pmd); 276 if (is_huge_zero_page(page)) { 277 spin_unlock(ptl); 278 ret = 0; 279 split_huge_pmd(vma, pmd, address); 280 if (pmd_trans_unstable(pmd)) 281 ret = -EBUSY; 282 } else { 283 get_page(page); 284 spin_unlock(ptl); 285 lock_page(page); 286 ret = split_huge_page(page); 287 unlock_page(page); 288 put_page(page); 289 if (pmd_none(*pmd)) 290 return no_page_table(vma, flags); 291 } 292 293 return ret ? ERR_PTR(ret) : 294 follow_page_pte(vma, address, pmd, flags); 295 } 296 page = follow_trans_huge_pmd(vma, address, pmd, flags); 297 spin_unlock(ptl); 298 *page_mask = HPAGE_PMD_NR - 1; 299 return page; 300 } 301 302 303 static struct page *follow_pud_mask(struct vm_area_struct *vma, 304 unsigned long address, p4d_t *p4dp, 305 unsigned int flags, unsigned int *page_mask) 306 { 307 pud_t *pud; 308 spinlock_t *ptl; 309 struct page *page; 310 struct mm_struct *mm = vma->vm_mm; 311 312 pud = pud_offset(p4dp, address); 313 if (pud_none(*pud)) 314 return no_page_table(vma, flags); 315 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 316 page = follow_huge_pud(mm, address, pud, flags); 317 if (page) 318 return page; 319 return no_page_table(vma, flags); 320 } 321 if (is_hugepd(__hugepd(pud_val(*pud)))) { 322 page = follow_huge_pd(vma, address, 323 __hugepd(pud_val(*pud)), flags, 324 PUD_SHIFT); 325 if (page) 326 return page; 327 return no_page_table(vma, flags); 328 } 329 if (pud_devmap(*pud)) { 330 ptl = pud_lock(mm, pud); 331 page = follow_devmap_pud(vma, address, pud, flags); 332 spin_unlock(ptl); 333 if (page) 334 return page; 335 } 336 if (unlikely(pud_bad(*pud))) 337 return no_page_table(vma, flags); 338 339 return follow_pmd_mask(vma, address, pud, flags, page_mask); 340 } 341 342 343 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 344 unsigned long address, pgd_t *pgdp, 345 unsigned int flags, unsigned int *page_mask) 346 { 347 p4d_t *p4d; 348 struct page *page; 349 350 p4d = p4d_offset(pgdp, address); 351 if (p4d_none(*p4d)) 352 return no_page_table(vma, flags); 353 BUILD_BUG_ON(p4d_huge(*p4d)); 354 if (unlikely(p4d_bad(*p4d))) 355 return no_page_table(vma, flags); 356 357 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 358 page = follow_huge_pd(vma, address, 359 __hugepd(p4d_val(*p4d)), flags, 360 P4D_SHIFT); 361 if (page) 362 return page; 363 return no_page_table(vma, flags); 364 } 365 return follow_pud_mask(vma, address, p4d, flags, page_mask); 366 } 367 368 /** 369 * follow_page_mask - look up a page descriptor from a user-virtual address 370 * @vma: vm_area_struct mapping @address 371 * @address: virtual address to look up 372 * @flags: flags modifying lookup behaviour 373 * @page_mask: on output, *page_mask is set according to the size of the page 374 * 375 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 376 * 377 * Returns the mapped (struct page *), %NULL if no mapping exists, or 378 * an error pointer if there is a mapping to something not represented 379 * by a page descriptor (see also vm_normal_page()). 380 */ 381 struct page *follow_page_mask(struct vm_area_struct *vma, 382 unsigned long address, unsigned int flags, 383 unsigned int *page_mask) 384 { 385 pgd_t *pgd; 386 struct page *page; 387 struct mm_struct *mm = vma->vm_mm; 388 389 *page_mask = 0; 390 391 /* make this handle hugepd */ 392 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 393 if (!IS_ERR(page)) { 394 BUG_ON(flags & FOLL_GET); 395 return page; 396 } 397 398 pgd = pgd_offset(mm, address); 399 400 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 401 return no_page_table(vma, flags); 402 403 if (pgd_huge(*pgd)) { 404 page = follow_huge_pgd(mm, address, pgd, flags); 405 if (page) 406 return page; 407 return no_page_table(vma, flags); 408 } 409 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 410 page = follow_huge_pd(vma, address, 411 __hugepd(pgd_val(*pgd)), flags, 412 PGDIR_SHIFT); 413 if (page) 414 return page; 415 return no_page_table(vma, flags); 416 } 417 418 return follow_p4d_mask(vma, address, pgd, flags, page_mask); 419 } 420 421 static int get_gate_page(struct mm_struct *mm, unsigned long address, 422 unsigned int gup_flags, struct vm_area_struct **vma, 423 struct page **page) 424 { 425 pgd_t *pgd; 426 p4d_t *p4d; 427 pud_t *pud; 428 pmd_t *pmd; 429 pte_t *pte; 430 int ret = -EFAULT; 431 432 /* user gate pages are read-only */ 433 if (gup_flags & FOLL_WRITE) 434 return -EFAULT; 435 if (address > TASK_SIZE) 436 pgd = pgd_offset_k(address); 437 else 438 pgd = pgd_offset_gate(mm, address); 439 BUG_ON(pgd_none(*pgd)); 440 p4d = p4d_offset(pgd, address); 441 BUG_ON(p4d_none(*p4d)); 442 pud = pud_offset(p4d, address); 443 BUG_ON(pud_none(*pud)); 444 pmd = pmd_offset(pud, address); 445 if (!pmd_present(*pmd)) 446 return -EFAULT; 447 VM_BUG_ON(pmd_trans_huge(*pmd)); 448 pte = pte_offset_map(pmd, address); 449 if (pte_none(*pte)) 450 goto unmap; 451 *vma = get_gate_vma(mm); 452 if (!page) 453 goto out; 454 *page = vm_normal_page(*vma, address, *pte); 455 if (!*page) { 456 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 457 goto unmap; 458 *page = pte_page(*pte); 459 460 /* 461 * This should never happen (a device public page in the gate 462 * area). 463 */ 464 if (is_device_public_page(*page)) 465 goto unmap; 466 } 467 get_page(*page); 468 out: 469 ret = 0; 470 unmap: 471 pte_unmap(pte); 472 return ret; 473 } 474 475 /* 476 * mmap_sem must be held on entry. If @nonblocking != NULL and 477 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 478 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 479 */ 480 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 481 unsigned long address, unsigned int *flags, int *nonblocking) 482 { 483 unsigned int fault_flags = 0; 484 int ret; 485 486 /* mlock all present pages, but do not fault in new pages */ 487 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 488 return -ENOENT; 489 if (*flags & FOLL_WRITE) 490 fault_flags |= FAULT_FLAG_WRITE; 491 if (*flags & FOLL_REMOTE) 492 fault_flags |= FAULT_FLAG_REMOTE; 493 if (nonblocking) 494 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 495 if (*flags & FOLL_NOWAIT) 496 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 497 if (*flags & FOLL_TRIED) { 498 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 499 fault_flags |= FAULT_FLAG_TRIED; 500 } 501 502 ret = handle_mm_fault(vma, address, fault_flags); 503 if (ret & VM_FAULT_ERROR) { 504 int err = vm_fault_to_errno(ret, *flags); 505 506 if (err) 507 return err; 508 BUG(); 509 } 510 511 if (tsk) { 512 if (ret & VM_FAULT_MAJOR) 513 tsk->maj_flt++; 514 else 515 tsk->min_flt++; 516 } 517 518 if (ret & VM_FAULT_RETRY) { 519 if (nonblocking) 520 *nonblocking = 0; 521 return -EBUSY; 522 } 523 524 /* 525 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 526 * necessary, even if maybe_mkwrite decided not to set pte_write. We 527 * can thus safely do subsequent page lookups as if they were reads. 528 * But only do so when looping for pte_write is futile: in some cases 529 * userspace may also be wanting to write to the gotten user page, 530 * which a read fault here might prevent (a readonly page might get 531 * reCOWed by userspace write). 532 */ 533 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 534 *flags |= FOLL_COW; 535 return 0; 536 } 537 538 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 539 { 540 vm_flags_t vm_flags = vma->vm_flags; 541 int write = (gup_flags & FOLL_WRITE); 542 int foreign = (gup_flags & FOLL_REMOTE); 543 544 if (vm_flags & (VM_IO | VM_PFNMAP)) 545 return -EFAULT; 546 547 if (write) { 548 if (!(vm_flags & VM_WRITE)) { 549 if (!(gup_flags & FOLL_FORCE)) 550 return -EFAULT; 551 /* 552 * We used to let the write,force case do COW in a 553 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 554 * set a breakpoint in a read-only mapping of an 555 * executable, without corrupting the file (yet only 556 * when that file had been opened for writing!). 557 * Anon pages in shared mappings are surprising: now 558 * just reject it. 559 */ 560 if (!is_cow_mapping(vm_flags)) 561 return -EFAULT; 562 } 563 } else if (!(vm_flags & VM_READ)) { 564 if (!(gup_flags & FOLL_FORCE)) 565 return -EFAULT; 566 /* 567 * Is there actually any vma we can reach here which does not 568 * have VM_MAYREAD set? 569 */ 570 if (!(vm_flags & VM_MAYREAD)) 571 return -EFAULT; 572 } 573 /* 574 * gups are always data accesses, not instruction 575 * fetches, so execute=false here 576 */ 577 if (!arch_vma_access_permitted(vma, write, false, foreign)) 578 return -EFAULT; 579 return 0; 580 } 581 582 /** 583 * __get_user_pages() - pin user pages in memory 584 * @tsk: task_struct of target task 585 * @mm: mm_struct of target mm 586 * @start: starting user address 587 * @nr_pages: number of pages from start to pin 588 * @gup_flags: flags modifying pin behaviour 589 * @pages: array that receives pointers to the pages pinned. 590 * Should be at least nr_pages long. Or NULL, if caller 591 * only intends to ensure the pages are faulted in. 592 * @vmas: array of pointers to vmas corresponding to each page. 593 * Or NULL if the caller does not require them. 594 * @nonblocking: whether waiting for disk IO or mmap_sem contention 595 * 596 * Returns number of pages pinned. This may be fewer than the number 597 * requested. If nr_pages is 0 or negative, returns 0. If no pages 598 * were pinned, returns -errno. Each page returned must be released 599 * with a put_page() call when it is finished with. vmas will only 600 * remain valid while mmap_sem is held. 601 * 602 * Must be called with mmap_sem held. It may be released. See below. 603 * 604 * __get_user_pages walks a process's page tables and takes a reference to 605 * each struct page that each user address corresponds to at a given 606 * instant. That is, it takes the page that would be accessed if a user 607 * thread accesses the given user virtual address at that instant. 608 * 609 * This does not guarantee that the page exists in the user mappings when 610 * __get_user_pages returns, and there may even be a completely different 611 * page there in some cases (eg. if mmapped pagecache has been invalidated 612 * and subsequently re faulted). However it does guarantee that the page 613 * won't be freed completely. And mostly callers simply care that the page 614 * contains data that was valid *at some point in time*. Typically, an IO 615 * or similar operation cannot guarantee anything stronger anyway because 616 * locks can't be held over the syscall boundary. 617 * 618 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 619 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 620 * appropriate) must be called after the page is finished with, and 621 * before put_page is called. 622 * 623 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 624 * or mmap_sem contention, and if waiting is needed to pin all pages, 625 * *@nonblocking will be set to 0. Further, if @gup_flags does not 626 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 627 * this case. 628 * 629 * A caller using such a combination of @nonblocking and @gup_flags 630 * must therefore hold the mmap_sem for reading only, and recognize 631 * when it's been released. Otherwise, it must be held for either 632 * reading or writing and will not be released. 633 * 634 * In most cases, get_user_pages or get_user_pages_fast should be used 635 * instead of __get_user_pages. __get_user_pages should be used only if 636 * you need some special @gup_flags. 637 */ 638 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 639 unsigned long start, unsigned long nr_pages, 640 unsigned int gup_flags, struct page **pages, 641 struct vm_area_struct **vmas, int *nonblocking) 642 { 643 long i = 0; 644 unsigned int page_mask; 645 struct vm_area_struct *vma = NULL; 646 647 if (!nr_pages) 648 return 0; 649 650 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 651 652 /* 653 * If FOLL_FORCE is set then do not force a full fault as the hinting 654 * fault information is unrelated to the reference behaviour of a task 655 * using the address space 656 */ 657 if (!(gup_flags & FOLL_FORCE)) 658 gup_flags |= FOLL_NUMA; 659 660 do { 661 struct page *page; 662 unsigned int foll_flags = gup_flags; 663 unsigned int page_increm; 664 665 /* first iteration or cross vma bound */ 666 if (!vma || start >= vma->vm_end) { 667 vma = find_extend_vma(mm, start); 668 if (!vma && in_gate_area(mm, start)) { 669 int ret; 670 ret = get_gate_page(mm, start & PAGE_MASK, 671 gup_flags, &vma, 672 pages ? &pages[i] : NULL); 673 if (ret) 674 return i ? : ret; 675 page_mask = 0; 676 goto next_page; 677 } 678 679 if (!vma || check_vma_flags(vma, gup_flags)) 680 return i ? : -EFAULT; 681 if (is_vm_hugetlb_page(vma)) { 682 i = follow_hugetlb_page(mm, vma, pages, vmas, 683 &start, &nr_pages, i, 684 gup_flags, nonblocking); 685 continue; 686 } 687 } 688 retry: 689 /* 690 * If we have a pending SIGKILL, don't keep faulting pages and 691 * potentially allocating memory. 692 */ 693 if (unlikely(fatal_signal_pending(current))) 694 return i ? i : -ERESTARTSYS; 695 cond_resched(); 696 page = follow_page_mask(vma, start, foll_flags, &page_mask); 697 if (!page) { 698 int ret; 699 ret = faultin_page(tsk, vma, start, &foll_flags, 700 nonblocking); 701 switch (ret) { 702 case 0: 703 goto retry; 704 case -EFAULT: 705 case -ENOMEM: 706 case -EHWPOISON: 707 return i ? i : ret; 708 case -EBUSY: 709 return i; 710 case -ENOENT: 711 goto next_page; 712 } 713 BUG(); 714 } else if (PTR_ERR(page) == -EEXIST) { 715 /* 716 * Proper page table entry exists, but no corresponding 717 * struct page. 718 */ 719 goto next_page; 720 } else if (IS_ERR(page)) { 721 return i ? i : PTR_ERR(page); 722 } 723 if (pages) { 724 pages[i] = page; 725 flush_anon_page(vma, page, start); 726 flush_dcache_page(page); 727 page_mask = 0; 728 } 729 next_page: 730 if (vmas) { 731 vmas[i] = vma; 732 page_mask = 0; 733 } 734 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 735 if (page_increm > nr_pages) 736 page_increm = nr_pages; 737 i += page_increm; 738 start += page_increm * PAGE_SIZE; 739 nr_pages -= page_increm; 740 } while (nr_pages); 741 return i; 742 } 743 744 static bool vma_permits_fault(struct vm_area_struct *vma, 745 unsigned int fault_flags) 746 { 747 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 748 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 749 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 750 751 if (!(vm_flags & vma->vm_flags)) 752 return false; 753 754 /* 755 * The architecture might have a hardware protection 756 * mechanism other than read/write that can deny access. 757 * 758 * gup always represents data access, not instruction 759 * fetches, so execute=false here: 760 */ 761 if (!arch_vma_access_permitted(vma, write, false, foreign)) 762 return false; 763 764 return true; 765 } 766 767 /* 768 * fixup_user_fault() - manually resolve a user page fault 769 * @tsk: the task_struct to use for page fault accounting, or 770 * NULL if faults are not to be recorded. 771 * @mm: mm_struct of target mm 772 * @address: user address 773 * @fault_flags:flags to pass down to handle_mm_fault() 774 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 775 * does not allow retry 776 * 777 * This is meant to be called in the specific scenario where for locking reasons 778 * we try to access user memory in atomic context (within a pagefault_disable() 779 * section), this returns -EFAULT, and we want to resolve the user fault before 780 * trying again. 781 * 782 * Typically this is meant to be used by the futex code. 783 * 784 * The main difference with get_user_pages() is that this function will 785 * unconditionally call handle_mm_fault() which will in turn perform all the 786 * necessary SW fixup of the dirty and young bits in the PTE, while 787 * get_user_pages() only guarantees to update these in the struct page. 788 * 789 * This is important for some architectures where those bits also gate the 790 * access permission to the page because they are maintained in software. On 791 * such architectures, gup() will not be enough to make a subsequent access 792 * succeed. 793 * 794 * This function will not return with an unlocked mmap_sem. So it has not the 795 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 796 */ 797 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 798 unsigned long address, unsigned int fault_flags, 799 bool *unlocked) 800 { 801 struct vm_area_struct *vma; 802 int ret, major = 0; 803 804 if (unlocked) 805 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 806 807 retry: 808 vma = find_extend_vma(mm, address); 809 if (!vma || address < vma->vm_start) 810 return -EFAULT; 811 812 if (!vma_permits_fault(vma, fault_flags)) 813 return -EFAULT; 814 815 ret = handle_mm_fault(vma, address, fault_flags); 816 major |= ret & VM_FAULT_MAJOR; 817 if (ret & VM_FAULT_ERROR) { 818 int err = vm_fault_to_errno(ret, 0); 819 820 if (err) 821 return err; 822 BUG(); 823 } 824 825 if (ret & VM_FAULT_RETRY) { 826 down_read(&mm->mmap_sem); 827 if (!(fault_flags & FAULT_FLAG_TRIED)) { 828 *unlocked = true; 829 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 830 fault_flags |= FAULT_FLAG_TRIED; 831 goto retry; 832 } 833 } 834 835 if (tsk) { 836 if (major) 837 tsk->maj_flt++; 838 else 839 tsk->min_flt++; 840 } 841 return 0; 842 } 843 EXPORT_SYMBOL_GPL(fixup_user_fault); 844 845 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 846 struct mm_struct *mm, 847 unsigned long start, 848 unsigned long nr_pages, 849 struct page **pages, 850 struct vm_area_struct **vmas, 851 int *locked, 852 unsigned int flags) 853 { 854 long ret, pages_done; 855 bool lock_dropped; 856 857 if (locked) { 858 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 859 BUG_ON(vmas); 860 /* check caller initialized locked */ 861 BUG_ON(*locked != 1); 862 } 863 864 if (pages) 865 flags |= FOLL_GET; 866 867 pages_done = 0; 868 lock_dropped = false; 869 for (;;) { 870 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 871 vmas, locked); 872 if (!locked) 873 /* VM_FAULT_RETRY couldn't trigger, bypass */ 874 return ret; 875 876 /* VM_FAULT_RETRY cannot return errors */ 877 if (!*locked) { 878 BUG_ON(ret < 0); 879 BUG_ON(ret >= nr_pages); 880 } 881 882 if (!pages) 883 /* If it's a prefault don't insist harder */ 884 return ret; 885 886 if (ret > 0) { 887 nr_pages -= ret; 888 pages_done += ret; 889 if (!nr_pages) 890 break; 891 } 892 if (*locked) { 893 /* VM_FAULT_RETRY didn't trigger */ 894 if (!pages_done) 895 pages_done = ret; 896 break; 897 } 898 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 899 pages += ret; 900 start += ret << PAGE_SHIFT; 901 902 /* 903 * Repeat on the address that fired VM_FAULT_RETRY 904 * without FAULT_FLAG_ALLOW_RETRY but with 905 * FAULT_FLAG_TRIED. 906 */ 907 *locked = 1; 908 lock_dropped = true; 909 down_read(&mm->mmap_sem); 910 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 911 pages, NULL, NULL); 912 if (ret != 1) { 913 BUG_ON(ret > 1); 914 if (!pages_done) 915 pages_done = ret; 916 break; 917 } 918 nr_pages--; 919 pages_done++; 920 if (!nr_pages) 921 break; 922 pages++; 923 start += PAGE_SIZE; 924 } 925 if (lock_dropped && *locked) { 926 /* 927 * We must let the caller know we temporarily dropped the lock 928 * and so the critical section protected by it was lost. 929 */ 930 up_read(&mm->mmap_sem); 931 *locked = 0; 932 } 933 return pages_done; 934 } 935 936 /* 937 * We can leverage the VM_FAULT_RETRY functionality in the page fault 938 * paths better by using either get_user_pages_locked() or 939 * get_user_pages_unlocked(). 940 * 941 * get_user_pages_locked() is suitable to replace the form: 942 * 943 * down_read(&mm->mmap_sem); 944 * do_something() 945 * get_user_pages(tsk, mm, ..., pages, NULL); 946 * up_read(&mm->mmap_sem); 947 * 948 * to: 949 * 950 * int locked = 1; 951 * down_read(&mm->mmap_sem); 952 * do_something() 953 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 954 * if (locked) 955 * up_read(&mm->mmap_sem); 956 */ 957 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 958 unsigned int gup_flags, struct page **pages, 959 int *locked) 960 { 961 return __get_user_pages_locked(current, current->mm, start, nr_pages, 962 pages, NULL, locked, 963 gup_flags | FOLL_TOUCH); 964 } 965 EXPORT_SYMBOL(get_user_pages_locked); 966 967 /* 968 * get_user_pages_unlocked() is suitable to replace the form: 969 * 970 * down_read(&mm->mmap_sem); 971 * get_user_pages(tsk, mm, ..., pages, NULL); 972 * up_read(&mm->mmap_sem); 973 * 974 * with: 975 * 976 * get_user_pages_unlocked(tsk, mm, ..., pages); 977 * 978 * It is functionally equivalent to get_user_pages_fast so 979 * get_user_pages_fast should be used instead if specific gup_flags 980 * (e.g. FOLL_FORCE) are not required. 981 */ 982 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 983 struct page **pages, unsigned int gup_flags) 984 { 985 struct mm_struct *mm = current->mm; 986 int locked = 1; 987 long ret; 988 989 down_read(&mm->mmap_sem); 990 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 991 &locked, gup_flags | FOLL_TOUCH); 992 if (locked) 993 up_read(&mm->mmap_sem); 994 return ret; 995 } 996 EXPORT_SYMBOL(get_user_pages_unlocked); 997 998 /* 999 * get_user_pages_remote() - pin user pages in memory 1000 * @tsk: the task_struct to use for page fault accounting, or 1001 * NULL if faults are not to be recorded. 1002 * @mm: mm_struct of target mm 1003 * @start: starting user address 1004 * @nr_pages: number of pages from start to pin 1005 * @gup_flags: flags modifying lookup behaviour 1006 * @pages: array that receives pointers to the pages pinned. 1007 * Should be at least nr_pages long. Or NULL, if caller 1008 * only intends to ensure the pages are faulted in. 1009 * @vmas: array of pointers to vmas corresponding to each page. 1010 * Or NULL if the caller does not require them. 1011 * @locked: pointer to lock flag indicating whether lock is held and 1012 * subsequently whether VM_FAULT_RETRY functionality can be 1013 * utilised. Lock must initially be held. 1014 * 1015 * Returns number of pages pinned. This may be fewer than the number 1016 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1017 * were pinned, returns -errno. Each page returned must be released 1018 * with a put_page() call when it is finished with. vmas will only 1019 * remain valid while mmap_sem is held. 1020 * 1021 * Must be called with mmap_sem held for read or write. 1022 * 1023 * get_user_pages walks a process's page tables and takes a reference to 1024 * each struct page that each user address corresponds to at a given 1025 * instant. That is, it takes the page that would be accessed if a user 1026 * thread accesses the given user virtual address at that instant. 1027 * 1028 * This does not guarantee that the page exists in the user mappings when 1029 * get_user_pages returns, and there may even be a completely different 1030 * page there in some cases (eg. if mmapped pagecache has been invalidated 1031 * and subsequently re faulted). However it does guarantee that the page 1032 * won't be freed completely. And mostly callers simply care that the page 1033 * contains data that was valid *at some point in time*. Typically, an IO 1034 * or similar operation cannot guarantee anything stronger anyway because 1035 * locks can't be held over the syscall boundary. 1036 * 1037 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1038 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1039 * be called after the page is finished with, and before put_page is called. 1040 * 1041 * get_user_pages is typically used for fewer-copy IO operations, to get a 1042 * handle on the memory by some means other than accesses via the user virtual 1043 * addresses. The pages may be submitted for DMA to devices or accessed via 1044 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1045 * use the correct cache flushing APIs. 1046 * 1047 * See also get_user_pages_fast, for performance critical applications. 1048 * 1049 * get_user_pages should be phased out in favor of 1050 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1051 * should use get_user_pages because it cannot pass 1052 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1053 */ 1054 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1055 unsigned long start, unsigned long nr_pages, 1056 unsigned int gup_flags, struct page **pages, 1057 struct vm_area_struct **vmas, int *locked) 1058 { 1059 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1060 locked, 1061 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1062 } 1063 EXPORT_SYMBOL(get_user_pages_remote); 1064 1065 /* 1066 * This is the same as get_user_pages_remote(), just with a 1067 * less-flexible calling convention where we assume that the task 1068 * and mm being operated on are the current task's and don't allow 1069 * passing of a locked parameter. We also obviously don't pass 1070 * FOLL_REMOTE in here. 1071 */ 1072 long get_user_pages(unsigned long start, unsigned long nr_pages, 1073 unsigned int gup_flags, struct page **pages, 1074 struct vm_area_struct **vmas) 1075 { 1076 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1077 pages, vmas, NULL, 1078 gup_flags | FOLL_TOUCH); 1079 } 1080 EXPORT_SYMBOL(get_user_pages); 1081 1082 #ifdef CONFIG_FS_DAX 1083 /* 1084 * This is the same as get_user_pages() in that it assumes we are 1085 * operating on the current task's mm, but it goes further to validate 1086 * that the vmas associated with the address range are suitable for 1087 * longterm elevated page reference counts. For example, filesystem-dax 1088 * mappings are subject to the lifetime enforced by the filesystem and 1089 * we need guarantees that longterm users like RDMA and V4L2 only 1090 * establish mappings that have a kernel enforced revocation mechanism. 1091 * 1092 * "longterm" == userspace controlled elevated page count lifetime. 1093 * Contrast this to iov_iter_get_pages() usages which are transient. 1094 */ 1095 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1096 unsigned int gup_flags, struct page **pages, 1097 struct vm_area_struct **vmas_arg) 1098 { 1099 struct vm_area_struct **vmas = vmas_arg; 1100 struct vm_area_struct *vma_prev = NULL; 1101 long rc, i; 1102 1103 if (!pages) 1104 return -EINVAL; 1105 1106 if (!vmas) { 1107 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1108 GFP_KERNEL); 1109 if (!vmas) 1110 return -ENOMEM; 1111 } 1112 1113 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1114 1115 for (i = 0; i < rc; i++) { 1116 struct vm_area_struct *vma = vmas[i]; 1117 1118 if (vma == vma_prev) 1119 continue; 1120 1121 vma_prev = vma; 1122 1123 if (vma_is_fsdax(vma)) 1124 break; 1125 } 1126 1127 /* 1128 * Either get_user_pages() failed, or the vma validation 1129 * succeeded, in either case we don't need to put_page() before 1130 * returning. 1131 */ 1132 if (i >= rc) 1133 goto out; 1134 1135 for (i = 0; i < rc; i++) 1136 put_page(pages[i]); 1137 rc = -EOPNOTSUPP; 1138 out: 1139 if (vmas != vmas_arg) 1140 kfree(vmas); 1141 return rc; 1142 } 1143 EXPORT_SYMBOL(get_user_pages_longterm); 1144 #endif /* CONFIG_FS_DAX */ 1145 1146 /** 1147 * populate_vma_page_range() - populate a range of pages in the vma. 1148 * @vma: target vma 1149 * @start: start address 1150 * @end: end address 1151 * @nonblocking: 1152 * 1153 * This takes care of mlocking the pages too if VM_LOCKED is set. 1154 * 1155 * return 0 on success, negative error code on error. 1156 * 1157 * vma->vm_mm->mmap_sem must be held. 1158 * 1159 * If @nonblocking is NULL, it may be held for read or write and will 1160 * be unperturbed. 1161 * 1162 * If @nonblocking is non-NULL, it must held for read only and may be 1163 * released. If it's released, *@nonblocking will be set to 0. 1164 */ 1165 long populate_vma_page_range(struct vm_area_struct *vma, 1166 unsigned long start, unsigned long end, int *nonblocking) 1167 { 1168 struct mm_struct *mm = vma->vm_mm; 1169 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1170 int gup_flags; 1171 1172 VM_BUG_ON(start & ~PAGE_MASK); 1173 VM_BUG_ON(end & ~PAGE_MASK); 1174 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1175 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1176 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1177 1178 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1179 if (vma->vm_flags & VM_LOCKONFAULT) 1180 gup_flags &= ~FOLL_POPULATE; 1181 /* 1182 * We want to touch writable mappings with a write fault in order 1183 * to break COW, except for shared mappings because these don't COW 1184 * and we would not want to dirty them for nothing. 1185 */ 1186 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1187 gup_flags |= FOLL_WRITE; 1188 1189 /* 1190 * We want mlock to succeed for regions that have any permissions 1191 * other than PROT_NONE. 1192 */ 1193 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1194 gup_flags |= FOLL_FORCE; 1195 1196 /* 1197 * We made sure addr is within a VMA, so the following will 1198 * not result in a stack expansion that recurses back here. 1199 */ 1200 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1201 NULL, NULL, nonblocking); 1202 } 1203 1204 /* 1205 * __mm_populate - populate and/or mlock pages within a range of address space. 1206 * 1207 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1208 * flags. VMAs must be already marked with the desired vm_flags, and 1209 * mmap_sem must not be held. 1210 */ 1211 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1212 { 1213 struct mm_struct *mm = current->mm; 1214 unsigned long end, nstart, nend; 1215 struct vm_area_struct *vma = NULL; 1216 int locked = 0; 1217 long ret = 0; 1218 1219 VM_BUG_ON(start & ~PAGE_MASK); 1220 VM_BUG_ON(len != PAGE_ALIGN(len)); 1221 end = start + len; 1222 1223 for (nstart = start; nstart < end; nstart = nend) { 1224 /* 1225 * We want to fault in pages for [nstart; end) address range. 1226 * Find first corresponding VMA. 1227 */ 1228 if (!locked) { 1229 locked = 1; 1230 down_read(&mm->mmap_sem); 1231 vma = find_vma(mm, nstart); 1232 } else if (nstart >= vma->vm_end) 1233 vma = vma->vm_next; 1234 if (!vma || vma->vm_start >= end) 1235 break; 1236 /* 1237 * Set [nstart; nend) to intersection of desired address 1238 * range with the first VMA. Also, skip undesirable VMA types. 1239 */ 1240 nend = min(end, vma->vm_end); 1241 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1242 continue; 1243 if (nstart < vma->vm_start) 1244 nstart = vma->vm_start; 1245 /* 1246 * Now fault in a range of pages. populate_vma_page_range() 1247 * double checks the vma flags, so that it won't mlock pages 1248 * if the vma was already munlocked. 1249 */ 1250 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1251 if (ret < 0) { 1252 if (ignore_errors) { 1253 ret = 0; 1254 continue; /* continue at next VMA */ 1255 } 1256 break; 1257 } 1258 nend = nstart + ret * PAGE_SIZE; 1259 ret = 0; 1260 } 1261 if (locked) 1262 up_read(&mm->mmap_sem); 1263 return ret; /* 0 or negative error code */ 1264 } 1265 1266 /** 1267 * get_dump_page() - pin user page in memory while writing it to core dump 1268 * @addr: user address 1269 * 1270 * Returns struct page pointer of user page pinned for dump, 1271 * to be freed afterwards by put_page(). 1272 * 1273 * Returns NULL on any kind of failure - a hole must then be inserted into 1274 * the corefile, to preserve alignment with its headers; and also returns 1275 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1276 * allowing a hole to be left in the corefile to save diskspace. 1277 * 1278 * Called without mmap_sem, but after all other threads have been killed. 1279 */ 1280 #ifdef CONFIG_ELF_CORE 1281 struct page *get_dump_page(unsigned long addr) 1282 { 1283 struct vm_area_struct *vma; 1284 struct page *page; 1285 1286 if (__get_user_pages(current, current->mm, addr, 1, 1287 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1288 NULL) < 1) 1289 return NULL; 1290 flush_cache_page(vma, addr, page_to_pfn(page)); 1291 return page; 1292 } 1293 #endif /* CONFIG_ELF_CORE */ 1294 1295 /* 1296 * Generic Fast GUP 1297 * 1298 * get_user_pages_fast attempts to pin user pages by walking the page 1299 * tables directly and avoids taking locks. Thus the walker needs to be 1300 * protected from page table pages being freed from under it, and should 1301 * block any THP splits. 1302 * 1303 * One way to achieve this is to have the walker disable interrupts, and 1304 * rely on IPIs from the TLB flushing code blocking before the page table 1305 * pages are freed. This is unsuitable for architectures that do not need 1306 * to broadcast an IPI when invalidating TLBs. 1307 * 1308 * Another way to achieve this is to batch up page table containing pages 1309 * belonging to more than one mm_user, then rcu_sched a callback to free those 1310 * pages. Disabling interrupts will allow the fast_gup walker to both block 1311 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1312 * (which is a relatively rare event). The code below adopts this strategy. 1313 * 1314 * Before activating this code, please be aware that the following assumptions 1315 * are currently made: 1316 * 1317 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1318 * free pages containing page tables or TLB flushing requires IPI broadcast. 1319 * 1320 * *) ptes can be read atomically by the architecture. 1321 * 1322 * *) access_ok is sufficient to validate userspace address ranges. 1323 * 1324 * The last two assumptions can be relaxed by the addition of helper functions. 1325 * 1326 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1327 */ 1328 #ifdef CONFIG_HAVE_GENERIC_GUP 1329 1330 #ifndef gup_get_pte 1331 /* 1332 * We assume that the PTE can be read atomically. If this is not the case for 1333 * your architecture, please provide the helper. 1334 */ 1335 static inline pte_t gup_get_pte(pte_t *ptep) 1336 { 1337 return READ_ONCE(*ptep); 1338 } 1339 #endif 1340 1341 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1342 { 1343 while ((*nr) - nr_start) { 1344 struct page *page = pages[--(*nr)]; 1345 1346 ClearPageReferenced(page); 1347 put_page(page); 1348 } 1349 } 1350 1351 #ifdef __HAVE_ARCH_PTE_SPECIAL 1352 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1353 int write, struct page **pages, int *nr) 1354 { 1355 struct dev_pagemap *pgmap = NULL; 1356 int nr_start = *nr, ret = 0; 1357 pte_t *ptep, *ptem; 1358 1359 ptem = ptep = pte_offset_map(&pmd, addr); 1360 do { 1361 pte_t pte = gup_get_pte(ptep); 1362 struct page *head, *page; 1363 1364 /* 1365 * Similar to the PMD case below, NUMA hinting must take slow 1366 * path using the pte_protnone check. 1367 */ 1368 if (pte_protnone(pte)) 1369 goto pte_unmap; 1370 1371 if (!pte_access_permitted(pte, write)) 1372 goto pte_unmap; 1373 1374 if (pte_devmap(pte)) { 1375 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1376 if (unlikely(!pgmap)) { 1377 undo_dev_pagemap(nr, nr_start, pages); 1378 goto pte_unmap; 1379 } 1380 } else if (pte_special(pte)) 1381 goto pte_unmap; 1382 1383 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1384 page = pte_page(pte); 1385 head = compound_head(page); 1386 1387 if (!page_cache_get_speculative(head)) 1388 goto pte_unmap; 1389 1390 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1391 put_page(head); 1392 goto pte_unmap; 1393 } 1394 1395 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1396 1397 SetPageReferenced(page); 1398 pages[*nr] = page; 1399 (*nr)++; 1400 1401 } while (ptep++, addr += PAGE_SIZE, addr != end); 1402 1403 ret = 1; 1404 1405 pte_unmap: 1406 if (pgmap) 1407 put_dev_pagemap(pgmap); 1408 pte_unmap(ptem); 1409 return ret; 1410 } 1411 #else 1412 1413 /* 1414 * If we can't determine whether or not a pte is special, then fail immediately 1415 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1416 * to be special. 1417 * 1418 * For a futex to be placed on a THP tail page, get_futex_key requires a 1419 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1420 * useful to have gup_huge_pmd even if we can't operate on ptes. 1421 */ 1422 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1423 int write, struct page **pages, int *nr) 1424 { 1425 return 0; 1426 } 1427 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1428 1429 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1430 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1431 unsigned long end, struct page **pages, int *nr) 1432 { 1433 int nr_start = *nr; 1434 struct dev_pagemap *pgmap = NULL; 1435 1436 do { 1437 struct page *page = pfn_to_page(pfn); 1438 1439 pgmap = get_dev_pagemap(pfn, pgmap); 1440 if (unlikely(!pgmap)) { 1441 undo_dev_pagemap(nr, nr_start, pages); 1442 return 0; 1443 } 1444 SetPageReferenced(page); 1445 pages[*nr] = page; 1446 get_page(page); 1447 (*nr)++; 1448 pfn++; 1449 } while (addr += PAGE_SIZE, addr != end); 1450 1451 if (pgmap) 1452 put_dev_pagemap(pgmap); 1453 return 1; 1454 } 1455 1456 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1457 unsigned long end, struct page **pages, int *nr) 1458 { 1459 unsigned long fault_pfn; 1460 1461 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1462 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1463 } 1464 1465 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1466 unsigned long end, struct page **pages, int *nr) 1467 { 1468 unsigned long fault_pfn; 1469 1470 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1471 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1472 } 1473 #else 1474 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1475 unsigned long end, struct page **pages, int *nr) 1476 { 1477 BUILD_BUG(); 1478 return 0; 1479 } 1480 1481 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1482 unsigned long end, struct page **pages, int *nr) 1483 { 1484 BUILD_BUG(); 1485 return 0; 1486 } 1487 #endif 1488 1489 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1490 unsigned long end, int write, struct page **pages, int *nr) 1491 { 1492 struct page *head, *page; 1493 int refs; 1494 1495 if (!pmd_access_permitted(orig, write)) 1496 return 0; 1497 1498 if (pmd_devmap(orig)) 1499 return __gup_device_huge_pmd(orig, addr, end, pages, nr); 1500 1501 refs = 0; 1502 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1503 do { 1504 pages[*nr] = page; 1505 (*nr)++; 1506 page++; 1507 refs++; 1508 } while (addr += PAGE_SIZE, addr != end); 1509 1510 head = compound_head(pmd_page(orig)); 1511 if (!page_cache_add_speculative(head, refs)) { 1512 *nr -= refs; 1513 return 0; 1514 } 1515 1516 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1517 *nr -= refs; 1518 while (refs--) 1519 put_page(head); 1520 return 0; 1521 } 1522 1523 SetPageReferenced(head); 1524 return 1; 1525 } 1526 1527 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1528 unsigned long end, int write, struct page **pages, int *nr) 1529 { 1530 struct page *head, *page; 1531 int refs; 1532 1533 if (!pud_access_permitted(orig, write)) 1534 return 0; 1535 1536 if (pud_devmap(orig)) 1537 return __gup_device_huge_pud(orig, addr, end, pages, nr); 1538 1539 refs = 0; 1540 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1541 do { 1542 pages[*nr] = page; 1543 (*nr)++; 1544 page++; 1545 refs++; 1546 } while (addr += PAGE_SIZE, addr != end); 1547 1548 head = compound_head(pud_page(orig)); 1549 if (!page_cache_add_speculative(head, refs)) { 1550 *nr -= refs; 1551 return 0; 1552 } 1553 1554 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1555 *nr -= refs; 1556 while (refs--) 1557 put_page(head); 1558 return 0; 1559 } 1560 1561 SetPageReferenced(head); 1562 return 1; 1563 } 1564 1565 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1566 unsigned long end, int write, 1567 struct page **pages, int *nr) 1568 { 1569 int refs; 1570 struct page *head, *page; 1571 1572 if (!pgd_access_permitted(orig, write)) 1573 return 0; 1574 1575 BUILD_BUG_ON(pgd_devmap(orig)); 1576 refs = 0; 1577 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1578 do { 1579 pages[*nr] = page; 1580 (*nr)++; 1581 page++; 1582 refs++; 1583 } while (addr += PAGE_SIZE, addr != end); 1584 1585 head = compound_head(pgd_page(orig)); 1586 if (!page_cache_add_speculative(head, refs)) { 1587 *nr -= refs; 1588 return 0; 1589 } 1590 1591 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1592 *nr -= refs; 1593 while (refs--) 1594 put_page(head); 1595 return 0; 1596 } 1597 1598 SetPageReferenced(head); 1599 return 1; 1600 } 1601 1602 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1603 int write, struct page **pages, int *nr) 1604 { 1605 unsigned long next; 1606 pmd_t *pmdp; 1607 1608 pmdp = pmd_offset(&pud, addr); 1609 do { 1610 pmd_t pmd = READ_ONCE(*pmdp); 1611 1612 next = pmd_addr_end(addr, end); 1613 if (!pmd_present(pmd)) 1614 return 0; 1615 1616 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1617 /* 1618 * NUMA hinting faults need to be handled in the GUP 1619 * slowpath for accounting purposes and so that they 1620 * can be serialised against THP migration. 1621 */ 1622 if (pmd_protnone(pmd)) 1623 return 0; 1624 1625 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1626 pages, nr)) 1627 return 0; 1628 1629 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1630 /* 1631 * architecture have different format for hugetlbfs 1632 * pmd format and THP pmd format 1633 */ 1634 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1635 PMD_SHIFT, next, write, pages, nr)) 1636 return 0; 1637 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1638 return 0; 1639 } while (pmdp++, addr = next, addr != end); 1640 1641 return 1; 1642 } 1643 1644 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1645 int write, struct page **pages, int *nr) 1646 { 1647 unsigned long next; 1648 pud_t *pudp; 1649 1650 pudp = pud_offset(&p4d, addr); 1651 do { 1652 pud_t pud = READ_ONCE(*pudp); 1653 1654 next = pud_addr_end(addr, end); 1655 if (pud_none(pud)) 1656 return 0; 1657 if (unlikely(pud_huge(pud))) { 1658 if (!gup_huge_pud(pud, pudp, addr, next, write, 1659 pages, nr)) 1660 return 0; 1661 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1662 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1663 PUD_SHIFT, next, write, pages, nr)) 1664 return 0; 1665 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1666 return 0; 1667 } while (pudp++, addr = next, addr != end); 1668 1669 return 1; 1670 } 1671 1672 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1673 int write, struct page **pages, int *nr) 1674 { 1675 unsigned long next; 1676 p4d_t *p4dp; 1677 1678 p4dp = p4d_offset(&pgd, addr); 1679 do { 1680 p4d_t p4d = READ_ONCE(*p4dp); 1681 1682 next = p4d_addr_end(addr, end); 1683 if (p4d_none(p4d)) 1684 return 0; 1685 BUILD_BUG_ON(p4d_huge(p4d)); 1686 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1687 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1688 P4D_SHIFT, next, write, pages, nr)) 1689 return 0; 1690 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1691 return 0; 1692 } while (p4dp++, addr = next, addr != end); 1693 1694 return 1; 1695 } 1696 1697 static void gup_pgd_range(unsigned long addr, unsigned long end, 1698 int write, struct page **pages, int *nr) 1699 { 1700 unsigned long next; 1701 pgd_t *pgdp; 1702 1703 pgdp = pgd_offset(current->mm, addr); 1704 do { 1705 pgd_t pgd = READ_ONCE(*pgdp); 1706 1707 next = pgd_addr_end(addr, end); 1708 if (pgd_none(pgd)) 1709 return; 1710 if (unlikely(pgd_huge(pgd))) { 1711 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1712 pages, nr)) 1713 return; 1714 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1715 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1716 PGDIR_SHIFT, next, write, pages, nr)) 1717 return; 1718 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1719 return; 1720 } while (pgdp++, addr = next, addr != end); 1721 } 1722 1723 #ifndef gup_fast_permitted 1724 /* 1725 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1726 * we need to fall back to the slow version: 1727 */ 1728 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1729 { 1730 unsigned long len, end; 1731 1732 len = (unsigned long) nr_pages << PAGE_SHIFT; 1733 end = start + len; 1734 return end >= start; 1735 } 1736 #endif 1737 1738 /* 1739 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1740 * the regular GUP. It will only return non-negative values. 1741 */ 1742 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1743 struct page **pages) 1744 { 1745 unsigned long addr, len, end; 1746 unsigned long flags; 1747 int nr = 0; 1748 1749 start &= PAGE_MASK; 1750 addr = start; 1751 len = (unsigned long) nr_pages << PAGE_SHIFT; 1752 end = start + len; 1753 1754 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1755 (void __user *)start, len))) 1756 return 0; 1757 1758 /* 1759 * Disable interrupts. We use the nested form as we can already have 1760 * interrupts disabled by get_futex_key. 1761 * 1762 * With interrupts disabled, we block page table pages from being 1763 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1764 * for more details. 1765 * 1766 * We do not adopt an rcu_read_lock(.) here as we also want to 1767 * block IPIs that come from THPs splitting. 1768 */ 1769 1770 if (gup_fast_permitted(start, nr_pages, write)) { 1771 local_irq_save(flags); 1772 gup_pgd_range(addr, end, write, pages, &nr); 1773 local_irq_restore(flags); 1774 } 1775 1776 return nr; 1777 } 1778 1779 /** 1780 * get_user_pages_fast() - pin user pages in memory 1781 * @start: starting user address 1782 * @nr_pages: number of pages from start to pin 1783 * @write: whether pages will be written to 1784 * @pages: array that receives pointers to the pages pinned. 1785 * Should be at least nr_pages long. 1786 * 1787 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1788 * If not successful, it will fall back to taking the lock and 1789 * calling get_user_pages(). 1790 * 1791 * Returns number of pages pinned. This may be fewer than the number 1792 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1793 * were pinned, returns -errno. 1794 */ 1795 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1796 struct page **pages) 1797 { 1798 unsigned long addr, len, end; 1799 int nr = 0, ret = 0; 1800 1801 start &= PAGE_MASK; 1802 addr = start; 1803 len = (unsigned long) nr_pages << PAGE_SHIFT; 1804 end = start + len; 1805 1806 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1807 (void __user *)start, len))) 1808 return 0; 1809 1810 if (gup_fast_permitted(start, nr_pages, write)) { 1811 local_irq_disable(); 1812 gup_pgd_range(addr, end, write, pages, &nr); 1813 local_irq_enable(); 1814 ret = nr; 1815 } 1816 1817 if (nr < nr_pages) { 1818 /* Try to get the remaining pages with get_user_pages */ 1819 start += nr << PAGE_SHIFT; 1820 pages += nr; 1821 1822 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1823 write ? FOLL_WRITE : 0); 1824 1825 /* Have to be a bit careful with return values */ 1826 if (nr > 0) { 1827 if (ret < 0) 1828 ret = nr; 1829 else 1830 ret += nr; 1831 } 1832 } 1833 1834 return ret; 1835 } 1836 1837 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1838