1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/migrate.h> 17 #include <linux/mm_inline.h> 18 #include <linux/sched/mm.h> 19 20 #include <asm/mmu_context.h> 21 #include <asm/pgtable.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static struct page *no_page_table(struct vm_area_struct *vma, 32 unsigned int flags) 33 { 34 /* 35 * When core dumping an enormous anonymous area that nobody 36 * has touched so far, we don't want to allocate unnecessary pages or 37 * page tables. Return error instead of NULL to skip handle_mm_fault, 38 * then get_dump_page() will return NULL to leave a hole in the dump. 39 * But we can only make this optimization where a hole would surely 40 * be zero-filled if handle_mm_fault() actually did handle it. 41 */ 42 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 43 return ERR_PTR(-EFAULT); 44 return NULL; 45 } 46 47 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 48 pte_t *pte, unsigned int flags) 49 { 50 /* No page to get reference */ 51 if (flags & FOLL_GET) 52 return -EFAULT; 53 54 if (flags & FOLL_TOUCH) { 55 pte_t entry = *pte; 56 57 if (flags & FOLL_WRITE) 58 entry = pte_mkdirty(entry); 59 entry = pte_mkyoung(entry); 60 61 if (!pte_same(*pte, entry)) { 62 set_pte_at(vma->vm_mm, address, pte, entry); 63 update_mmu_cache(vma, address, pte); 64 } 65 } 66 67 /* Proper page table entry exists, but no corresponding struct page */ 68 return -EEXIST; 69 } 70 71 /* 72 * FOLL_FORCE can write to even unwritable pte's, but only 73 * after we've gone through a COW cycle and they are dirty. 74 */ 75 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 76 { 77 return pte_write(pte) || 78 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 79 } 80 81 static struct page *follow_page_pte(struct vm_area_struct *vma, 82 unsigned long address, pmd_t *pmd, unsigned int flags, 83 struct dev_pagemap **pgmap) 84 { 85 struct mm_struct *mm = vma->vm_mm; 86 struct page *page; 87 spinlock_t *ptl; 88 pte_t *ptep, pte; 89 90 retry: 91 if (unlikely(pmd_bad(*pmd))) 92 return no_page_table(vma, flags); 93 94 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 95 pte = *ptep; 96 if (!pte_present(pte)) { 97 swp_entry_t entry; 98 /* 99 * KSM's break_ksm() relies upon recognizing a ksm page 100 * even while it is being migrated, so for that case we 101 * need migration_entry_wait(). 102 */ 103 if (likely(!(flags & FOLL_MIGRATION))) 104 goto no_page; 105 if (pte_none(pte)) 106 goto no_page; 107 entry = pte_to_swp_entry(pte); 108 if (!is_migration_entry(entry)) 109 goto no_page; 110 pte_unmap_unlock(ptep, ptl); 111 migration_entry_wait(mm, pmd, address); 112 goto retry; 113 } 114 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 115 goto no_page; 116 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 117 pte_unmap_unlock(ptep, ptl); 118 return NULL; 119 } 120 121 page = vm_normal_page(vma, address, pte); 122 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 123 /* 124 * Only return device mapping pages in the FOLL_GET case since 125 * they are only valid while holding the pgmap reference. 126 */ 127 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 128 if (*pgmap) 129 page = pte_page(pte); 130 else 131 goto no_page; 132 } else if (unlikely(!page)) { 133 if (flags & FOLL_DUMP) { 134 /* Avoid special (like zero) pages in core dumps */ 135 page = ERR_PTR(-EFAULT); 136 goto out; 137 } 138 139 if (is_zero_pfn(pte_pfn(pte))) { 140 page = pte_page(pte); 141 } else { 142 int ret; 143 144 ret = follow_pfn_pte(vma, address, ptep, flags); 145 page = ERR_PTR(ret); 146 goto out; 147 } 148 } 149 150 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 151 int ret; 152 get_page(page); 153 pte_unmap_unlock(ptep, ptl); 154 lock_page(page); 155 ret = split_huge_page(page); 156 unlock_page(page); 157 put_page(page); 158 if (ret) 159 return ERR_PTR(ret); 160 goto retry; 161 } 162 163 if (flags & FOLL_GET) 164 get_page(page); 165 if (flags & FOLL_TOUCH) { 166 if ((flags & FOLL_WRITE) && 167 !pte_dirty(pte) && !PageDirty(page)) 168 set_page_dirty(page); 169 /* 170 * pte_mkyoung() would be more correct here, but atomic care 171 * is needed to avoid losing the dirty bit: it is easier to use 172 * mark_page_accessed(). 173 */ 174 mark_page_accessed(page); 175 } 176 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 177 /* Do not mlock pte-mapped THP */ 178 if (PageTransCompound(page)) 179 goto out; 180 181 /* 182 * The preliminary mapping check is mainly to avoid the 183 * pointless overhead of lock_page on the ZERO_PAGE 184 * which might bounce very badly if there is contention. 185 * 186 * If the page is already locked, we don't need to 187 * handle it now - vmscan will handle it later if and 188 * when it attempts to reclaim the page. 189 */ 190 if (page->mapping && trylock_page(page)) { 191 lru_add_drain(); /* push cached pages to LRU */ 192 /* 193 * Because we lock page here, and migration is 194 * blocked by the pte's page reference, and we 195 * know the page is still mapped, we don't even 196 * need to check for file-cache page truncation. 197 */ 198 mlock_vma_page(page); 199 unlock_page(page); 200 } 201 } 202 out: 203 pte_unmap_unlock(ptep, ptl); 204 return page; 205 no_page: 206 pte_unmap_unlock(ptep, ptl); 207 if (!pte_none(pte)) 208 return NULL; 209 return no_page_table(vma, flags); 210 } 211 212 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 213 unsigned long address, pud_t *pudp, 214 unsigned int flags, 215 struct follow_page_context *ctx) 216 { 217 pmd_t *pmd, pmdval; 218 spinlock_t *ptl; 219 struct page *page; 220 struct mm_struct *mm = vma->vm_mm; 221 222 pmd = pmd_offset(pudp, address); 223 /* 224 * The READ_ONCE() will stabilize the pmdval in a register or 225 * on the stack so that it will stop changing under the code. 226 */ 227 pmdval = READ_ONCE(*pmd); 228 if (pmd_none(pmdval)) 229 return no_page_table(vma, flags); 230 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 231 page = follow_huge_pmd(mm, address, pmd, flags); 232 if (page) 233 return page; 234 return no_page_table(vma, flags); 235 } 236 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 237 page = follow_huge_pd(vma, address, 238 __hugepd(pmd_val(pmdval)), flags, 239 PMD_SHIFT); 240 if (page) 241 return page; 242 return no_page_table(vma, flags); 243 } 244 retry: 245 if (!pmd_present(pmdval)) { 246 if (likely(!(flags & FOLL_MIGRATION))) 247 return no_page_table(vma, flags); 248 VM_BUG_ON(thp_migration_supported() && 249 !is_pmd_migration_entry(pmdval)); 250 if (is_pmd_migration_entry(pmdval)) 251 pmd_migration_entry_wait(mm, pmd); 252 pmdval = READ_ONCE(*pmd); 253 /* 254 * MADV_DONTNEED may convert the pmd to null because 255 * mmap_sem is held in read mode 256 */ 257 if (pmd_none(pmdval)) 258 return no_page_table(vma, flags); 259 goto retry; 260 } 261 if (pmd_devmap(pmdval)) { 262 ptl = pmd_lock(mm, pmd); 263 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 264 spin_unlock(ptl); 265 if (page) 266 return page; 267 } 268 if (likely(!pmd_trans_huge(pmdval))) 269 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 270 271 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 272 return no_page_table(vma, flags); 273 274 retry_locked: 275 ptl = pmd_lock(mm, pmd); 276 if (unlikely(pmd_none(*pmd))) { 277 spin_unlock(ptl); 278 return no_page_table(vma, flags); 279 } 280 if (unlikely(!pmd_present(*pmd))) { 281 spin_unlock(ptl); 282 if (likely(!(flags & FOLL_MIGRATION))) 283 return no_page_table(vma, flags); 284 pmd_migration_entry_wait(mm, pmd); 285 goto retry_locked; 286 } 287 if (unlikely(!pmd_trans_huge(*pmd))) { 288 spin_unlock(ptl); 289 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 290 } 291 if (flags & FOLL_SPLIT) { 292 int ret; 293 page = pmd_page(*pmd); 294 if (is_huge_zero_page(page)) { 295 spin_unlock(ptl); 296 ret = 0; 297 split_huge_pmd(vma, pmd, address); 298 if (pmd_trans_unstable(pmd)) 299 ret = -EBUSY; 300 } else { 301 get_page(page); 302 spin_unlock(ptl); 303 lock_page(page); 304 ret = split_huge_page(page); 305 unlock_page(page); 306 put_page(page); 307 if (pmd_none(*pmd)) 308 return no_page_table(vma, flags); 309 } 310 311 return ret ? ERR_PTR(ret) : 312 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 313 } 314 page = follow_trans_huge_pmd(vma, address, pmd, flags); 315 spin_unlock(ptl); 316 ctx->page_mask = HPAGE_PMD_NR - 1; 317 return page; 318 } 319 320 static struct page *follow_pud_mask(struct vm_area_struct *vma, 321 unsigned long address, p4d_t *p4dp, 322 unsigned int flags, 323 struct follow_page_context *ctx) 324 { 325 pud_t *pud; 326 spinlock_t *ptl; 327 struct page *page; 328 struct mm_struct *mm = vma->vm_mm; 329 330 pud = pud_offset(p4dp, address); 331 if (pud_none(*pud)) 332 return no_page_table(vma, flags); 333 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 334 page = follow_huge_pud(mm, address, pud, flags); 335 if (page) 336 return page; 337 return no_page_table(vma, flags); 338 } 339 if (is_hugepd(__hugepd(pud_val(*pud)))) { 340 page = follow_huge_pd(vma, address, 341 __hugepd(pud_val(*pud)), flags, 342 PUD_SHIFT); 343 if (page) 344 return page; 345 return no_page_table(vma, flags); 346 } 347 if (pud_devmap(*pud)) { 348 ptl = pud_lock(mm, pud); 349 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 350 spin_unlock(ptl); 351 if (page) 352 return page; 353 } 354 if (unlikely(pud_bad(*pud))) 355 return no_page_table(vma, flags); 356 357 return follow_pmd_mask(vma, address, pud, flags, ctx); 358 } 359 360 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 361 unsigned long address, pgd_t *pgdp, 362 unsigned int flags, 363 struct follow_page_context *ctx) 364 { 365 p4d_t *p4d; 366 struct page *page; 367 368 p4d = p4d_offset(pgdp, address); 369 if (p4d_none(*p4d)) 370 return no_page_table(vma, flags); 371 BUILD_BUG_ON(p4d_huge(*p4d)); 372 if (unlikely(p4d_bad(*p4d))) 373 return no_page_table(vma, flags); 374 375 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 376 page = follow_huge_pd(vma, address, 377 __hugepd(p4d_val(*p4d)), flags, 378 P4D_SHIFT); 379 if (page) 380 return page; 381 return no_page_table(vma, flags); 382 } 383 return follow_pud_mask(vma, address, p4d, flags, ctx); 384 } 385 386 /** 387 * follow_page_mask - look up a page descriptor from a user-virtual address 388 * @vma: vm_area_struct mapping @address 389 * @address: virtual address to look up 390 * @flags: flags modifying lookup behaviour 391 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 392 * pointer to output page_mask 393 * 394 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 395 * 396 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 397 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 398 * 399 * On output, the @ctx->page_mask is set according to the size of the page. 400 * 401 * Return: the mapped (struct page *), %NULL if no mapping exists, or 402 * an error pointer if there is a mapping to something not represented 403 * by a page descriptor (see also vm_normal_page()). 404 */ 405 struct page *follow_page_mask(struct vm_area_struct *vma, 406 unsigned long address, unsigned int flags, 407 struct follow_page_context *ctx) 408 { 409 pgd_t *pgd; 410 struct page *page; 411 struct mm_struct *mm = vma->vm_mm; 412 413 ctx->page_mask = 0; 414 415 /* make this handle hugepd */ 416 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 417 if (!IS_ERR(page)) { 418 BUG_ON(flags & FOLL_GET); 419 return page; 420 } 421 422 pgd = pgd_offset(mm, address); 423 424 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 425 return no_page_table(vma, flags); 426 427 if (pgd_huge(*pgd)) { 428 page = follow_huge_pgd(mm, address, pgd, flags); 429 if (page) 430 return page; 431 return no_page_table(vma, flags); 432 } 433 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 434 page = follow_huge_pd(vma, address, 435 __hugepd(pgd_val(*pgd)), flags, 436 PGDIR_SHIFT); 437 if (page) 438 return page; 439 return no_page_table(vma, flags); 440 } 441 442 return follow_p4d_mask(vma, address, pgd, flags, ctx); 443 } 444 445 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 446 unsigned int foll_flags) 447 { 448 struct follow_page_context ctx = { NULL }; 449 struct page *page; 450 451 page = follow_page_mask(vma, address, foll_flags, &ctx); 452 if (ctx.pgmap) 453 put_dev_pagemap(ctx.pgmap); 454 return page; 455 } 456 457 static int get_gate_page(struct mm_struct *mm, unsigned long address, 458 unsigned int gup_flags, struct vm_area_struct **vma, 459 struct page **page) 460 { 461 pgd_t *pgd; 462 p4d_t *p4d; 463 pud_t *pud; 464 pmd_t *pmd; 465 pte_t *pte; 466 int ret = -EFAULT; 467 468 /* user gate pages are read-only */ 469 if (gup_flags & FOLL_WRITE) 470 return -EFAULT; 471 if (address > TASK_SIZE) 472 pgd = pgd_offset_k(address); 473 else 474 pgd = pgd_offset_gate(mm, address); 475 BUG_ON(pgd_none(*pgd)); 476 p4d = p4d_offset(pgd, address); 477 BUG_ON(p4d_none(*p4d)); 478 pud = pud_offset(p4d, address); 479 BUG_ON(pud_none(*pud)); 480 pmd = pmd_offset(pud, address); 481 if (!pmd_present(*pmd)) 482 return -EFAULT; 483 VM_BUG_ON(pmd_trans_huge(*pmd)); 484 pte = pte_offset_map(pmd, address); 485 if (pte_none(*pte)) 486 goto unmap; 487 *vma = get_gate_vma(mm); 488 if (!page) 489 goto out; 490 *page = vm_normal_page(*vma, address, *pte); 491 if (!*page) { 492 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 493 goto unmap; 494 *page = pte_page(*pte); 495 496 /* 497 * This should never happen (a device public page in the gate 498 * area). 499 */ 500 if (is_device_public_page(*page)) 501 goto unmap; 502 } 503 get_page(*page); 504 out: 505 ret = 0; 506 unmap: 507 pte_unmap(pte); 508 return ret; 509 } 510 511 /* 512 * mmap_sem must be held on entry. If @nonblocking != NULL and 513 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 514 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 515 */ 516 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 517 unsigned long address, unsigned int *flags, int *nonblocking) 518 { 519 unsigned int fault_flags = 0; 520 vm_fault_t ret; 521 522 /* mlock all present pages, but do not fault in new pages */ 523 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 524 return -ENOENT; 525 if (*flags & FOLL_WRITE) 526 fault_flags |= FAULT_FLAG_WRITE; 527 if (*flags & FOLL_REMOTE) 528 fault_flags |= FAULT_FLAG_REMOTE; 529 if (nonblocking) 530 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 531 if (*flags & FOLL_NOWAIT) 532 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 533 if (*flags & FOLL_TRIED) { 534 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 535 fault_flags |= FAULT_FLAG_TRIED; 536 } 537 538 ret = handle_mm_fault(vma, address, fault_flags); 539 if (ret & VM_FAULT_ERROR) { 540 int err = vm_fault_to_errno(ret, *flags); 541 542 if (err) 543 return err; 544 BUG(); 545 } 546 547 if (tsk) { 548 if (ret & VM_FAULT_MAJOR) 549 tsk->maj_flt++; 550 else 551 tsk->min_flt++; 552 } 553 554 if (ret & VM_FAULT_RETRY) { 555 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 556 *nonblocking = 0; 557 return -EBUSY; 558 } 559 560 /* 561 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 562 * necessary, even if maybe_mkwrite decided not to set pte_write. We 563 * can thus safely do subsequent page lookups as if they were reads. 564 * But only do so when looping for pte_write is futile: in some cases 565 * userspace may also be wanting to write to the gotten user page, 566 * which a read fault here might prevent (a readonly page might get 567 * reCOWed by userspace write). 568 */ 569 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 570 *flags |= FOLL_COW; 571 return 0; 572 } 573 574 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 575 { 576 vm_flags_t vm_flags = vma->vm_flags; 577 int write = (gup_flags & FOLL_WRITE); 578 int foreign = (gup_flags & FOLL_REMOTE); 579 580 if (vm_flags & (VM_IO | VM_PFNMAP)) 581 return -EFAULT; 582 583 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 584 return -EFAULT; 585 586 if (write) { 587 if (!(vm_flags & VM_WRITE)) { 588 if (!(gup_flags & FOLL_FORCE)) 589 return -EFAULT; 590 /* 591 * We used to let the write,force case do COW in a 592 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 593 * set a breakpoint in a read-only mapping of an 594 * executable, without corrupting the file (yet only 595 * when that file had been opened for writing!). 596 * Anon pages in shared mappings are surprising: now 597 * just reject it. 598 */ 599 if (!is_cow_mapping(vm_flags)) 600 return -EFAULT; 601 } 602 } else if (!(vm_flags & VM_READ)) { 603 if (!(gup_flags & FOLL_FORCE)) 604 return -EFAULT; 605 /* 606 * Is there actually any vma we can reach here which does not 607 * have VM_MAYREAD set? 608 */ 609 if (!(vm_flags & VM_MAYREAD)) 610 return -EFAULT; 611 } 612 /* 613 * gups are always data accesses, not instruction 614 * fetches, so execute=false here 615 */ 616 if (!arch_vma_access_permitted(vma, write, false, foreign)) 617 return -EFAULT; 618 return 0; 619 } 620 621 /** 622 * __get_user_pages() - pin user pages in memory 623 * @tsk: task_struct of target task 624 * @mm: mm_struct of target mm 625 * @start: starting user address 626 * @nr_pages: number of pages from start to pin 627 * @gup_flags: flags modifying pin behaviour 628 * @pages: array that receives pointers to the pages pinned. 629 * Should be at least nr_pages long. Or NULL, if caller 630 * only intends to ensure the pages are faulted in. 631 * @vmas: array of pointers to vmas corresponding to each page. 632 * Or NULL if the caller does not require them. 633 * @nonblocking: whether waiting for disk IO or mmap_sem contention 634 * 635 * Returns number of pages pinned. This may be fewer than the number 636 * requested. If nr_pages is 0 or negative, returns 0. If no pages 637 * were pinned, returns -errno. Each page returned must be released 638 * with a put_page() call when it is finished with. vmas will only 639 * remain valid while mmap_sem is held. 640 * 641 * Must be called with mmap_sem held. It may be released. See below. 642 * 643 * __get_user_pages walks a process's page tables and takes a reference to 644 * each struct page that each user address corresponds to at a given 645 * instant. That is, it takes the page that would be accessed if a user 646 * thread accesses the given user virtual address at that instant. 647 * 648 * This does not guarantee that the page exists in the user mappings when 649 * __get_user_pages returns, and there may even be a completely different 650 * page there in some cases (eg. if mmapped pagecache has been invalidated 651 * and subsequently re faulted). However it does guarantee that the page 652 * won't be freed completely. And mostly callers simply care that the page 653 * contains data that was valid *at some point in time*. Typically, an IO 654 * or similar operation cannot guarantee anything stronger anyway because 655 * locks can't be held over the syscall boundary. 656 * 657 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 658 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 659 * appropriate) must be called after the page is finished with, and 660 * before put_page is called. 661 * 662 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 663 * or mmap_sem contention, and if waiting is needed to pin all pages, 664 * *@nonblocking will be set to 0. Further, if @gup_flags does not 665 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 666 * this case. 667 * 668 * A caller using such a combination of @nonblocking and @gup_flags 669 * must therefore hold the mmap_sem for reading only, and recognize 670 * when it's been released. Otherwise, it must be held for either 671 * reading or writing and will not be released. 672 * 673 * In most cases, get_user_pages or get_user_pages_fast should be used 674 * instead of __get_user_pages. __get_user_pages should be used only if 675 * you need some special @gup_flags. 676 */ 677 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 678 unsigned long start, unsigned long nr_pages, 679 unsigned int gup_flags, struct page **pages, 680 struct vm_area_struct **vmas, int *nonblocking) 681 { 682 long ret = 0, i = 0; 683 struct vm_area_struct *vma = NULL; 684 struct follow_page_context ctx = { NULL }; 685 686 if (!nr_pages) 687 return 0; 688 689 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 690 691 /* 692 * If FOLL_FORCE is set then do not force a full fault as the hinting 693 * fault information is unrelated to the reference behaviour of a task 694 * using the address space 695 */ 696 if (!(gup_flags & FOLL_FORCE)) 697 gup_flags |= FOLL_NUMA; 698 699 do { 700 struct page *page; 701 unsigned int foll_flags = gup_flags; 702 unsigned int page_increm; 703 704 /* first iteration or cross vma bound */ 705 if (!vma || start >= vma->vm_end) { 706 vma = find_extend_vma(mm, start); 707 if (!vma && in_gate_area(mm, start)) { 708 ret = get_gate_page(mm, start & PAGE_MASK, 709 gup_flags, &vma, 710 pages ? &pages[i] : NULL); 711 if (ret) 712 goto out; 713 ctx.page_mask = 0; 714 goto next_page; 715 } 716 717 if (!vma || check_vma_flags(vma, gup_flags)) { 718 ret = -EFAULT; 719 goto out; 720 } 721 if (is_vm_hugetlb_page(vma)) { 722 i = follow_hugetlb_page(mm, vma, pages, vmas, 723 &start, &nr_pages, i, 724 gup_flags, nonblocking); 725 continue; 726 } 727 } 728 retry: 729 /* 730 * If we have a pending SIGKILL, don't keep faulting pages and 731 * potentially allocating memory. 732 */ 733 if (fatal_signal_pending(current)) { 734 ret = -ERESTARTSYS; 735 goto out; 736 } 737 cond_resched(); 738 739 page = follow_page_mask(vma, start, foll_flags, &ctx); 740 if (!page) { 741 ret = faultin_page(tsk, vma, start, &foll_flags, 742 nonblocking); 743 switch (ret) { 744 case 0: 745 goto retry; 746 case -EBUSY: 747 ret = 0; 748 /* FALLTHRU */ 749 case -EFAULT: 750 case -ENOMEM: 751 case -EHWPOISON: 752 goto out; 753 case -ENOENT: 754 goto next_page; 755 } 756 BUG(); 757 } else if (PTR_ERR(page) == -EEXIST) { 758 /* 759 * Proper page table entry exists, but no corresponding 760 * struct page. 761 */ 762 goto next_page; 763 } else if (IS_ERR(page)) { 764 ret = PTR_ERR(page); 765 goto out; 766 } 767 if (pages) { 768 pages[i] = page; 769 flush_anon_page(vma, page, start); 770 flush_dcache_page(page); 771 ctx.page_mask = 0; 772 } 773 next_page: 774 if (vmas) { 775 vmas[i] = vma; 776 ctx.page_mask = 0; 777 } 778 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 779 if (page_increm > nr_pages) 780 page_increm = nr_pages; 781 i += page_increm; 782 start += page_increm * PAGE_SIZE; 783 nr_pages -= page_increm; 784 } while (nr_pages); 785 out: 786 if (ctx.pgmap) 787 put_dev_pagemap(ctx.pgmap); 788 return i ? i : ret; 789 } 790 791 static bool vma_permits_fault(struct vm_area_struct *vma, 792 unsigned int fault_flags) 793 { 794 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 795 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 796 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 797 798 if (!(vm_flags & vma->vm_flags)) 799 return false; 800 801 /* 802 * The architecture might have a hardware protection 803 * mechanism other than read/write that can deny access. 804 * 805 * gup always represents data access, not instruction 806 * fetches, so execute=false here: 807 */ 808 if (!arch_vma_access_permitted(vma, write, false, foreign)) 809 return false; 810 811 return true; 812 } 813 814 /* 815 * fixup_user_fault() - manually resolve a user page fault 816 * @tsk: the task_struct to use for page fault accounting, or 817 * NULL if faults are not to be recorded. 818 * @mm: mm_struct of target mm 819 * @address: user address 820 * @fault_flags:flags to pass down to handle_mm_fault() 821 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 822 * does not allow retry 823 * 824 * This is meant to be called in the specific scenario where for locking reasons 825 * we try to access user memory in atomic context (within a pagefault_disable() 826 * section), this returns -EFAULT, and we want to resolve the user fault before 827 * trying again. 828 * 829 * Typically this is meant to be used by the futex code. 830 * 831 * The main difference with get_user_pages() is that this function will 832 * unconditionally call handle_mm_fault() which will in turn perform all the 833 * necessary SW fixup of the dirty and young bits in the PTE, while 834 * get_user_pages() only guarantees to update these in the struct page. 835 * 836 * This is important for some architectures where those bits also gate the 837 * access permission to the page because they are maintained in software. On 838 * such architectures, gup() will not be enough to make a subsequent access 839 * succeed. 840 * 841 * This function will not return with an unlocked mmap_sem. So it has not the 842 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 843 */ 844 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 845 unsigned long address, unsigned int fault_flags, 846 bool *unlocked) 847 { 848 struct vm_area_struct *vma; 849 vm_fault_t ret, major = 0; 850 851 if (unlocked) 852 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 853 854 retry: 855 vma = find_extend_vma(mm, address); 856 if (!vma || address < vma->vm_start) 857 return -EFAULT; 858 859 if (!vma_permits_fault(vma, fault_flags)) 860 return -EFAULT; 861 862 ret = handle_mm_fault(vma, address, fault_flags); 863 major |= ret & VM_FAULT_MAJOR; 864 if (ret & VM_FAULT_ERROR) { 865 int err = vm_fault_to_errno(ret, 0); 866 867 if (err) 868 return err; 869 BUG(); 870 } 871 872 if (ret & VM_FAULT_RETRY) { 873 down_read(&mm->mmap_sem); 874 if (!(fault_flags & FAULT_FLAG_TRIED)) { 875 *unlocked = true; 876 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 877 fault_flags |= FAULT_FLAG_TRIED; 878 goto retry; 879 } 880 } 881 882 if (tsk) { 883 if (major) 884 tsk->maj_flt++; 885 else 886 tsk->min_flt++; 887 } 888 return 0; 889 } 890 EXPORT_SYMBOL_GPL(fixup_user_fault); 891 892 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 893 struct mm_struct *mm, 894 unsigned long start, 895 unsigned long nr_pages, 896 struct page **pages, 897 struct vm_area_struct **vmas, 898 int *locked, 899 unsigned int flags) 900 { 901 long ret, pages_done; 902 bool lock_dropped; 903 904 if (locked) { 905 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 906 BUG_ON(vmas); 907 /* check caller initialized locked */ 908 BUG_ON(*locked != 1); 909 } 910 911 if (pages) 912 flags |= FOLL_GET; 913 914 pages_done = 0; 915 lock_dropped = false; 916 for (;;) { 917 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 918 vmas, locked); 919 if (!locked) 920 /* VM_FAULT_RETRY couldn't trigger, bypass */ 921 return ret; 922 923 /* VM_FAULT_RETRY cannot return errors */ 924 if (!*locked) { 925 BUG_ON(ret < 0); 926 BUG_ON(ret >= nr_pages); 927 } 928 929 if (!pages) 930 /* If it's a prefault don't insist harder */ 931 return ret; 932 933 if (ret > 0) { 934 nr_pages -= ret; 935 pages_done += ret; 936 if (!nr_pages) 937 break; 938 } 939 if (*locked) { 940 /* 941 * VM_FAULT_RETRY didn't trigger or it was a 942 * FOLL_NOWAIT. 943 */ 944 if (!pages_done) 945 pages_done = ret; 946 break; 947 } 948 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 949 pages += ret; 950 start += ret << PAGE_SHIFT; 951 952 /* 953 * Repeat on the address that fired VM_FAULT_RETRY 954 * without FAULT_FLAG_ALLOW_RETRY but with 955 * FAULT_FLAG_TRIED. 956 */ 957 *locked = 1; 958 lock_dropped = true; 959 down_read(&mm->mmap_sem); 960 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 961 pages, NULL, NULL); 962 if (ret != 1) { 963 BUG_ON(ret > 1); 964 if (!pages_done) 965 pages_done = ret; 966 break; 967 } 968 nr_pages--; 969 pages_done++; 970 if (!nr_pages) 971 break; 972 pages++; 973 start += PAGE_SIZE; 974 } 975 if (lock_dropped && *locked) { 976 /* 977 * We must let the caller know we temporarily dropped the lock 978 * and so the critical section protected by it was lost. 979 */ 980 up_read(&mm->mmap_sem); 981 *locked = 0; 982 } 983 return pages_done; 984 } 985 986 /* 987 * We can leverage the VM_FAULT_RETRY functionality in the page fault 988 * paths better by using either get_user_pages_locked() or 989 * get_user_pages_unlocked(). 990 * 991 * get_user_pages_locked() is suitable to replace the form: 992 * 993 * down_read(&mm->mmap_sem); 994 * do_something() 995 * get_user_pages(tsk, mm, ..., pages, NULL); 996 * up_read(&mm->mmap_sem); 997 * 998 * to: 999 * 1000 * int locked = 1; 1001 * down_read(&mm->mmap_sem); 1002 * do_something() 1003 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1004 * if (locked) 1005 * up_read(&mm->mmap_sem); 1006 */ 1007 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1008 unsigned int gup_flags, struct page **pages, 1009 int *locked) 1010 { 1011 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1012 pages, NULL, locked, 1013 gup_flags | FOLL_TOUCH); 1014 } 1015 EXPORT_SYMBOL(get_user_pages_locked); 1016 1017 /* 1018 * get_user_pages_unlocked() is suitable to replace the form: 1019 * 1020 * down_read(&mm->mmap_sem); 1021 * get_user_pages(tsk, mm, ..., pages, NULL); 1022 * up_read(&mm->mmap_sem); 1023 * 1024 * with: 1025 * 1026 * get_user_pages_unlocked(tsk, mm, ..., pages); 1027 * 1028 * It is functionally equivalent to get_user_pages_fast so 1029 * get_user_pages_fast should be used instead if specific gup_flags 1030 * (e.g. FOLL_FORCE) are not required. 1031 */ 1032 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1033 struct page **pages, unsigned int gup_flags) 1034 { 1035 struct mm_struct *mm = current->mm; 1036 int locked = 1; 1037 long ret; 1038 1039 down_read(&mm->mmap_sem); 1040 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1041 &locked, gup_flags | FOLL_TOUCH); 1042 if (locked) 1043 up_read(&mm->mmap_sem); 1044 return ret; 1045 } 1046 EXPORT_SYMBOL(get_user_pages_unlocked); 1047 1048 /* 1049 * get_user_pages_remote() - pin user pages in memory 1050 * @tsk: the task_struct to use for page fault accounting, or 1051 * NULL if faults are not to be recorded. 1052 * @mm: mm_struct of target mm 1053 * @start: starting user address 1054 * @nr_pages: number of pages from start to pin 1055 * @gup_flags: flags modifying lookup behaviour 1056 * @pages: array that receives pointers to the pages pinned. 1057 * Should be at least nr_pages long. Or NULL, if caller 1058 * only intends to ensure the pages are faulted in. 1059 * @vmas: array of pointers to vmas corresponding to each page. 1060 * Or NULL if the caller does not require them. 1061 * @locked: pointer to lock flag indicating whether lock is held and 1062 * subsequently whether VM_FAULT_RETRY functionality can be 1063 * utilised. Lock must initially be held. 1064 * 1065 * Returns number of pages pinned. This may be fewer than the number 1066 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1067 * were pinned, returns -errno. Each page returned must be released 1068 * with a put_page() call when it is finished with. vmas will only 1069 * remain valid while mmap_sem is held. 1070 * 1071 * Must be called with mmap_sem held for read or write. 1072 * 1073 * get_user_pages walks a process's page tables and takes a reference to 1074 * each struct page that each user address corresponds to at a given 1075 * instant. That is, it takes the page that would be accessed if a user 1076 * thread accesses the given user virtual address at that instant. 1077 * 1078 * This does not guarantee that the page exists in the user mappings when 1079 * get_user_pages returns, and there may even be a completely different 1080 * page there in some cases (eg. if mmapped pagecache has been invalidated 1081 * and subsequently re faulted). However it does guarantee that the page 1082 * won't be freed completely. And mostly callers simply care that the page 1083 * contains data that was valid *at some point in time*. Typically, an IO 1084 * or similar operation cannot guarantee anything stronger anyway because 1085 * locks can't be held over the syscall boundary. 1086 * 1087 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1088 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1089 * be called after the page is finished with, and before put_page is called. 1090 * 1091 * get_user_pages is typically used for fewer-copy IO operations, to get a 1092 * handle on the memory by some means other than accesses via the user virtual 1093 * addresses. The pages may be submitted for DMA to devices or accessed via 1094 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1095 * use the correct cache flushing APIs. 1096 * 1097 * See also get_user_pages_fast, for performance critical applications. 1098 * 1099 * get_user_pages should be phased out in favor of 1100 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1101 * should use get_user_pages because it cannot pass 1102 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1103 */ 1104 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1105 unsigned long start, unsigned long nr_pages, 1106 unsigned int gup_flags, struct page **pages, 1107 struct vm_area_struct **vmas, int *locked) 1108 { 1109 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1110 locked, 1111 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1112 } 1113 EXPORT_SYMBOL(get_user_pages_remote); 1114 1115 /* 1116 * This is the same as get_user_pages_remote(), just with a 1117 * less-flexible calling convention where we assume that the task 1118 * and mm being operated on are the current task's and don't allow 1119 * passing of a locked parameter. We also obviously don't pass 1120 * FOLL_REMOTE in here. 1121 */ 1122 long get_user_pages(unsigned long start, unsigned long nr_pages, 1123 unsigned int gup_flags, struct page **pages, 1124 struct vm_area_struct **vmas) 1125 { 1126 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1127 pages, vmas, NULL, 1128 gup_flags | FOLL_TOUCH); 1129 } 1130 EXPORT_SYMBOL(get_user_pages); 1131 1132 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1133 1134 #ifdef CONFIG_FS_DAX 1135 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1136 { 1137 long i; 1138 struct vm_area_struct *vma_prev = NULL; 1139 1140 for (i = 0; i < nr_pages; i++) { 1141 struct vm_area_struct *vma = vmas[i]; 1142 1143 if (vma == vma_prev) 1144 continue; 1145 1146 vma_prev = vma; 1147 1148 if (vma_is_fsdax(vma)) 1149 return true; 1150 } 1151 return false; 1152 } 1153 #else 1154 static inline bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1155 { 1156 return false; 1157 } 1158 #endif 1159 1160 #ifdef CONFIG_CMA 1161 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1162 { 1163 /* 1164 * We want to make sure we allocate the new page from the same node 1165 * as the source page. 1166 */ 1167 int nid = page_to_nid(page); 1168 /* 1169 * Trying to allocate a page for migration. Ignore allocation 1170 * failure warnings. We don't force __GFP_THISNODE here because 1171 * this node here is the node where we have CMA reservation and 1172 * in some case these nodes will have really less non movable 1173 * allocation memory. 1174 */ 1175 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1176 1177 if (PageHighMem(page)) 1178 gfp_mask |= __GFP_HIGHMEM; 1179 1180 #ifdef CONFIG_HUGETLB_PAGE 1181 if (PageHuge(page)) { 1182 struct hstate *h = page_hstate(page); 1183 /* 1184 * We don't want to dequeue from the pool because pool pages will 1185 * mostly be from the CMA region. 1186 */ 1187 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1188 } 1189 #endif 1190 if (PageTransHuge(page)) { 1191 struct page *thp; 1192 /* 1193 * ignore allocation failure warnings 1194 */ 1195 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1196 1197 /* 1198 * Remove the movable mask so that we don't allocate from 1199 * CMA area again. 1200 */ 1201 thp_gfpmask &= ~__GFP_MOVABLE; 1202 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1203 if (!thp) 1204 return NULL; 1205 prep_transhuge_page(thp); 1206 return thp; 1207 } 1208 1209 return __alloc_pages_node(nid, gfp_mask, 0); 1210 } 1211 1212 static long check_and_migrate_cma_pages(unsigned long start, long nr_pages, 1213 unsigned int gup_flags, 1214 struct page **pages, 1215 struct vm_area_struct **vmas) 1216 { 1217 long i; 1218 bool drain_allow = true; 1219 bool migrate_allow = true; 1220 LIST_HEAD(cma_page_list); 1221 1222 check_again: 1223 for (i = 0; i < nr_pages; i++) { 1224 /* 1225 * If we get a page from the CMA zone, since we are going to 1226 * be pinning these entries, we might as well move them out 1227 * of the CMA zone if possible. 1228 */ 1229 if (is_migrate_cma_page(pages[i])) { 1230 1231 struct page *head = compound_head(pages[i]); 1232 1233 if (PageHuge(head)) { 1234 isolate_huge_page(head, &cma_page_list); 1235 } else { 1236 if (!PageLRU(head) && drain_allow) { 1237 lru_add_drain_all(); 1238 drain_allow = false; 1239 } 1240 1241 if (!isolate_lru_page(head)) { 1242 list_add_tail(&head->lru, &cma_page_list); 1243 mod_node_page_state(page_pgdat(head), 1244 NR_ISOLATED_ANON + 1245 page_is_file_cache(head), 1246 hpage_nr_pages(head)); 1247 } 1248 } 1249 } 1250 } 1251 1252 if (!list_empty(&cma_page_list)) { 1253 /* 1254 * drop the above get_user_pages reference. 1255 */ 1256 for (i = 0; i < nr_pages; i++) 1257 put_page(pages[i]); 1258 1259 if (migrate_pages(&cma_page_list, new_non_cma_page, 1260 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1261 /* 1262 * some of the pages failed migration. Do get_user_pages 1263 * without migration. 1264 */ 1265 migrate_allow = false; 1266 1267 if (!list_empty(&cma_page_list)) 1268 putback_movable_pages(&cma_page_list); 1269 } 1270 /* 1271 * We did migrate all the pages, Try to get the page references again 1272 * migrating any new CMA pages which we failed to isolate earlier. 1273 */ 1274 nr_pages = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1275 if ((nr_pages > 0) && migrate_allow) { 1276 drain_allow = true; 1277 goto check_again; 1278 } 1279 } 1280 1281 return nr_pages; 1282 } 1283 #else 1284 static inline long check_and_migrate_cma_pages(unsigned long start, long nr_pages, 1285 unsigned int gup_flags, 1286 struct page **pages, 1287 struct vm_area_struct **vmas) 1288 { 1289 return nr_pages; 1290 } 1291 #endif 1292 1293 /* 1294 * This is the same as get_user_pages() in that it assumes we are 1295 * operating on the current task's mm, but it goes further to validate 1296 * that the vmas associated with the address range are suitable for 1297 * longterm elevated page reference counts. For example, filesystem-dax 1298 * mappings are subject to the lifetime enforced by the filesystem and 1299 * we need guarantees that longterm users like RDMA and V4L2 only 1300 * establish mappings that have a kernel enforced revocation mechanism. 1301 * 1302 * "longterm" == userspace controlled elevated page count lifetime. 1303 * Contrast this to iov_iter_get_pages() usages which are transient. 1304 */ 1305 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1306 unsigned int gup_flags, struct page **pages, 1307 struct vm_area_struct **vmas_arg) 1308 { 1309 struct vm_area_struct **vmas = vmas_arg; 1310 unsigned long flags; 1311 long rc, i; 1312 1313 if (!pages) 1314 return -EINVAL; 1315 1316 if (!vmas) { 1317 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1318 GFP_KERNEL); 1319 if (!vmas) 1320 return -ENOMEM; 1321 } 1322 1323 flags = memalloc_nocma_save(); 1324 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1325 memalloc_nocma_restore(flags); 1326 if (rc < 0) 1327 goto out; 1328 1329 if (check_dax_vmas(vmas, rc)) { 1330 for (i = 0; i < rc; i++) 1331 put_page(pages[i]); 1332 rc = -EOPNOTSUPP; 1333 goto out; 1334 } 1335 1336 rc = check_and_migrate_cma_pages(start, rc, gup_flags, pages, vmas); 1337 out: 1338 if (vmas != vmas_arg) 1339 kfree(vmas); 1340 return rc; 1341 } 1342 EXPORT_SYMBOL(get_user_pages_longterm); 1343 #endif /* CONFIG_FS_DAX */ 1344 1345 /** 1346 * populate_vma_page_range() - populate a range of pages in the vma. 1347 * @vma: target vma 1348 * @start: start address 1349 * @end: end address 1350 * @nonblocking: 1351 * 1352 * This takes care of mlocking the pages too if VM_LOCKED is set. 1353 * 1354 * return 0 on success, negative error code on error. 1355 * 1356 * vma->vm_mm->mmap_sem must be held. 1357 * 1358 * If @nonblocking is NULL, it may be held for read or write and will 1359 * be unperturbed. 1360 * 1361 * If @nonblocking is non-NULL, it must held for read only and may be 1362 * released. If it's released, *@nonblocking will be set to 0. 1363 */ 1364 long populate_vma_page_range(struct vm_area_struct *vma, 1365 unsigned long start, unsigned long end, int *nonblocking) 1366 { 1367 struct mm_struct *mm = vma->vm_mm; 1368 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1369 int gup_flags; 1370 1371 VM_BUG_ON(start & ~PAGE_MASK); 1372 VM_BUG_ON(end & ~PAGE_MASK); 1373 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1374 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1375 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1376 1377 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1378 if (vma->vm_flags & VM_LOCKONFAULT) 1379 gup_flags &= ~FOLL_POPULATE; 1380 /* 1381 * We want to touch writable mappings with a write fault in order 1382 * to break COW, except for shared mappings because these don't COW 1383 * and we would not want to dirty them for nothing. 1384 */ 1385 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1386 gup_flags |= FOLL_WRITE; 1387 1388 /* 1389 * We want mlock to succeed for regions that have any permissions 1390 * other than PROT_NONE. 1391 */ 1392 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1393 gup_flags |= FOLL_FORCE; 1394 1395 /* 1396 * We made sure addr is within a VMA, so the following will 1397 * not result in a stack expansion that recurses back here. 1398 */ 1399 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1400 NULL, NULL, nonblocking); 1401 } 1402 1403 /* 1404 * __mm_populate - populate and/or mlock pages within a range of address space. 1405 * 1406 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1407 * flags. VMAs must be already marked with the desired vm_flags, and 1408 * mmap_sem must not be held. 1409 */ 1410 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1411 { 1412 struct mm_struct *mm = current->mm; 1413 unsigned long end, nstart, nend; 1414 struct vm_area_struct *vma = NULL; 1415 int locked = 0; 1416 long ret = 0; 1417 1418 end = start + len; 1419 1420 for (nstart = start; nstart < end; nstart = nend) { 1421 /* 1422 * We want to fault in pages for [nstart; end) address range. 1423 * Find first corresponding VMA. 1424 */ 1425 if (!locked) { 1426 locked = 1; 1427 down_read(&mm->mmap_sem); 1428 vma = find_vma(mm, nstart); 1429 } else if (nstart >= vma->vm_end) 1430 vma = vma->vm_next; 1431 if (!vma || vma->vm_start >= end) 1432 break; 1433 /* 1434 * Set [nstart; nend) to intersection of desired address 1435 * range with the first VMA. Also, skip undesirable VMA types. 1436 */ 1437 nend = min(end, vma->vm_end); 1438 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1439 continue; 1440 if (nstart < vma->vm_start) 1441 nstart = vma->vm_start; 1442 /* 1443 * Now fault in a range of pages. populate_vma_page_range() 1444 * double checks the vma flags, so that it won't mlock pages 1445 * if the vma was already munlocked. 1446 */ 1447 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1448 if (ret < 0) { 1449 if (ignore_errors) { 1450 ret = 0; 1451 continue; /* continue at next VMA */ 1452 } 1453 break; 1454 } 1455 nend = nstart + ret * PAGE_SIZE; 1456 ret = 0; 1457 } 1458 if (locked) 1459 up_read(&mm->mmap_sem); 1460 return ret; /* 0 or negative error code */ 1461 } 1462 1463 /** 1464 * get_dump_page() - pin user page in memory while writing it to core dump 1465 * @addr: user address 1466 * 1467 * Returns struct page pointer of user page pinned for dump, 1468 * to be freed afterwards by put_page(). 1469 * 1470 * Returns NULL on any kind of failure - a hole must then be inserted into 1471 * the corefile, to preserve alignment with its headers; and also returns 1472 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1473 * allowing a hole to be left in the corefile to save diskspace. 1474 * 1475 * Called without mmap_sem, but after all other threads have been killed. 1476 */ 1477 #ifdef CONFIG_ELF_CORE 1478 struct page *get_dump_page(unsigned long addr) 1479 { 1480 struct vm_area_struct *vma; 1481 struct page *page; 1482 1483 if (__get_user_pages(current, current->mm, addr, 1, 1484 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1485 NULL) < 1) 1486 return NULL; 1487 flush_cache_page(vma, addr, page_to_pfn(page)); 1488 return page; 1489 } 1490 #endif /* CONFIG_ELF_CORE */ 1491 1492 /* 1493 * Generic Fast GUP 1494 * 1495 * get_user_pages_fast attempts to pin user pages by walking the page 1496 * tables directly and avoids taking locks. Thus the walker needs to be 1497 * protected from page table pages being freed from under it, and should 1498 * block any THP splits. 1499 * 1500 * One way to achieve this is to have the walker disable interrupts, and 1501 * rely on IPIs from the TLB flushing code blocking before the page table 1502 * pages are freed. This is unsuitable for architectures that do not need 1503 * to broadcast an IPI when invalidating TLBs. 1504 * 1505 * Another way to achieve this is to batch up page table containing pages 1506 * belonging to more than one mm_user, then rcu_sched a callback to free those 1507 * pages. Disabling interrupts will allow the fast_gup walker to both block 1508 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1509 * (which is a relatively rare event). The code below adopts this strategy. 1510 * 1511 * Before activating this code, please be aware that the following assumptions 1512 * are currently made: 1513 * 1514 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1515 * free pages containing page tables or TLB flushing requires IPI broadcast. 1516 * 1517 * *) ptes can be read atomically by the architecture. 1518 * 1519 * *) access_ok is sufficient to validate userspace address ranges. 1520 * 1521 * The last two assumptions can be relaxed by the addition of helper functions. 1522 * 1523 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1524 */ 1525 #ifdef CONFIG_HAVE_GENERIC_GUP 1526 1527 #ifndef gup_get_pte 1528 /* 1529 * We assume that the PTE can be read atomically. If this is not the case for 1530 * your architecture, please provide the helper. 1531 */ 1532 static inline pte_t gup_get_pte(pte_t *ptep) 1533 { 1534 return READ_ONCE(*ptep); 1535 } 1536 #endif 1537 1538 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1539 { 1540 while ((*nr) - nr_start) { 1541 struct page *page = pages[--(*nr)]; 1542 1543 ClearPageReferenced(page); 1544 put_page(page); 1545 } 1546 } 1547 1548 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1549 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1550 int write, struct page **pages, int *nr) 1551 { 1552 struct dev_pagemap *pgmap = NULL; 1553 int nr_start = *nr, ret = 0; 1554 pte_t *ptep, *ptem; 1555 1556 ptem = ptep = pte_offset_map(&pmd, addr); 1557 do { 1558 pte_t pte = gup_get_pte(ptep); 1559 struct page *head, *page; 1560 1561 /* 1562 * Similar to the PMD case below, NUMA hinting must take slow 1563 * path using the pte_protnone check. 1564 */ 1565 if (pte_protnone(pte)) 1566 goto pte_unmap; 1567 1568 if (!pte_access_permitted(pte, write)) 1569 goto pte_unmap; 1570 1571 if (pte_devmap(pte)) { 1572 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1573 if (unlikely(!pgmap)) { 1574 undo_dev_pagemap(nr, nr_start, pages); 1575 goto pte_unmap; 1576 } 1577 } else if (pte_special(pte)) 1578 goto pte_unmap; 1579 1580 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1581 page = pte_page(pte); 1582 head = compound_head(page); 1583 1584 if (!page_cache_get_speculative(head)) 1585 goto pte_unmap; 1586 1587 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1588 put_page(head); 1589 goto pte_unmap; 1590 } 1591 1592 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1593 1594 SetPageReferenced(page); 1595 pages[*nr] = page; 1596 (*nr)++; 1597 1598 } while (ptep++, addr += PAGE_SIZE, addr != end); 1599 1600 ret = 1; 1601 1602 pte_unmap: 1603 if (pgmap) 1604 put_dev_pagemap(pgmap); 1605 pte_unmap(ptem); 1606 return ret; 1607 } 1608 #else 1609 1610 /* 1611 * If we can't determine whether or not a pte is special, then fail immediately 1612 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1613 * to be special. 1614 * 1615 * For a futex to be placed on a THP tail page, get_futex_key requires a 1616 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1617 * useful to have gup_huge_pmd even if we can't operate on ptes. 1618 */ 1619 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1620 int write, struct page **pages, int *nr) 1621 { 1622 return 0; 1623 } 1624 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1625 1626 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1627 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1628 unsigned long end, struct page **pages, int *nr) 1629 { 1630 int nr_start = *nr; 1631 struct dev_pagemap *pgmap = NULL; 1632 1633 do { 1634 struct page *page = pfn_to_page(pfn); 1635 1636 pgmap = get_dev_pagemap(pfn, pgmap); 1637 if (unlikely(!pgmap)) { 1638 undo_dev_pagemap(nr, nr_start, pages); 1639 return 0; 1640 } 1641 SetPageReferenced(page); 1642 pages[*nr] = page; 1643 get_page(page); 1644 (*nr)++; 1645 pfn++; 1646 } while (addr += PAGE_SIZE, addr != end); 1647 1648 if (pgmap) 1649 put_dev_pagemap(pgmap); 1650 return 1; 1651 } 1652 1653 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1654 unsigned long end, struct page **pages, int *nr) 1655 { 1656 unsigned long fault_pfn; 1657 int nr_start = *nr; 1658 1659 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1660 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1661 return 0; 1662 1663 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1664 undo_dev_pagemap(nr, nr_start, pages); 1665 return 0; 1666 } 1667 return 1; 1668 } 1669 1670 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1671 unsigned long end, struct page **pages, int *nr) 1672 { 1673 unsigned long fault_pfn; 1674 int nr_start = *nr; 1675 1676 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1677 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1678 return 0; 1679 1680 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1681 undo_dev_pagemap(nr, nr_start, pages); 1682 return 0; 1683 } 1684 return 1; 1685 } 1686 #else 1687 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1688 unsigned long end, struct page **pages, int *nr) 1689 { 1690 BUILD_BUG(); 1691 return 0; 1692 } 1693 1694 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1695 unsigned long end, struct page **pages, int *nr) 1696 { 1697 BUILD_BUG(); 1698 return 0; 1699 } 1700 #endif 1701 1702 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1703 unsigned long end, int write, struct page **pages, int *nr) 1704 { 1705 struct page *head, *page; 1706 int refs; 1707 1708 if (!pmd_access_permitted(orig, write)) 1709 return 0; 1710 1711 if (pmd_devmap(orig)) 1712 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1713 1714 refs = 0; 1715 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1716 do { 1717 pages[*nr] = page; 1718 (*nr)++; 1719 page++; 1720 refs++; 1721 } while (addr += PAGE_SIZE, addr != end); 1722 1723 head = compound_head(pmd_page(orig)); 1724 if (!page_cache_add_speculative(head, refs)) { 1725 *nr -= refs; 1726 return 0; 1727 } 1728 1729 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1730 *nr -= refs; 1731 while (refs--) 1732 put_page(head); 1733 return 0; 1734 } 1735 1736 SetPageReferenced(head); 1737 return 1; 1738 } 1739 1740 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1741 unsigned long end, int write, struct page **pages, int *nr) 1742 { 1743 struct page *head, *page; 1744 int refs; 1745 1746 if (!pud_access_permitted(orig, write)) 1747 return 0; 1748 1749 if (pud_devmap(orig)) 1750 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1751 1752 refs = 0; 1753 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1754 do { 1755 pages[*nr] = page; 1756 (*nr)++; 1757 page++; 1758 refs++; 1759 } while (addr += PAGE_SIZE, addr != end); 1760 1761 head = compound_head(pud_page(orig)); 1762 if (!page_cache_add_speculative(head, refs)) { 1763 *nr -= refs; 1764 return 0; 1765 } 1766 1767 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1768 *nr -= refs; 1769 while (refs--) 1770 put_page(head); 1771 return 0; 1772 } 1773 1774 SetPageReferenced(head); 1775 return 1; 1776 } 1777 1778 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1779 unsigned long end, int write, 1780 struct page **pages, int *nr) 1781 { 1782 int refs; 1783 struct page *head, *page; 1784 1785 if (!pgd_access_permitted(orig, write)) 1786 return 0; 1787 1788 BUILD_BUG_ON(pgd_devmap(orig)); 1789 refs = 0; 1790 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1791 do { 1792 pages[*nr] = page; 1793 (*nr)++; 1794 page++; 1795 refs++; 1796 } while (addr += PAGE_SIZE, addr != end); 1797 1798 head = compound_head(pgd_page(orig)); 1799 if (!page_cache_add_speculative(head, refs)) { 1800 *nr -= refs; 1801 return 0; 1802 } 1803 1804 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1805 *nr -= refs; 1806 while (refs--) 1807 put_page(head); 1808 return 0; 1809 } 1810 1811 SetPageReferenced(head); 1812 return 1; 1813 } 1814 1815 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1816 int write, struct page **pages, int *nr) 1817 { 1818 unsigned long next; 1819 pmd_t *pmdp; 1820 1821 pmdp = pmd_offset(&pud, addr); 1822 do { 1823 pmd_t pmd = READ_ONCE(*pmdp); 1824 1825 next = pmd_addr_end(addr, end); 1826 if (!pmd_present(pmd)) 1827 return 0; 1828 1829 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 1830 pmd_devmap(pmd))) { 1831 /* 1832 * NUMA hinting faults need to be handled in the GUP 1833 * slowpath for accounting purposes and so that they 1834 * can be serialised against THP migration. 1835 */ 1836 if (pmd_protnone(pmd)) 1837 return 0; 1838 1839 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1840 pages, nr)) 1841 return 0; 1842 1843 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1844 /* 1845 * architecture have different format for hugetlbfs 1846 * pmd format and THP pmd format 1847 */ 1848 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1849 PMD_SHIFT, next, write, pages, nr)) 1850 return 0; 1851 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1852 return 0; 1853 } while (pmdp++, addr = next, addr != end); 1854 1855 return 1; 1856 } 1857 1858 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1859 int write, struct page **pages, int *nr) 1860 { 1861 unsigned long next; 1862 pud_t *pudp; 1863 1864 pudp = pud_offset(&p4d, addr); 1865 do { 1866 pud_t pud = READ_ONCE(*pudp); 1867 1868 next = pud_addr_end(addr, end); 1869 if (pud_none(pud)) 1870 return 0; 1871 if (unlikely(pud_huge(pud))) { 1872 if (!gup_huge_pud(pud, pudp, addr, next, write, 1873 pages, nr)) 1874 return 0; 1875 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1876 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1877 PUD_SHIFT, next, write, pages, nr)) 1878 return 0; 1879 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1880 return 0; 1881 } while (pudp++, addr = next, addr != end); 1882 1883 return 1; 1884 } 1885 1886 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1887 int write, struct page **pages, int *nr) 1888 { 1889 unsigned long next; 1890 p4d_t *p4dp; 1891 1892 p4dp = p4d_offset(&pgd, addr); 1893 do { 1894 p4d_t p4d = READ_ONCE(*p4dp); 1895 1896 next = p4d_addr_end(addr, end); 1897 if (p4d_none(p4d)) 1898 return 0; 1899 BUILD_BUG_ON(p4d_huge(p4d)); 1900 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1901 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1902 P4D_SHIFT, next, write, pages, nr)) 1903 return 0; 1904 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1905 return 0; 1906 } while (p4dp++, addr = next, addr != end); 1907 1908 return 1; 1909 } 1910 1911 static void gup_pgd_range(unsigned long addr, unsigned long end, 1912 int write, struct page **pages, int *nr) 1913 { 1914 unsigned long next; 1915 pgd_t *pgdp; 1916 1917 pgdp = pgd_offset(current->mm, addr); 1918 do { 1919 pgd_t pgd = READ_ONCE(*pgdp); 1920 1921 next = pgd_addr_end(addr, end); 1922 if (pgd_none(pgd)) 1923 return; 1924 if (unlikely(pgd_huge(pgd))) { 1925 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1926 pages, nr)) 1927 return; 1928 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1929 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1930 PGDIR_SHIFT, next, write, pages, nr)) 1931 return; 1932 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1933 return; 1934 } while (pgdp++, addr = next, addr != end); 1935 } 1936 1937 #ifndef gup_fast_permitted 1938 /* 1939 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1940 * we need to fall back to the slow version: 1941 */ 1942 bool gup_fast_permitted(unsigned long start, int nr_pages) 1943 { 1944 unsigned long len, end; 1945 1946 len = (unsigned long) nr_pages << PAGE_SHIFT; 1947 end = start + len; 1948 return end >= start; 1949 } 1950 #endif 1951 1952 /* 1953 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1954 * the regular GUP. 1955 * Note a difference with get_user_pages_fast: this always returns the 1956 * number of pages pinned, 0 if no pages were pinned. 1957 */ 1958 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1959 struct page **pages) 1960 { 1961 unsigned long len, end; 1962 unsigned long flags; 1963 int nr = 0; 1964 1965 start &= PAGE_MASK; 1966 len = (unsigned long) nr_pages << PAGE_SHIFT; 1967 end = start + len; 1968 1969 if (unlikely(!access_ok((void __user *)start, len))) 1970 return 0; 1971 1972 /* 1973 * Disable interrupts. We use the nested form as we can already have 1974 * interrupts disabled by get_futex_key. 1975 * 1976 * With interrupts disabled, we block page table pages from being 1977 * freed from under us. See struct mmu_table_batch comments in 1978 * include/asm-generic/tlb.h for more details. 1979 * 1980 * We do not adopt an rcu_read_lock(.) here as we also want to 1981 * block IPIs that come from THPs splitting. 1982 */ 1983 1984 if (gup_fast_permitted(start, nr_pages)) { 1985 local_irq_save(flags); 1986 gup_pgd_range(start, end, write, pages, &nr); 1987 local_irq_restore(flags); 1988 } 1989 1990 return nr; 1991 } 1992 1993 /** 1994 * get_user_pages_fast() - pin user pages in memory 1995 * @start: starting user address 1996 * @nr_pages: number of pages from start to pin 1997 * @write: whether pages will be written to 1998 * @pages: array that receives pointers to the pages pinned. 1999 * Should be at least nr_pages long. 2000 * 2001 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2002 * If not successful, it will fall back to taking the lock and 2003 * calling get_user_pages(). 2004 * 2005 * Returns number of pages pinned. This may be fewer than the number 2006 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2007 * were pinned, returns -errno. 2008 */ 2009 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 2010 struct page **pages) 2011 { 2012 unsigned long addr, len, end; 2013 int nr = 0, ret = 0; 2014 2015 start &= PAGE_MASK; 2016 addr = start; 2017 len = (unsigned long) nr_pages << PAGE_SHIFT; 2018 end = start + len; 2019 2020 if (nr_pages <= 0) 2021 return 0; 2022 2023 if (unlikely(!access_ok((void __user *)start, len))) 2024 return -EFAULT; 2025 2026 if (gup_fast_permitted(start, nr_pages)) { 2027 local_irq_disable(); 2028 gup_pgd_range(addr, end, write, pages, &nr); 2029 local_irq_enable(); 2030 ret = nr; 2031 } 2032 2033 if (nr < nr_pages) { 2034 /* Try to get the remaining pages with get_user_pages */ 2035 start += nr << PAGE_SHIFT; 2036 pages += nr; 2037 2038 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 2039 write ? FOLL_WRITE : 0); 2040 2041 /* Have to be a bit careful with return values */ 2042 if (nr > 0) { 2043 if (ret < 0) 2044 ret = nr; 2045 else 2046 ret += nr; 2047 } 2048 } 2049 2050 return ret; 2051 } 2052 2053 #endif /* CONFIG_HAVE_GENERIC_GUP */ 2054