xref: /openbmc/linux/mm/gup.c (revision dd2939ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /*
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * "grab" names in this file mean, "look at flags to decide whether to use
100  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
101  *
102  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
103  * same time. (That's true throughout the get_user_pages*() and
104  * pin_user_pages*() APIs.) Cases:
105  *
106  *    FOLL_GET: page's refcount will be incremented by 1.
107  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
108  *
109  * Return: head page (with refcount appropriately incremented) for success, or
110  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
111  * considered failure, and furthermore, a likely bug in the caller, so a warning
112  * is also emitted.
113  */
114 __maybe_unused struct page *try_grab_compound_head(struct page *page,
115 						   int refs, unsigned int flags)
116 {
117 	if (flags & FOLL_GET)
118 		return try_get_compound_head(page, refs);
119 	else if (flags & FOLL_PIN) {
120 		int orig_refs = refs;
121 
122 		/*
123 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
124 		 * right zone, so fail and let the caller fall back to the slow
125 		 * path.
126 		 */
127 		if (unlikely((flags & FOLL_LONGTERM) &&
128 			     !is_pinnable_page(page)))
129 			return NULL;
130 
131 		/*
132 		 * CAUTION: Don't use compound_head() on the page before this
133 		 * point, the result won't be stable.
134 		 */
135 		page = try_get_compound_head(page, refs);
136 		if (!page)
137 			return NULL;
138 
139 		/*
140 		 * When pinning a compound page of order > 1 (which is what
141 		 * hpage_pincount_available() checks for), use an exact count to
142 		 * track it, via hpage_pincount_add/_sub().
143 		 *
144 		 * However, be sure to *also* increment the normal page refcount
145 		 * field at least once, so that the page really is pinned.
146 		 */
147 		if (hpage_pincount_available(page))
148 			hpage_pincount_add(page, refs);
149 		else
150 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
151 
152 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
153 				    orig_refs);
154 
155 		return page;
156 	}
157 
158 	WARN_ON_ONCE(1);
159 	return NULL;
160 }
161 
162 static void put_compound_head(struct page *page, int refs, unsigned int flags)
163 {
164 	if (flags & FOLL_PIN) {
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
166 				    refs);
167 
168 		if (hpage_pincount_available(page))
169 			hpage_pincount_sub(page, refs);
170 		else
171 			refs *= GUP_PIN_COUNTING_BIAS;
172 	}
173 
174 	put_page_refs(page, refs);
175 }
176 
177 /**
178  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
179  *
180  * This might not do anything at all, depending on the flags argument.
181  *
182  * "grab" names in this file mean, "look at flags to decide whether to use
183  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
184  *
185  * @page:    pointer to page to be grabbed
186  * @flags:   gup flags: these are the FOLL_* flag values.
187  *
188  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
189  * time. Cases:
190  *
191  *    FOLL_GET: page's refcount will be incremented by 1.
192  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
193  *
194  * Return: true for success, or if no action was required (if neither FOLL_PIN
195  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
196  * FOLL_PIN was set, but the page could not be grabbed.
197  */
198 bool __must_check try_grab_page(struct page *page, unsigned int flags)
199 {
200 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
201 
202 	if (flags & FOLL_GET)
203 		return try_get_page(page);
204 	else if (flags & FOLL_PIN) {
205 		int refs = 1;
206 
207 		page = compound_head(page);
208 
209 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
210 			return false;
211 
212 		if (hpage_pincount_available(page))
213 			hpage_pincount_add(page, 1);
214 		else
215 			refs = GUP_PIN_COUNTING_BIAS;
216 
217 		/*
218 		 * Similar to try_grab_compound_head(): even if using the
219 		 * hpage_pincount_add/_sub() routines, be sure to
220 		 * *also* increment the normal page refcount field at least
221 		 * once, so that the page really is pinned.
222 		 */
223 		page_ref_add(page, refs);
224 
225 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
226 	}
227 
228 	return true;
229 }
230 
231 /**
232  * unpin_user_page() - release a dma-pinned page
233  * @page:            pointer to page to be released
234  *
235  * Pages that were pinned via pin_user_pages*() must be released via either
236  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237  * that such pages can be separately tracked and uniquely handled. In
238  * particular, interactions with RDMA and filesystems need special handling.
239  */
240 void unpin_user_page(struct page *page)
241 {
242 	put_compound_head(compound_head(page), 1, FOLL_PIN);
243 }
244 EXPORT_SYMBOL(unpin_user_page);
245 
246 static inline void compound_range_next(unsigned long i, unsigned long npages,
247 				       struct page **list, struct page **head,
248 				       unsigned int *ntails)
249 {
250 	struct page *next, *page;
251 	unsigned int nr = 1;
252 
253 	if (i >= npages)
254 		return;
255 
256 	next = *list + i;
257 	page = compound_head(next);
258 	if (PageCompound(page) && compound_order(page) >= 1)
259 		nr = min_t(unsigned int,
260 			   page + compound_nr(page) - next, npages - i);
261 
262 	*head = page;
263 	*ntails = nr;
264 }
265 
266 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
267 	for (__i = 0, \
268 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
269 	     __i < __npages; __i += __ntails, \
270 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
271 
272 static inline void compound_next(unsigned long i, unsigned long npages,
273 				 struct page **list, struct page **head,
274 				 unsigned int *ntails)
275 {
276 	struct page *page;
277 	unsigned int nr;
278 
279 	if (i >= npages)
280 		return;
281 
282 	page = compound_head(list[i]);
283 	for (nr = i + 1; nr < npages; nr++) {
284 		if (compound_head(list[nr]) != page)
285 			break;
286 	}
287 
288 	*head = page;
289 	*ntails = nr - i;
290 }
291 
292 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
293 	for (__i = 0, \
294 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
295 	     __i < __npages; __i += __ntails, \
296 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
297 
298 /**
299  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
300  * @pages:  array of pages to be maybe marked dirty, and definitely released.
301  * @npages: number of pages in the @pages array.
302  * @make_dirty: whether to mark the pages dirty
303  *
304  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
305  * variants called on that page.
306  *
307  * For each page in the @pages array, make that page (or its head page, if a
308  * compound page) dirty, if @make_dirty is true, and if the page was previously
309  * listed as clean. In any case, releases all pages using unpin_user_page(),
310  * possibly via unpin_user_pages(), for the non-dirty case.
311  *
312  * Please see the unpin_user_page() documentation for details.
313  *
314  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
315  * required, then the caller should a) verify that this is really correct,
316  * because _lock() is usually required, and b) hand code it:
317  * set_page_dirty_lock(), unpin_user_page().
318  *
319  */
320 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
321 				 bool make_dirty)
322 {
323 	unsigned long index;
324 	struct page *head;
325 	unsigned int ntails;
326 
327 	if (!make_dirty) {
328 		unpin_user_pages(pages, npages);
329 		return;
330 	}
331 
332 	for_each_compound_head(index, pages, npages, head, ntails) {
333 		/*
334 		 * Checking PageDirty at this point may race with
335 		 * clear_page_dirty_for_io(), but that's OK. Two key
336 		 * cases:
337 		 *
338 		 * 1) This code sees the page as already dirty, so it
339 		 * skips the call to set_page_dirty(). That could happen
340 		 * because clear_page_dirty_for_io() called
341 		 * page_mkclean(), followed by set_page_dirty().
342 		 * However, now the page is going to get written back,
343 		 * which meets the original intention of setting it
344 		 * dirty, so all is well: clear_page_dirty_for_io() goes
345 		 * on to call TestClearPageDirty(), and write the page
346 		 * back.
347 		 *
348 		 * 2) This code sees the page as clean, so it calls
349 		 * set_page_dirty(). The page stays dirty, despite being
350 		 * written back, so it gets written back again in the
351 		 * next writeback cycle. This is harmless.
352 		 */
353 		if (!PageDirty(head))
354 			set_page_dirty_lock(head);
355 		put_compound_head(head, ntails, FOLL_PIN);
356 	}
357 }
358 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
359 
360 /**
361  * unpin_user_page_range_dirty_lock() - release and optionally dirty
362  * gup-pinned page range
363  *
364  * @page:  the starting page of a range maybe marked dirty, and definitely released.
365  * @npages: number of consecutive pages to release.
366  * @make_dirty: whether to mark the pages dirty
367  *
368  * "gup-pinned page range" refers to a range of pages that has had one of the
369  * pin_user_pages() variants called on that page.
370  *
371  * For the page ranges defined by [page .. page+npages], make that range (or
372  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
373  * page range was previously listed as clean.
374  *
375  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
376  * required, then the caller should a) verify that this is really correct,
377  * because _lock() is usually required, and b) hand code it:
378  * set_page_dirty_lock(), unpin_user_page().
379  *
380  */
381 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
382 				      bool make_dirty)
383 {
384 	unsigned long index;
385 	struct page *head;
386 	unsigned int ntails;
387 
388 	for_each_compound_range(index, &page, npages, head, ntails) {
389 		if (make_dirty && !PageDirty(head))
390 			set_page_dirty_lock(head);
391 		put_compound_head(head, ntails, FOLL_PIN);
392 	}
393 }
394 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
395 
396 /**
397  * unpin_user_pages() - release an array of gup-pinned pages.
398  * @pages:  array of pages to be marked dirty and released.
399  * @npages: number of pages in the @pages array.
400  *
401  * For each page in the @pages array, release the page using unpin_user_page().
402  *
403  * Please see the unpin_user_page() documentation for details.
404  */
405 void unpin_user_pages(struct page **pages, unsigned long npages)
406 {
407 	unsigned long index;
408 	struct page *head;
409 	unsigned int ntails;
410 
411 	/*
412 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
413 	 * leaving them pinned), but probably not. More likely, gup/pup returned
414 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
415 	 */
416 	if (WARN_ON(IS_ERR_VALUE(npages)))
417 		return;
418 
419 	for_each_compound_head(index, pages, npages, head, ntails)
420 		put_compound_head(head, ntails, FOLL_PIN);
421 }
422 EXPORT_SYMBOL(unpin_user_pages);
423 
424 /*
425  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
426  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
427  * cache bouncing on large SMP machines for concurrent pinned gups.
428  */
429 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
430 {
431 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
432 		set_bit(MMF_HAS_PINNED, mm_flags);
433 }
434 
435 #ifdef CONFIG_MMU
436 static struct page *no_page_table(struct vm_area_struct *vma,
437 		unsigned int flags)
438 {
439 	/*
440 	 * When core dumping an enormous anonymous area that nobody
441 	 * has touched so far, we don't want to allocate unnecessary pages or
442 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
443 	 * then get_dump_page() will return NULL to leave a hole in the dump.
444 	 * But we can only make this optimization where a hole would surely
445 	 * be zero-filled if handle_mm_fault() actually did handle it.
446 	 */
447 	if ((flags & FOLL_DUMP) &&
448 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
449 		return ERR_PTR(-EFAULT);
450 	return NULL;
451 }
452 
453 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
454 		pte_t *pte, unsigned int flags)
455 {
456 	/* No page to get reference */
457 	if (flags & FOLL_GET)
458 		return -EFAULT;
459 
460 	if (flags & FOLL_TOUCH) {
461 		pte_t entry = *pte;
462 
463 		if (flags & FOLL_WRITE)
464 			entry = pte_mkdirty(entry);
465 		entry = pte_mkyoung(entry);
466 
467 		if (!pte_same(*pte, entry)) {
468 			set_pte_at(vma->vm_mm, address, pte, entry);
469 			update_mmu_cache(vma, address, pte);
470 		}
471 	}
472 
473 	/* Proper page table entry exists, but no corresponding struct page */
474 	return -EEXIST;
475 }
476 
477 /*
478  * FOLL_FORCE can write to even unwritable pte's, but only
479  * after we've gone through a COW cycle and they are dirty.
480  */
481 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
482 {
483 	return pte_write(pte) ||
484 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
485 }
486 
487 static struct page *follow_page_pte(struct vm_area_struct *vma,
488 		unsigned long address, pmd_t *pmd, unsigned int flags,
489 		struct dev_pagemap **pgmap)
490 {
491 	struct mm_struct *mm = vma->vm_mm;
492 	struct page *page;
493 	spinlock_t *ptl;
494 	pte_t *ptep, pte;
495 	int ret;
496 
497 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
498 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
499 			 (FOLL_PIN | FOLL_GET)))
500 		return ERR_PTR(-EINVAL);
501 retry:
502 	if (unlikely(pmd_bad(*pmd)))
503 		return no_page_table(vma, flags);
504 
505 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
506 	pte = *ptep;
507 	if (!pte_present(pte)) {
508 		swp_entry_t entry;
509 		/*
510 		 * KSM's break_ksm() relies upon recognizing a ksm page
511 		 * even while it is being migrated, so for that case we
512 		 * need migration_entry_wait().
513 		 */
514 		if (likely(!(flags & FOLL_MIGRATION)))
515 			goto no_page;
516 		if (pte_none(pte))
517 			goto no_page;
518 		entry = pte_to_swp_entry(pte);
519 		if (!is_migration_entry(entry))
520 			goto no_page;
521 		pte_unmap_unlock(ptep, ptl);
522 		migration_entry_wait(mm, pmd, address);
523 		goto retry;
524 	}
525 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
526 		goto no_page;
527 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
528 		pte_unmap_unlock(ptep, ptl);
529 		return NULL;
530 	}
531 
532 	page = vm_normal_page(vma, address, pte);
533 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
534 		/*
535 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
536 		 * case since they are only valid while holding the pgmap
537 		 * reference.
538 		 */
539 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
540 		if (*pgmap)
541 			page = pte_page(pte);
542 		else
543 			goto no_page;
544 	} else if (unlikely(!page)) {
545 		if (flags & FOLL_DUMP) {
546 			/* Avoid special (like zero) pages in core dumps */
547 			page = ERR_PTR(-EFAULT);
548 			goto out;
549 		}
550 
551 		if (is_zero_pfn(pte_pfn(pte))) {
552 			page = pte_page(pte);
553 		} else {
554 			ret = follow_pfn_pte(vma, address, ptep, flags);
555 			page = ERR_PTR(ret);
556 			goto out;
557 		}
558 	}
559 
560 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
561 	if (unlikely(!try_grab_page(page, flags))) {
562 		page = ERR_PTR(-ENOMEM);
563 		goto out;
564 	}
565 	/*
566 	 * We need to make the page accessible if and only if we are going
567 	 * to access its content (the FOLL_PIN case).  Please see
568 	 * Documentation/core-api/pin_user_pages.rst for details.
569 	 */
570 	if (flags & FOLL_PIN) {
571 		ret = arch_make_page_accessible(page);
572 		if (ret) {
573 			unpin_user_page(page);
574 			page = ERR_PTR(ret);
575 			goto out;
576 		}
577 	}
578 	if (flags & FOLL_TOUCH) {
579 		if ((flags & FOLL_WRITE) &&
580 		    !pte_dirty(pte) && !PageDirty(page))
581 			set_page_dirty(page);
582 		/*
583 		 * pte_mkyoung() would be more correct here, but atomic care
584 		 * is needed to avoid losing the dirty bit: it is easier to use
585 		 * mark_page_accessed().
586 		 */
587 		mark_page_accessed(page);
588 	}
589 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
590 		/* Do not mlock pte-mapped THP */
591 		if (PageTransCompound(page))
592 			goto out;
593 
594 		/*
595 		 * The preliminary mapping check is mainly to avoid the
596 		 * pointless overhead of lock_page on the ZERO_PAGE
597 		 * which might bounce very badly if there is contention.
598 		 *
599 		 * If the page is already locked, we don't need to
600 		 * handle it now - vmscan will handle it later if and
601 		 * when it attempts to reclaim the page.
602 		 */
603 		if (page->mapping && trylock_page(page)) {
604 			lru_add_drain();  /* push cached pages to LRU */
605 			/*
606 			 * Because we lock page here, and migration is
607 			 * blocked by the pte's page reference, and we
608 			 * know the page is still mapped, we don't even
609 			 * need to check for file-cache page truncation.
610 			 */
611 			mlock_vma_page(page);
612 			unlock_page(page);
613 		}
614 	}
615 out:
616 	pte_unmap_unlock(ptep, ptl);
617 	return page;
618 no_page:
619 	pte_unmap_unlock(ptep, ptl);
620 	if (!pte_none(pte))
621 		return NULL;
622 	return no_page_table(vma, flags);
623 }
624 
625 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
626 				    unsigned long address, pud_t *pudp,
627 				    unsigned int flags,
628 				    struct follow_page_context *ctx)
629 {
630 	pmd_t *pmd, pmdval;
631 	spinlock_t *ptl;
632 	struct page *page;
633 	struct mm_struct *mm = vma->vm_mm;
634 
635 	pmd = pmd_offset(pudp, address);
636 	/*
637 	 * The READ_ONCE() will stabilize the pmdval in a register or
638 	 * on the stack so that it will stop changing under the code.
639 	 */
640 	pmdval = READ_ONCE(*pmd);
641 	if (pmd_none(pmdval))
642 		return no_page_table(vma, flags);
643 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
644 		page = follow_huge_pmd(mm, address, pmd, flags);
645 		if (page)
646 			return page;
647 		return no_page_table(vma, flags);
648 	}
649 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
650 		page = follow_huge_pd(vma, address,
651 				      __hugepd(pmd_val(pmdval)), flags,
652 				      PMD_SHIFT);
653 		if (page)
654 			return page;
655 		return no_page_table(vma, flags);
656 	}
657 retry:
658 	if (!pmd_present(pmdval)) {
659 		if (likely(!(flags & FOLL_MIGRATION)))
660 			return no_page_table(vma, flags);
661 		VM_BUG_ON(thp_migration_supported() &&
662 				  !is_pmd_migration_entry(pmdval));
663 		if (is_pmd_migration_entry(pmdval))
664 			pmd_migration_entry_wait(mm, pmd);
665 		pmdval = READ_ONCE(*pmd);
666 		/*
667 		 * MADV_DONTNEED may convert the pmd to null because
668 		 * mmap_lock is held in read mode
669 		 */
670 		if (pmd_none(pmdval))
671 			return no_page_table(vma, flags);
672 		goto retry;
673 	}
674 	if (pmd_devmap(pmdval)) {
675 		ptl = pmd_lock(mm, pmd);
676 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
677 		spin_unlock(ptl);
678 		if (page)
679 			return page;
680 	}
681 	if (likely(!pmd_trans_huge(pmdval)))
682 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
683 
684 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
685 		return no_page_table(vma, flags);
686 
687 retry_locked:
688 	ptl = pmd_lock(mm, pmd);
689 	if (unlikely(pmd_none(*pmd))) {
690 		spin_unlock(ptl);
691 		return no_page_table(vma, flags);
692 	}
693 	if (unlikely(!pmd_present(*pmd))) {
694 		spin_unlock(ptl);
695 		if (likely(!(flags & FOLL_MIGRATION)))
696 			return no_page_table(vma, flags);
697 		pmd_migration_entry_wait(mm, pmd);
698 		goto retry_locked;
699 	}
700 	if (unlikely(!pmd_trans_huge(*pmd))) {
701 		spin_unlock(ptl);
702 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
703 	}
704 	if (flags & FOLL_SPLIT_PMD) {
705 		int ret;
706 		page = pmd_page(*pmd);
707 		if (is_huge_zero_page(page)) {
708 			spin_unlock(ptl);
709 			ret = 0;
710 			split_huge_pmd(vma, pmd, address);
711 			if (pmd_trans_unstable(pmd))
712 				ret = -EBUSY;
713 		} else {
714 			spin_unlock(ptl);
715 			split_huge_pmd(vma, pmd, address);
716 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
717 		}
718 
719 		return ret ? ERR_PTR(ret) :
720 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
721 	}
722 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
723 	spin_unlock(ptl);
724 	ctx->page_mask = HPAGE_PMD_NR - 1;
725 	return page;
726 }
727 
728 static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 				    unsigned long address, p4d_t *p4dp,
730 				    unsigned int flags,
731 				    struct follow_page_context *ctx)
732 {
733 	pud_t *pud;
734 	spinlock_t *ptl;
735 	struct page *page;
736 	struct mm_struct *mm = vma->vm_mm;
737 
738 	pud = pud_offset(p4dp, address);
739 	if (pud_none(*pud))
740 		return no_page_table(vma, flags);
741 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
742 		page = follow_huge_pud(mm, address, pud, flags);
743 		if (page)
744 			return page;
745 		return no_page_table(vma, flags);
746 	}
747 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
748 		page = follow_huge_pd(vma, address,
749 				      __hugepd(pud_val(*pud)), flags,
750 				      PUD_SHIFT);
751 		if (page)
752 			return page;
753 		return no_page_table(vma, flags);
754 	}
755 	if (pud_devmap(*pud)) {
756 		ptl = pud_lock(mm, pud);
757 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 		spin_unlock(ptl);
759 		if (page)
760 			return page;
761 	}
762 	if (unlikely(pud_bad(*pud)))
763 		return no_page_table(vma, flags);
764 
765 	return follow_pmd_mask(vma, address, pud, flags, ctx);
766 }
767 
768 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 				    unsigned long address, pgd_t *pgdp,
770 				    unsigned int flags,
771 				    struct follow_page_context *ctx)
772 {
773 	p4d_t *p4d;
774 	struct page *page;
775 
776 	p4d = p4d_offset(pgdp, address);
777 	if (p4d_none(*p4d))
778 		return no_page_table(vma, flags);
779 	BUILD_BUG_ON(p4d_huge(*p4d));
780 	if (unlikely(p4d_bad(*p4d)))
781 		return no_page_table(vma, flags);
782 
783 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
784 		page = follow_huge_pd(vma, address,
785 				      __hugepd(p4d_val(*p4d)), flags,
786 				      P4D_SHIFT);
787 		if (page)
788 			return page;
789 		return no_page_table(vma, flags);
790 	}
791 	return follow_pud_mask(vma, address, p4d, flags, ctx);
792 }
793 
794 /**
795  * follow_page_mask - look up a page descriptor from a user-virtual address
796  * @vma: vm_area_struct mapping @address
797  * @address: virtual address to look up
798  * @flags: flags modifying lookup behaviour
799  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
800  *       pointer to output page_mask
801  *
802  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
803  *
804  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
805  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
806  *
807  * On output, the @ctx->page_mask is set according to the size of the page.
808  *
809  * Return: the mapped (struct page *), %NULL if no mapping exists, or
810  * an error pointer if there is a mapping to something not represented
811  * by a page descriptor (see also vm_normal_page()).
812  */
813 static struct page *follow_page_mask(struct vm_area_struct *vma,
814 			      unsigned long address, unsigned int flags,
815 			      struct follow_page_context *ctx)
816 {
817 	pgd_t *pgd;
818 	struct page *page;
819 	struct mm_struct *mm = vma->vm_mm;
820 
821 	ctx->page_mask = 0;
822 
823 	/* make this handle hugepd */
824 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
825 	if (!IS_ERR(page)) {
826 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
827 		return page;
828 	}
829 
830 	pgd = pgd_offset(mm, address);
831 
832 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 		return no_page_table(vma, flags);
834 
835 	if (pgd_huge(*pgd)) {
836 		page = follow_huge_pgd(mm, address, pgd, flags);
837 		if (page)
838 			return page;
839 		return no_page_table(vma, flags);
840 	}
841 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
842 		page = follow_huge_pd(vma, address,
843 				      __hugepd(pgd_val(*pgd)), flags,
844 				      PGDIR_SHIFT);
845 		if (page)
846 			return page;
847 		return no_page_table(vma, flags);
848 	}
849 
850 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
851 }
852 
853 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
854 			 unsigned int foll_flags)
855 {
856 	struct follow_page_context ctx = { NULL };
857 	struct page *page;
858 
859 	if (vma_is_secretmem(vma))
860 		return NULL;
861 
862 	page = follow_page_mask(vma, address, foll_flags, &ctx);
863 	if (ctx.pgmap)
864 		put_dev_pagemap(ctx.pgmap);
865 	return page;
866 }
867 
868 static int get_gate_page(struct mm_struct *mm, unsigned long address,
869 		unsigned int gup_flags, struct vm_area_struct **vma,
870 		struct page **page)
871 {
872 	pgd_t *pgd;
873 	p4d_t *p4d;
874 	pud_t *pud;
875 	pmd_t *pmd;
876 	pte_t *pte;
877 	int ret = -EFAULT;
878 
879 	/* user gate pages are read-only */
880 	if (gup_flags & FOLL_WRITE)
881 		return -EFAULT;
882 	if (address > TASK_SIZE)
883 		pgd = pgd_offset_k(address);
884 	else
885 		pgd = pgd_offset_gate(mm, address);
886 	if (pgd_none(*pgd))
887 		return -EFAULT;
888 	p4d = p4d_offset(pgd, address);
889 	if (p4d_none(*p4d))
890 		return -EFAULT;
891 	pud = pud_offset(p4d, address);
892 	if (pud_none(*pud))
893 		return -EFAULT;
894 	pmd = pmd_offset(pud, address);
895 	if (!pmd_present(*pmd))
896 		return -EFAULT;
897 	VM_BUG_ON(pmd_trans_huge(*pmd));
898 	pte = pte_offset_map(pmd, address);
899 	if (pte_none(*pte))
900 		goto unmap;
901 	*vma = get_gate_vma(mm);
902 	if (!page)
903 		goto out;
904 	*page = vm_normal_page(*vma, address, *pte);
905 	if (!*page) {
906 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
907 			goto unmap;
908 		*page = pte_page(*pte);
909 	}
910 	if (unlikely(!try_grab_page(*page, gup_flags))) {
911 		ret = -ENOMEM;
912 		goto unmap;
913 	}
914 out:
915 	ret = 0;
916 unmap:
917 	pte_unmap(pte);
918 	return ret;
919 }
920 
921 /*
922  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
923  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
924  * is, *@locked will be set to 0 and -EBUSY returned.
925  */
926 static int faultin_page(struct vm_area_struct *vma,
927 		unsigned long address, unsigned int *flags, int *locked)
928 {
929 	unsigned int fault_flags = 0;
930 	vm_fault_t ret;
931 
932 	/* mlock all present pages, but do not fault in new pages */
933 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
934 		return -ENOENT;
935 	if (*flags & FOLL_WRITE)
936 		fault_flags |= FAULT_FLAG_WRITE;
937 	if (*flags & FOLL_REMOTE)
938 		fault_flags |= FAULT_FLAG_REMOTE;
939 	if (locked)
940 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
941 	if (*flags & FOLL_NOWAIT)
942 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
943 	if (*flags & FOLL_TRIED) {
944 		/*
945 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 		 * can co-exist
947 		 */
948 		fault_flags |= FAULT_FLAG_TRIED;
949 	}
950 
951 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
952 	if (ret & VM_FAULT_ERROR) {
953 		int err = vm_fault_to_errno(ret, *flags);
954 
955 		if (err)
956 			return err;
957 		BUG();
958 	}
959 
960 	if (ret & VM_FAULT_RETRY) {
961 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
962 			*locked = 0;
963 		return -EBUSY;
964 	}
965 
966 	/*
967 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
968 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
969 	 * can thus safely do subsequent page lookups as if they were reads.
970 	 * But only do so when looping for pte_write is futile: in some cases
971 	 * userspace may also be wanting to write to the gotten user page,
972 	 * which a read fault here might prevent (a readonly page might get
973 	 * reCOWed by userspace write).
974 	 */
975 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
976 		*flags |= FOLL_COW;
977 	return 0;
978 }
979 
980 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
981 {
982 	vm_flags_t vm_flags = vma->vm_flags;
983 	int write = (gup_flags & FOLL_WRITE);
984 	int foreign = (gup_flags & FOLL_REMOTE);
985 
986 	if (vm_flags & (VM_IO | VM_PFNMAP))
987 		return -EFAULT;
988 
989 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
990 		return -EFAULT;
991 
992 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
993 		return -EOPNOTSUPP;
994 
995 	if (vma_is_secretmem(vma))
996 		return -EFAULT;
997 
998 	if (write) {
999 		if (!(vm_flags & VM_WRITE)) {
1000 			if (!(gup_flags & FOLL_FORCE))
1001 				return -EFAULT;
1002 			/*
1003 			 * We used to let the write,force case do COW in a
1004 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1005 			 * set a breakpoint in a read-only mapping of an
1006 			 * executable, without corrupting the file (yet only
1007 			 * when that file had been opened for writing!).
1008 			 * Anon pages in shared mappings are surprising: now
1009 			 * just reject it.
1010 			 */
1011 			if (!is_cow_mapping(vm_flags))
1012 				return -EFAULT;
1013 		}
1014 	} else if (!(vm_flags & VM_READ)) {
1015 		if (!(gup_flags & FOLL_FORCE))
1016 			return -EFAULT;
1017 		/*
1018 		 * Is there actually any vma we can reach here which does not
1019 		 * have VM_MAYREAD set?
1020 		 */
1021 		if (!(vm_flags & VM_MAYREAD))
1022 			return -EFAULT;
1023 	}
1024 	/*
1025 	 * gups are always data accesses, not instruction
1026 	 * fetches, so execute=false here
1027 	 */
1028 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1029 		return -EFAULT;
1030 	return 0;
1031 }
1032 
1033 /**
1034  * __get_user_pages() - pin user pages in memory
1035  * @mm:		mm_struct of target mm
1036  * @start:	starting user address
1037  * @nr_pages:	number of pages from start to pin
1038  * @gup_flags:	flags modifying pin behaviour
1039  * @pages:	array that receives pointers to the pages pinned.
1040  *		Should be at least nr_pages long. Or NULL, if caller
1041  *		only intends to ensure the pages are faulted in.
1042  * @vmas:	array of pointers to vmas corresponding to each page.
1043  *		Or NULL if the caller does not require them.
1044  * @locked:     whether we're still with the mmap_lock held
1045  *
1046  * Returns either number of pages pinned (which may be less than the
1047  * number requested), or an error. Details about the return value:
1048  *
1049  * -- If nr_pages is 0, returns 0.
1050  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1051  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1052  *    pages pinned. Again, this may be less than nr_pages.
1053  * -- 0 return value is possible when the fault would need to be retried.
1054  *
1055  * The caller is responsible for releasing returned @pages, via put_page().
1056  *
1057  * @vmas are valid only as long as mmap_lock is held.
1058  *
1059  * Must be called with mmap_lock held.  It may be released.  See below.
1060  *
1061  * __get_user_pages walks a process's page tables and takes a reference to
1062  * each struct page that each user address corresponds to at a given
1063  * instant. That is, it takes the page that would be accessed if a user
1064  * thread accesses the given user virtual address at that instant.
1065  *
1066  * This does not guarantee that the page exists in the user mappings when
1067  * __get_user_pages returns, and there may even be a completely different
1068  * page there in some cases (eg. if mmapped pagecache has been invalidated
1069  * and subsequently re faulted). However it does guarantee that the page
1070  * won't be freed completely. And mostly callers simply care that the page
1071  * contains data that was valid *at some point in time*. Typically, an IO
1072  * or similar operation cannot guarantee anything stronger anyway because
1073  * locks can't be held over the syscall boundary.
1074  *
1075  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1076  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1077  * appropriate) must be called after the page is finished with, and
1078  * before put_page is called.
1079  *
1080  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1081  * released by an up_read().  That can happen if @gup_flags does not
1082  * have FOLL_NOWAIT.
1083  *
1084  * A caller using such a combination of @locked and @gup_flags
1085  * must therefore hold the mmap_lock for reading only, and recognize
1086  * when it's been released.  Otherwise, it must be held for either
1087  * reading or writing and will not be released.
1088  *
1089  * In most cases, get_user_pages or get_user_pages_fast should be used
1090  * instead of __get_user_pages. __get_user_pages should be used only if
1091  * you need some special @gup_flags.
1092  */
1093 static long __get_user_pages(struct mm_struct *mm,
1094 		unsigned long start, unsigned long nr_pages,
1095 		unsigned int gup_flags, struct page **pages,
1096 		struct vm_area_struct **vmas, int *locked)
1097 {
1098 	long ret = 0, i = 0;
1099 	struct vm_area_struct *vma = NULL;
1100 	struct follow_page_context ctx = { NULL };
1101 
1102 	if (!nr_pages)
1103 		return 0;
1104 
1105 	start = untagged_addr(start);
1106 
1107 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1108 
1109 	/*
1110 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1111 	 * fault information is unrelated to the reference behaviour of a task
1112 	 * using the address space
1113 	 */
1114 	if (!(gup_flags & FOLL_FORCE))
1115 		gup_flags |= FOLL_NUMA;
1116 
1117 	do {
1118 		struct page *page;
1119 		unsigned int foll_flags = gup_flags;
1120 		unsigned int page_increm;
1121 
1122 		/* first iteration or cross vma bound */
1123 		if (!vma || start >= vma->vm_end) {
1124 			vma = find_extend_vma(mm, start);
1125 			if (!vma && in_gate_area(mm, start)) {
1126 				ret = get_gate_page(mm, start & PAGE_MASK,
1127 						gup_flags, &vma,
1128 						pages ? &pages[i] : NULL);
1129 				if (ret)
1130 					goto out;
1131 				ctx.page_mask = 0;
1132 				goto next_page;
1133 			}
1134 
1135 			if (!vma) {
1136 				ret = -EFAULT;
1137 				goto out;
1138 			}
1139 			ret = check_vma_flags(vma, gup_flags);
1140 			if (ret)
1141 				goto out;
1142 
1143 			if (is_vm_hugetlb_page(vma)) {
1144 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1145 						&start, &nr_pages, i,
1146 						gup_flags, locked);
1147 				if (locked && *locked == 0) {
1148 					/*
1149 					 * We've got a VM_FAULT_RETRY
1150 					 * and we've lost mmap_lock.
1151 					 * We must stop here.
1152 					 */
1153 					BUG_ON(gup_flags & FOLL_NOWAIT);
1154 					BUG_ON(ret != 0);
1155 					goto out;
1156 				}
1157 				continue;
1158 			}
1159 		}
1160 retry:
1161 		/*
1162 		 * If we have a pending SIGKILL, don't keep faulting pages and
1163 		 * potentially allocating memory.
1164 		 */
1165 		if (fatal_signal_pending(current)) {
1166 			ret = -EINTR;
1167 			goto out;
1168 		}
1169 		cond_resched();
1170 
1171 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1172 		if (!page) {
1173 			ret = faultin_page(vma, start, &foll_flags, locked);
1174 			switch (ret) {
1175 			case 0:
1176 				goto retry;
1177 			case -EBUSY:
1178 				ret = 0;
1179 				fallthrough;
1180 			case -EFAULT:
1181 			case -ENOMEM:
1182 			case -EHWPOISON:
1183 				goto out;
1184 			case -ENOENT:
1185 				goto next_page;
1186 			}
1187 			BUG();
1188 		} else if (PTR_ERR(page) == -EEXIST) {
1189 			/*
1190 			 * Proper page table entry exists, but no corresponding
1191 			 * struct page.
1192 			 */
1193 			goto next_page;
1194 		} else if (IS_ERR(page)) {
1195 			ret = PTR_ERR(page);
1196 			goto out;
1197 		}
1198 		if (pages) {
1199 			pages[i] = page;
1200 			flush_anon_page(vma, page, start);
1201 			flush_dcache_page(page);
1202 			ctx.page_mask = 0;
1203 		}
1204 next_page:
1205 		if (vmas) {
1206 			vmas[i] = vma;
1207 			ctx.page_mask = 0;
1208 		}
1209 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1210 		if (page_increm > nr_pages)
1211 			page_increm = nr_pages;
1212 		i += page_increm;
1213 		start += page_increm * PAGE_SIZE;
1214 		nr_pages -= page_increm;
1215 	} while (nr_pages);
1216 out:
1217 	if (ctx.pgmap)
1218 		put_dev_pagemap(ctx.pgmap);
1219 	return i ? i : ret;
1220 }
1221 
1222 static bool vma_permits_fault(struct vm_area_struct *vma,
1223 			      unsigned int fault_flags)
1224 {
1225 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1226 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1227 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1228 
1229 	if (!(vm_flags & vma->vm_flags))
1230 		return false;
1231 
1232 	/*
1233 	 * The architecture might have a hardware protection
1234 	 * mechanism other than read/write that can deny access.
1235 	 *
1236 	 * gup always represents data access, not instruction
1237 	 * fetches, so execute=false here:
1238 	 */
1239 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1240 		return false;
1241 
1242 	return true;
1243 }
1244 
1245 /**
1246  * fixup_user_fault() - manually resolve a user page fault
1247  * @mm:		mm_struct of target mm
1248  * @address:	user address
1249  * @fault_flags:flags to pass down to handle_mm_fault()
1250  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1251  *		does not allow retry. If NULL, the caller must guarantee
1252  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1253  *
1254  * This is meant to be called in the specific scenario where for locking reasons
1255  * we try to access user memory in atomic context (within a pagefault_disable()
1256  * section), this returns -EFAULT, and we want to resolve the user fault before
1257  * trying again.
1258  *
1259  * Typically this is meant to be used by the futex code.
1260  *
1261  * The main difference with get_user_pages() is that this function will
1262  * unconditionally call handle_mm_fault() which will in turn perform all the
1263  * necessary SW fixup of the dirty and young bits in the PTE, while
1264  * get_user_pages() only guarantees to update these in the struct page.
1265  *
1266  * This is important for some architectures where those bits also gate the
1267  * access permission to the page because they are maintained in software.  On
1268  * such architectures, gup() will not be enough to make a subsequent access
1269  * succeed.
1270  *
1271  * This function will not return with an unlocked mmap_lock. So it has not the
1272  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1273  */
1274 int fixup_user_fault(struct mm_struct *mm,
1275 		     unsigned long address, unsigned int fault_flags,
1276 		     bool *unlocked)
1277 {
1278 	struct vm_area_struct *vma;
1279 	vm_fault_t ret, major = 0;
1280 
1281 	address = untagged_addr(address);
1282 
1283 	if (unlocked)
1284 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1285 
1286 retry:
1287 	vma = find_extend_vma(mm, address);
1288 	if (!vma || address < vma->vm_start)
1289 		return -EFAULT;
1290 
1291 	if (!vma_permits_fault(vma, fault_flags))
1292 		return -EFAULT;
1293 
1294 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1295 	    fatal_signal_pending(current))
1296 		return -EINTR;
1297 
1298 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1299 	major |= ret & VM_FAULT_MAJOR;
1300 	if (ret & VM_FAULT_ERROR) {
1301 		int err = vm_fault_to_errno(ret, 0);
1302 
1303 		if (err)
1304 			return err;
1305 		BUG();
1306 	}
1307 
1308 	if (ret & VM_FAULT_RETRY) {
1309 		mmap_read_lock(mm);
1310 		*unlocked = true;
1311 		fault_flags |= FAULT_FLAG_TRIED;
1312 		goto retry;
1313 	}
1314 
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL_GPL(fixup_user_fault);
1318 
1319 /*
1320  * Please note that this function, unlike __get_user_pages will not
1321  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1322  */
1323 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1324 						unsigned long start,
1325 						unsigned long nr_pages,
1326 						struct page **pages,
1327 						struct vm_area_struct **vmas,
1328 						int *locked,
1329 						unsigned int flags)
1330 {
1331 	long ret, pages_done;
1332 	bool lock_dropped;
1333 
1334 	if (locked) {
1335 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1336 		BUG_ON(vmas);
1337 		/* check caller initialized locked */
1338 		BUG_ON(*locked != 1);
1339 	}
1340 
1341 	if (flags & FOLL_PIN)
1342 		mm_set_has_pinned_flag(&mm->flags);
1343 
1344 	/*
1345 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1346 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1347 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1348 	 * for FOLL_GET, not for the newer FOLL_PIN.
1349 	 *
1350 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1351 	 * that here, as any failures will be obvious enough.
1352 	 */
1353 	if (pages && !(flags & FOLL_PIN))
1354 		flags |= FOLL_GET;
1355 
1356 	pages_done = 0;
1357 	lock_dropped = false;
1358 	for (;;) {
1359 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1360 				       vmas, locked);
1361 		if (!locked)
1362 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1363 			return ret;
1364 
1365 		/* VM_FAULT_RETRY cannot return errors */
1366 		if (!*locked) {
1367 			BUG_ON(ret < 0);
1368 			BUG_ON(ret >= nr_pages);
1369 		}
1370 
1371 		if (ret > 0) {
1372 			nr_pages -= ret;
1373 			pages_done += ret;
1374 			if (!nr_pages)
1375 				break;
1376 		}
1377 		if (*locked) {
1378 			/*
1379 			 * VM_FAULT_RETRY didn't trigger or it was a
1380 			 * FOLL_NOWAIT.
1381 			 */
1382 			if (!pages_done)
1383 				pages_done = ret;
1384 			break;
1385 		}
1386 		/*
1387 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1388 		 * For the prefault case (!pages) we only update counts.
1389 		 */
1390 		if (likely(pages))
1391 			pages += ret;
1392 		start += ret << PAGE_SHIFT;
1393 		lock_dropped = true;
1394 
1395 retry:
1396 		/*
1397 		 * Repeat on the address that fired VM_FAULT_RETRY
1398 		 * with both FAULT_FLAG_ALLOW_RETRY and
1399 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1400 		 * by fatal signals, so we need to check it before we
1401 		 * start trying again otherwise it can loop forever.
1402 		 */
1403 
1404 		if (fatal_signal_pending(current)) {
1405 			if (!pages_done)
1406 				pages_done = -EINTR;
1407 			break;
1408 		}
1409 
1410 		ret = mmap_read_lock_killable(mm);
1411 		if (ret) {
1412 			BUG_ON(ret > 0);
1413 			if (!pages_done)
1414 				pages_done = ret;
1415 			break;
1416 		}
1417 
1418 		*locked = 1;
1419 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1420 				       pages, NULL, locked);
1421 		if (!*locked) {
1422 			/* Continue to retry until we succeeded */
1423 			BUG_ON(ret != 0);
1424 			goto retry;
1425 		}
1426 		if (ret != 1) {
1427 			BUG_ON(ret > 1);
1428 			if (!pages_done)
1429 				pages_done = ret;
1430 			break;
1431 		}
1432 		nr_pages--;
1433 		pages_done++;
1434 		if (!nr_pages)
1435 			break;
1436 		if (likely(pages))
1437 			pages++;
1438 		start += PAGE_SIZE;
1439 	}
1440 	if (lock_dropped && *locked) {
1441 		/*
1442 		 * We must let the caller know we temporarily dropped the lock
1443 		 * and so the critical section protected by it was lost.
1444 		 */
1445 		mmap_read_unlock(mm);
1446 		*locked = 0;
1447 	}
1448 	return pages_done;
1449 }
1450 
1451 /**
1452  * populate_vma_page_range() -  populate a range of pages in the vma.
1453  * @vma:   target vma
1454  * @start: start address
1455  * @end:   end address
1456  * @locked: whether the mmap_lock is still held
1457  *
1458  * This takes care of mlocking the pages too if VM_LOCKED is set.
1459  *
1460  * Return either number of pages pinned in the vma, or a negative error
1461  * code on error.
1462  *
1463  * vma->vm_mm->mmap_lock must be held.
1464  *
1465  * If @locked is NULL, it may be held for read or write and will
1466  * be unperturbed.
1467  *
1468  * If @locked is non-NULL, it must held for read only and may be
1469  * released.  If it's released, *@locked will be set to 0.
1470  */
1471 long populate_vma_page_range(struct vm_area_struct *vma,
1472 		unsigned long start, unsigned long end, int *locked)
1473 {
1474 	struct mm_struct *mm = vma->vm_mm;
1475 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1476 	int gup_flags;
1477 
1478 	VM_BUG_ON(start & ~PAGE_MASK);
1479 	VM_BUG_ON(end   & ~PAGE_MASK);
1480 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1481 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1482 	mmap_assert_locked(mm);
1483 
1484 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1485 	if (vma->vm_flags & VM_LOCKONFAULT)
1486 		gup_flags &= ~FOLL_POPULATE;
1487 	/*
1488 	 * We want to touch writable mappings with a write fault in order
1489 	 * to break COW, except for shared mappings because these don't COW
1490 	 * and we would not want to dirty them for nothing.
1491 	 */
1492 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1493 		gup_flags |= FOLL_WRITE;
1494 
1495 	/*
1496 	 * We want mlock to succeed for regions that have any permissions
1497 	 * other than PROT_NONE.
1498 	 */
1499 	if (vma_is_accessible(vma))
1500 		gup_flags |= FOLL_FORCE;
1501 
1502 	/*
1503 	 * We made sure addr is within a VMA, so the following will
1504 	 * not result in a stack expansion that recurses back here.
1505 	 */
1506 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1507 				NULL, NULL, locked);
1508 }
1509 
1510 /*
1511  * faultin_vma_page_range() - populate (prefault) page tables inside the
1512  *			      given VMA range readable/writable
1513  *
1514  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1515  *
1516  * @vma: target vma
1517  * @start: start address
1518  * @end: end address
1519  * @write: whether to prefault readable or writable
1520  * @locked: whether the mmap_lock is still held
1521  *
1522  * Returns either number of processed pages in the vma, or a negative error
1523  * code on error (see __get_user_pages()).
1524  *
1525  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1526  * covered by the VMA.
1527  *
1528  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1529  *
1530  * If @locked is non-NULL, it must held for read only and may be released.  If
1531  * it's released, *@locked will be set to 0.
1532  */
1533 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1534 			    unsigned long end, bool write, int *locked)
1535 {
1536 	struct mm_struct *mm = vma->vm_mm;
1537 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1538 	int gup_flags;
1539 
1540 	VM_BUG_ON(!PAGE_ALIGNED(start));
1541 	VM_BUG_ON(!PAGE_ALIGNED(end));
1542 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1543 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1544 	mmap_assert_locked(mm);
1545 
1546 	/*
1547 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1548 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1549 	 *	       difference with !FOLL_FORCE, because the page is writable
1550 	 *	       in the page table.
1551 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1552 	 *		  a poisoned page.
1553 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1554 	 * !FOLL_FORCE: Require proper access permissions.
1555 	 */
1556 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1557 	if (write)
1558 		gup_flags |= FOLL_WRITE;
1559 
1560 	/*
1561 	 * See check_vma_flags(): Will return -EFAULT on incompatible mappings
1562 	 * or with insufficient permissions.
1563 	 */
1564 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1565 				NULL, NULL, locked);
1566 }
1567 
1568 /*
1569  * __mm_populate - populate and/or mlock pages within a range of address space.
1570  *
1571  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1572  * flags. VMAs must be already marked with the desired vm_flags, and
1573  * mmap_lock must not be held.
1574  */
1575 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1576 {
1577 	struct mm_struct *mm = current->mm;
1578 	unsigned long end, nstart, nend;
1579 	struct vm_area_struct *vma = NULL;
1580 	int locked = 0;
1581 	long ret = 0;
1582 
1583 	end = start + len;
1584 
1585 	for (nstart = start; nstart < end; nstart = nend) {
1586 		/*
1587 		 * We want to fault in pages for [nstart; end) address range.
1588 		 * Find first corresponding VMA.
1589 		 */
1590 		if (!locked) {
1591 			locked = 1;
1592 			mmap_read_lock(mm);
1593 			vma = find_vma(mm, nstart);
1594 		} else if (nstart >= vma->vm_end)
1595 			vma = vma->vm_next;
1596 		if (!vma || vma->vm_start >= end)
1597 			break;
1598 		/*
1599 		 * Set [nstart; nend) to intersection of desired address
1600 		 * range with the first VMA. Also, skip undesirable VMA types.
1601 		 */
1602 		nend = min(end, vma->vm_end);
1603 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1604 			continue;
1605 		if (nstart < vma->vm_start)
1606 			nstart = vma->vm_start;
1607 		/*
1608 		 * Now fault in a range of pages. populate_vma_page_range()
1609 		 * double checks the vma flags, so that it won't mlock pages
1610 		 * if the vma was already munlocked.
1611 		 */
1612 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1613 		if (ret < 0) {
1614 			if (ignore_errors) {
1615 				ret = 0;
1616 				continue;	/* continue at next VMA */
1617 			}
1618 			break;
1619 		}
1620 		nend = nstart + ret * PAGE_SIZE;
1621 		ret = 0;
1622 	}
1623 	if (locked)
1624 		mmap_read_unlock(mm);
1625 	return ret;	/* 0 or negative error code */
1626 }
1627 #else /* CONFIG_MMU */
1628 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1629 		unsigned long nr_pages, struct page **pages,
1630 		struct vm_area_struct **vmas, int *locked,
1631 		unsigned int foll_flags)
1632 {
1633 	struct vm_area_struct *vma;
1634 	unsigned long vm_flags;
1635 	long i;
1636 
1637 	/* calculate required read or write permissions.
1638 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1639 	 */
1640 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1641 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1642 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1643 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1644 
1645 	for (i = 0; i < nr_pages; i++) {
1646 		vma = find_vma(mm, start);
1647 		if (!vma)
1648 			goto finish_or_fault;
1649 
1650 		/* protect what we can, including chardevs */
1651 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1652 		    !(vm_flags & vma->vm_flags))
1653 			goto finish_or_fault;
1654 
1655 		if (pages) {
1656 			pages[i] = virt_to_page(start);
1657 			if (pages[i])
1658 				get_page(pages[i]);
1659 		}
1660 		if (vmas)
1661 			vmas[i] = vma;
1662 		start = (start + PAGE_SIZE) & PAGE_MASK;
1663 	}
1664 
1665 	return i;
1666 
1667 finish_or_fault:
1668 	return i ? : -EFAULT;
1669 }
1670 #endif /* !CONFIG_MMU */
1671 
1672 /**
1673  * get_dump_page() - pin user page in memory while writing it to core dump
1674  * @addr: user address
1675  *
1676  * Returns struct page pointer of user page pinned for dump,
1677  * to be freed afterwards by put_page().
1678  *
1679  * Returns NULL on any kind of failure - a hole must then be inserted into
1680  * the corefile, to preserve alignment with its headers; and also returns
1681  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1682  * allowing a hole to be left in the corefile to save disk space.
1683  *
1684  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1685  */
1686 #ifdef CONFIG_ELF_CORE
1687 struct page *get_dump_page(unsigned long addr)
1688 {
1689 	struct mm_struct *mm = current->mm;
1690 	struct page *page;
1691 	int locked = 1;
1692 	int ret;
1693 
1694 	if (mmap_read_lock_killable(mm))
1695 		return NULL;
1696 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1697 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1698 	if (locked)
1699 		mmap_read_unlock(mm);
1700 	return (ret == 1) ? page : NULL;
1701 }
1702 #endif /* CONFIG_ELF_CORE */
1703 
1704 #ifdef CONFIG_MIGRATION
1705 /*
1706  * Check whether all pages are pinnable, if so return number of pages.  If some
1707  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1708  * pages were migrated, or if some pages were not successfully isolated.
1709  * Return negative error if migration fails.
1710  */
1711 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1712 					    struct page **pages,
1713 					    unsigned int gup_flags)
1714 {
1715 	unsigned long i;
1716 	unsigned long isolation_error_count = 0;
1717 	bool drain_allow = true;
1718 	LIST_HEAD(movable_page_list);
1719 	long ret = 0;
1720 	struct page *prev_head = NULL;
1721 	struct page *head;
1722 	struct migration_target_control mtc = {
1723 		.nid = NUMA_NO_NODE,
1724 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1725 	};
1726 
1727 	for (i = 0; i < nr_pages; i++) {
1728 		head = compound_head(pages[i]);
1729 		if (head == prev_head)
1730 			continue;
1731 		prev_head = head;
1732 		/*
1733 		 * If we get a movable page, since we are going to be pinning
1734 		 * these entries, try to move them out if possible.
1735 		 */
1736 		if (!is_pinnable_page(head)) {
1737 			if (PageHuge(head)) {
1738 				if (!isolate_huge_page(head, &movable_page_list))
1739 					isolation_error_count++;
1740 			} else {
1741 				if (!PageLRU(head) && drain_allow) {
1742 					lru_add_drain_all();
1743 					drain_allow = false;
1744 				}
1745 
1746 				if (isolate_lru_page(head)) {
1747 					isolation_error_count++;
1748 					continue;
1749 				}
1750 				list_add_tail(&head->lru, &movable_page_list);
1751 				mod_node_page_state(page_pgdat(head),
1752 						    NR_ISOLATED_ANON +
1753 						    page_is_file_lru(head),
1754 						    thp_nr_pages(head));
1755 			}
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * If list is empty, and no isolation errors, means that all pages are
1761 	 * in the correct zone.
1762 	 */
1763 	if (list_empty(&movable_page_list) && !isolation_error_count)
1764 		return nr_pages;
1765 
1766 	if (gup_flags & FOLL_PIN) {
1767 		unpin_user_pages(pages, nr_pages);
1768 	} else {
1769 		for (i = 0; i < nr_pages; i++)
1770 			put_page(pages[i]);
1771 	}
1772 	if (!list_empty(&movable_page_list)) {
1773 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1774 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1775 				    MR_LONGTERM_PIN);
1776 		if (ret && !list_empty(&movable_page_list))
1777 			putback_movable_pages(&movable_page_list);
1778 	}
1779 
1780 	return ret > 0 ? -ENOMEM : ret;
1781 }
1782 #else
1783 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1784 					    struct page **pages,
1785 					    unsigned int gup_flags)
1786 {
1787 	return nr_pages;
1788 }
1789 #endif /* CONFIG_MIGRATION */
1790 
1791 /*
1792  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1793  * allows us to process the FOLL_LONGTERM flag.
1794  */
1795 static long __gup_longterm_locked(struct mm_struct *mm,
1796 				  unsigned long start,
1797 				  unsigned long nr_pages,
1798 				  struct page **pages,
1799 				  struct vm_area_struct **vmas,
1800 				  unsigned int gup_flags)
1801 {
1802 	unsigned int flags;
1803 	long rc;
1804 
1805 	if (!(gup_flags & FOLL_LONGTERM))
1806 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1807 					       NULL, gup_flags);
1808 	flags = memalloc_pin_save();
1809 	do {
1810 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 					     NULL, gup_flags);
1812 		if (rc <= 0)
1813 			break;
1814 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1815 	} while (!rc);
1816 	memalloc_pin_restore(flags);
1817 
1818 	return rc;
1819 }
1820 
1821 static bool is_valid_gup_flags(unsigned int gup_flags)
1822 {
1823 	/*
1824 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1825 	 * never directly by the caller, so enforce that with an assertion:
1826 	 */
1827 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1828 		return false;
1829 	/*
1830 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1831 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1832 	 * FOLL_PIN.
1833 	 */
1834 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1835 		return false;
1836 
1837 	return true;
1838 }
1839 
1840 #ifdef CONFIG_MMU
1841 static long __get_user_pages_remote(struct mm_struct *mm,
1842 				    unsigned long start, unsigned long nr_pages,
1843 				    unsigned int gup_flags, struct page **pages,
1844 				    struct vm_area_struct **vmas, int *locked)
1845 {
1846 	/*
1847 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1848 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1849 	 * vmas. However, this only comes up if locked is set, and there are
1850 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1851 	 * allow what we can.
1852 	 */
1853 	if (gup_flags & FOLL_LONGTERM) {
1854 		if (WARN_ON_ONCE(locked))
1855 			return -EINVAL;
1856 		/*
1857 		 * This will check the vmas (even if our vmas arg is NULL)
1858 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1859 		 */
1860 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1861 					     vmas, gup_flags | FOLL_TOUCH |
1862 					     FOLL_REMOTE);
1863 	}
1864 
1865 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1866 				       locked,
1867 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1868 }
1869 
1870 /**
1871  * get_user_pages_remote() - pin user pages in memory
1872  * @mm:		mm_struct of target mm
1873  * @start:	starting user address
1874  * @nr_pages:	number of pages from start to pin
1875  * @gup_flags:	flags modifying lookup behaviour
1876  * @pages:	array that receives pointers to the pages pinned.
1877  *		Should be at least nr_pages long. Or NULL, if caller
1878  *		only intends to ensure the pages are faulted in.
1879  * @vmas:	array of pointers to vmas corresponding to each page.
1880  *		Or NULL if the caller does not require them.
1881  * @locked:	pointer to lock flag indicating whether lock is held and
1882  *		subsequently whether VM_FAULT_RETRY functionality can be
1883  *		utilised. Lock must initially be held.
1884  *
1885  * Returns either number of pages pinned (which may be less than the
1886  * number requested), or an error. Details about the return value:
1887  *
1888  * -- If nr_pages is 0, returns 0.
1889  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1890  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1891  *    pages pinned. Again, this may be less than nr_pages.
1892  *
1893  * The caller is responsible for releasing returned @pages, via put_page().
1894  *
1895  * @vmas are valid only as long as mmap_lock is held.
1896  *
1897  * Must be called with mmap_lock held for read or write.
1898  *
1899  * get_user_pages_remote walks a process's page tables and takes a reference
1900  * to each struct page that each user address corresponds to at a given
1901  * instant. That is, it takes the page that would be accessed if a user
1902  * thread accesses the given user virtual address at that instant.
1903  *
1904  * This does not guarantee that the page exists in the user mappings when
1905  * get_user_pages_remote returns, and there may even be a completely different
1906  * page there in some cases (eg. if mmapped pagecache has been invalidated
1907  * and subsequently re faulted). However it does guarantee that the page
1908  * won't be freed completely. And mostly callers simply care that the page
1909  * contains data that was valid *at some point in time*. Typically, an IO
1910  * or similar operation cannot guarantee anything stronger anyway because
1911  * locks can't be held over the syscall boundary.
1912  *
1913  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1914  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1915  * be called after the page is finished with, and before put_page is called.
1916  *
1917  * get_user_pages_remote is typically used for fewer-copy IO operations,
1918  * to get a handle on the memory by some means other than accesses
1919  * via the user virtual addresses. The pages may be submitted for
1920  * DMA to devices or accessed via their kernel linear mapping (via the
1921  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1922  *
1923  * See also get_user_pages_fast, for performance critical applications.
1924  *
1925  * get_user_pages_remote should be phased out in favor of
1926  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1927  * should use get_user_pages_remote because it cannot pass
1928  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1929  */
1930 long get_user_pages_remote(struct mm_struct *mm,
1931 		unsigned long start, unsigned long nr_pages,
1932 		unsigned int gup_flags, struct page **pages,
1933 		struct vm_area_struct **vmas, int *locked)
1934 {
1935 	if (!is_valid_gup_flags(gup_flags))
1936 		return -EINVAL;
1937 
1938 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1939 				       pages, vmas, locked);
1940 }
1941 EXPORT_SYMBOL(get_user_pages_remote);
1942 
1943 #else /* CONFIG_MMU */
1944 long get_user_pages_remote(struct mm_struct *mm,
1945 			   unsigned long start, unsigned long nr_pages,
1946 			   unsigned int gup_flags, struct page **pages,
1947 			   struct vm_area_struct **vmas, int *locked)
1948 {
1949 	return 0;
1950 }
1951 
1952 static long __get_user_pages_remote(struct mm_struct *mm,
1953 				    unsigned long start, unsigned long nr_pages,
1954 				    unsigned int gup_flags, struct page **pages,
1955 				    struct vm_area_struct **vmas, int *locked)
1956 {
1957 	return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960 
1961 /**
1962  * get_user_pages() - pin user pages in memory
1963  * @start:      starting user address
1964  * @nr_pages:   number of pages from start to pin
1965  * @gup_flags:  flags modifying lookup behaviour
1966  * @pages:      array that receives pointers to the pages pinned.
1967  *              Should be at least nr_pages long. Or NULL, if caller
1968  *              only intends to ensure the pages are faulted in.
1969  * @vmas:       array of pointers to vmas corresponding to each page.
1970  *              Or NULL if the caller does not require them.
1971  *
1972  * This is the same as get_user_pages_remote(), just with a less-flexible
1973  * calling convention where we assume that the mm being operated on belongs to
1974  * the current task, and doesn't allow passing of a locked parameter.  We also
1975  * obviously don't pass FOLL_REMOTE in here.
1976  */
1977 long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 		unsigned int gup_flags, struct page **pages,
1979 		struct vm_area_struct **vmas)
1980 {
1981 	if (!is_valid_gup_flags(gup_flags))
1982 		return -EINVAL;
1983 
1984 	return __gup_longterm_locked(current->mm, start, nr_pages,
1985 				     pages, vmas, gup_flags | FOLL_TOUCH);
1986 }
1987 EXPORT_SYMBOL(get_user_pages);
1988 
1989 /**
1990  * get_user_pages_locked() - variant of get_user_pages()
1991  *
1992  * @start:      starting user address
1993  * @nr_pages:   number of pages from start to pin
1994  * @gup_flags:  flags modifying lookup behaviour
1995  * @pages:      array that receives pointers to the pages pinned.
1996  *              Should be at least nr_pages long. Or NULL, if caller
1997  *              only intends to ensure the pages are faulted in.
1998  * @locked:     pointer to lock flag indicating whether lock is held and
1999  *              subsequently whether VM_FAULT_RETRY functionality can be
2000  *              utilised. Lock must initially be held.
2001  *
2002  * It is suitable to replace the form:
2003  *
2004  *      mmap_read_lock(mm);
2005  *      do_something()
2006  *      get_user_pages(mm, ..., pages, NULL);
2007  *      mmap_read_unlock(mm);
2008  *
2009  *  to:
2010  *
2011  *      int locked = 1;
2012  *      mmap_read_lock(mm);
2013  *      do_something()
2014  *      get_user_pages_locked(mm, ..., pages, &locked);
2015  *      if (locked)
2016  *          mmap_read_unlock(mm);
2017  *
2018  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2019  * paths better by using either get_user_pages_locked() or
2020  * get_user_pages_unlocked().
2021  *
2022  */
2023 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2024 			   unsigned int gup_flags, struct page **pages,
2025 			   int *locked)
2026 {
2027 	/*
2028 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2029 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2030 	 * vmas.  As there are no users of this flag in this call we simply
2031 	 * disallow this option for now.
2032 	 */
2033 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2034 		return -EINVAL;
2035 	/*
2036 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2037 	 * never directly by the caller, so enforce that:
2038 	 */
2039 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2040 		return -EINVAL;
2041 
2042 	return __get_user_pages_locked(current->mm, start, nr_pages,
2043 				       pages, NULL, locked,
2044 				       gup_flags | FOLL_TOUCH);
2045 }
2046 EXPORT_SYMBOL(get_user_pages_locked);
2047 
2048 /*
2049  * get_user_pages_unlocked() is suitable to replace the form:
2050  *
2051  *      mmap_read_lock(mm);
2052  *      get_user_pages(mm, ..., pages, NULL);
2053  *      mmap_read_unlock(mm);
2054  *
2055  *  with:
2056  *
2057  *      get_user_pages_unlocked(mm, ..., pages);
2058  *
2059  * It is functionally equivalent to get_user_pages_fast so
2060  * get_user_pages_fast should be used instead if specific gup_flags
2061  * (e.g. FOLL_FORCE) are not required.
2062  */
2063 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2064 			     struct page **pages, unsigned int gup_flags)
2065 {
2066 	struct mm_struct *mm = current->mm;
2067 	int locked = 1;
2068 	long ret;
2069 
2070 	/*
2071 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2072 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2073 	 * vmas.  As there are no users of this flag in this call we simply
2074 	 * disallow this option for now.
2075 	 */
2076 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2077 		return -EINVAL;
2078 
2079 	mmap_read_lock(mm);
2080 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2081 				      &locked, gup_flags | FOLL_TOUCH);
2082 	if (locked)
2083 		mmap_read_unlock(mm);
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(get_user_pages_unlocked);
2087 
2088 /*
2089  * Fast GUP
2090  *
2091  * get_user_pages_fast attempts to pin user pages by walking the page
2092  * tables directly and avoids taking locks. Thus the walker needs to be
2093  * protected from page table pages being freed from under it, and should
2094  * block any THP splits.
2095  *
2096  * One way to achieve this is to have the walker disable interrupts, and
2097  * rely on IPIs from the TLB flushing code blocking before the page table
2098  * pages are freed. This is unsuitable for architectures that do not need
2099  * to broadcast an IPI when invalidating TLBs.
2100  *
2101  * Another way to achieve this is to batch up page table containing pages
2102  * belonging to more than one mm_user, then rcu_sched a callback to free those
2103  * pages. Disabling interrupts will allow the fast_gup walker to both block
2104  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2105  * (which is a relatively rare event). The code below adopts this strategy.
2106  *
2107  * Before activating this code, please be aware that the following assumptions
2108  * are currently made:
2109  *
2110  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2111  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2112  *
2113  *  *) ptes can be read atomically by the architecture.
2114  *
2115  *  *) access_ok is sufficient to validate userspace address ranges.
2116  *
2117  * The last two assumptions can be relaxed by the addition of helper functions.
2118  *
2119  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2120  */
2121 #ifdef CONFIG_HAVE_FAST_GUP
2122 
2123 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2124 					    unsigned int flags,
2125 					    struct page **pages)
2126 {
2127 	while ((*nr) - nr_start) {
2128 		struct page *page = pages[--(*nr)];
2129 
2130 		ClearPageReferenced(page);
2131 		if (flags & FOLL_PIN)
2132 			unpin_user_page(page);
2133 		else
2134 			put_page(page);
2135 	}
2136 }
2137 
2138 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2139 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2140 			 unsigned int flags, struct page **pages, int *nr)
2141 {
2142 	struct dev_pagemap *pgmap = NULL;
2143 	int nr_start = *nr, ret = 0;
2144 	pte_t *ptep, *ptem;
2145 
2146 	ptem = ptep = pte_offset_map(&pmd, addr);
2147 	do {
2148 		pte_t pte = ptep_get_lockless(ptep);
2149 		struct page *head, *page;
2150 
2151 		/*
2152 		 * Similar to the PMD case below, NUMA hinting must take slow
2153 		 * path using the pte_protnone check.
2154 		 */
2155 		if (pte_protnone(pte))
2156 			goto pte_unmap;
2157 
2158 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2159 			goto pte_unmap;
2160 
2161 		if (pte_devmap(pte)) {
2162 			if (unlikely(flags & FOLL_LONGTERM))
2163 				goto pte_unmap;
2164 
2165 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2166 			if (unlikely(!pgmap)) {
2167 				undo_dev_pagemap(nr, nr_start, flags, pages);
2168 				goto pte_unmap;
2169 			}
2170 		} else if (pte_special(pte))
2171 			goto pte_unmap;
2172 
2173 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2174 		page = pte_page(pte);
2175 
2176 		head = try_grab_compound_head(page, 1, flags);
2177 		if (!head)
2178 			goto pte_unmap;
2179 
2180 		if (unlikely(page_is_secretmem(page))) {
2181 			put_compound_head(head, 1, flags);
2182 			goto pte_unmap;
2183 		}
2184 
2185 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2186 			put_compound_head(head, 1, flags);
2187 			goto pte_unmap;
2188 		}
2189 
2190 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2191 
2192 		/*
2193 		 * We need to make the page accessible if and only if we are
2194 		 * going to access its content (the FOLL_PIN case).  Please
2195 		 * see Documentation/core-api/pin_user_pages.rst for
2196 		 * details.
2197 		 */
2198 		if (flags & FOLL_PIN) {
2199 			ret = arch_make_page_accessible(page);
2200 			if (ret) {
2201 				unpin_user_page(page);
2202 				goto pte_unmap;
2203 			}
2204 		}
2205 		SetPageReferenced(page);
2206 		pages[*nr] = page;
2207 		(*nr)++;
2208 
2209 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2210 
2211 	ret = 1;
2212 
2213 pte_unmap:
2214 	if (pgmap)
2215 		put_dev_pagemap(pgmap);
2216 	pte_unmap(ptem);
2217 	return ret;
2218 }
2219 #else
2220 
2221 /*
2222  * If we can't determine whether or not a pte is special, then fail immediately
2223  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2224  * to be special.
2225  *
2226  * For a futex to be placed on a THP tail page, get_futex_key requires a
2227  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2228  * useful to have gup_huge_pmd even if we can't operate on ptes.
2229  */
2230 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2231 			 unsigned int flags, struct page **pages, int *nr)
2232 {
2233 	return 0;
2234 }
2235 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2236 
2237 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2238 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2239 			     unsigned long end, unsigned int flags,
2240 			     struct page **pages, int *nr)
2241 {
2242 	int nr_start = *nr;
2243 	struct dev_pagemap *pgmap = NULL;
2244 
2245 	do {
2246 		struct page *page = pfn_to_page(pfn);
2247 
2248 		pgmap = get_dev_pagemap(pfn, pgmap);
2249 		if (unlikely(!pgmap)) {
2250 			undo_dev_pagemap(nr, nr_start, flags, pages);
2251 			return 0;
2252 		}
2253 		SetPageReferenced(page);
2254 		pages[*nr] = page;
2255 		if (unlikely(!try_grab_page(page, flags))) {
2256 			undo_dev_pagemap(nr, nr_start, flags, pages);
2257 			return 0;
2258 		}
2259 		(*nr)++;
2260 		pfn++;
2261 	} while (addr += PAGE_SIZE, addr != end);
2262 
2263 	if (pgmap)
2264 		put_dev_pagemap(pgmap);
2265 	return 1;
2266 }
2267 
2268 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2269 				 unsigned long end, unsigned int flags,
2270 				 struct page **pages, int *nr)
2271 {
2272 	unsigned long fault_pfn;
2273 	int nr_start = *nr;
2274 
2275 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2276 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2277 		return 0;
2278 
2279 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2280 		undo_dev_pagemap(nr, nr_start, flags, pages);
2281 		return 0;
2282 	}
2283 	return 1;
2284 }
2285 
2286 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2287 				 unsigned long end, unsigned int flags,
2288 				 struct page **pages, int *nr)
2289 {
2290 	unsigned long fault_pfn;
2291 	int nr_start = *nr;
2292 
2293 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2294 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2295 		return 0;
2296 
2297 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2298 		undo_dev_pagemap(nr, nr_start, flags, pages);
2299 		return 0;
2300 	}
2301 	return 1;
2302 }
2303 #else
2304 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2305 				 unsigned long end, unsigned int flags,
2306 				 struct page **pages, int *nr)
2307 {
2308 	BUILD_BUG();
2309 	return 0;
2310 }
2311 
2312 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2313 				 unsigned long end, unsigned int flags,
2314 				 struct page **pages, int *nr)
2315 {
2316 	BUILD_BUG();
2317 	return 0;
2318 }
2319 #endif
2320 
2321 static int record_subpages(struct page *page, unsigned long addr,
2322 			   unsigned long end, struct page **pages)
2323 {
2324 	int nr;
2325 
2326 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2327 		pages[nr++] = page++;
2328 
2329 	return nr;
2330 }
2331 
2332 #ifdef CONFIG_ARCH_HAS_HUGEPD
2333 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2334 				      unsigned long sz)
2335 {
2336 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2337 	return (__boundary - 1 < end - 1) ? __boundary : end;
2338 }
2339 
2340 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2341 		       unsigned long end, unsigned int flags,
2342 		       struct page **pages, int *nr)
2343 {
2344 	unsigned long pte_end;
2345 	struct page *head, *page;
2346 	pte_t pte;
2347 	int refs;
2348 
2349 	pte_end = (addr + sz) & ~(sz-1);
2350 	if (pte_end < end)
2351 		end = pte_end;
2352 
2353 	pte = huge_ptep_get(ptep);
2354 
2355 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2356 		return 0;
2357 
2358 	/* hugepages are never "special" */
2359 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2360 
2361 	head = pte_page(pte);
2362 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2363 	refs = record_subpages(page, addr, end, pages + *nr);
2364 
2365 	head = try_grab_compound_head(head, refs, flags);
2366 	if (!head)
2367 		return 0;
2368 
2369 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2370 		put_compound_head(head, refs, flags);
2371 		return 0;
2372 	}
2373 
2374 	*nr += refs;
2375 	SetPageReferenced(head);
2376 	return 1;
2377 }
2378 
2379 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2380 		unsigned int pdshift, unsigned long end, unsigned int flags,
2381 		struct page **pages, int *nr)
2382 {
2383 	pte_t *ptep;
2384 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2385 	unsigned long next;
2386 
2387 	ptep = hugepte_offset(hugepd, addr, pdshift);
2388 	do {
2389 		next = hugepte_addr_end(addr, end, sz);
2390 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2391 			return 0;
2392 	} while (ptep++, addr = next, addr != end);
2393 
2394 	return 1;
2395 }
2396 #else
2397 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2398 		unsigned int pdshift, unsigned long end, unsigned int flags,
2399 		struct page **pages, int *nr)
2400 {
2401 	return 0;
2402 }
2403 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2404 
2405 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2406 			unsigned long end, unsigned int flags,
2407 			struct page **pages, int *nr)
2408 {
2409 	struct page *head, *page;
2410 	int refs;
2411 
2412 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2413 		return 0;
2414 
2415 	if (pmd_devmap(orig)) {
2416 		if (unlikely(flags & FOLL_LONGTERM))
2417 			return 0;
2418 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2419 					     pages, nr);
2420 	}
2421 
2422 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2423 	refs = record_subpages(page, addr, end, pages + *nr);
2424 
2425 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2426 	if (!head)
2427 		return 0;
2428 
2429 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2430 		put_compound_head(head, refs, flags);
2431 		return 0;
2432 	}
2433 
2434 	*nr += refs;
2435 	SetPageReferenced(head);
2436 	return 1;
2437 }
2438 
2439 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2440 			unsigned long end, unsigned int flags,
2441 			struct page **pages, int *nr)
2442 {
2443 	struct page *head, *page;
2444 	int refs;
2445 
2446 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2447 		return 0;
2448 
2449 	if (pud_devmap(orig)) {
2450 		if (unlikely(flags & FOLL_LONGTERM))
2451 			return 0;
2452 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2453 					     pages, nr);
2454 	}
2455 
2456 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2457 	refs = record_subpages(page, addr, end, pages + *nr);
2458 
2459 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2460 	if (!head)
2461 		return 0;
2462 
2463 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2464 		put_compound_head(head, refs, flags);
2465 		return 0;
2466 	}
2467 
2468 	*nr += refs;
2469 	SetPageReferenced(head);
2470 	return 1;
2471 }
2472 
2473 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2474 			unsigned long end, unsigned int flags,
2475 			struct page **pages, int *nr)
2476 {
2477 	int refs;
2478 	struct page *head, *page;
2479 
2480 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2481 		return 0;
2482 
2483 	BUILD_BUG_ON(pgd_devmap(orig));
2484 
2485 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2486 	refs = record_subpages(page, addr, end, pages + *nr);
2487 
2488 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2489 	if (!head)
2490 		return 0;
2491 
2492 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2493 		put_compound_head(head, refs, flags);
2494 		return 0;
2495 	}
2496 
2497 	*nr += refs;
2498 	SetPageReferenced(head);
2499 	return 1;
2500 }
2501 
2502 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2503 		unsigned int flags, struct page **pages, int *nr)
2504 {
2505 	unsigned long next;
2506 	pmd_t *pmdp;
2507 
2508 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2509 	do {
2510 		pmd_t pmd = READ_ONCE(*pmdp);
2511 
2512 		next = pmd_addr_end(addr, end);
2513 		if (!pmd_present(pmd))
2514 			return 0;
2515 
2516 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2517 			     pmd_devmap(pmd))) {
2518 			/*
2519 			 * NUMA hinting faults need to be handled in the GUP
2520 			 * slowpath for accounting purposes and so that they
2521 			 * can be serialised against THP migration.
2522 			 */
2523 			if (pmd_protnone(pmd))
2524 				return 0;
2525 
2526 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2527 				pages, nr))
2528 				return 0;
2529 
2530 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2531 			/*
2532 			 * architecture have different format for hugetlbfs
2533 			 * pmd format and THP pmd format
2534 			 */
2535 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2536 					 PMD_SHIFT, next, flags, pages, nr))
2537 				return 0;
2538 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2539 			return 0;
2540 	} while (pmdp++, addr = next, addr != end);
2541 
2542 	return 1;
2543 }
2544 
2545 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2546 			 unsigned int flags, struct page **pages, int *nr)
2547 {
2548 	unsigned long next;
2549 	pud_t *pudp;
2550 
2551 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2552 	do {
2553 		pud_t pud = READ_ONCE(*pudp);
2554 
2555 		next = pud_addr_end(addr, end);
2556 		if (unlikely(!pud_present(pud)))
2557 			return 0;
2558 		if (unlikely(pud_huge(pud))) {
2559 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2560 					  pages, nr))
2561 				return 0;
2562 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2563 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2564 					 PUD_SHIFT, next, flags, pages, nr))
2565 				return 0;
2566 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2567 			return 0;
2568 	} while (pudp++, addr = next, addr != end);
2569 
2570 	return 1;
2571 }
2572 
2573 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2574 			 unsigned int flags, struct page **pages, int *nr)
2575 {
2576 	unsigned long next;
2577 	p4d_t *p4dp;
2578 
2579 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2580 	do {
2581 		p4d_t p4d = READ_ONCE(*p4dp);
2582 
2583 		next = p4d_addr_end(addr, end);
2584 		if (p4d_none(p4d))
2585 			return 0;
2586 		BUILD_BUG_ON(p4d_huge(p4d));
2587 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2588 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2589 					 P4D_SHIFT, next, flags, pages, nr))
2590 				return 0;
2591 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2592 			return 0;
2593 	} while (p4dp++, addr = next, addr != end);
2594 
2595 	return 1;
2596 }
2597 
2598 static void gup_pgd_range(unsigned long addr, unsigned long end,
2599 		unsigned int flags, struct page **pages, int *nr)
2600 {
2601 	unsigned long next;
2602 	pgd_t *pgdp;
2603 
2604 	pgdp = pgd_offset(current->mm, addr);
2605 	do {
2606 		pgd_t pgd = READ_ONCE(*pgdp);
2607 
2608 		next = pgd_addr_end(addr, end);
2609 		if (pgd_none(pgd))
2610 			return;
2611 		if (unlikely(pgd_huge(pgd))) {
2612 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2613 					  pages, nr))
2614 				return;
2615 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2616 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2617 					 PGDIR_SHIFT, next, flags, pages, nr))
2618 				return;
2619 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2620 			return;
2621 	} while (pgdp++, addr = next, addr != end);
2622 }
2623 #else
2624 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2625 		unsigned int flags, struct page **pages, int *nr)
2626 {
2627 }
2628 #endif /* CONFIG_HAVE_FAST_GUP */
2629 
2630 #ifndef gup_fast_permitted
2631 /*
2632  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2633  * we need to fall back to the slow version:
2634  */
2635 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2636 {
2637 	return true;
2638 }
2639 #endif
2640 
2641 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2642 				   unsigned int gup_flags, struct page **pages)
2643 {
2644 	int ret;
2645 
2646 	/*
2647 	 * FIXME: FOLL_LONGTERM does not work with
2648 	 * get_user_pages_unlocked() (see comments in that function)
2649 	 */
2650 	if (gup_flags & FOLL_LONGTERM) {
2651 		mmap_read_lock(current->mm);
2652 		ret = __gup_longterm_locked(current->mm,
2653 					    start, nr_pages,
2654 					    pages, NULL, gup_flags);
2655 		mmap_read_unlock(current->mm);
2656 	} else {
2657 		ret = get_user_pages_unlocked(start, nr_pages,
2658 					      pages, gup_flags);
2659 	}
2660 
2661 	return ret;
2662 }
2663 
2664 static unsigned long lockless_pages_from_mm(unsigned long start,
2665 					    unsigned long end,
2666 					    unsigned int gup_flags,
2667 					    struct page **pages)
2668 {
2669 	unsigned long flags;
2670 	int nr_pinned = 0;
2671 	unsigned seq;
2672 
2673 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2674 	    !gup_fast_permitted(start, end))
2675 		return 0;
2676 
2677 	if (gup_flags & FOLL_PIN) {
2678 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2679 		if (seq & 1)
2680 			return 0;
2681 	}
2682 
2683 	/*
2684 	 * Disable interrupts. The nested form is used, in order to allow full,
2685 	 * general purpose use of this routine.
2686 	 *
2687 	 * With interrupts disabled, we block page table pages from being freed
2688 	 * from under us. See struct mmu_table_batch comments in
2689 	 * include/asm-generic/tlb.h for more details.
2690 	 *
2691 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2692 	 * that come from THPs splitting.
2693 	 */
2694 	local_irq_save(flags);
2695 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2696 	local_irq_restore(flags);
2697 
2698 	/*
2699 	 * When pinning pages for DMA there could be a concurrent write protect
2700 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2701 	 */
2702 	if (gup_flags & FOLL_PIN) {
2703 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2704 			unpin_user_pages(pages, nr_pinned);
2705 			return 0;
2706 		}
2707 	}
2708 	return nr_pinned;
2709 }
2710 
2711 static int internal_get_user_pages_fast(unsigned long start,
2712 					unsigned long nr_pages,
2713 					unsigned int gup_flags,
2714 					struct page **pages)
2715 {
2716 	unsigned long len, end;
2717 	unsigned long nr_pinned;
2718 	int ret;
2719 
2720 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2721 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2722 				       FOLL_FAST_ONLY)))
2723 		return -EINVAL;
2724 
2725 	if (gup_flags & FOLL_PIN)
2726 		mm_set_has_pinned_flag(&current->mm->flags);
2727 
2728 	if (!(gup_flags & FOLL_FAST_ONLY))
2729 		might_lock_read(&current->mm->mmap_lock);
2730 
2731 	start = untagged_addr(start) & PAGE_MASK;
2732 	len = nr_pages << PAGE_SHIFT;
2733 	if (check_add_overflow(start, len, &end))
2734 		return 0;
2735 	if (unlikely(!access_ok((void __user *)start, len)))
2736 		return -EFAULT;
2737 
2738 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2739 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2740 		return nr_pinned;
2741 
2742 	/* Slow path: try to get the remaining pages with get_user_pages */
2743 	start += nr_pinned << PAGE_SHIFT;
2744 	pages += nr_pinned;
2745 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2746 				      pages);
2747 	if (ret < 0) {
2748 		/*
2749 		 * The caller has to unpin the pages we already pinned so
2750 		 * returning -errno is not an option
2751 		 */
2752 		if (nr_pinned)
2753 			return nr_pinned;
2754 		return ret;
2755 	}
2756 	return ret + nr_pinned;
2757 }
2758 
2759 /**
2760  * get_user_pages_fast_only() - pin user pages in memory
2761  * @start:      starting user address
2762  * @nr_pages:   number of pages from start to pin
2763  * @gup_flags:  flags modifying pin behaviour
2764  * @pages:      array that receives pointers to the pages pinned.
2765  *              Should be at least nr_pages long.
2766  *
2767  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2768  * the regular GUP.
2769  * Note a difference with get_user_pages_fast: this always returns the
2770  * number of pages pinned, 0 if no pages were pinned.
2771  *
2772  * If the architecture does not support this function, simply return with no
2773  * pages pinned.
2774  *
2775  * Careful, careful! COW breaking can go either way, so a non-write
2776  * access can get ambiguous page results. If you call this function without
2777  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2778  */
2779 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2780 			     unsigned int gup_flags, struct page **pages)
2781 {
2782 	int nr_pinned;
2783 	/*
2784 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2785 	 * because gup fast is always a "pin with a +1 page refcount" request.
2786 	 *
2787 	 * FOLL_FAST_ONLY is required in order to match the API description of
2788 	 * this routine: no fall back to regular ("slow") GUP.
2789 	 */
2790 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2791 
2792 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2793 						 pages);
2794 
2795 	/*
2796 	 * As specified in the API description above, this routine is not
2797 	 * allowed to return negative values. However, the common core
2798 	 * routine internal_get_user_pages_fast() *can* return -errno.
2799 	 * Therefore, correct for that here:
2800 	 */
2801 	if (nr_pinned < 0)
2802 		nr_pinned = 0;
2803 
2804 	return nr_pinned;
2805 }
2806 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2807 
2808 /**
2809  * get_user_pages_fast() - pin user pages in memory
2810  * @start:      starting user address
2811  * @nr_pages:   number of pages from start to pin
2812  * @gup_flags:  flags modifying pin behaviour
2813  * @pages:      array that receives pointers to the pages pinned.
2814  *              Should be at least nr_pages long.
2815  *
2816  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2817  * If not successful, it will fall back to taking the lock and
2818  * calling get_user_pages().
2819  *
2820  * Returns number of pages pinned. This may be fewer than the number requested.
2821  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2822  * -errno.
2823  */
2824 int get_user_pages_fast(unsigned long start, int nr_pages,
2825 			unsigned int gup_flags, struct page **pages)
2826 {
2827 	if (!is_valid_gup_flags(gup_flags))
2828 		return -EINVAL;
2829 
2830 	/*
2831 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2832 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2833 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2834 	 * request.
2835 	 */
2836 	gup_flags |= FOLL_GET;
2837 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2838 }
2839 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2840 
2841 /**
2842  * pin_user_pages_fast() - pin user pages in memory without taking locks
2843  *
2844  * @start:      starting user address
2845  * @nr_pages:   number of pages from start to pin
2846  * @gup_flags:  flags modifying pin behaviour
2847  * @pages:      array that receives pointers to the pages pinned.
2848  *              Should be at least nr_pages long.
2849  *
2850  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2851  * get_user_pages_fast() for documentation on the function arguments, because
2852  * the arguments here are identical.
2853  *
2854  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2855  * see Documentation/core-api/pin_user_pages.rst for further details.
2856  */
2857 int pin_user_pages_fast(unsigned long start, int nr_pages,
2858 			unsigned int gup_flags, struct page **pages)
2859 {
2860 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2861 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2862 		return -EINVAL;
2863 
2864 	gup_flags |= FOLL_PIN;
2865 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2866 }
2867 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2868 
2869 /*
2870  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2871  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2872  *
2873  * The API rules are the same, too: no negative values may be returned.
2874  */
2875 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2876 			     unsigned int gup_flags, struct page **pages)
2877 {
2878 	int nr_pinned;
2879 
2880 	/*
2881 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2882 	 * rules require returning 0, rather than -errno:
2883 	 */
2884 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2885 		return 0;
2886 	/*
2887 	 * FOLL_FAST_ONLY is required in order to match the API description of
2888 	 * this routine: no fall back to regular ("slow") GUP.
2889 	 */
2890 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2891 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2892 						 pages);
2893 	/*
2894 	 * This routine is not allowed to return negative values. However,
2895 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2896 	 * correct for that here:
2897 	 */
2898 	if (nr_pinned < 0)
2899 		nr_pinned = 0;
2900 
2901 	return nr_pinned;
2902 }
2903 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2904 
2905 /**
2906  * pin_user_pages_remote() - pin pages of a remote process
2907  *
2908  * @mm:		mm_struct of target mm
2909  * @start:	starting user address
2910  * @nr_pages:	number of pages from start to pin
2911  * @gup_flags:	flags modifying lookup behaviour
2912  * @pages:	array that receives pointers to the pages pinned.
2913  *		Should be at least nr_pages long. Or NULL, if caller
2914  *		only intends to ensure the pages are faulted in.
2915  * @vmas:	array of pointers to vmas corresponding to each page.
2916  *		Or NULL if the caller does not require them.
2917  * @locked:	pointer to lock flag indicating whether lock is held and
2918  *		subsequently whether VM_FAULT_RETRY functionality can be
2919  *		utilised. Lock must initially be held.
2920  *
2921  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2922  * get_user_pages_remote() for documentation on the function arguments, because
2923  * the arguments here are identical.
2924  *
2925  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2926  * see Documentation/core-api/pin_user_pages.rst for details.
2927  */
2928 long pin_user_pages_remote(struct mm_struct *mm,
2929 			   unsigned long start, unsigned long nr_pages,
2930 			   unsigned int gup_flags, struct page **pages,
2931 			   struct vm_area_struct **vmas, int *locked)
2932 {
2933 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2934 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2935 		return -EINVAL;
2936 
2937 	gup_flags |= FOLL_PIN;
2938 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2939 				       pages, vmas, locked);
2940 }
2941 EXPORT_SYMBOL(pin_user_pages_remote);
2942 
2943 /**
2944  * pin_user_pages() - pin user pages in memory for use by other devices
2945  *
2946  * @start:	starting user address
2947  * @nr_pages:	number of pages from start to pin
2948  * @gup_flags:	flags modifying lookup behaviour
2949  * @pages:	array that receives pointers to the pages pinned.
2950  *		Should be at least nr_pages long. Or NULL, if caller
2951  *		only intends to ensure the pages are faulted in.
2952  * @vmas:	array of pointers to vmas corresponding to each page.
2953  *		Or NULL if the caller does not require them.
2954  *
2955  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2956  * FOLL_PIN is set.
2957  *
2958  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2959  * see Documentation/core-api/pin_user_pages.rst for details.
2960  */
2961 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2962 		    unsigned int gup_flags, struct page **pages,
2963 		    struct vm_area_struct **vmas)
2964 {
2965 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2966 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2967 		return -EINVAL;
2968 
2969 	gup_flags |= FOLL_PIN;
2970 	return __gup_longterm_locked(current->mm, start, nr_pages,
2971 				     pages, vmas, gup_flags);
2972 }
2973 EXPORT_SYMBOL(pin_user_pages);
2974 
2975 /*
2976  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2977  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2978  * FOLL_PIN and rejects FOLL_GET.
2979  */
2980 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2981 			     struct page **pages, unsigned int gup_flags)
2982 {
2983 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2984 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2985 		return -EINVAL;
2986 
2987 	gup_flags |= FOLL_PIN;
2988 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2989 }
2990 EXPORT_SYMBOL(pin_user_pages_unlocked);
2991 
2992 /*
2993  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2994  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2995  * FOLL_GET.
2996  */
2997 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2998 			   unsigned int gup_flags, struct page **pages,
2999 			   int *locked)
3000 {
3001 	/*
3002 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3003 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3004 	 * vmas.  As there are no users of this flag in this call we simply
3005 	 * disallow this option for now.
3006 	 */
3007 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3008 		return -EINVAL;
3009 
3010 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3011 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3012 		return -EINVAL;
3013 
3014 	gup_flags |= FOLL_PIN;
3015 	return __get_user_pages_locked(current->mm, start, nr_pages,
3016 				       pages, NULL, locked,
3017 				       gup_flags | FOLL_TOUCH);
3018 }
3019 EXPORT_SYMBOL(pin_user_pages_locked);
3020