1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * TODO: this can be optimized for huge pages: if a series of pages is 333 * physically contiguous and part of the same compound page, then a 334 * single operation to the head page should suffice. 335 */ 336 for (index = 0; index < npages; index++) 337 unpin_user_page(pages[index]); 338 } 339 EXPORT_SYMBOL(unpin_user_pages); 340 341 #ifdef CONFIG_MMU 342 static struct page *no_page_table(struct vm_area_struct *vma, 343 unsigned int flags) 344 { 345 /* 346 * When core dumping an enormous anonymous area that nobody 347 * has touched so far, we don't want to allocate unnecessary pages or 348 * page tables. Return error instead of NULL to skip handle_mm_fault, 349 * then get_dump_page() will return NULL to leave a hole in the dump. 350 * But we can only make this optimization where a hole would surely 351 * be zero-filled if handle_mm_fault() actually did handle it. 352 */ 353 if ((flags & FOLL_DUMP) && 354 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 355 return ERR_PTR(-EFAULT); 356 return NULL; 357 } 358 359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 360 pte_t *pte, unsigned int flags) 361 { 362 /* No page to get reference */ 363 if (flags & FOLL_GET) 364 return -EFAULT; 365 366 if (flags & FOLL_TOUCH) { 367 pte_t entry = *pte; 368 369 if (flags & FOLL_WRITE) 370 entry = pte_mkdirty(entry); 371 entry = pte_mkyoung(entry); 372 373 if (!pte_same(*pte, entry)) { 374 set_pte_at(vma->vm_mm, address, pte, entry); 375 update_mmu_cache(vma, address, pte); 376 } 377 } 378 379 /* Proper page table entry exists, but no corresponding struct page */ 380 return -EEXIST; 381 } 382 383 /* 384 * FOLL_FORCE can write to even unwritable pte's, but only 385 * after we've gone through a COW cycle and they are dirty. 386 */ 387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 388 { 389 return pte_write(pte) || 390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 391 } 392 393 static struct page *follow_page_pte(struct vm_area_struct *vma, 394 unsigned long address, pmd_t *pmd, unsigned int flags, 395 struct dev_pagemap **pgmap) 396 { 397 struct mm_struct *mm = vma->vm_mm; 398 struct page *page; 399 spinlock_t *ptl; 400 pte_t *ptep, pte; 401 int ret; 402 403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 405 (FOLL_PIN | FOLL_GET))) 406 return ERR_PTR(-EINVAL); 407 retry: 408 if (unlikely(pmd_bad(*pmd))) 409 return no_page_table(vma, flags); 410 411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 412 pte = *ptep; 413 if (!pte_present(pte)) { 414 swp_entry_t entry; 415 /* 416 * KSM's break_ksm() relies upon recognizing a ksm page 417 * even while it is being migrated, so for that case we 418 * need migration_entry_wait(). 419 */ 420 if (likely(!(flags & FOLL_MIGRATION))) 421 goto no_page; 422 if (pte_none(pte)) 423 goto no_page; 424 entry = pte_to_swp_entry(pte); 425 if (!is_migration_entry(entry)) 426 goto no_page; 427 pte_unmap_unlock(ptep, ptl); 428 migration_entry_wait(mm, pmd, address); 429 goto retry; 430 } 431 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 432 goto no_page; 433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 434 pte_unmap_unlock(ptep, ptl); 435 return NULL; 436 } 437 438 page = vm_normal_page(vma, address, pte); 439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 440 /* 441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 442 * case since they are only valid while holding the pgmap 443 * reference. 444 */ 445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 446 if (*pgmap) 447 page = pte_page(pte); 448 else 449 goto no_page; 450 } else if (unlikely(!page)) { 451 if (flags & FOLL_DUMP) { 452 /* Avoid special (like zero) pages in core dumps */ 453 page = ERR_PTR(-EFAULT); 454 goto out; 455 } 456 457 if (is_zero_pfn(pte_pfn(pte))) { 458 page = pte_page(pte); 459 } else { 460 ret = follow_pfn_pte(vma, address, ptep, flags); 461 page = ERR_PTR(ret); 462 goto out; 463 } 464 } 465 466 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 467 get_page(page); 468 pte_unmap_unlock(ptep, ptl); 469 lock_page(page); 470 ret = split_huge_page(page); 471 unlock_page(page); 472 put_page(page); 473 if (ret) 474 return ERR_PTR(ret); 475 goto retry; 476 } 477 478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 479 if (unlikely(!try_grab_page(page, flags))) { 480 page = ERR_PTR(-ENOMEM); 481 goto out; 482 } 483 /* 484 * We need to make the page accessible if and only if we are going 485 * to access its content (the FOLL_PIN case). Please see 486 * Documentation/core-api/pin_user_pages.rst for details. 487 */ 488 if (flags & FOLL_PIN) { 489 ret = arch_make_page_accessible(page); 490 if (ret) { 491 unpin_user_page(page); 492 page = ERR_PTR(ret); 493 goto out; 494 } 495 } 496 if (flags & FOLL_TOUCH) { 497 if ((flags & FOLL_WRITE) && 498 !pte_dirty(pte) && !PageDirty(page)) 499 set_page_dirty(page); 500 /* 501 * pte_mkyoung() would be more correct here, but atomic care 502 * is needed to avoid losing the dirty bit: it is easier to use 503 * mark_page_accessed(). 504 */ 505 mark_page_accessed(page); 506 } 507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 508 /* Do not mlock pte-mapped THP */ 509 if (PageTransCompound(page)) 510 goto out; 511 512 /* 513 * The preliminary mapping check is mainly to avoid the 514 * pointless overhead of lock_page on the ZERO_PAGE 515 * which might bounce very badly if there is contention. 516 * 517 * If the page is already locked, we don't need to 518 * handle it now - vmscan will handle it later if and 519 * when it attempts to reclaim the page. 520 */ 521 if (page->mapping && trylock_page(page)) { 522 lru_add_drain(); /* push cached pages to LRU */ 523 /* 524 * Because we lock page here, and migration is 525 * blocked by the pte's page reference, and we 526 * know the page is still mapped, we don't even 527 * need to check for file-cache page truncation. 528 */ 529 mlock_vma_page(page); 530 unlock_page(page); 531 } 532 } 533 out: 534 pte_unmap_unlock(ptep, ptl); 535 return page; 536 no_page: 537 pte_unmap_unlock(ptep, ptl); 538 if (!pte_none(pte)) 539 return NULL; 540 return no_page_table(vma, flags); 541 } 542 543 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 544 unsigned long address, pud_t *pudp, 545 unsigned int flags, 546 struct follow_page_context *ctx) 547 { 548 pmd_t *pmd, pmdval; 549 spinlock_t *ptl; 550 struct page *page; 551 struct mm_struct *mm = vma->vm_mm; 552 553 pmd = pmd_offset(pudp, address); 554 /* 555 * The READ_ONCE() will stabilize the pmdval in a register or 556 * on the stack so that it will stop changing under the code. 557 */ 558 pmdval = READ_ONCE(*pmd); 559 if (pmd_none(pmdval)) 560 return no_page_table(vma, flags); 561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 562 page = follow_huge_pmd(mm, address, pmd, flags); 563 if (page) 564 return page; 565 return no_page_table(vma, flags); 566 } 567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 568 page = follow_huge_pd(vma, address, 569 __hugepd(pmd_val(pmdval)), flags, 570 PMD_SHIFT); 571 if (page) 572 return page; 573 return no_page_table(vma, flags); 574 } 575 retry: 576 if (!pmd_present(pmdval)) { 577 if (likely(!(flags & FOLL_MIGRATION))) 578 return no_page_table(vma, flags); 579 VM_BUG_ON(thp_migration_supported() && 580 !is_pmd_migration_entry(pmdval)); 581 if (is_pmd_migration_entry(pmdval)) 582 pmd_migration_entry_wait(mm, pmd); 583 pmdval = READ_ONCE(*pmd); 584 /* 585 * MADV_DONTNEED may convert the pmd to null because 586 * mmap_lock is held in read mode 587 */ 588 if (pmd_none(pmdval)) 589 return no_page_table(vma, flags); 590 goto retry; 591 } 592 if (pmd_devmap(pmdval)) { 593 ptl = pmd_lock(mm, pmd); 594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 595 spin_unlock(ptl); 596 if (page) 597 return page; 598 } 599 if (likely(!pmd_trans_huge(pmdval))) 600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 601 602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 603 return no_page_table(vma, flags); 604 605 retry_locked: 606 ptl = pmd_lock(mm, pmd); 607 if (unlikely(pmd_none(*pmd))) { 608 spin_unlock(ptl); 609 return no_page_table(vma, flags); 610 } 611 if (unlikely(!pmd_present(*pmd))) { 612 spin_unlock(ptl); 613 if (likely(!(flags & FOLL_MIGRATION))) 614 return no_page_table(vma, flags); 615 pmd_migration_entry_wait(mm, pmd); 616 goto retry_locked; 617 } 618 if (unlikely(!pmd_trans_huge(*pmd))) { 619 spin_unlock(ptl); 620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 621 } 622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 623 int ret; 624 page = pmd_page(*pmd); 625 if (is_huge_zero_page(page)) { 626 spin_unlock(ptl); 627 ret = 0; 628 split_huge_pmd(vma, pmd, address); 629 if (pmd_trans_unstable(pmd)) 630 ret = -EBUSY; 631 } else if (flags & FOLL_SPLIT) { 632 if (unlikely(!try_get_page(page))) { 633 spin_unlock(ptl); 634 return ERR_PTR(-ENOMEM); 635 } 636 spin_unlock(ptl); 637 lock_page(page); 638 ret = split_huge_page(page); 639 unlock_page(page); 640 put_page(page); 641 if (pmd_none(*pmd)) 642 return no_page_table(vma, flags); 643 } else { /* flags & FOLL_SPLIT_PMD */ 644 spin_unlock(ptl); 645 split_huge_pmd(vma, pmd, address); 646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 647 } 648 649 return ret ? ERR_PTR(ret) : 650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 651 } 652 page = follow_trans_huge_pmd(vma, address, pmd, flags); 653 spin_unlock(ptl); 654 ctx->page_mask = HPAGE_PMD_NR - 1; 655 return page; 656 } 657 658 static struct page *follow_pud_mask(struct vm_area_struct *vma, 659 unsigned long address, p4d_t *p4dp, 660 unsigned int flags, 661 struct follow_page_context *ctx) 662 { 663 pud_t *pud; 664 spinlock_t *ptl; 665 struct page *page; 666 struct mm_struct *mm = vma->vm_mm; 667 668 pud = pud_offset(p4dp, address); 669 if (pud_none(*pud)) 670 return no_page_table(vma, flags); 671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 672 page = follow_huge_pud(mm, address, pud, flags); 673 if (page) 674 return page; 675 return no_page_table(vma, flags); 676 } 677 if (is_hugepd(__hugepd(pud_val(*pud)))) { 678 page = follow_huge_pd(vma, address, 679 __hugepd(pud_val(*pud)), flags, 680 PUD_SHIFT); 681 if (page) 682 return page; 683 return no_page_table(vma, flags); 684 } 685 if (pud_devmap(*pud)) { 686 ptl = pud_lock(mm, pud); 687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 688 spin_unlock(ptl); 689 if (page) 690 return page; 691 } 692 if (unlikely(pud_bad(*pud))) 693 return no_page_table(vma, flags); 694 695 return follow_pmd_mask(vma, address, pud, flags, ctx); 696 } 697 698 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 699 unsigned long address, pgd_t *pgdp, 700 unsigned int flags, 701 struct follow_page_context *ctx) 702 { 703 p4d_t *p4d; 704 struct page *page; 705 706 p4d = p4d_offset(pgdp, address); 707 if (p4d_none(*p4d)) 708 return no_page_table(vma, flags); 709 BUILD_BUG_ON(p4d_huge(*p4d)); 710 if (unlikely(p4d_bad(*p4d))) 711 return no_page_table(vma, flags); 712 713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 714 page = follow_huge_pd(vma, address, 715 __hugepd(p4d_val(*p4d)), flags, 716 P4D_SHIFT); 717 if (page) 718 return page; 719 return no_page_table(vma, flags); 720 } 721 return follow_pud_mask(vma, address, p4d, flags, ctx); 722 } 723 724 /** 725 * follow_page_mask - look up a page descriptor from a user-virtual address 726 * @vma: vm_area_struct mapping @address 727 * @address: virtual address to look up 728 * @flags: flags modifying lookup behaviour 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 730 * pointer to output page_mask 731 * 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 733 * 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 736 * 737 * On output, the @ctx->page_mask is set according to the size of the page. 738 * 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or 740 * an error pointer if there is a mapping to something not represented 741 * by a page descriptor (see also vm_normal_page()). 742 */ 743 static struct page *follow_page_mask(struct vm_area_struct *vma, 744 unsigned long address, unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pgd_t *pgd; 748 struct page *page; 749 struct mm_struct *mm = vma->vm_mm; 750 751 ctx->page_mask = 0; 752 753 /* make this handle hugepd */ 754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 755 if (!IS_ERR(page)) { 756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 757 return page; 758 } 759 760 pgd = pgd_offset(mm, address); 761 762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 763 return no_page_table(vma, flags); 764 765 if (pgd_huge(*pgd)) { 766 page = follow_huge_pgd(mm, address, pgd, flags); 767 if (page) 768 return page; 769 return no_page_table(vma, flags); 770 } 771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 772 page = follow_huge_pd(vma, address, 773 __hugepd(pgd_val(*pgd)), flags, 774 PGDIR_SHIFT); 775 if (page) 776 return page; 777 return no_page_table(vma, flags); 778 } 779 780 return follow_p4d_mask(vma, address, pgd, flags, ctx); 781 } 782 783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 784 unsigned int foll_flags) 785 { 786 struct follow_page_context ctx = { NULL }; 787 struct page *page; 788 789 page = follow_page_mask(vma, address, foll_flags, &ctx); 790 if (ctx.pgmap) 791 put_dev_pagemap(ctx.pgmap); 792 return page; 793 } 794 795 static int get_gate_page(struct mm_struct *mm, unsigned long address, 796 unsigned int gup_flags, struct vm_area_struct **vma, 797 struct page **page) 798 { 799 pgd_t *pgd; 800 p4d_t *p4d; 801 pud_t *pud; 802 pmd_t *pmd; 803 pte_t *pte; 804 int ret = -EFAULT; 805 806 /* user gate pages are read-only */ 807 if (gup_flags & FOLL_WRITE) 808 return -EFAULT; 809 if (address > TASK_SIZE) 810 pgd = pgd_offset_k(address); 811 else 812 pgd = pgd_offset_gate(mm, address); 813 if (pgd_none(*pgd)) 814 return -EFAULT; 815 p4d = p4d_offset(pgd, address); 816 if (p4d_none(*p4d)) 817 return -EFAULT; 818 pud = pud_offset(p4d, address); 819 if (pud_none(*pud)) 820 return -EFAULT; 821 pmd = pmd_offset(pud, address); 822 if (!pmd_present(*pmd)) 823 return -EFAULT; 824 VM_BUG_ON(pmd_trans_huge(*pmd)); 825 pte = pte_offset_map(pmd, address); 826 if (pte_none(*pte)) 827 goto unmap; 828 *vma = get_gate_vma(mm); 829 if (!page) 830 goto out; 831 *page = vm_normal_page(*vma, address, *pte); 832 if (!*page) { 833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 834 goto unmap; 835 *page = pte_page(*pte); 836 } 837 if (unlikely(!try_grab_page(*page, gup_flags))) { 838 ret = -ENOMEM; 839 goto unmap; 840 } 841 out: 842 ret = 0; 843 unmap: 844 pte_unmap(pte); 845 return ret; 846 } 847 848 /* 849 * mmap_lock must be held on entry. If @locked != NULL and *@flags 850 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 851 * is, *@locked will be set to 0 and -EBUSY returned. 852 */ 853 static int faultin_page(struct vm_area_struct *vma, 854 unsigned long address, unsigned int *flags, int *locked) 855 { 856 unsigned int fault_flags = 0; 857 vm_fault_t ret; 858 859 /* mlock all present pages, but do not fault in new pages */ 860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 861 return -ENOENT; 862 if (*flags & FOLL_WRITE) 863 fault_flags |= FAULT_FLAG_WRITE; 864 if (*flags & FOLL_REMOTE) 865 fault_flags |= FAULT_FLAG_REMOTE; 866 if (locked) 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 868 if (*flags & FOLL_NOWAIT) 869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 870 if (*flags & FOLL_TRIED) { 871 /* 872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 873 * can co-exist 874 */ 875 fault_flags |= FAULT_FLAG_TRIED; 876 } 877 878 ret = handle_mm_fault(vma, address, fault_flags, NULL); 879 if (ret & VM_FAULT_ERROR) { 880 int err = vm_fault_to_errno(ret, *flags); 881 882 if (err) 883 return err; 884 BUG(); 885 } 886 887 if (ret & VM_FAULT_RETRY) { 888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 889 *locked = 0; 890 return -EBUSY; 891 } 892 893 /* 894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 895 * necessary, even if maybe_mkwrite decided not to set pte_write. We 896 * can thus safely do subsequent page lookups as if they were reads. 897 * But only do so when looping for pte_write is futile: in some cases 898 * userspace may also be wanting to write to the gotten user page, 899 * which a read fault here might prevent (a readonly page might get 900 * reCOWed by userspace write). 901 */ 902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 903 *flags |= FOLL_COW; 904 return 0; 905 } 906 907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 908 { 909 vm_flags_t vm_flags = vma->vm_flags; 910 int write = (gup_flags & FOLL_WRITE); 911 int foreign = (gup_flags & FOLL_REMOTE); 912 913 if (vm_flags & (VM_IO | VM_PFNMAP)) 914 return -EFAULT; 915 916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 917 return -EFAULT; 918 919 if (write) { 920 if (!(vm_flags & VM_WRITE)) { 921 if (!(gup_flags & FOLL_FORCE)) 922 return -EFAULT; 923 /* 924 * We used to let the write,force case do COW in a 925 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 926 * set a breakpoint in a read-only mapping of an 927 * executable, without corrupting the file (yet only 928 * when that file had been opened for writing!). 929 * Anon pages in shared mappings are surprising: now 930 * just reject it. 931 */ 932 if (!is_cow_mapping(vm_flags)) 933 return -EFAULT; 934 } 935 } else if (!(vm_flags & VM_READ)) { 936 if (!(gup_flags & FOLL_FORCE)) 937 return -EFAULT; 938 /* 939 * Is there actually any vma we can reach here which does not 940 * have VM_MAYREAD set? 941 */ 942 if (!(vm_flags & VM_MAYREAD)) 943 return -EFAULT; 944 } 945 /* 946 * gups are always data accesses, not instruction 947 * fetches, so execute=false here 948 */ 949 if (!arch_vma_access_permitted(vma, write, false, foreign)) 950 return -EFAULT; 951 return 0; 952 } 953 954 /** 955 * __get_user_pages() - pin user pages in memory 956 * @mm: mm_struct of target mm 957 * @start: starting user address 958 * @nr_pages: number of pages from start to pin 959 * @gup_flags: flags modifying pin behaviour 960 * @pages: array that receives pointers to the pages pinned. 961 * Should be at least nr_pages long. Or NULL, if caller 962 * only intends to ensure the pages are faulted in. 963 * @vmas: array of pointers to vmas corresponding to each page. 964 * Or NULL if the caller does not require them. 965 * @locked: whether we're still with the mmap_lock held 966 * 967 * Returns either number of pages pinned (which may be less than the 968 * number requested), or an error. Details about the return value: 969 * 970 * -- If nr_pages is 0, returns 0. 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of 973 * pages pinned. Again, this may be less than nr_pages. 974 * -- 0 return value is possible when the fault would need to be retried. 975 * 976 * The caller is responsible for releasing returned @pages, via put_page(). 977 * 978 * @vmas are valid only as long as mmap_lock is held. 979 * 980 * Must be called with mmap_lock held. It may be released. See below. 981 * 982 * __get_user_pages walks a process's page tables and takes a reference to 983 * each struct page that each user address corresponds to at a given 984 * instant. That is, it takes the page that would be accessed if a user 985 * thread accesses the given user virtual address at that instant. 986 * 987 * This does not guarantee that the page exists in the user mappings when 988 * __get_user_pages returns, and there may even be a completely different 989 * page there in some cases (eg. if mmapped pagecache has been invalidated 990 * and subsequently re faulted). However it does guarantee that the page 991 * won't be freed completely. And mostly callers simply care that the page 992 * contains data that was valid *at some point in time*. Typically, an IO 993 * or similar operation cannot guarantee anything stronger anyway because 994 * locks can't be held over the syscall boundary. 995 * 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 998 * appropriate) must be called after the page is finished with, and 999 * before put_page is called. 1000 * 1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1002 * released by an up_read(). That can happen if @gup_flags does not 1003 * have FOLL_NOWAIT. 1004 * 1005 * A caller using such a combination of @locked and @gup_flags 1006 * must therefore hold the mmap_lock for reading only, and recognize 1007 * when it's been released. Otherwise, it must be held for either 1008 * reading or writing and will not be released. 1009 * 1010 * In most cases, get_user_pages or get_user_pages_fast should be used 1011 * instead of __get_user_pages. __get_user_pages should be used only if 1012 * you need some special @gup_flags. 1013 */ 1014 static long __get_user_pages(struct mm_struct *mm, 1015 unsigned long start, unsigned long nr_pages, 1016 unsigned int gup_flags, struct page **pages, 1017 struct vm_area_struct **vmas, int *locked) 1018 { 1019 long ret = 0, i = 0; 1020 struct vm_area_struct *vma = NULL; 1021 struct follow_page_context ctx = { NULL }; 1022 1023 if (!nr_pages) 1024 return 0; 1025 1026 start = untagged_addr(start); 1027 1028 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1029 1030 /* 1031 * If FOLL_FORCE is set then do not force a full fault as the hinting 1032 * fault information is unrelated to the reference behaviour of a task 1033 * using the address space 1034 */ 1035 if (!(gup_flags & FOLL_FORCE)) 1036 gup_flags |= FOLL_NUMA; 1037 1038 do { 1039 struct page *page; 1040 unsigned int foll_flags = gup_flags; 1041 unsigned int page_increm; 1042 1043 /* first iteration or cross vma bound */ 1044 if (!vma || start >= vma->vm_end) { 1045 vma = find_extend_vma(mm, start); 1046 if (!vma && in_gate_area(mm, start)) { 1047 ret = get_gate_page(mm, start & PAGE_MASK, 1048 gup_flags, &vma, 1049 pages ? &pages[i] : NULL); 1050 if (ret) 1051 goto out; 1052 ctx.page_mask = 0; 1053 goto next_page; 1054 } 1055 1056 if (!vma || check_vma_flags(vma, gup_flags)) { 1057 ret = -EFAULT; 1058 goto out; 1059 } 1060 if (is_vm_hugetlb_page(vma)) { 1061 i = follow_hugetlb_page(mm, vma, pages, vmas, 1062 &start, &nr_pages, i, 1063 gup_flags, locked); 1064 if (locked && *locked == 0) { 1065 /* 1066 * We've got a VM_FAULT_RETRY 1067 * and we've lost mmap_lock. 1068 * We must stop here. 1069 */ 1070 BUG_ON(gup_flags & FOLL_NOWAIT); 1071 BUG_ON(ret != 0); 1072 goto out; 1073 } 1074 continue; 1075 } 1076 } 1077 retry: 1078 /* 1079 * If we have a pending SIGKILL, don't keep faulting pages and 1080 * potentially allocating memory. 1081 */ 1082 if (fatal_signal_pending(current)) { 1083 ret = -EINTR; 1084 goto out; 1085 } 1086 cond_resched(); 1087 1088 page = follow_page_mask(vma, start, foll_flags, &ctx); 1089 if (!page) { 1090 ret = faultin_page(vma, start, &foll_flags, locked); 1091 switch (ret) { 1092 case 0: 1093 goto retry; 1094 case -EBUSY: 1095 ret = 0; 1096 fallthrough; 1097 case -EFAULT: 1098 case -ENOMEM: 1099 case -EHWPOISON: 1100 goto out; 1101 case -ENOENT: 1102 goto next_page; 1103 } 1104 BUG(); 1105 } else if (PTR_ERR(page) == -EEXIST) { 1106 /* 1107 * Proper page table entry exists, but no corresponding 1108 * struct page. 1109 */ 1110 goto next_page; 1111 } else if (IS_ERR(page)) { 1112 ret = PTR_ERR(page); 1113 goto out; 1114 } 1115 if (pages) { 1116 pages[i] = page; 1117 flush_anon_page(vma, page, start); 1118 flush_dcache_page(page); 1119 ctx.page_mask = 0; 1120 } 1121 next_page: 1122 if (vmas) { 1123 vmas[i] = vma; 1124 ctx.page_mask = 0; 1125 } 1126 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1127 if (page_increm > nr_pages) 1128 page_increm = nr_pages; 1129 i += page_increm; 1130 start += page_increm * PAGE_SIZE; 1131 nr_pages -= page_increm; 1132 } while (nr_pages); 1133 out: 1134 if (ctx.pgmap) 1135 put_dev_pagemap(ctx.pgmap); 1136 return i ? i : ret; 1137 } 1138 1139 static bool vma_permits_fault(struct vm_area_struct *vma, 1140 unsigned int fault_flags) 1141 { 1142 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1143 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1144 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1145 1146 if (!(vm_flags & vma->vm_flags)) 1147 return false; 1148 1149 /* 1150 * The architecture might have a hardware protection 1151 * mechanism other than read/write that can deny access. 1152 * 1153 * gup always represents data access, not instruction 1154 * fetches, so execute=false here: 1155 */ 1156 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /** 1163 * fixup_user_fault() - manually resolve a user page fault 1164 * @mm: mm_struct of target mm 1165 * @address: user address 1166 * @fault_flags:flags to pass down to handle_mm_fault() 1167 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1168 * does not allow retry. If NULL, the caller must guarantee 1169 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1170 * 1171 * This is meant to be called in the specific scenario where for locking reasons 1172 * we try to access user memory in atomic context (within a pagefault_disable() 1173 * section), this returns -EFAULT, and we want to resolve the user fault before 1174 * trying again. 1175 * 1176 * Typically this is meant to be used by the futex code. 1177 * 1178 * The main difference with get_user_pages() is that this function will 1179 * unconditionally call handle_mm_fault() which will in turn perform all the 1180 * necessary SW fixup of the dirty and young bits in the PTE, while 1181 * get_user_pages() only guarantees to update these in the struct page. 1182 * 1183 * This is important for some architectures where those bits also gate the 1184 * access permission to the page because they are maintained in software. On 1185 * such architectures, gup() will not be enough to make a subsequent access 1186 * succeed. 1187 * 1188 * This function will not return with an unlocked mmap_lock. So it has not the 1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1190 */ 1191 int fixup_user_fault(struct mm_struct *mm, 1192 unsigned long address, unsigned int fault_flags, 1193 bool *unlocked) 1194 { 1195 struct vm_area_struct *vma; 1196 vm_fault_t ret, major = 0; 1197 1198 address = untagged_addr(address); 1199 1200 if (unlocked) 1201 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1202 1203 retry: 1204 vma = find_extend_vma(mm, address); 1205 if (!vma || address < vma->vm_start) 1206 return -EFAULT; 1207 1208 if (!vma_permits_fault(vma, fault_flags)) 1209 return -EFAULT; 1210 1211 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1212 fatal_signal_pending(current)) 1213 return -EINTR; 1214 1215 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1216 major |= ret & VM_FAULT_MAJOR; 1217 if (ret & VM_FAULT_ERROR) { 1218 int err = vm_fault_to_errno(ret, 0); 1219 1220 if (err) 1221 return err; 1222 BUG(); 1223 } 1224 1225 if (ret & VM_FAULT_RETRY) { 1226 mmap_read_lock(mm); 1227 *unlocked = true; 1228 fault_flags |= FAULT_FLAG_TRIED; 1229 goto retry; 1230 } 1231 1232 return 0; 1233 } 1234 EXPORT_SYMBOL_GPL(fixup_user_fault); 1235 1236 /* 1237 * Please note that this function, unlike __get_user_pages will not 1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1239 */ 1240 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1241 unsigned long start, 1242 unsigned long nr_pages, 1243 struct page **pages, 1244 struct vm_area_struct **vmas, 1245 int *locked, 1246 unsigned int flags) 1247 { 1248 long ret, pages_done; 1249 bool lock_dropped; 1250 1251 if (locked) { 1252 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1253 BUG_ON(vmas); 1254 /* check caller initialized locked */ 1255 BUG_ON(*locked != 1); 1256 } 1257 1258 if (flags & FOLL_PIN) 1259 atomic_set(&mm->has_pinned, 1); 1260 1261 /* 1262 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1263 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1264 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1265 * for FOLL_GET, not for the newer FOLL_PIN. 1266 * 1267 * FOLL_PIN always expects pages to be non-null, but no need to assert 1268 * that here, as any failures will be obvious enough. 1269 */ 1270 if (pages && !(flags & FOLL_PIN)) 1271 flags |= FOLL_GET; 1272 1273 pages_done = 0; 1274 lock_dropped = false; 1275 for (;;) { 1276 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1277 vmas, locked); 1278 if (!locked) 1279 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1280 return ret; 1281 1282 /* VM_FAULT_RETRY cannot return errors */ 1283 if (!*locked) { 1284 BUG_ON(ret < 0); 1285 BUG_ON(ret >= nr_pages); 1286 } 1287 1288 if (ret > 0) { 1289 nr_pages -= ret; 1290 pages_done += ret; 1291 if (!nr_pages) 1292 break; 1293 } 1294 if (*locked) { 1295 /* 1296 * VM_FAULT_RETRY didn't trigger or it was a 1297 * FOLL_NOWAIT. 1298 */ 1299 if (!pages_done) 1300 pages_done = ret; 1301 break; 1302 } 1303 /* 1304 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1305 * For the prefault case (!pages) we only update counts. 1306 */ 1307 if (likely(pages)) 1308 pages += ret; 1309 start += ret << PAGE_SHIFT; 1310 lock_dropped = true; 1311 1312 retry: 1313 /* 1314 * Repeat on the address that fired VM_FAULT_RETRY 1315 * with both FAULT_FLAG_ALLOW_RETRY and 1316 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1317 * by fatal signals, so we need to check it before we 1318 * start trying again otherwise it can loop forever. 1319 */ 1320 1321 if (fatal_signal_pending(current)) { 1322 if (!pages_done) 1323 pages_done = -EINTR; 1324 break; 1325 } 1326 1327 ret = mmap_read_lock_killable(mm); 1328 if (ret) { 1329 BUG_ON(ret > 0); 1330 if (!pages_done) 1331 pages_done = ret; 1332 break; 1333 } 1334 1335 *locked = 1; 1336 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1337 pages, NULL, locked); 1338 if (!*locked) { 1339 /* Continue to retry until we succeeded */ 1340 BUG_ON(ret != 0); 1341 goto retry; 1342 } 1343 if (ret != 1) { 1344 BUG_ON(ret > 1); 1345 if (!pages_done) 1346 pages_done = ret; 1347 break; 1348 } 1349 nr_pages--; 1350 pages_done++; 1351 if (!nr_pages) 1352 break; 1353 if (likely(pages)) 1354 pages++; 1355 start += PAGE_SIZE; 1356 } 1357 if (lock_dropped && *locked) { 1358 /* 1359 * We must let the caller know we temporarily dropped the lock 1360 * and so the critical section protected by it was lost. 1361 */ 1362 mmap_read_unlock(mm); 1363 *locked = 0; 1364 } 1365 return pages_done; 1366 } 1367 1368 /** 1369 * populate_vma_page_range() - populate a range of pages in the vma. 1370 * @vma: target vma 1371 * @start: start address 1372 * @end: end address 1373 * @locked: whether the mmap_lock is still held 1374 * 1375 * This takes care of mlocking the pages too if VM_LOCKED is set. 1376 * 1377 * Return either number of pages pinned in the vma, or a negative error 1378 * code on error. 1379 * 1380 * vma->vm_mm->mmap_lock must be held. 1381 * 1382 * If @locked is NULL, it may be held for read or write and will 1383 * be unperturbed. 1384 * 1385 * If @locked is non-NULL, it must held for read only and may be 1386 * released. If it's released, *@locked will be set to 0. 1387 */ 1388 long populate_vma_page_range(struct vm_area_struct *vma, 1389 unsigned long start, unsigned long end, int *locked) 1390 { 1391 struct mm_struct *mm = vma->vm_mm; 1392 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1393 int gup_flags; 1394 1395 VM_BUG_ON(start & ~PAGE_MASK); 1396 VM_BUG_ON(end & ~PAGE_MASK); 1397 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1398 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1399 mmap_assert_locked(mm); 1400 1401 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1402 if (vma->vm_flags & VM_LOCKONFAULT) 1403 gup_flags &= ~FOLL_POPULATE; 1404 /* 1405 * We want to touch writable mappings with a write fault in order 1406 * to break COW, except for shared mappings because these don't COW 1407 * and we would not want to dirty them for nothing. 1408 */ 1409 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1410 gup_flags |= FOLL_WRITE; 1411 1412 /* 1413 * We want mlock to succeed for regions that have any permissions 1414 * other than PROT_NONE. 1415 */ 1416 if (vma_is_accessible(vma)) 1417 gup_flags |= FOLL_FORCE; 1418 1419 /* 1420 * We made sure addr is within a VMA, so the following will 1421 * not result in a stack expansion that recurses back here. 1422 */ 1423 return __get_user_pages(mm, start, nr_pages, gup_flags, 1424 NULL, NULL, locked); 1425 } 1426 1427 /* 1428 * __mm_populate - populate and/or mlock pages within a range of address space. 1429 * 1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1431 * flags. VMAs must be already marked with the desired vm_flags, and 1432 * mmap_lock must not be held. 1433 */ 1434 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1435 { 1436 struct mm_struct *mm = current->mm; 1437 unsigned long end, nstart, nend; 1438 struct vm_area_struct *vma = NULL; 1439 int locked = 0; 1440 long ret = 0; 1441 1442 end = start + len; 1443 1444 for (nstart = start; nstart < end; nstart = nend) { 1445 /* 1446 * We want to fault in pages for [nstart; end) address range. 1447 * Find first corresponding VMA. 1448 */ 1449 if (!locked) { 1450 locked = 1; 1451 mmap_read_lock(mm); 1452 vma = find_vma(mm, nstart); 1453 } else if (nstart >= vma->vm_end) 1454 vma = vma->vm_next; 1455 if (!vma || vma->vm_start >= end) 1456 break; 1457 /* 1458 * Set [nstart; nend) to intersection of desired address 1459 * range with the first VMA. Also, skip undesirable VMA types. 1460 */ 1461 nend = min(end, vma->vm_end); 1462 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1463 continue; 1464 if (nstart < vma->vm_start) 1465 nstart = vma->vm_start; 1466 /* 1467 * Now fault in a range of pages. populate_vma_page_range() 1468 * double checks the vma flags, so that it won't mlock pages 1469 * if the vma was already munlocked. 1470 */ 1471 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1472 if (ret < 0) { 1473 if (ignore_errors) { 1474 ret = 0; 1475 continue; /* continue at next VMA */ 1476 } 1477 break; 1478 } 1479 nend = nstart + ret * PAGE_SIZE; 1480 ret = 0; 1481 } 1482 if (locked) 1483 mmap_read_unlock(mm); 1484 return ret; /* 0 or negative error code */ 1485 } 1486 1487 /** 1488 * get_dump_page() - pin user page in memory while writing it to core dump 1489 * @addr: user address 1490 * 1491 * Returns struct page pointer of user page pinned for dump, 1492 * to be freed afterwards by put_page(). 1493 * 1494 * Returns NULL on any kind of failure - a hole must then be inserted into 1495 * the corefile, to preserve alignment with its headers; and also returns 1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1497 * allowing a hole to be left in the corefile to save diskspace. 1498 * 1499 * Called without mmap_lock, but after all other threads have been killed. 1500 */ 1501 #ifdef CONFIG_ELF_CORE 1502 struct page *get_dump_page(unsigned long addr) 1503 { 1504 struct vm_area_struct *vma; 1505 struct page *page; 1506 1507 if (__get_user_pages(current->mm, addr, 1, 1508 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1509 NULL) < 1) 1510 return NULL; 1511 flush_cache_page(vma, addr, page_to_pfn(page)); 1512 return page; 1513 } 1514 #endif /* CONFIG_ELF_CORE */ 1515 #else /* CONFIG_MMU */ 1516 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1517 unsigned long nr_pages, struct page **pages, 1518 struct vm_area_struct **vmas, int *locked, 1519 unsigned int foll_flags) 1520 { 1521 struct vm_area_struct *vma; 1522 unsigned long vm_flags; 1523 int i; 1524 1525 /* calculate required read or write permissions. 1526 * If FOLL_FORCE is set, we only require the "MAY" flags. 1527 */ 1528 vm_flags = (foll_flags & FOLL_WRITE) ? 1529 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1530 vm_flags &= (foll_flags & FOLL_FORCE) ? 1531 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1532 1533 for (i = 0; i < nr_pages; i++) { 1534 vma = find_vma(mm, start); 1535 if (!vma) 1536 goto finish_or_fault; 1537 1538 /* protect what we can, including chardevs */ 1539 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1540 !(vm_flags & vma->vm_flags)) 1541 goto finish_or_fault; 1542 1543 if (pages) { 1544 pages[i] = virt_to_page(start); 1545 if (pages[i]) 1546 get_page(pages[i]); 1547 } 1548 if (vmas) 1549 vmas[i] = vma; 1550 start = (start + PAGE_SIZE) & PAGE_MASK; 1551 } 1552 1553 return i; 1554 1555 finish_or_fault: 1556 return i ? : -EFAULT; 1557 } 1558 #endif /* !CONFIG_MMU */ 1559 1560 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1561 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1562 { 1563 long i; 1564 struct vm_area_struct *vma_prev = NULL; 1565 1566 for (i = 0; i < nr_pages; i++) { 1567 struct vm_area_struct *vma = vmas[i]; 1568 1569 if (vma == vma_prev) 1570 continue; 1571 1572 vma_prev = vma; 1573 1574 if (vma_is_fsdax(vma)) 1575 return true; 1576 } 1577 return false; 1578 } 1579 1580 #ifdef CONFIG_CMA 1581 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1582 unsigned long start, 1583 unsigned long nr_pages, 1584 struct page **pages, 1585 struct vm_area_struct **vmas, 1586 unsigned int gup_flags) 1587 { 1588 unsigned long i; 1589 unsigned long step; 1590 bool drain_allow = true; 1591 bool migrate_allow = true; 1592 LIST_HEAD(cma_page_list); 1593 long ret = nr_pages; 1594 struct migration_target_control mtc = { 1595 .nid = NUMA_NO_NODE, 1596 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1597 }; 1598 1599 check_again: 1600 for (i = 0; i < nr_pages;) { 1601 1602 struct page *head = compound_head(pages[i]); 1603 1604 /* 1605 * gup may start from a tail page. Advance step by the left 1606 * part. 1607 */ 1608 step = compound_nr(head) - (pages[i] - head); 1609 /* 1610 * If we get a page from the CMA zone, since we are going to 1611 * be pinning these entries, we might as well move them out 1612 * of the CMA zone if possible. 1613 */ 1614 if (is_migrate_cma_page(head)) { 1615 if (PageHuge(head)) 1616 isolate_huge_page(head, &cma_page_list); 1617 else { 1618 if (!PageLRU(head) && drain_allow) { 1619 lru_add_drain_all(); 1620 drain_allow = false; 1621 } 1622 1623 if (!isolate_lru_page(head)) { 1624 list_add_tail(&head->lru, &cma_page_list); 1625 mod_node_page_state(page_pgdat(head), 1626 NR_ISOLATED_ANON + 1627 page_is_file_lru(head), 1628 thp_nr_pages(head)); 1629 } 1630 } 1631 } 1632 1633 i += step; 1634 } 1635 1636 if (!list_empty(&cma_page_list)) { 1637 /* 1638 * drop the above get_user_pages reference. 1639 */ 1640 for (i = 0; i < nr_pages; i++) 1641 put_page(pages[i]); 1642 1643 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1644 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1645 /* 1646 * some of the pages failed migration. Do get_user_pages 1647 * without migration. 1648 */ 1649 migrate_allow = false; 1650 1651 if (!list_empty(&cma_page_list)) 1652 putback_movable_pages(&cma_page_list); 1653 } 1654 /* 1655 * We did migrate all the pages, Try to get the page references 1656 * again migrating any new CMA pages which we failed to isolate 1657 * earlier. 1658 */ 1659 ret = __get_user_pages_locked(mm, start, nr_pages, 1660 pages, vmas, NULL, 1661 gup_flags); 1662 1663 if ((ret > 0) && migrate_allow) { 1664 nr_pages = ret; 1665 drain_allow = true; 1666 goto check_again; 1667 } 1668 } 1669 1670 return ret; 1671 } 1672 #else 1673 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1674 unsigned long start, 1675 unsigned long nr_pages, 1676 struct page **pages, 1677 struct vm_area_struct **vmas, 1678 unsigned int gup_flags) 1679 { 1680 return nr_pages; 1681 } 1682 #endif /* CONFIG_CMA */ 1683 1684 /* 1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1686 * allows us to process the FOLL_LONGTERM flag. 1687 */ 1688 static long __gup_longterm_locked(struct mm_struct *mm, 1689 unsigned long start, 1690 unsigned long nr_pages, 1691 struct page **pages, 1692 struct vm_area_struct **vmas, 1693 unsigned int gup_flags) 1694 { 1695 struct vm_area_struct **vmas_tmp = vmas; 1696 unsigned long flags = 0; 1697 long rc, i; 1698 1699 if (gup_flags & FOLL_LONGTERM) { 1700 if (!pages) 1701 return -EINVAL; 1702 1703 if (!vmas_tmp) { 1704 vmas_tmp = kcalloc(nr_pages, 1705 sizeof(struct vm_area_struct *), 1706 GFP_KERNEL); 1707 if (!vmas_tmp) 1708 return -ENOMEM; 1709 } 1710 flags = memalloc_nocma_save(); 1711 } 1712 1713 rc = __get_user_pages_locked(mm, start, nr_pages, pages, 1714 vmas_tmp, NULL, gup_flags); 1715 1716 if (gup_flags & FOLL_LONGTERM) { 1717 if (rc < 0) 1718 goto out; 1719 1720 if (check_dax_vmas(vmas_tmp, rc)) { 1721 for (i = 0; i < rc; i++) 1722 put_page(pages[i]); 1723 rc = -EOPNOTSUPP; 1724 goto out; 1725 } 1726 1727 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1728 vmas_tmp, gup_flags); 1729 out: 1730 memalloc_nocma_restore(flags); 1731 } 1732 1733 if (vmas_tmp != vmas) 1734 kfree(vmas_tmp); 1735 return rc; 1736 } 1737 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1738 static __always_inline long __gup_longterm_locked(struct mm_struct *mm, 1739 unsigned long start, 1740 unsigned long nr_pages, 1741 struct page **pages, 1742 struct vm_area_struct **vmas, 1743 unsigned int flags) 1744 { 1745 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1746 NULL, flags); 1747 } 1748 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1749 1750 #ifdef CONFIG_MMU 1751 static long __get_user_pages_remote(struct mm_struct *mm, 1752 unsigned long start, unsigned long nr_pages, 1753 unsigned int gup_flags, struct page **pages, 1754 struct vm_area_struct **vmas, int *locked) 1755 { 1756 /* 1757 * Parts of FOLL_LONGTERM behavior are incompatible with 1758 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1759 * vmas. However, this only comes up if locked is set, and there are 1760 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1761 * allow what we can. 1762 */ 1763 if (gup_flags & FOLL_LONGTERM) { 1764 if (WARN_ON_ONCE(locked)) 1765 return -EINVAL; 1766 /* 1767 * This will check the vmas (even if our vmas arg is NULL) 1768 * and return -ENOTSUPP if DAX isn't allowed in this case: 1769 */ 1770 return __gup_longterm_locked(mm, start, nr_pages, pages, 1771 vmas, gup_flags | FOLL_TOUCH | 1772 FOLL_REMOTE); 1773 } 1774 1775 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1776 locked, 1777 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1778 } 1779 1780 /** 1781 * get_user_pages_remote() - pin user pages in memory 1782 * @mm: mm_struct of target mm 1783 * @start: starting user address 1784 * @nr_pages: number of pages from start to pin 1785 * @gup_flags: flags modifying lookup behaviour 1786 * @pages: array that receives pointers to the pages pinned. 1787 * Should be at least nr_pages long. Or NULL, if caller 1788 * only intends to ensure the pages are faulted in. 1789 * @vmas: array of pointers to vmas corresponding to each page. 1790 * Or NULL if the caller does not require them. 1791 * @locked: pointer to lock flag indicating whether lock is held and 1792 * subsequently whether VM_FAULT_RETRY functionality can be 1793 * utilised. Lock must initially be held. 1794 * 1795 * Returns either number of pages pinned (which may be less than the 1796 * number requested), or an error. Details about the return value: 1797 * 1798 * -- If nr_pages is 0, returns 0. 1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1801 * pages pinned. Again, this may be less than nr_pages. 1802 * 1803 * The caller is responsible for releasing returned @pages, via put_page(). 1804 * 1805 * @vmas are valid only as long as mmap_lock is held. 1806 * 1807 * Must be called with mmap_lock held for read or write. 1808 * 1809 * get_user_pages_remote walks a process's page tables and takes a reference 1810 * to each struct page that each user address corresponds to at a given 1811 * instant. That is, it takes the page that would be accessed if a user 1812 * thread accesses the given user virtual address at that instant. 1813 * 1814 * This does not guarantee that the page exists in the user mappings when 1815 * get_user_pages_remote returns, and there may even be a completely different 1816 * page there in some cases (eg. if mmapped pagecache has been invalidated 1817 * and subsequently re faulted). However it does guarantee that the page 1818 * won't be freed completely. And mostly callers simply care that the page 1819 * contains data that was valid *at some point in time*. Typically, an IO 1820 * or similar operation cannot guarantee anything stronger anyway because 1821 * locks can't be held over the syscall boundary. 1822 * 1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1825 * be called after the page is finished with, and before put_page is called. 1826 * 1827 * get_user_pages_remote is typically used for fewer-copy IO operations, 1828 * to get a handle on the memory by some means other than accesses 1829 * via the user virtual addresses. The pages may be submitted for 1830 * DMA to devices or accessed via their kernel linear mapping (via the 1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1832 * 1833 * See also get_user_pages_fast, for performance critical applications. 1834 * 1835 * get_user_pages_remote should be phased out in favor of 1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1837 * should use get_user_pages_remote because it cannot pass 1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1839 */ 1840 long get_user_pages_remote(struct mm_struct *mm, 1841 unsigned long start, unsigned long nr_pages, 1842 unsigned int gup_flags, struct page **pages, 1843 struct vm_area_struct **vmas, int *locked) 1844 { 1845 /* 1846 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1847 * never directly by the caller, so enforce that with an assertion: 1848 */ 1849 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1850 return -EINVAL; 1851 1852 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1853 pages, vmas, locked); 1854 } 1855 EXPORT_SYMBOL(get_user_pages_remote); 1856 1857 #else /* CONFIG_MMU */ 1858 long get_user_pages_remote(struct mm_struct *mm, 1859 unsigned long start, unsigned long nr_pages, 1860 unsigned int gup_flags, struct page **pages, 1861 struct vm_area_struct **vmas, int *locked) 1862 { 1863 return 0; 1864 } 1865 1866 static long __get_user_pages_remote(struct mm_struct *mm, 1867 unsigned long start, unsigned long nr_pages, 1868 unsigned int gup_flags, struct page **pages, 1869 struct vm_area_struct **vmas, int *locked) 1870 { 1871 return 0; 1872 } 1873 #endif /* !CONFIG_MMU */ 1874 1875 /** 1876 * get_user_pages() - pin user pages in memory 1877 * @start: starting user address 1878 * @nr_pages: number of pages from start to pin 1879 * @gup_flags: flags modifying lookup behaviour 1880 * @pages: array that receives pointers to the pages pinned. 1881 * Should be at least nr_pages long. Or NULL, if caller 1882 * only intends to ensure the pages are faulted in. 1883 * @vmas: array of pointers to vmas corresponding to each page. 1884 * Or NULL if the caller does not require them. 1885 * 1886 * This is the same as get_user_pages_remote(), just with a less-flexible 1887 * calling convention where we assume that the mm being operated on belongs to 1888 * the current task, and doesn't allow passing of a locked parameter. We also 1889 * obviously don't pass FOLL_REMOTE in here. 1890 */ 1891 long get_user_pages(unsigned long start, unsigned long nr_pages, 1892 unsigned int gup_flags, struct page **pages, 1893 struct vm_area_struct **vmas) 1894 { 1895 /* 1896 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1897 * never directly by the caller, so enforce that with an assertion: 1898 */ 1899 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1900 return -EINVAL; 1901 1902 return __gup_longterm_locked(current->mm, start, nr_pages, 1903 pages, vmas, gup_flags | FOLL_TOUCH); 1904 } 1905 EXPORT_SYMBOL(get_user_pages); 1906 1907 /** 1908 * get_user_pages_locked() is suitable to replace the form: 1909 * 1910 * mmap_read_lock(mm); 1911 * do_something() 1912 * get_user_pages(mm, ..., pages, NULL); 1913 * mmap_read_unlock(mm); 1914 * 1915 * to: 1916 * 1917 * int locked = 1; 1918 * mmap_read_lock(mm); 1919 * do_something() 1920 * get_user_pages_locked(mm, ..., pages, &locked); 1921 * if (locked) 1922 * mmap_read_unlock(mm); 1923 * 1924 * @start: starting user address 1925 * @nr_pages: number of pages from start to pin 1926 * @gup_flags: flags modifying lookup behaviour 1927 * @pages: array that receives pointers to the pages pinned. 1928 * Should be at least nr_pages long. Or NULL, if caller 1929 * only intends to ensure the pages are faulted in. 1930 * @locked: pointer to lock flag indicating whether lock is held and 1931 * subsequently whether VM_FAULT_RETRY functionality can be 1932 * utilised. Lock must initially be held. 1933 * 1934 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1935 * paths better by using either get_user_pages_locked() or 1936 * get_user_pages_unlocked(). 1937 * 1938 */ 1939 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1940 unsigned int gup_flags, struct page **pages, 1941 int *locked) 1942 { 1943 /* 1944 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1945 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1946 * vmas. As there are no users of this flag in this call we simply 1947 * disallow this option for now. 1948 */ 1949 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1950 return -EINVAL; 1951 /* 1952 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1953 * never directly by the caller, so enforce that: 1954 */ 1955 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1956 return -EINVAL; 1957 1958 return __get_user_pages_locked(current->mm, start, nr_pages, 1959 pages, NULL, locked, 1960 gup_flags | FOLL_TOUCH); 1961 } 1962 EXPORT_SYMBOL(get_user_pages_locked); 1963 1964 /* 1965 * get_user_pages_unlocked() is suitable to replace the form: 1966 * 1967 * mmap_read_lock(mm); 1968 * get_user_pages(mm, ..., pages, NULL); 1969 * mmap_read_unlock(mm); 1970 * 1971 * with: 1972 * 1973 * get_user_pages_unlocked(mm, ..., pages); 1974 * 1975 * It is functionally equivalent to get_user_pages_fast so 1976 * get_user_pages_fast should be used instead if specific gup_flags 1977 * (e.g. FOLL_FORCE) are not required. 1978 */ 1979 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1980 struct page **pages, unsigned int gup_flags) 1981 { 1982 struct mm_struct *mm = current->mm; 1983 int locked = 1; 1984 long ret; 1985 1986 /* 1987 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1988 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1989 * vmas. As there are no users of this flag in this call we simply 1990 * disallow this option for now. 1991 */ 1992 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1993 return -EINVAL; 1994 1995 mmap_read_lock(mm); 1996 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 1997 &locked, gup_flags | FOLL_TOUCH); 1998 if (locked) 1999 mmap_read_unlock(mm); 2000 return ret; 2001 } 2002 EXPORT_SYMBOL(get_user_pages_unlocked); 2003 2004 /* 2005 * Fast GUP 2006 * 2007 * get_user_pages_fast attempts to pin user pages by walking the page 2008 * tables directly and avoids taking locks. Thus the walker needs to be 2009 * protected from page table pages being freed from under it, and should 2010 * block any THP splits. 2011 * 2012 * One way to achieve this is to have the walker disable interrupts, and 2013 * rely on IPIs from the TLB flushing code blocking before the page table 2014 * pages are freed. This is unsuitable for architectures that do not need 2015 * to broadcast an IPI when invalidating TLBs. 2016 * 2017 * Another way to achieve this is to batch up page table containing pages 2018 * belonging to more than one mm_user, then rcu_sched a callback to free those 2019 * pages. Disabling interrupts will allow the fast_gup walker to both block 2020 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2021 * (which is a relatively rare event). The code below adopts this strategy. 2022 * 2023 * Before activating this code, please be aware that the following assumptions 2024 * are currently made: 2025 * 2026 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2027 * free pages containing page tables or TLB flushing requires IPI broadcast. 2028 * 2029 * *) ptes can be read atomically by the architecture. 2030 * 2031 * *) access_ok is sufficient to validate userspace address ranges. 2032 * 2033 * The last two assumptions can be relaxed by the addition of helper functions. 2034 * 2035 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2036 */ 2037 #ifdef CONFIG_HAVE_FAST_GUP 2038 2039 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2040 { 2041 if (flags & FOLL_PIN) { 2042 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2043 refs); 2044 2045 if (hpage_pincount_available(page)) 2046 hpage_pincount_sub(page, refs); 2047 else 2048 refs *= GUP_PIN_COUNTING_BIAS; 2049 } 2050 2051 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2052 /* 2053 * Calling put_page() for each ref is unnecessarily slow. Only the last 2054 * ref needs a put_page(). 2055 */ 2056 if (refs > 1) 2057 page_ref_sub(page, refs - 1); 2058 put_page(page); 2059 } 2060 2061 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2062 2063 /* 2064 * WARNING: only to be used in the get_user_pages_fast() implementation. 2065 * 2066 * With get_user_pages_fast(), we walk down the pagetables without taking any 2067 * locks. For this we would like to load the pointers atomically, but sometimes 2068 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2069 * we do have is the guarantee that a PTE will only either go from not present 2070 * to present, or present to not present or both -- it will not switch to a 2071 * completely different present page without a TLB flush in between; something 2072 * that we are blocking by holding interrupts off. 2073 * 2074 * Setting ptes from not present to present goes: 2075 * 2076 * ptep->pte_high = h; 2077 * smp_wmb(); 2078 * ptep->pte_low = l; 2079 * 2080 * And present to not present goes: 2081 * 2082 * ptep->pte_low = 0; 2083 * smp_wmb(); 2084 * ptep->pte_high = 0; 2085 * 2086 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2087 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2088 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2089 * picked up a changed pte high. We might have gotten rubbish values from 2090 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2091 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2092 * operates on present ptes we're safe. 2093 */ 2094 static inline pte_t gup_get_pte(pte_t *ptep) 2095 { 2096 pte_t pte; 2097 2098 do { 2099 pte.pte_low = ptep->pte_low; 2100 smp_rmb(); 2101 pte.pte_high = ptep->pte_high; 2102 smp_rmb(); 2103 } while (unlikely(pte.pte_low != ptep->pte_low)); 2104 2105 return pte; 2106 } 2107 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2108 /* 2109 * We require that the PTE can be read atomically. 2110 */ 2111 static inline pte_t gup_get_pte(pte_t *ptep) 2112 { 2113 return ptep_get(ptep); 2114 } 2115 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2116 2117 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2118 unsigned int flags, 2119 struct page **pages) 2120 { 2121 while ((*nr) - nr_start) { 2122 struct page *page = pages[--(*nr)]; 2123 2124 ClearPageReferenced(page); 2125 if (flags & FOLL_PIN) 2126 unpin_user_page(page); 2127 else 2128 put_page(page); 2129 } 2130 } 2131 2132 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2133 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2134 unsigned int flags, struct page **pages, int *nr) 2135 { 2136 struct dev_pagemap *pgmap = NULL; 2137 int nr_start = *nr, ret = 0; 2138 pte_t *ptep, *ptem; 2139 2140 ptem = ptep = pte_offset_map(&pmd, addr); 2141 do { 2142 pte_t pte = gup_get_pte(ptep); 2143 struct page *head, *page; 2144 2145 /* 2146 * Similar to the PMD case below, NUMA hinting must take slow 2147 * path using the pte_protnone check. 2148 */ 2149 if (pte_protnone(pte)) 2150 goto pte_unmap; 2151 2152 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2153 goto pte_unmap; 2154 2155 if (pte_devmap(pte)) { 2156 if (unlikely(flags & FOLL_LONGTERM)) 2157 goto pte_unmap; 2158 2159 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2160 if (unlikely(!pgmap)) { 2161 undo_dev_pagemap(nr, nr_start, flags, pages); 2162 goto pte_unmap; 2163 } 2164 } else if (pte_special(pte)) 2165 goto pte_unmap; 2166 2167 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2168 page = pte_page(pte); 2169 2170 head = try_grab_compound_head(page, 1, flags); 2171 if (!head) 2172 goto pte_unmap; 2173 2174 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2175 put_compound_head(head, 1, flags); 2176 goto pte_unmap; 2177 } 2178 2179 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2180 2181 /* 2182 * We need to make the page accessible if and only if we are 2183 * going to access its content (the FOLL_PIN case). Please 2184 * see Documentation/core-api/pin_user_pages.rst for 2185 * details. 2186 */ 2187 if (flags & FOLL_PIN) { 2188 ret = arch_make_page_accessible(page); 2189 if (ret) { 2190 unpin_user_page(page); 2191 goto pte_unmap; 2192 } 2193 } 2194 SetPageReferenced(page); 2195 pages[*nr] = page; 2196 (*nr)++; 2197 2198 } while (ptep++, addr += PAGE_SIZE, addr != end); 2199 2200 ret = 1; 2201 2202 pte_unmap: 2203 if (pgmap) 2204 put_dev_pagemap(pgmap); 2205 pte_unmap(ptem); 2206 return ret; 2207 } 2208 #else 2209 2210 /* 2211 * If we can't determine whether or not a pte is special, then fail immediately 2212 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2213 * to be special. 2214 * 2215 * For a futex to be placed on a THP tail page, get_futex_key requires a 2216 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2217 * useful to have gup_huge_pmd even if we can't operate on ptes. 2218 */ 2219 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2220 unsigned int flags, struct page **pages, int *nr) 2221 { 2222 return 0; 2223 } 2224 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2225 2226 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2227 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2228 unsigned long end, unsigned int flags, 2229 struct page **pages, int *nr) 2230 { 2231 int nr_start = *nr; 2232 struct dev_pagemap *pgmap = NULL; 2233 2234 do { 2235 struct page *page = pfn_to_page(pfn); 2236 2237 pgmap = get_dev_pagemap(pfn, pgmap); 2238 if (unlikely(!pgmap)) { 2239 undo_dev_pagemap(nr, nr_start, flags, pages); 2240 return 0; 2241 } 2242 SetPageReferenced(page); 2243 pages[*nr] = page; 2244 if (unlikely(!try_grab_page(page, flags))) { 2245 undo_dev_pagemap(nr, nr_start, flags, pages); 2246 return 0; 2247 } 2248 (*nr)++; 2249 pfn++; 2250 } while (addr += PAGE_SIZE, addr != end); 2251 2252 if (pgmap) 2253 put_dev_pagemap(pgmap); 2254 return 1; 2255 } 2256 2257 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2258 unsigned long end, unsigned int flags, 2259 struct page **pages, int *nr) 2260 { 2261 unsigned long fault_pfn; 2262 int nr_start = *nr; 2263 2264 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2265 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2266 return 0; 2267 2268 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2269 undo_dev_pagemap(nr, nr_start, flags, pages); 2270 return 0; 2271 } 2272 return 1; 2273 } 2274 2275 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2276 unsigned long end, unsigned int flags, 2277 struct page **pages, int *nr) 2278 { 2279 unsigned long fault_pfn; 2280 int nr_start = *nr; 2281 2282 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2283 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2284 return 0; 2285 2286 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2287 undo_dev_pagemap(nr, nr_start, flags, pages); 2288 return 0; 2289 } 2290 return 1; 2291 } 2292 #else 2293 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2294 unsigned long end, unsigned int flags, 2295 struct page **pages, int *nr) 2296 { 2297 BUILD_BUG(); 2298 return 0; 2299 } 2300 2301 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2302 unsigned long end, unsigned int flags, 2303 struct page **pages, int *nr) 2304 { 2305 BUILD_BUG(); 2306 return 0; 2307 } 2308 #endif 2309 2310 static int record_subpages(struct page *page, unsigned long addr, 2311 unsigned long end, struct page **pages) 2312 { 2313 int nr; 2314 2315 for (nr = 0; addr != end; addr += PAGE_SIZE) 2316 pages[nr++] = page++; 2317 2318 return nr; 2319 } 2320 2321 #ifdef CONFIG_ARCH_HAS_HUGEPD 2322 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2323 unsigned long sz) 2324 { 2325 unsigned long __boundary = (addr + sz) & ~(sz-1); 2326 return (__boundary - 1 < end - 1) ? __boundary : end; 2327 } 2328 2329 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2330 unsigned long end, unsigned int flags, 2331 struct page **pages, int *nr) 2332 { 2333 unsigned long pte_end; 2334 struct page *head, *page; 2335 pte_t pte; 2336 int refs; 2337 2338 pte_end = (addr + sz) & ~(sz-1); 2339 if (pte_end < end) 2340 end = pte_end; 2341 2342 pte = huge_ptep_get(ptep); 2343 2344 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2345 return 0; 2346 2347 /* hugepages are never "special" */ 2348 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2349 2350 head = pte_page(pte); 2351 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2352 refs = record_subpages(page, addr, end, pages + *nr); 2353 2354 head = try_grab_compound_head(head, refs, flags); 2355 if (!head) 2356 return 0; 2357 2358 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2359 put_compound_head(head, refs, flags); 2360 return 0; 2361 } 2362 2363 *nr += refs; 2364 SetPageReferenced(head); 2365 return 1; 2366 } 2367 2368 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2369 unsigned int pdshift, unsigned long end, unsigned int flags, 2370 struct page **pages, int *nr) 2371 { 2372 pte_t *ptep; 2373 unsigned long sz = 1UL << hugepd_shift(hugepd); 2374 unsigned long next; 2375 2376 ptep = hugepte_offset(hugepd, addr, pdshift); 2377 do { 2378 next = hugepte_addr_end(addr, end, sz); 2379 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2380 return 0; 2381 } while (ptep++, addr = next, addr != end); 2382 2383 return 1; 2384 } 2385 #else 2386 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2387 unsigned int pdshift, unsigned long end, unsigned int flags, 2388 struct page **pages, int *nr) 2389 { 2390 return 0; 2391 } 2392 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2393 2394 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2395 unsigned long end, unsigned int flags, 2396 struct page **pages, int *nr) 2397 { 2398 struct page *head, *page; 2399 int refs; 2400 2401 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2402 return 0; 2403 2404 if (pmd_devmap(orig)) { 2405 if (unlikely(flags & FOLL_LONGTERM)) 2406 return 0; 2407 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2408 pages, nr); 2409 } 2410 2411 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2412 refs = record_subpages(page, addr, end, pages + *nr); 2413 2414 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2415 if (!head) 2416 return 0; 2417 2418 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2419 put_compound_head(head, refs, flags); 2420 return 0; 2421 } 2422 2423 *nr += refs; 2424 SetPageReferenced(head); 2425 return 1; 2426 } 2427 2428 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2429 unsigned long end, unsigned int flags, 2430 struct page **pages, int *nr) 2431 { 2432 struct page *head, *page; 2433 int refs; 2434 2435 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2436 return 0; 2437 2438 if (pud_devmap(orig)) { 2439 if (unlikely(flags & FOLL_LONGTERM)) 2440 return 0; 2441 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2442 pages, nr); 2443 } 2444 2445 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2446 refs = record_subpages(page, addr, end, pages + *nr); 2447 2448 head = try_grab_compound_head(pud_page(orig), refs, flags); 2449 if (!head) 2450 return 0; 2451 2452 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2453 put_compound_head(head, refs, flags); 2454 return 0; 2455 } 2456 2457 *nr += refs; 2458 SetPageReferenced(head); 2459 return 1; 2460 } 2461 2462 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2463 unsigned long end, unsigned int flags, 2464 struct page **pages, int *nr) 2465 { 2466 int refs; 2467 struct page *head, *page; 2468 2469 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2470 return 0; 2471 2472 BUILD_BUG_ON(pgd_devmap(orig)); 2473 2474 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2475 refs = record_subpages(page, addr, end, pages + *nr); 2476 2477 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2478 if (!head) 2479 return 0; 2480 2481 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2482 put_compound_head(head, refs, flags); 2483 return 0; 2484 } 2485 2486 *nr += refs; 2487 SetPageReferenced(head); 2488 return 1; 2489 } 2490 2491 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2492 unsigned int flags, struct page **pages, int *nr) 2493 { 2494 unsigned long next; 2495 pmd_t *pmdp; 2496 2497 pmdp = pmd_offset_lockless(pudp, pud, addr); 2498 do { 2499 pmd_t pmd = READ_ONCE(*pmdp); 2500 2501 next = pmd_addr_end(addr, end); 2502 if (!pmd_present(pmd)) 2503 return 0; 2504 2505 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2506 pmd_devmap(pmd))) { 2507 /* 2508 * NUMA hinting faults need to be handled in the GUP 2509 * slowpath for accounting purposes and so that they 2510 * can be serialised against THP migration. 2511 */ 2512 if (pmd_protnone(pmd)) 2513 return 0; 2514 2515 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2516 pages, nr)) 2517 return 0; 2518 2519 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2520 /* 2521 * architecture have different format for hugetlbfs 2522 * pmd format and THP pmd format 2523 */ 2524 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2525 PMD_SHIFT, next, flags, pages, nr)) 2526 return 0; 2527 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2528 return 0; 2529 } while (pmdp++, addr = next, addr != end); 2530 2531 return 1; 2532 } 2533 2534 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2535 unsigned int flags, struct page **pages, int *nr) 2536 { 2537 unsigned long next; 2538 pud_t *pudp; 2539 2540 pudp = pud_offset_lockless(p4dp, p4d, addr); 2541 do { 2542 pud_t pud = READ_ONCE(*pudp); 2543 2544 next = pud_addr_end(addr, end); 2545 if (unlikely(!pud_present(pud))) 2546 return 0; 2547 if (unlikely(pud_huge(pud))) { 2548 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2549 pages, nr)) 2550 return 0; 2551 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2552 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2553 PUD_SHIFT, next, flags, pages, nr)) 2554 return 0; 2555 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2556 return 0; 2557 } while (pudp++, addr = next, addr != end); 2558 2559 return 1; 2560 } 2561 2562 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2563 unsigned int flags, struct page **pages, int *nr) 2564 { 2565 unsigned long next; 2566 p4d_t *p4dp; 2567 2568 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2569 do { 2570 p4d_t p4d = READ_ONCE(*p4dp); 2571 2572 next = p4d_addr_end(addr, end); 2573 if (p4d_none(p4d)) 2574 return 0; 2575 BUILD_BUG_ON(p4d_huge(p4d)); 2576 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2577 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2578 P4D_SHIFT, next, flags, pages, nr)) 2579 return 0; 2580 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2581 return 0; 2582 } while (p4dp++, addr = next, addr != end); 2583 2584 return 1; 2585 } 2586 2587 static void gup_pgd_range(unsigned long addr, unsigned long end, 2588 unsigned int flags, struct page **pages, int *nr) 2589 { 2590 unsigned long next; 2591 pgd_t *pgdp; 2592 2593 pgdp = pgd_offset(current->mm, addr); 2594 do { 2595 pgd_t pgd = READ_ONCE(*pgdp); 2596 2597 next = pgd_addr_end(addr, end); 2598 if (pgd_none(pgd)) 2599 return; 2600 if (unlikely(pgd_huge(pgd))) { 2601 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2602 pages, nr)) 2603 return; 2604 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2605 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2606 PGDIR_SHIFT, next, flags, pages, nr)) 2607 return; 2608 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2609 return; 2610 } while (pgdp++, addr = next, addr != end); 2611 } 2612 #else 2613 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2614 unsigned int flags, struct page **pages, int *nr) 2615 { 2616 } 2617 #endif /* CONFIG_HAVE_FAST_GUP */ 2618 2619 #ifndef gup_fast_permitted 2620 /* 2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2622 * we need to fall back to the slow version: 2623 */ 2624 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2625 { 2626 return true; 2627 } 2628 #endif 2629 2630 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2631 unsigned int gup_flags, struct page **pages) 2632 { 2633 int ret; 2634 2635 /* 2636 * FIXME: FOLL_LONGTERM does not work with 2637 * get_user_pages_unlocked() (see comments in that function) 2638 */ 2639 if (gup_flags & FOLL_LONGTERM) { 2640 mmap_read_lock(current->mm); 2641 ret = __gup_longterm_locked(current->mm, 2642 start, nr_pages, 2643 pages, NULL, gup_flags); 2644 mmap_read_unlock(current->mm); 2645 } else { 2646 ret = get_user_pages_unlocked(start, nr_pages, 2647 pages, gup_flags); 2648 } 2649 2650 return ret; 2651 } 2652 2653 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2654 unsigned int gup_flags, 2655 struct page **pages) 2656 { 2657 unsigned long addr, len, end; 2658 unsigned long flags; 2659 int nr_pinned = 0, ret = 0; 2660 2661 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2662 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2663 FOLL_FAST_ONLY))) 2664 return -EINVAL; 2665 2666 if (gup_flags & FOLL_PIN) 2667 atomic_set(¤t->mm->has_pinned, 1); 2668 2669 if (!(gup_flags & FOLL_FAST_ONLY)) 2670 might_lock_read(¤t->mm->mmap_lock); 2671 2672 start = untagged_addr(start) & PAGE_MASK; 2673 addr = start; 2674 len = (unsigned long) nr_pages << PAGE_SHIFT; 2675 end = start + len; 2676 2677 if (end <= start) 2678 return 0; 2679 if (unlikely(!access_ok((void __user *)start, len))) 2680 return -EFAULT; 2681 2682 /* 2683 * Disable interrupts. The nested form is used, in order to allow 2684 * full, general purpose use of this routine. 2685 * 2686 * With interrupts disabled, we block page table pages from being 2687 * freed from under us. See struct mmu_table_batch comments in 2688 * include/asm-generic/tlb.h for more details. 2689 * 2690 * We do not adopt an rcu_read_lock(.) here as we also want to 2691 * block IPIs that come from THPs splitting. 2692 */ 2693 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2694 unsigned long fast_flags = gup_flags; 2695 2696 local_irq_save(flags); 2697 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2698 local_irq_restore(flags); 2699 ret = nr_pinned; 2700 } 2701 2702 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2703 /* Try to get the remaining pages with get_user_pages */ 2704 start += nr_pinned << PAGE_SHIFT; 2705 pages += nr_pinned; 2706 2707 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2708 gup_flags, pages); 2709 2710 /* Have to be a bit careful with return values */ 2711 if (nr_pinned > 0) { 2712 if (ret < 0) 2713 ret = nr_pinned; 2714 else 2715 ret += nr_pinned; 2716 } 2717 } 2718 2719 return ret; 2720 } 2721 /** 2722 * get_user_pages_fast_only() - pin user pages in memory 2723 * @start: starting user address 2724 * @nr_pages: number of pages from start to pin 2725 * @gup_flags: flags modifying pin behaviour 2726 * @pages: array that receives pointers to the pages pinned. 2727 * Should be at least nr_pages long. 2728 * 2729 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2730 * the regular GUP. 2731 * Note a difference with get_user_pages_fast: this always returns the 2732 * number of pages pinned, 0 if no pages were pinned. 2733 * 2734 * If the architecture does not support this function, simply return with no 2735 * pages pinned. 2736 * 2737 * Careful, careful! COW breaking can go either way, so a non-write 2738 * access can get ambiguous page results. If you call this function without 2739 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2740 */ 2741 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2742 unsigned int gup_flags, struct page **pages) 2743 { 2744 int nr_pinned; 2745 /* 2746 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2747 * because gup fast is always a "pin with a +1 page refcount" request. 2748 * 2749 * FOLL_FAST_ONLY is required in order to match the API description of 2750 * this routine: no fall back to regular ("slow") GUP. 2751 */ 2752 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2753 2754 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2755 pages); 2756 2757 /* 2758 * As specified in the API description above, this routine is not 2759 * allowed to return negative values. However, the common core 2760 * routine internal_get_user_pages_fast() *can* return -errno. 2761 * Therefore, correct for that here: 2762 */ 2763 if (nr_pinned < 0) 2764 nr_pinned = 0; 2765 2766 return nr_pinned; 2767 } 2768 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2769 2770 /** 2771 * get_user_pages_fast() - pin user pages in memory 2772 * @start: starting user address 2773 * @nr_pages: number of pages from start to pin 2774 * @gup_flags: flags modifying pin behaviour 2775 * @pages: array that receives pointers to the pages pinned. 2776 * Should be at least nr_pages long. 2777 * 2778 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2779 * If not successful, it will fall back to taking the lock and 2780 * calling get_user_pages(). 2781 * 2782 * Returns number of pages pinned. This may be fewer than the number requested. 2783 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2784 * -errno. 2785 */ 2786 int get_user_pages_fast(unsigned long start, int nr_pages, 2787 unsigned int gup_flags, struct page **pages) 2788 { 2789 /* 2790 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2791 * never directly by the caller, so enforce that: 2792 */ 2793 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2794 return -EINVAL; 2795 2796 /* 2797 * The caller may or may not have explicitly set FOLL_GET; either way is 2798 * OK. However, internally (within mm/gup.c), gup fast variants must set 2799 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2800 * request. 2801 */ 2802 gup_flags |= FOLL_GET; 2803 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2804 } 2805 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2806 2807 /** 2808 * pin_user_pages_fast() - pin user pages in memory without taking locks 2809 * 2810 * @start: starting user address 2811 * @nr_pages: number of pages from start to pin 2812 * @gup_flags: flags modifying pin behaviour 2813 * @pages: array that receives pointers to the pages pinned. 2814 * Should be at least nr_pages long. 2815 * 2816 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2817 * get_user_pages_fast() for documentation on the function arguments, because 2818 * the arguments here are identical. 2819 * 2820 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2821 * see Documentation/core-api/pin_user_pages.rst for further details. 2822 */ 2823 int pin_user_pages_fast(unsigned long start, int nr_pages, 2824 unsigned int gup_flags, struct page **pages) 2825 { 2826 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2827 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2828 return -EINVAL; 2829 2830 gup_flags |= FOLL_PIN; 2831 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2832 } 2833 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2834 2835 /* 2836 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2837 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2838 * 2839 * The API rules are the same, too: no negative values may be returned. 2840 */ 2841 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2842 unsigned int gup_flags, struct page **pages) 2843 { 2844 int nr_pinned; 2845 2846 /* 2847 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2848 * rules require returning 0, rather than -errno: 2849 */ 2850 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2851 return 0; 2852 /* 2853 * FOLL_FAST_ONLY is required in order to match the API description of 2854 * this routine: no fall back to regular ("slow") GUP. 2855 */ 2856 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2857 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2858 pages); 2859 /* 2860 * This routine is not allowed to return negative values. However, 2861 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2862 * correct for that here: 2863 */ 2864 if (nr_pinned < 0) 2865 nr_pinned = 0; 2866 2867 return nr_pinned; 2868 } 2869 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2870 2871 /** 2872 * pin_user_pages_remote() - pin pages of a remote process 2873 * 2874 * @mm: mm_struct of target mm 2875 * @start: starting user address 2876 * @nr_pages: number of pages from start to pin 2877 * @gup_flags: flags modifying lookup behaviour 2878 * @pages: array that receives pointers to the pages pinned. 2879 * Should be at least nr_pages long. Or NULL, if caller 2880 * only intends to ensure the pages are faulted in. 2881 * @vmas: array of pointers to vmas corresponding to each page. 2882 * Or NULL if the caller does not require them. 2883 * @locked: pointer to lock flag indicating whether lock is held and 2884 * subsequently whether VM_FAULT_RETRY functionality can be 2885 * utilised. Lock must initially be held. 2886 * 2887 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2888 * get_user_pages_remote() for documentation on the function arguments, because 2889 * the arguments here are identical. 2890 * 2891 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2892 * see Documentation/core-api/pin_user_pages.rst for details. 2893 */ 2894 long pin_user_pages_remote(struct mm_struct *mm, 2895 unsigned long start, unsigned long nr_pages, 2896 unsigned int gup_flags, struct page **pages, 2897 struct vm_area_struct **vmas, int *locked) 2898 { 2899 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2900 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2901 return -EINVAL; 2902 2903 gup_flags |= FOLL_PIN; 2904 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2905 pages, vmas, locked); 2906 } 2907 EXPORT_SYMBOL(pin_user_pages_remote); 2908 2909 /** 2910 * pin_user_pages() - pin user pages in memory for use by other devices 2911 * 2912 * @start: starting user address 2913 * @nr_pages: number of pages from start to pin 2914 * @gup_flags: flags modifying lookup behaviour 2915 * @pages: array that receives pointers to the pages pinned. 2916 * Should be at least nr_pages long. Or NULL, if caller 2917 * only intends to ensure the pages are faulted in. 2918 * @vmas: array of pointers to vmas corresponding to each page. 2919 * Or NULL if the caller does not require them. 2920 * 2921 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2922 * FOLL_PIN is set. 2923 * 2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2925 * see Documentation/core-api/pin_user_pages.rst for details. 2926 */ 2927 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2928 unsigned int gup_flags, struct page **pages, 2929 struct vm_area_struct **vmas) 2930 { 2931 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2932 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2933 return -EINVAL; 2934 2935 gup_flags |= FOLL_PIN; 2936 return __gup_longterm_locked(current->mm, start, nr_pages, 2937 pages, vmas, gup_flags); 2938 } 2939 EXPORT_SYMBOL(pin_user_pages); 2940 2941 /* 2942 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2943 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2944 * FOLL_PIN and rejects FOLL_GET. 2945 */ 2946 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2947 struct page **pages, unsigned int gup_flags) 2948 { 2949 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2950 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2951 return -EINVAL; 2952 2953 gup_flags |= FOLL_PIN; 2954 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2955 } 2956 EXPORT_SYMBOL(pin_user_pages_unlocked); 2957 2958 /* 2959 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2960 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2961 * FOLL_GET. 2962 */ 2963 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2964 unsigned int gup_flags, struct page **pages, 2965 int *locked) 2966 { 2967 /* 2968 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2969 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2970 * vmas. As there are no users of this flag in this call we simply 2971 * disallow this option for now. 2972 */ 2973 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2974 return -EINVAL; 2975 2976 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2977 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2978 return -EINVAL; 2979 2980 gup_flags |= FOLL_PIN; 2981 return __get_user_pages_locked(current->mm, start, nr_pages, 2982 pages, NULL, locked, 2983 gup_flags | FOLL_TOUCH); 2984 } 2985 EXPORT_SYMBOL(pin_user_pages_locked); 2986