1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 folio_put_refs(folio, refs); 91 goto retry; 92 } 93 94 return folio; 95 } 96 97 /** 98 * try_grab_folio() - Attempt to get or pin a folio. 99 * @page: pointer to page to be grabbed 100 * @refs: the value to (effectively) add to the folio's refcount 101 * @flags: gup flags: these are the FOLL_* flag values. 102 * 103 * "grab" names in this file mean, "look at flags to decide whether to use 104 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 105 * 106 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 107 * same time. (That's true throughout the get_user_pages*() and 108 * pin_user_pages*() APIs.) Cases: 109 * 110 * FOLL_GET: folio's refcount will be incremented by @refs. 111 * 112 * FOLL_PIN on large folios: folio's refcount will be incremented by 113 * @refs, and its compound_pincount will be incremented by @refs. 114 * 115 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 116 * @refs * GUP_PIN_COUNTING_BIAS. 117 * 118 * Return: The folio containing @page (with refcount appropriately 119 * incremented) for success, or NULL upon failure. If neither FOLL_GET 120 * nor FOLL_PIN was set, that's considered failure, and furthermore, 121 * a likely bug in the caller, so a warning is also emitted. 122 */ 123 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 124 { 125 if (flags & FOLL_GET) 126 return try_get_folio(page, refs); 127 else if (flags & FOLL_PIN) { 128 struct folio *folio; 129 130 /* 131 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 132 * right zone, so fail and let the caller fall back to the slow 133 * path. 134 */ 135 if (unlikely((flags & FOLL_LONGTERM) && 136 !is_pinnable_page(page))) 137 return NULL; 138 139 /* 140 * CAUTION: Don't use compound_head() on the page before this 141 * point, the result won't be stable. 142 */ 143 folio = try_get_folio(page, refs); 144 if (!folio) 145 return NULL; 146 147 /* 148 * When pinning a large folio, use an exact count to track it. 149 * 150 * However, be sure to *also* increment the normal folio 151 * refcount field at least once, so that the folio really 152 * is pinned. That's why the refcount from the earlier 153 * try_get_folio() is left intact. 154 */ 155 if (folio_test_large(folio)) 156 atomic_add(refs, folio_pincount_ptr(folio)); 157 else 158 folio_ref_add(folio, 159 refs * (GUP_PIN_COUNTING_BIAS - 1)); 160 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 161 162 return folio; 163 } 164 165 WARN_ON_ONCE(1); 166 return NULL; 167 } 168 169 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 170 { 171 if (flags & FOLL_PIN) { 172 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 173 if (folio_test_large(folio)) 174 atomic_sub(refs, folio_pincount_ptr(folio)); 175 else 176 refs *= GUP_PIN_COUNTING_BIAS; 177 } 178 179 folio_put_refs(folio, refs); 180 } 181 182 /** 183 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 184 * @page: pointer to page to be grabbed 185 * @flags: gup flags: these are the FOLL_* flag values. 186 * 187 * This might not do anything at all, depending on the flags argument. 188 * 189 * "grab" names in this file mean, "look at flags to decide whether to use 190 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 191 * 192 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 193 * time. Cases: please see the try_grab_folio() documentation, with 194 * "refs=1". 195 * 196 * Return: true for success, or if no action was required (if neither FOLL_PIN 197 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 198 * FOLL_PIN was set, but the page could not be grabbed. 199 */ 200 bool __must_check try_grab_page(struct page *page, unsigned int flags) 201 { 202 struct folio *folio = page_folio(page); 203 204 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 205 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 206 return false; 207 208 if (flags & FOLL_GET) 209 folio_ref_inc(folio); 210 else if (flags & FOLL_PIN) { 211 /* 212 * Similar to try_grab_folio(): be sure to *also* 213 * increment the normal page refcount field at least once, 214 * so that the page really is pinned. 215 */ 216 if (folio_test_large(folio)) { 217 folio_ref_add(folio, 1); 218 atomic_add(1, folio_pincount_ptr(folio)); 219 } else { 220 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 221 } 222 223 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 224 } 225 226 return true; 227 } 228 229 /** 230 * unpin_user_page() - release a dma-pinned page 231 * @page: pointer to page to be released 232 * 233 * Pages that were pinned via pin_user_pages*() must be released via either 234 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 235 * that such pages can be separately tracked and uniquely handled. In 236 * particular, interactions with RDMA and filesystems need special handling. 237 */ 238 void unpin_user_page(struct page *page) 239 { 240 sanity_check_pinned_pages(&page, 1); 241 gup_put_folio(page_folio(page), 1, FOLL_PIN); 242 } 243 EXPORT_SYMBOL(unpin_user_page); 244 245 static inline struct folio *gup_folio_range_next(struct page *start, 246 unsigned long npages, unsigned long i, unsigned int *ntails) 247 { 248 struct page *next = nth_page(start, i); 249 struct folio *folio = page_folio(next); 250 unsigned int nr = 1; 251 252 if (folio_test_large(folio)) 253 nr = min_t(unsigned int, npages - i, 254 folio_nr_pages(folio) - folio_page_idx(folio, next)); 255 256 *ntails = nr; 257 return folio; 258 } 259 260 static inline struct folio *gup_folio_next(struct page **list, 261 unsigned long npages, unsigned long i, unsigned int *ntails) 262 { 263 struct folio *folio = page_folio(list[i]); 264 unsigned int nr; 265 266 for (nr = i + 1; nr < npages; nr++) { 267 if (page_folio(list[nr]) != folio) 268 break; 269 } 270 271 *ntails = nr - i; 272 return folio; 273 } 274 275 /** 276 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 277 * @pages: array of pages to be maybe marked dirty, and definitely released. 278 * @npages: number of pages in the @pages array. 279 * @make_dirty: whether to mark the pages dirty 280 * 281 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 282 * variants called on that page. 283 * 284 * For each page in the @pages array, make that page (or its head page, if a 285 * compound page) dirty, if @make_dirty is true, and if the page was previously 286 * listed as clean. In any case, releases all pages using unpin_user_page(), 287 * possibly via unpin_user_pages(), for the non-dirty case. 288 * 289 * Please see the unpin_user_page() documentation for details. 290 * 291 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 292 * required, then the caller should a) verify that this is really correct, 293 * because _lock() is usually required, and b) hand code it: 294 * set_page_dirty_lock(), unpin_user_page(). 295 * 296 */ 297 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 298 bool make_dirty) 299 { 300 unsigned long i; 301 struct folio *folio; 302 unsigned int nr; 303 304 if (!make_dirty) { 305 unpin_user_pages(pages, npages); 306 return; 307 } 308 309 sanity_check_pinned_pages(pages, npages); 310 for (i = 0; i < npages; i += nr) { 311 folio = gup_folio_next(pages, npages, i, &nr); 312 /* 313 * Checking PageDirty at this point may race with 314 * clear_page_dirty_for_io(), but that's OK. Two key 315 * cases: 316 * 317 * 1) This code sees the page as already dirty, so it 318 * skips the call to set_page_dirty(). That could happen 319 * because clear_page_dirty_for_io() called 320 * page_mkclean(), followed by set_page_dirty(). 321 * However, now the page is going to get written back, 322 * which meets the original intention of setting it 323 * dirty, so all is well: clear_page_dirty_for_io() goes 324 * on to call TestClearPageDirty(), and write the page 325 * back. 326 * 327 * 2) This code sees the page as clean, so it calls 328 * set_page_dirty(). The page stays dirty, despite being 329 * written back, so it gets written back again in the 330 * next writeback cycle. This is harmless. 331 */ 332 if (!folio_test_dirty(folio)) { 333 folio_lock(folio); 334 folio_mark_dirty(folio); 335 folio_unlock(folio); 336 } 337 gup_put_folio(folio, nr, FOLL_PIN); 338 } 339 } 340 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 341 342 /** 343 * unpin_user_page_range_dirty_lock() - release and optionally dirty 344 * gup-pinned page range 345 * 346 * @page: the starting page of a range maybe marked dirty, and definitely released. 347 * @npages: number of consecutive pages to release. 348 * @make_dirty: whether to mark the pages dirty 349 * 350 * "gup-pinned page range" refers to a range of pages that has had one of the 351 * pin_user_pages() variants called on that page. 352 * 353 * For the page ranges defined by [page .. page+npages], make that range (or 354 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 355 * page range was previously listed as clean. 356 * 357 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 358 * required, then the caller should a) verify that this is really correct, 359 * because _lock() is usually required, and b) hand code it: 360 * set_page_dirty_lock(), unpin_user_page(). 361 * 362 */ 363 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 364 bool make_dirty) 365 { 366 unsigned long i; 367 struct folio *folio; 368 unsigned int nr; 369 370 for (i = 0; i < npages; i += nr) { 371 folio = gup_folio_range_next(page, npages, i, &nr); 372 if (make_dirty && !folio_test_dirty(folio)) { 373 folio_lock(folio); 374 folio_mark_dirty(folio); 375 folio_unlock(folio); 376 } 377 gup_put_folio(folio, nr, FOLL_PIN); 378 } 379 } 380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 381 382 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 383 { 384 unsigned long i; 385 struct folio *folio; 386 unsigned int nr; 387 388 /* 389 * Don't perform any sanity checks because we might have raced with 390 * fork() and some anonymous pages might now actually be shared -- 391 * which is why we're unpinning after all. 392 */ 393 for (i = 0; i < npages; i += nr) { 394 folio = gup_folio_next(pages, npages, i, &nr); 395 gup_put_folio(folio, nr, FOLL_PIN); 396 } 397 } 398 399 /** 400 * unpin_user_pages() - release an array of gup-pinned pages. 401 * @pages: array of pages to be marked dirty and released. 402 * @npages: number of pages in the @pages array. 403 * 404 * For each page in the @pages array, release the page using unpin_user_page(). 405 * 406 * Please see the unpin_user_page() documentation for details. 407 */ 408 void unpin_user_pages(struct page **pages, unsigned long npages) 409 { 410 unsigned long i; 411 struct folio *folio; 412 unsigned int nr; 413 414 /* 415 * If this WARN_ON() fires, then the system *might* be leaking pages (by 416 * leaving them pinned), but probably not. More likely, gup/pup returned 417 * a hard -ERRNO error to the caller, who erroneously passed it here. 418 */ 419 if (WARN_ON(IS_ERR_VALUE(npages))) 420 return; 421 422 sanity_check_pinned_pages(pages, npages); 423 for (i = 0; i < npages; i += nr) { 424 folio = gup_folio_next(pages, npages, i, &nr); 425 gup_put_folio(folio, nr, FOLL_PIN); 426 } 427 } 428 EXPORT_SYMBOL(unpin_user_pages); 429 430 /* 431 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 432 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 433 * cache bouncing on large SMP machines for concurrent pinned gups. 434 */ 435 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 436 { 437 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 438 set_bit(MMF_HAS_PINNED, mm_flags); 439 } 440 441 #ifdef CONFIG_MMU 442 static struct page *no_page_table(struct vm_area_struct *vma, 443 unsigned int flags) 444 { 445 /* 446 * When core dumping an enormous anonymous area that nobody 447 * has touched so far, we don't want to allocate unnecessary pages or 448 * page tables. Return error instead of NULL to skip handle_mm_fault, 449 * then get_dump_page() will return NULL to leave a hole in the dump. 450 * But we can only make this optimization where a hole would surely 451 * be zero-filled if handle_mm_fault() actually did handle it. 452 */ 453 if ((flags & FOLL_DUMP) && 454 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 455 return ERR_PTR(-EFAULT); 456 return NULL; 457 } 458 459 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 460 pte_t *pte, unsigned int flags) 461 { 462 if (flags & FOLL_TOUCH) { 463 pte_t entry = *pte; 464 465 if (flags & FOLL_WRITE) 466 entry = pte_mkdirty(entry); 467 entry = pte_mkyoung(entry); 468 469 if (!pte_same(*pte, entry)) { 470 set_pte_at(vma->vm_mm, address, pte, entry); 471 update_mmu_cache(vma, address, pte); 472 } 473 } 474 475 /* Proper page table entry exists, but no corresponding struct page */ 476 return -EEXIST; 477 } 478 479 /* 480 * FOLL_FORCE can write to even unwritable pte's, but only 481 * after we've gone through a COW cycle and they are dirty. 482 */ 483 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 484 { 485 return pte_write(pte) || 486 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 487 } 488 489 static struct page *follow_page_pte(struct vm_area_struct *vma, 490 unsigned long address, pmd_t *pmd, unsigned int flags, 491 struct dev_pagemap **pgmap) 492 { 493 struct mm_struct *mm = vma->vm_mm; 494 struct page *page; 495 spinlock_t *ptl; 496 pte_t *ptep, pte; 497 int ret; 498 499 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 500 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 501 (FOLL_PIN | FOLL_GET))) 502 return ERR_PTR(-EINVAL); 503 retry: 504 if (unlikely(pmd_bad(*pmd))) 505 return no_page_table(vma, flags); 506 507 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 508 pte = *ptep; 509 if (!pte_present(pte)) { 510 swp_entry_t entry; 511 /* 512 * KSM's break_ksm() relies upon recognizing a ksm page 513 * even while it is being migrated, so for that case we 514 * need migration_entry_wait(). 515 */ 516 if (likely(!(flags & FOLL_MIGRATION))) 517 goto no_page; 518 if (pte_none(pte)) 519 goto no_page; 520 entry = pte_to_swp_entry(pte); 521 if (!is_migration_entry(entry)) 522 goto no_page; 523 pte_unmap_unlock(ptep, ptl); 524 migration_entry_wait(mm, pmd, address); 525 goto retry; 526 } 527 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 528 goto no_page; 529 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 530 pte_unmap_unlock(ptep, ptl); 531 return NULL; 532 } 533 534 page = vm_normal_page(vma, address, pte); 535 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 536 /* 537 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 538 * case since they are only valid while holding the pgmap 539 * reference. 540 */ 541 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 542 if (*pgmap) 543 page = pte_page(pte); 544 else 545 goto no_page; 546 } else if (unlikely(!page)) { 547 if (flags & FOLL_DUMP) { 548 /* Avoid special (like zero) pages in core dumps */ 549 page = ERR_PTR(-EFAULT); 550 goto out; 551 } 552 553 if (is_zero_pfn(pte_pfn(pte))) { 554 page = pte_page(pte); 555 } else { 556 ret = follow_pfn_pte(vma, address, ptep, flags); 557 page = ERR_PTR(ret); 558 goto out; 559 } 560 } 561 562 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 563 page = ERR_PTR(-EMLINK); 564 goto out; 565 } 566 567 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 568 !PageAnonExclusive(page), page); 569 570 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 571 if (unlikely(!try_grab_page(page, flags))) { 572 page = ERR_PTR(-ENOMEM); 573 goto out; 574 } 575 /* 576 * We need to make the page accessible if and only if we are going 577 * to access its content (the FOLL_PIN case). Please see 578 * Documentation/core-api/pin_user_pages.rst for details. 579 */ 580 if (flags & FOLL_PIN) { 581 ret = arch_make_page_accessible(page); 582 if (ret) { 583 unpin_user_page(page); 584 page = ERR_PTR(ret); 585 goto out; 586 } 587 } 588 if (flags & FOLL_TOUCH) { 589 if ((flags & FOLL_WRITE) && 590 !pte_dirty(pte) && !PageDirty(page)) 591 set_page_dirty(page); 592 /* 593 * pte_mkyoung() would be more correct here, but atomic care 594 * is needed to avoid losing the dirty bit: it is easier to use 595 * mark_page_accessed(). 596 */ 597 mark_page_accessed(page); 598 } 599 out: 600 pte_unmap_unlock(ptep, ptl); 601 return page; 602 no_page: 603 pte_unmap_unlock(ptep, ptl); 604 if (!pte_none(pte)) 605 return NULL; 606 return no_page_table(vma, flags); 607 } 608 609 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 610 unsigned long address, pud_t *pudp, 611 unsigned int flags, 612 struct follow_page_context *ctx) 613 { 614 pmd_t *pmd, pmdval; 615 spinlock_t *ptl; 616 struct page *page; 617 struct mm_struct *mm = vma->vm_mm; 618 619 pmd = pmd_offset(pudp, address); 620 /* 621 * The READ_ONCE() will stabilize the pmdval in a register or 622 * on the stack so that it will stop changing under the code. 623 */ 624 pmdval = READ_ONCE(*pmd); 625 if (pmd_none(pmdval)) 626 return no_page_table(vma, flags); 627 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 628 page = follow_huge_pmd(mm, address, pmd, flags); 629 if (page) 630 return page; 631 return no_page_table(vma, flags); 632 } 633 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 634 page = follow_huge_pd(vma, address, 635 __hugepd(pmd_val(pmdval)), flags, 636 PMD_SHIFT); 637 if (page) 638 return page; 639 return no_page_table(vma, flags); 640 } 641 retry: 642 if (!pmd_present(pmdval)) { 643 /* 644 * Should never reach here, if thp migration is not supported; 645 * Otherwise, it must be a thp migration entry. 646 */ 647 VM_BUG_ON(!thp_migration_supported() || 648 !is_pmd_migration_entry(pmdval)); 649 650 if (likely(!(flags & FOLL_MIGRATION))) 651 return no_page_table(vma, flags); 652 653 pmd_migration_entry_wait(mm, pmd); 654 pmdval = READ_ONCE(*pmd); 655 /* 656 * MADV_DONTNEED may convert the pmd to null because 657 * mmap_lock is held in read mode 658 */ 659 if (pmd_none(pmdval)) 660 return no_page_table(vma, flags); 661 goto retry; 662 } 663 if (pmd_devmap(pmdval)) { 664 ptl = pmd_lock(mm, pmd); 665 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 666 spin_unlock(ptl); 667 if (page) 668 return page; 669 } 670 if (likely(!pmd_trans_huge(pmdval))) 671 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 672 673 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 674 return no_page_table(vma, flags); 675 676 retry_locked: 677 ptl = pmd_lock(mm, pmd); 678 if (unlikely(pmd_none(*pmd))) { 679 spin_unlock(ptl); 680 return no_page_table(vma, flags); 681 } 682 if (unlikely(!pmd_present(*pmd))) { 683 spin_unlock(ptl); 684 if (likely(!(flags & FOLL_MIGRATION))) 685 return no_page_table(vma, flags); 686 pmd_migration_entry_wait(mm, pmd); 687 goto retry_locked; 688 } 689 if (unlikely(!pmd_trans_huge(*pmd))) { 690 spin_unlock(ptl); 691 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 692 } 693 if (flags & FOLL_SPLIT_PMD) { 694 int ret; 695 page = pmd_page(*pmd); 696 if (is_huge_zero_page(page)) { 697 spin_unlock(ptl); 698 ret = 0; 699 split_huge_pmd(vma, pmd, address); 700 if (pmd_trans_unstable(pmd)) 701 ret = -EBUSY; 702 } else { 703 spin_unlock(ptl); 704 split_huge_pmd(vma, pmd, address); 705 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 706 } 707 708 return ret ? ERR_PTR(ret) : 709 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 710 } 711 page = follow_trans_huge_pmd(vma, address, pmd, flags); 712 spin_unlock(ptl); 713 ctx->page_mask = HPAGE_PMD_NR - 1; 714 return page; 715 } 716 717 static struct page *follow_pud_mask(struct vm_area_struct *vma, 718 unsigned long address, p4d_t *p4dp, 719 unsigned int flags, 720 struct follow_page_context *ctx) 721 { 722 pud_t *pud; 723 spinlock_t *ptl; 724 struct page *page; 725 struct mm_struct *mm = vma->vm_mm; 726 727 pud = pud_offset(p4dp, address); 728 if (pud_none(*pud)) 729 return no_page_table(vma, flags); 730 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 731 page = follow_huge_pud(mm, address, pud, flags); 732 if (page) 733 return page; 734 return no_page_table(vma, flags); 735 } 736 if (is_hugepd(__hugepd(pud_val(*pud)))) { 737 page = follow_huge_pd(vma, address, 738 __hugepd(pud_val(*pud)), flags, 739 PUD_SHIFT); 740 if (page) 741 return page; 742 return no_page_table(vma, flags); 743 } 744 if (pud_devmap(*pud)) { 745 ptl = pud_lock(mm, pud); 746 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 747 spin_unlock(ptl); 748 if (page) 749 return page; 750 } 751 if (unlikely(pud_bad(*pud))) 752 return no_page_table(vma, flags); 753 754 return follow_pmd_mask(vma, address, pud, flags, ctx); 755 } 756 757 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 758 unsigned long address, pgd_t *pgdp, 759 unsigned int flags, 760 struct follow_page_context *ctx) 761 { 762 p4d_t *p4d; 763 struct page *page; 764 765 p4d = p4d_offset(pgdp, address); 766 if (p4d_none(*p4d)) 767 return no_page_table(vma, flags); 768 BUILD_BUG_ON(p4d_huge(*p4d)); 769 if (unlikely(p4d_bad(*p4d))) 770 return no_page_table(vma, flags); 771 772 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 773 page = follow_huge_pd(vma, address, 774 __hugepd(p4d_val(*p4d)), flags, 775 P4D_SHIFT); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 return follow_pud_mask(vma, address, p4d, flags, ctx); 781 } 782 783 /** 784 * follow_page_mask - look up a page descriptor from a user-virtual address 785 * @vma: vm_area_struct mapping @address 786 * @address: virtual address to look up 787 * @flags: flags modifying lookup behaviour 788 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 789 * pointer to output page_mask 790 * 791 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 792 * 793 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 794 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 795 * 796 * When getting an anonymous page and the caller has to trigger unsharing 797 * of a shared anonymous page first, -EMLINK is returned. The caller should 798 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 799 * relevant with FOLL_PIN and !FOLL_WRITE. 800 * 801 * On output, the @ctx->page_mask is set according to the size of the page. 802 * 803 * Return: the mapped (struct page *), %NULL if no mapping exists, or 804 * an error pointer if there is a mapping to something not represented 805 * by a page descriptor (see also vm_normal_page()). 806 */ 807 static struct page *follow_page_mask(struct vm_area_struct *vma, 808 unsigned long address, unsigned int flags, 809 struct follow_page_context *ctx) 810 { 811 pgd_t *pgd; 812 struct page *page; 813 struct mm_struct *mm = vma->vm_mm; 814 815 ctx->page_mask = 0; 816 817 /* make this handle hugepd */ 818 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 819 if (!IS_ERR(page)) { 820 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 821 return page; 822 } 823 824 pgd = pgd_offset(mm, address); 825 826 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 827 return no_page_table(vma, flags); 828 829 if (pgd_huge(*pgd)) { 830 page = follow_huge_pgd(mm, address, pgd, flags); 831 if (page) 832 return page; 833 return no_page_table(vma, flags); 834 } 835 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 836 page = follow_huge_pd(vma, address, 837 __hugepd(pgd_val(*pgd)), flags, 838 PGDIR_SHIFT); 839 if (page) 840 return page; 841 return no_page_table(vma, flags); 842 } 843 844 return follow_p4d_mask(vma, address, pgd, flags, ctx); 845 } 846 847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 848 unsigned int foll_flags) 849 { 850 struct follow_page_context ctx = { NULL }; 851 struct page *page; 852 853 if (vma_is_secretmem(vma)) 854 return NULL; 855 856 if (foll_flags & FOLL_PIN) 857 return NULL; 858 859 page = follow_page_mask(vma, address, foll_flags, &ctx); 860 if (ctx.pgmap) 861 put_dev_pagemap(ctx.pgmap); 862 return page; 863 } 864 865 static int get_gate_page(struct mm_struct *mm, unsigned long address, 866 unsigned int gup_flags, struct vm_area_struct **vma, 867 struct page **page) 868 { 869 pgd_t *pgd; 870 p4d_t *p4d; 871 pud_t *pud; 872 pmd_t *pmd; 873 pte_t *pte; 874 int ret = -EFAULT; 875 876 /* user gate pages are read-only */ 877 if (gup_flags & FOLL_WRITE) 878 return -EFAULT; 879 if (address > TASK_SIZE) 880 pgd = pgd_offset_k(address); 881 else 882 pgd = pgd_offset_gate(mm, address); 883 if (pgd_none(*pgd)) 884 return -EFAULT; 885 p4d = p4d_offset(pgd, address); 886 if (p4d_none(*p4d)) 887 return -EFAULT; 888 pud = pud_offset(p4d, address); 889 if (pud_none(*pud)) 890 return -EFAULT; 891 pmd = pmd_offset(pud, address); 892 if (!pmd_present(*pmd)) 893 return -EFAULT; 894 VM_BUG_ON(pmd_trans_huge(*pmd)); 895 pte = pte_offset_map(pmd, address); 896 if (pte_none(*pte)) 897 goto unmap; 898 *vma = get_gate_vma(mm); 899 if (!page) 900 goto out; 901 *page = vm_normal_page(*vma, address, *pte); 902 if (!*page) { 903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 904 goto unmap; 905 *page = pte_page(*pte); 906 } 907 if (unlikely(!try_grab_page(*page, gup_flags))) { 908 ret = -ENOMEM; 909 goto unmap; 910 } 911 out: 912 ret = 0; 913 unmap: 914 pte_unmap(pte); 915 return ret; 916 } 917 918 /* 919 * mmap_lock must be held on entry. If @locked != NULL and *@flags 920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 921 * is, *@locked will be set to 0 and -EBUSY returned. 922 */ 923 static int faultin_page(struct vm_area_struct *vma, 924 unsigned long address, unsigned int *flags, bool unshare, 925 int *locked) 926 { 927 unsigned int fault_flags = 0; 928 vm_fault_t ret; 929 930 if (*flags & FOLL_NOFAULT) 931 return -EFAULT; 932 if (*flags & FOLL_WRITE) 933 fault_flags |= FAULT_FLAG_WRITE; 934 if (*flags & FOLL_REMOTE) 935 fault_flags |= FAULT_FLAG_REMOTE; 936 if (locked) 937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 938 if (*flags & FOLL_NOWAIT) 939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 940 if (*flags & FOLL_TRIED) { 941 /* 942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 943 * can co-exist 944 */ 945 fault_flags |= FAULT_FLAG_TRIED; 946 } 947 if (unshare) { 948 fault_flags |= FAULT_FLAG_UNSHARE; 949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 951 } 952 953 ret = handle_mm_fault(vma, address, fault_flags, NULL); 954 if (ret & VM_FAULT_ERROR) { 955 int err = vm_fault_to_errno(ret, *flags); 956 957 if (err) 958 return err; 959 BUG(); 960 } 961 962 if (ret & VM_FAULT_RETRY) { 963 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 964 *locked = 0; 965 return -EBUSY; 966 } 967 968 /* 969 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 970 * necessary, even if maybe_mkwrite decided not to set pte_write. We 971 * can thus safely do subsequent page lookups as if they were reads. 972 * But only do so when looping for pte_write is futile: in some cases 973 * userspace may also be wanting to write to the gotten user page, 974 * which a read fault here might prevent (a readonly page might get 975 * reCOWed by userspace write). 976 */ 977 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 978 *flags |= FOLL_COW; 979 return 0; 980 } 981 982 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 983 { 984 vm_flags_t vm_flags = vma->vm_flags; 985 int write = (gup_flags & FOLL_WRITE); 986 int foreign = (gup_flags & FOLL_REMOTE); 987 988 if (vm_flags & (VM_IO | VM_PFNMAP)) 989 return -EFAULT; 990 991 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 992 return -EFAULT; 993 994 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 995 return -EOPNOTSUPP; 996 997 if (vma_is_secretmem(vma)) 998 return -EFAULT; 999 1000 if (write) { 1001 if (!(vm_flags & VM_WRITE)) { 1002 if (!(gup_flags & FOLL_FORCE)) 1003 return -EFAULT; 1004 /* 1005 * We used to let the write,force case do COW in a 1006 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1007 * set a breakpoint in a read-only mapping of an 1008 * executable, without corrupting the file (yet only 1009 * when that file had been opened for writing!). 1010 * Anon pages in shared mappings are surprising: now 1011 * just reject it. 1012 */ 1013 if (!is_cow_mapping(vm_flags)) 1014 return -EFAULT; 1015 } 1016 } else if (!(vm_flags & VM_READ)) { 1017 if (!(gup_flags & FOLL_FORCE)) 1018 return -EFAULT; 1019 /* 1020 * Is there actually any vma we can reach here which does not 1021 * have VM_MAYREAD set? 1022 */ 1023 if (!(vm_flags & VM_MAYREAD)) 1024 return -EFAULT; 1025 } 1026 /* 1027 * gups are always data accesses, not instruction 1028 * fetches, so execute=false here 1029 */ 1030 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1031 return -EFAULT; 1032 return 0; 1033 } 1034 1035 /** 1036 * __get_user_pages() - pin user pages in memory 1037 * @mm: mm_struct of target mm 1038 * @start: starting user address 1039 * @nr_pages: number of pages from start to pin 1040 * @gup_flags: flags modifying pin behaviour 1041 * @pages: array that receives pointers to the pages pinned. 1042 * Should be at least nr_pages long. Or NULL, if caller 1043 * only intends to ensure the pages are faulted in. 1044 * @vmas: array of pointers to vmas corresponding to each page. 1045 * Or NULL if the caller does not require them. 1046 * @locked: whether we're still with the mmap_lock held 1047 * 1048 * Returns either number of pages pinned (which may be less than the 1049 * number requested), or an error. Details about the return value: 1050 * 1051 * -- If nr_pages is 0, returns 0. 1052 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1053 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1054 * pages pinned. Again, this may be less than nr_pages. 1055 * -- 0 return value is possible when the fault would need to be retried. 1056 * 1057 * The caller is responsible for releasing returned @pages, via put_page(). 1058 * 1059 * @vmas are valid only as long as mmap_lock is held. 1060 * 1061 * Must be called with mmap_lock held. It may be released. See below. 1062 * 1063 * __get_user_pages walks a process's page tables and takes a reference to 1064 * each struct page that each user address corresponds to at a given 1065 * instant. That is, it takes the page that would be accessed if a user 1066 * thread accesses the given user virtual address at that instant. 1067 * 1068 * This does not guarantee that the page exists in the user mappings when 1069 * __get_user_pages returns, and there may even be a completely different 1070 * page there in some cases (eg. if mmapped pagecache has been invalidated 1071 * and subsequently re faulted). However it does guarantee that the page 1072 * won't be freed completely. And mostly callers simply care that the page 1073 * contains data that was valid *at some point in time*. Typically, an IO 1074 * or similar operation cannot guarantee anything stronger anyway because 1075 * locks can't be held over the syscall boundary. 1076 * 1077 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1078 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1079 * appropriate) must be called after the page is finished with, and 1080 * before put_page is called. 1081 * 1082 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1083 * released by an up_read(). That can happen if @gup_flags does not 1084 * have FOLL_NOWAIT. 1085 * 1086 * A caller using such a combination of @locked and @gup_flags 1087 * must therefore hold the mmap_lock for reading only, and recognize 1088 * when it's been released. Otherwise, it must be held for either 1089 * reading or writing and will not be released. 1090 * 1091 * In most cases, get_user_pages or get_user_pages_fast should be used 1092 * instead of __get_user_pages. __get_user_pages should be used only if 1093 * you need some special @gup_flags. 1094 */ 1095 static long __get_user_pages(struct mm_struct *mm, 1096 unsigned long start, unsigned long nr_pages, 1097 unsigned int gup_flags, struct page **pages, 1098 struct vm_area_struct **vmas, int *locked) 1099 { 1100 long ret = 0, i = 0; 1101 struct vm_area_struct *vma = NULL; 1102 struct follow_page_context ctx = { NULL }; 1103 1104 if (!nr_pages) 1105 return 0; 1106 1107 start = untagged_addr(start); 1108 1109 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1110 1111 /* 1112 * If FOLL_FORCE is set then do not force a full fault as the hinting 1113 * fault information is unrelated to the reference behaviour of a task 1114 * using the address space 1115 */ 1116 if (!(gup_flags & FOLL_FORCE)) 1117 gup_flags |= FOLL_NUMA; 1118 1119 do { 1120 struct page *page; 1121 unsigned int foll_flags = gup_flags; 1122 unsigned int page_increm; 1123 1124 /* first iteration or cross vma bound */ 1125 if (!vma || start >= vma->vm_end) { 1126 vma = find_extend_vma(mm, start); 1127 if (!vma && in_gate_area(mm, start)) { 1128 ret = get_gate_page(mm, start & PAGE_MASK, 1129 gup_flags, &vma, 1130 pages ? &pages[i] : NULL); 1131 if (ret) 1132 goto out; 1133 ctx.page_mask = 0; 1134 goto next_page; 1135 } 1136 1137 if (!vma) { 1138 ret = -EFAULT; 1139 goto out; 1140 } 1141 ret = check_vma_flags(vma, gup_flags); 1142 if (ret) 1143 goto out; 1144 1145 if (is_vm_hugetlb_page(vma)) { 1146 i = follow_hugetlb_page(mm, vma, pages, vmas, 1147 &start, &nr_pages, i, 1148 gup_flags, locked); 1149 if (locked && *locked == 0) { 1150 /* 1151 * We've got a VM_FAULT_RETRY 1152 * and we've lost mmap_lock. 1153 * We must stop here. 1154 */ 1155 BUG_ON(gup_flags & FOLL_NOWAIT); 1156 goto out; 1157 } 1158 continue; 1159 } 1160 } 1161 retry: 1162 /* 1163 * If we have a pending SIGKILL, don't keep faulting pages and 1164 * potentially allocating memory. 1165 */ 1166 if (fatal_signal_pending(current)) { 1167 ret = -EINTR; 1168 goto out; 1169 } 1170 cond_resched(); 1171 1172 page = follow_page_mask(vma, start, foll_flags, &ctx); 1173 if (!page || PTR_ERR(page) == -EMLINK) { 1174 ret = faultin_page(vma, start, &foll_flags, 1175 PTR_ERR(page) == -EMLINK, locked); 1176 switch (ret) { 1177 case 0: 1178 goto retry; 1179 case -EBUSY: 1180 ret = 0; 1181 fallthrough; 1182 case -EFAULT: 1183 case -ENOMEM: 1184 case -EHWPOISON: 1185 goto out; 1186 } 1187 BUG(); 1188 } else if (PTR_ERR(page) == -EEXIST) { 1189 /* 1190 * Proper page table entry exists, but no corresponding 1191 * struct page. If the caller expects **pages to be 1192 * filled in, bail out now, because that can't be done 1193 * for this page. 1194 */ 1195 if (pages) { 1196 ret = PTR_ERR(page); 1197 goto out; 1198 } 1199 1200 goto next_page; 1201 } else if (IS_ERR(page)) { 1202 ret = PTR_ERR(page); 1203 goto out; 1204 } 1205 if (pages) { 1206 pages[i] = page; 1207 flush_anon_page(vma, page, start); 1208 flush_dcache_page(page); 1209 ctx.page_mask = 0; 1210 } 1211 next_page: 1212 if (vmas) { 1213 vmas[i] = vma; 1214 ctx.page_mask = 0; 1215 } 1216 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1217 if (page_increm > nr_pages) 1218 page_increm = nr_pages; 1219 i += page_increm; 1220 start += page_increm * PAGE_SIZE; 1221 nr_pages -= page_increm; 1222 } while (nr_pages); 1223 out: 1224 if (ctx.pgmap) 1225 put_dev_pagemap(ctx.pgmap); 1226 return i ? i : ret; 1227 } 1228 1229 static bool vma_permits_fault(struct vm_area_struct *vma, 1230 unsigned int fault_flags) 1231 { 1232 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1233 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1234 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1235 1236 if (!(vm_flags & vma->vm_flags)) 1237 return false; 1238 1239 /* 1240 * The architecture might have a hardware protection 1241 * mechanism other than read/write that can deny access. 1242 * 1243 * gup always represents data access, not instruction 1244 * fetches, so execute=false here: 1245 */ 1246 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1247 return false; 1248 1249 return true; 1250 } 1251 1252 /** 1253 * fixup_user_fault() - manually resolve a user page fault 1254 * @mm: mm_struct of target mm 1255 * @address: user address 1256 * @fault_flags:flags to pass down to handle_mm_fault() 1257 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1258 * does not allow retry. If NULL, the caller must guarantee 1259 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1260 * 1261 * This is meant to be called in the specific scenario where for locking reasons 1262 * we try to access user memory in atomic context (within a pagefault_disable() 1263 * section), this returns -EFAULT, and we want to resolve the user fault before 1264 * trying again. 1265 * 1266 * Typically this is meant to be used by the futex code. 1267 * 1268 * The main difference with get_user_pages() is that this function will 1269 * unconditionally call handle_mm_fault() which will in turn perform all the 1270 * necessary SW fixup of the dirty and young bits in the PTE, while 1271 * get_user_pages() only guarantees to update these in the struct page. 1272 * 1273 * This is important for some architectures where those bits also gate the 1274 * access permission to the page because they are maintained in software. On 1275 * such architectures, gup() will not be enough to make a subsequent access 1276 * succeed. 1277 * 1278 * This function will not return with an unlocked mmap_lock. So it has not the 1279 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1280 */ 1281 int fixup_user_fault(struct mm_struct *mm, 1282 unsigned long address, unsigned int fault_flags, 1283 bool *unlocked) 1284 { 1285 struct vm_area_struct *vma; 1286 vm_fault_t ret; 1287 1288 address = untagged_addr(address); 1289 1290 if (unlocked) 1291 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1292 1293 retry: 1294 vma = find_extend_vma(mm, address); 1295 if (!vma || address < vma->vm_start) 1296 return -EFAULT; 1297 1298 if (!vma_permits_fault(vma, fault_flags)) 1299 return -EFAULT; 1300 1301 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1302 fatal_signal_pending(current)) 1303 return -EINTR; 1304 1305 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1306 if (ret & VM_FAULT_ERROR) { 1307 int err = vm_fault_to_errno(ret, 0); 1308 1309 if (err) 1310 return err; 1311 BUG(); 1312 } 1313 1314 if (ret & VM_FAULT_RETRY) { 1315 mmap_read_lock(mm); 1316 *unlocked = true; 1317 fault_flags |= FAULT_FLAG_TRIED; 1318 goto retry; 1319 } 1320 1321 return 0; 1322 } 1323 EXPORT_SYMBOL_GPL(fixup_user_fault); 1324 1325 /* 1326 * Please note that this function, unlike __get_user_pages will not 1327 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1328 */ 1329 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1330 unsigned long start, 1331 unsigned long nr_pages, 1332 struct page **pages, 1333 struct vm_area_struct **vmas, 1334 int *locked, 1335 unsigned int flags) 1336 { 1337 long ret, pages_done; 1338 bool lock_dropped; 1339 1340 if (locked) { 1341 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1342 BUG_ON(vmas); 1343 /* check caller initialized locked */ 1344 BUG_ON(*locked != 1); 1345 } 1346 1347 if (flags & FOLL_PIN) 1348 mm_set_has_pinned_flag(&mm->flags); 1349 1350 /* 1351 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1352 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1353 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1354 * for FOLL_GET, not for the newer FOLL_PIN. 1355 * 1356 * FOLL_PIN always expects pages to be non-null, but no need to assert 1357 * that here, as any failures will be obvious enough. 1358 */ 1359 if (pages && !(flags & FOLL_PIN)) 1360 flags |= FOLL_GET; 1361 1362 pages_done = 0; 1363 lock_dropped = false; 1364 for (;;) { 1365 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1366 vmas, locked); 1367 if (!locked) 1368 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1369 return ret; 1370 1371 /* VM_FAULT_RETRY cannot return errors */ 1372 if (!*locked) { 1373 BUG_ON(ret < 0); 1374 BUG_ON(ret >= nr_pages); 1375 } 1376 1377 if (ret > 0) { 1378 nr_pages -= ret; 1379 pages_done += ret; 1380 if (!nr_pages) 1381 break; 1382 } 1383 if (*locked) { 1384 /* 1385 * VM_FAULT_RETRY didn't trigger or it was a 1386 * FOLL_NOWAIT. 1387 */ 1388 if (!pages_done) 1389 pages_done = ret; 1390 break; 1391 } 1392 /* 1393 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1394 * For the prefault case (!pages) we only update counts. 1395 */ 1396 if (likely(pages)) 1397 pages += ret; 1398 start += ret << PAGE_SHIFT; 1399 lock_dropped = true; 1400 1401 retry: 1402 /* 1403 * Repeat on the address that fired VM_FAULT_RETRY 1404 * with both FAULT_FLAG_ALLOW_RETRY and 1405 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1406 * by fatal signals, so we need to check it before we 1407 * start trying again otherwise it can loop forever. 1408 */ 1409 1410 if (fatal_signal_pending(current)) { 1411 if (!pages_done) 1412 pages_done = -EINTR; 1413 break; 1414 } 1415 1416 ret = mmap_read_lock_killable(mm); 1417 if (ret) { 1418 BUG_ON(ret > 0); 1419 if (!pages_done) 1420 pages_done = ret; 1421 break; 1422 } 1423 1424 *locked = 1; 1425 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1426 pages, NULL, locked); 1427 if (!*locked) { 1428 /* Continue to retry until we succeeded */ 1429 BUG_ON(ret != 0); 1430 goto retry; 1431 } 1432 if (ret != 1) { 1433 BUG_ON(ret > 1); 1434 if (!pages_done) 1435 pages_done = ret; 1436 break; 1437 } 1438 nr_pages--; 1439 pages_done++; 1440 if (!nr_pages) 1441 break; 1442 if (likely(pages)) 1443 pages++; 1444 start += PAGE_SIZE; 1445 } 1446 if (lock_dropped && *locked) { 1447 /* 1448 * We must let the caller know we temporarily dropped the lock 1449 * and so the critical section protected by it was lost. 1450 */ 1451 mmap_read_unlock(mm); 1452 *locked = 0; 1453 } 1454 return pages_done; 1455 } 1456 1457 /** 1458 * populate_vma_page_range() - populate a range of pages in the vma. 1459 * @vma: target vma 1460 * @start: start address 1461 * @end: end address 1462 * @locked: whether the mmap_lock is still held 1463 * 1464 * This takes care of mlocking the pages too if VM_LOCKED is set. 1465 * 1466 * Return either number of pages pinned in the vma, or a negative error 1467 * code on error. 1468 * 1469 * vma->vm_mm->mmap_lock must be held. 1470 * 1471 * If @locked is NULL, it may be held for read or write and will 1472 * be unperturbed. 1473 * 1474 * If @locked is non-NULL, it must held for read only and may be 1475 * released. If it's released, *@locked will be set to 0. 1476 */ 1477 long populate_vma_page_range(struct vm_area_struct *vma, 1478 unsigned long start, unsigned long end, int *locked) 1479 { 1480 struct mm_struct *mm = vma->vm_mm; 1481 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1482 int gup_flags; 1483 long ret; 1484 1485 VM_BUG_ON(!PAGE_ALIGNED(start)); 1486 VM_BUG_ON(!PAGE_ALIGNED(end)); 1487 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1488 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1489 mmap_assert_locked(mm); 1490 1491 /* 1492 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1493 * faultin_page() to break COW, so it has no work to do here. 1494 */ 1495 if (vma->vm_flags & VM_LOCKONFAULT) 1496 return nr_pages; 1497 1498 gup_flags = FOLL_TOUCH; 1499 /* 1500 * We want to touch writable mappings with a write fault in order 1501 * to break COW, except for shared mappings because these don't COW 1502 * and we would not want to dirty them for nothing. 1503 */ 1504 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1505 gup_flags |= FOLL_WRITE; 1506 1507 /* 1508 * We want mlock to succeed for regions that have any permissions 1509 * other than PROT_NONE. 1510 */ 1511 if (vma_is_accessible(vma)) 1512 gup_flags |= FOLL_FORCE; 1513 1514 /* 1515 * We made sure addr is within a VMA, so the following will 1516 * not result in a stack expansion that recurses back here. 1517 */ 1518 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1519 NULL, NULL, locked); 1520 lru_add_drain(); 1521 return ret; 1522 } 1523 1524 /* 1525 * faultin_vma_page_range() - populate (prefault) page tables inside the 1526 * given VMA range readable/writable 1527 * 1528 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1529 * 1530 * @vma: target vma 1531 * @start: start address 1532 * @end: end address 1533 * @write: whether to prefault readable or writable 1534 * @locked: whether the mmap_lock is still held 1535 * 1536 * Returns either number of processed pages in the vma, or a negative error 1537 * code on error (see __get_user_pages()). 1538 * 1539 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1540 * covered by the VMA. 1541 * 1542 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1543 * 1544 * If @locked is non-NULL, it must held for read only and may be released. If 1545 * it's released, *@locked will be set to 0. 1546 */ 1547 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1548 unsigned long end, bool write, int *locked) 1549 { 1550 struct mm_struct *mm = vma->vm_mm; 1551 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1552 int gup_flags; 1553 long ret; 1554 1555 VM_BUG_ON(!PAGE_ALIGNED(start)); 1556 VM_BUG_ON(!PAGE_ALIGNED(end)); 1557 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1558 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1559 mmap_assert_locked(mm); 1560 1561 /* 1562 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1563 * the page dirty with FOLL_WRITE -- which doesn't make a 1564 * difference with !FOLL_FORCE, because the page is writable 1565 * in the page table. 1566 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1567 * a poisoned page. 1568 * !FOLL_FORCE: Require proper access permissions. 1569 */ 1570 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1571 if (write) 1572 gup_flags |= FOLL_WRITE; 1573 1574 /* 1575 * We want to report -EINVAL instead of -EFAULT for any permission 1576 * problems or incompatible mappings. 1577 */ 1578 if (check_vma_flags(vma, gup_flags)) 1579 return -EINVAL; 1580 1581 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1582 NULL, NULL, locked); 1583 lru_add_drain(); 1584 return ret; 1585 } 1586 1587 /* 1588 * __mm_populate - populate and/or mlock pages within a range of address space. 1589 * 1590 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1591 * flags. VMAs must be already marked with the desired vm_flags, and 1592 * mmap_lock must not be held. 1593 */ 1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1595 { 1596 struct mm_struct *mm = current->mm; 1597 unsigned long end, nstart, nend; 1598 struct vm_area_struct *vma = NULL; 1599 int locked = 0; 1600 long ret = 0; 1601 1602 end = start + len; 1603 1604 for (nstart = start; nstart < end; nstart = nend) { 1605 /* 1606 * We want to fault in pages for [nstart; end) address range. 1607 * Find first corresponding VMA. 1608 */ 1609 if (!locked) { 1610 locked = 1; 1611 mmap_read_lock(mm); 1612 vma = find_vma(mm, nstart); 1613 } else if (nstart >= vma->vm_end) 1614 vma = vma->vm_next; 1615 if (!vma || vma->vm_start >= end) 1616 break; 1617 /* 1618 * Set [nstart; nend) to intersection of desired address 1619 * range with the first VMA. Also, skip undesirable VMA types. 1620 */ 1621 nend = min(end, vma->vm_end); 1622 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1623 continue; 1624 if (nstart < vma->vm_start) 1625 nstart = vma->vm_start; 1626 /* 1627 * Now fault in a range of pages. populate_vma_page_range() 1628 * double checks the vma flags, so that it won't mlock pages 1629 * if the vma was already munlocked. 1630 */ 1631 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1632 if (ret < 0) { 1633 if (ignore_errors) { 1634 ret = 0; 1635 continue; /* continue at next VMA */ 1636 } 1637 break; 1638 } 1639 nend = nstart + ret * PAGE_SIZE; 1640 ret = 0; 1641 } 1642 if (locked) 1643 mmap_read_unlock(mm); 1644 return ret; /* 0 or negative error code */ 1645 } 1646 #else /* CONFIG_MMU */ 1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1648 unsigned long nr_pages, struct page **pages, 1649 struct vm_area_struct **vmas, int *locked, 1650 unsigned int foll_flags) 1651 { 1652 struct vm_area_struct *vma; 1653 unsigned long vm_flags; 1654 long i; 1655 1656 /* calculate required read or write permissions. 1657 * If FOLL_FORCE is set, we only require the "MAY" flags. 1658 */ 1659 vm_flags = (foll_flags & FOLL_WRITE) ? 1660 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1661 vm_flags &= (foll_flags & FOLL_FORCE) ? 1662 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1663 1664 for (i = 0; i < nr_pages; i++) { 1665 vma = find_vma(mm, start); 1666 if (!vma) 1667 goto finish_or_fault; 1668 1669 /* protect what we can, including chardevs */ 1670 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1671 !(vm_flags & vma->vm_flags)) 1672 goto finish_or_fault; 1673 1674 if (pages) { 1675 pages[i] = virt_to_page(start); 1676 if (pages[i]) 1677 get_page(pages[i]); 1678 } 1679 if (vmas) 1680 vmas[i] = vma; 1681 start = (start + PAGE_SIZE) & PAGE_MASK; 1682 } 1683 1684 return i; 1685 1686 finish_or_fault: 1687 return i ? : -EFAULT; 1688 } 1689 #endif /* !CONFIG_MMU */ 1690 1691 /** 1692 * fault_in_writeable - fault in userspace address range for writing 1693 * @uaddr: start of address range 1694 * @size: size of address range 1695 * 1696 * Returns the number of bytes not faulted in (like copy_to_user() and 1697 * copy_from_user()). 1698 */ 1699 size_t fault_in_writeable(char __user *uaddr, size_t size) 1700 { 1701 char __user *start = uaddr, *end; 1702 1703 if (unlikely(size == 0)) 1704 return 0; 1705 if (!user_write_access_begin(uaddr, size)) 1706 return size; 1707 if (!PAGE_ALIGNED(uaddr)) { 1708 unsafe_put_user(0, uaddr, out); 1709 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1710 } 1711 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1712 if (unlikely(end < start)) 1713 end = NULL; 1714 while (uaddr != end) { 1715 unsafe_put_user(0, uaddr, out); 1716 uaddr += PAGE_SIZE; 1717 } 1718 1719 out: 1720 user_write_access_end(); 1721 if (size > uaddr - start) 1722 return size - (uaddr - start); 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(fault_in_writeable); 1726 1727 /** 1728 * fault_in_subpage_writeable - fault in an address range for writing 1729 * @uaddr: start of address range 1730 * @size: size of address range 1731 * 1732 * Fault in a user address range for writing while checking for permissions at 1733 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1734 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1735 * 1736 * Returns the number of bytes not faulted in (like copy_to_user() and 1737 * copy_from_user()). 1738 */ 1739 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1740 { 1741 size_t faulted_in; 1742 1743 /* 1744 * Attempt faulting in at page granularity first for page table 1745 * permission checking. The arch-specific probe_subpage_writeable() 1746 * functions may not check for this. 1747 */ 1748 faulted_in = size - fault_in_writeable(uaddr, size); 1749 if (faulted_in) 1750 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1751 1752 return size - faulted_in; 1753 } 1754 EXPORT_SYMBOL(fault_in_subpage_writeable); 1755 1756 /* 1757 * fault_in_safe_writeable - fault in an address range for writing 1758 * @uaddr: start of address range 1759 * @size: length of address range 1760 * 1761 * Faults in an address range for writing. This is primarily useful when we 1762 * already know that some or all of the pages in the address range aren't in 1763 * memory. 1764 * 1765 * Unlike fault_in_writeable(), this function is non-destructive. 1766 * 1767 * Note that we don't pin or otherwise hold the pages referenced that we fault 1768 * in. There's no guarantee that they'll stay in memory for any duration of 1769 * time. 1770 * 1771 * Returns the number of bytes not faulted in, like copy_to_user() and 1772 * copy_from_user(). 1773 */ 1774 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1775 { 1776 unsigned long start = (unsigned long)uaddr, end; 1777 struct mm_struct *mm = current->mm; 1778 bool unlocked = false; 1779 1780 if (unlikely(size == 0)) 1781 return 0; 1782 end = PAGE_ALIGN(start + size); 1783 if (end < start) 1784 end = 0; 1785 1786 mmap_read_lock(mm); 1787 do { 1788 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1789 break; 1790 start = (start + PAGE_SIZE) & PAGE_MASK; 1791 } while (start != end); 1792 mmap_read_unlock(mm); 1793 1794 if (size > (unsigned long)uaddr - start) 1795 return size - ((unsigned long)uaddr - start); 1796 return 0; 1797 } 1798 EXPORT_SYMBOL(fault_in_safe_writeable); 1799 1800 /** 1801 * fault_in_readable - fault in userspace address range for reading 1802 * @uaddr: start of user address range 1803 * @size: size of user address range 1804 * 1805 * Returns the number of bytes not faulted in (like copy_to_user() and 1806 * copy_from_user()). 1807 */ 1808 size_t fault_in_readable(const char __user *uaddr, size_t size) 1809 { 1810 const char __user *start = uaddr, *end; 1811 volatile char c; 1812 1813 if (unlikely(size == 0)) 1814 return 0; 1815 if (!user_read_access_begin(uaddr, size)) 1816 return size; 1817 if (!PAGE_ALIGNED(uaddr)) { 1818 unsafe_get_user(c, uaddr, out); 1819 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1820 } 1821 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1822 if (unlikely(end < start)) 1823 end = NULL; 1824 while (uaddr != end) { 1825 unsafe_get_user(c, uaddr, out); 1826 uaddr += PAGE_SIZE; 1827 } 1828 1829 out: 1830 user_read_access_end(); 1831 (void)c; 1832 if (size > uaddr - start) 1833 return size - (uaddr - start); 1834 return 0; 1835 } 1836 EXPORT_SYMBOL(fault_in_readable); 1837 1838 /** 1839 * get_dump_page() - pin user page in memory while writing it to core dump 1840 * @addr: user address 1841 * 1842 * Returns struct page pointer of user page pinned for dump, 1843 * to be freed afterwards by put_page(). 1844 * 1845 * Returns NULL on any kind of failure - a hole must then be inserted into 1846 * the corefile, to preserve alignment with its headers; and also returns 1847 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1848 * allowing a hole to be left in the corefile to save disk space. 1849 * 1850 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1851 */ 1852 #ifdef CONFIG_ELF_CORE 1853 struct page *get_dump_page(unsigned long addr) 1854 { 1855 struct mm_struct *mm = current->mm; 1856 struct page *page; 1857 int locked = 1; 1858 int ret; 1859 1860 if (mmap_read_lock_killable(mm)) 1861 return NULL; 1862 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1863 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1864 if (locked) 1865 mmap_read_unlock(mm); 1866 return (ret == 1) ? page : NULL; 1867 } 1868 #endif /* CONFIG_ELF_CORE */ 1869 1870 #ifdef CONFIG_MIGRATION 1871 /* 1872 * Check whether all pages are pinnable, if so return number of pages. If some 1873 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1874 * pages were migrated, or if some pages were not successfully isolated. 1875 * Return negative error if migration fails. 1876 */ 1877 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1878 struct page **pages, 1879 unsigned int gup_flags) 1880 { 1881 unsigned long isolation_error_count = 0, i; 1882 struct folio *prev_folio = NULL; 1883 LIST_HEAD(movable_page_list); 1884 bool drain_allow = true; 1885 int ret = 0; 1886 1887 for (i = 0; i < nr_pages; i++) { 1888 struct folio *folio = page_folio(pages[i]); 1889 1890 if (folio == prev_folio) 1891 continue; 1892 prev_folio = folio; 1893 1894 if (folio_is_pinnable(folio)) 1895 continue; 1896 1897 /* 1898 * Try to move out any movable page before pinning the range. 1899 */ 1900 if (folio_test_hugetlb(folio)) { 1901 if (!isolate_huge_page(&folio->page, 1902 &movable_page_list)) 1903 isolation_error_count++; 1904 continue; 1905 } 1906 1907 if (!folio_test_lru(folio) && drain_allow) { 1908 lru_add_drain_all(); 1909 drain_allow = false; 1910 } 1911 1912 if (folio_isolate_lru(folio)) { 1913 isolation_error_count++; 1914 continue; 1915 } 1916 list_add_tail(&folio->lru, &movable_page_list); 1917 node_stat_mod_folio(folio, 1918 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1919 folio_nr_pages(folio)); 1920 } 1921 1922 if (!list_empty(&movable_page_list) || isolation_error_count) 1923 goto unpin_pages; 1924 1925 /* 1926 * If list is empty, and no isolation errors, means that all pages are 1927 * in the correct zone. 1928 */ 1929 return nr_pages; 1930 1931 unpin_pages: 1932 if (gup_flags & FOLL_PIN) { 1933 unpin_user_pages(pages, nr_pages); 1934 } else { 1935 for (i = 0; i < nr_pages; i++) 1936 put_page(pages[i]); 1937 } 1938 1939 if (!list_empty(&movable_page_list)) { 1940 struct migration_target_control mtc = { 1941 .nid = NUMA_NO_NODE, 1942 .gfp_mask = GFP_USER | __GFP_NOWARN, 1943 }; 1944 1945 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1946 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1947 MR_LONGTERM_PIN, NULL); 1948 if (ret > 0) /* number of pages not migrated */ 1949 ret = -ENOMEM; 1950 } 1951 1952 if (ret && !list_empty(&movable_page_list)) 1953 putback_movable_pages(&movable_page_list); 1954 return ret; 1955 } 1956 #else 1957 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1958 struct page **pages, 1959 unsigned int gup_flags) 1960 { 1961 return nr_pages; 1962 } 1963 #endif /* CONFIG_MIGRATION */ 1964 1965 /* 1966 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1967 * allows us to process the FOLL_LONGTERM flag. 1968 */ 1969 static long __gup_longterm_locked(struct mm_struct *mm, 1970 unsigned long start, 1971 unsigned long nr_pages, 1972 struct page **pages, 1973 struct vm_area_struct **vmas, 1974 unsigned int gup_flags) 1975 { 1976 unsigned int flags; 1977 long rc; 1978 1979 if (!(gup_flags & FOLL_LONGTERM)) 1980 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1981 NULL, gup_flags); 1982 flags = memalloc_pin_save(); 1983 do { 1984 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1985 NULL, gup_flags); 1986 if (rc <= 0) 1987 break; 1988 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1989 } while (!rc); 1990 memalloc_pin_restore(flags); 1991 1992 return rc; 1993 } 1994 1995 static bool is_valid_gup_flags(unsigned int gup_flags) 1996 { 1997 /* 1998 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1999 * never directly by the caller, so enforce that with an assertion: 2000 */ 2001 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2002 return false; 2003 /* 2004 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2005 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2006 * FOLL_PIN. 2007 */ 2008 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2009 return false; 2010 2011 return true; 2012 } 2013 2014 #ifdef CONFIG_MMU 2015 static long __get_user_pages_remote(struct mm_struct *mm, 2016 unsigned long start, unsigned long nr_pages, 2017 unsigned int gup_flags, struct page **pages, 2018 struct vm_area_struct **vmas, int *locked) 2019 { 2020 /* 2021 * Parts of FOLL_LONGTERM behavior are incompatible with 2022 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2023 * vmas. However, this only comes up if locked is set, and there are 2024 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2025 * allow what we can. 2026 */ 2027 if (gup_flags & FOLL_LONGTERM) { 2028 if (WARN_ON_ONCE(locked)) 2029 return -EINVAL; 2030 /* 2031 * This will check the vmas (even if our vmas arg is NULL) 2032 * and return -ENOTSUPP if DAX isn't allowed in this case: 2033 */ 2034 return __gup_longterm_locked(mm, start, nr_pages, pages, 2035 vmas, gup_flags | FOLL_TOUCH | 2036 FOLL_REMOTE); 2037 } 2038 2039 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2040 locked, 2041 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2042 } 2043 2044 /** 2045 * get_user_pages_remote() - pin user pages in memory 2046 * @mm: mm_struct of target mm 2047 * @start: starting user address 2048 * @nr_pages: number of pages from start to pin 2049 * @gup_flags: flags modifying lookup behaviour 2050 * @pages: array that receives pointers to the pages pinned. 2051 * Should be at least nr_pages long. Or NULL, if caller 2052 * only intends to ensure the pages are faulted in. 2053 * @vmas: array of pointers to vmas corresponding to each page. 2054 * Or NULL if the caller does not require them. 2055 * @locked: pointer to lock flag indicating whether lock is held and 2056 * subsequently whether VM_FAULT_RETRY functionality can be 2057 * utilised. Lock must initially be held. 2058 * 2059 * Returns either number of pages pinned (which may be less than the 2060 * number requested), or an error. Details about the return value: 2061 * 2062 * -- If nr_pages is 0, returns 0. 2063 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2064 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2065 * pages pinned. Again, this may be less than nr_pages. 2066 * 2067 * The caller is responsible for releasing returned @pages, via put_page(). 2068 * 2069 * @vmas are valid only as long as mmap_lock is held. 2070 * 2071 * Must be called with mmap_lock held for read or write. 2072 * 2073 * get_user_pages_remote walks a process's page tables and takes a reference 2074 * to each struct page that each user address corresponds to at a given 2075 * instant. That is, it takes the page that would be accessed if a user 2076 * thread accesses the given user virtual address at that instant. 2077 * 2078 * This does not guarantee that the page exists in the user mappings when 2079 * get_user_pages_remote returns, and there may even be a completely different 2080 * page there in some cases (eg. if mmapped pagecache has been invalidated 2081 * and subsequently re faulted). However it does guarantee that the page 2082 * won't be freed completely. And mostly callers simply care that the page 2083 * contains data that was valid *at some point in time*. Typically, an IO 2084 * or similar operation cannot guarantee anything stronger anyway because 2085 * locks can't be held over the syscall boundary. 2086 * 2087 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2088 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2089 * be called after the page is finished with, and before put_page is called. 2090 * 2091 * get_user_pages_remote is typically used for fewer-copy IO operations, 2092 * to get a handle on the memory by some means other than accesses 2093 * via the user virtual addresses. The pages may be submitted for 2094 * DMA to devices or accessed via their kernel linear mapping (via the 2095 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2096 * 2097 * See also get_user_pages_fast, for performance critical applications. 2098 * 2099 * get_user_pages_remote should be phased out in favor of 2100 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2101 * should use get_user_pages_remote because it cannot pass 2102 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2103 */ 2104 long get_user_pages_remote(struct mm_struct *mm, 2105 unsigned long start, unsigned long nr_pages, 2106 unsigned int gup_flags, struct page **pages, 2107 struct vm_area_struct **vmas, int *locked) 2108 { 2109 if (!is_valid_gup_flags(gup_flags)) 2110 return -EINVAL; 2111 2112 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2113 pages, vmas, locked); 2114 } 2115 EXPORT_SYMBOL(get_user_pages_remote); 2116 2117 #else /* CONFIG_MMU */ 2118 long get_user_pages_remote(struct mm_struct *mm, 2119 unsigned long start, unsigned long nr_pages, 2120 unsigned int gup_flags, struct page **pages, 2121 struct vm_area_struct **vmas, int *locked) 2122 { 2123 return 0; 2124 } 2125 2126 static long __get_user_pages_remote(struct mm_struct *mm, 2127 unsigned long start, unsigned long nr_pages, 2128 unsigned int gup_flags, struct page **pages, 2129 struct vm_area_struct **vmas, int *locked) 2130 { 2131 return 0; 2132 } 2133 #endif /* !CONFIG_MMU */ 2134 2135 /** 2136 * get_user_pages() - pin user pages in memory 2137 * @start: starting user address 2138 * @nr_pages: number of pages from start to pin 2139 * @gup_flags: flags modifying lookup behaviour 2140 * @pages: array that receives pointers to the pages pinned. 2141 * Should be at least nr_pages long. Or NULL, if caller 2142 * only intends to ensure the pages are faulted in. 2143 * @vmas: array of pointers to vmas corresponding to each page. 2144 * Or NULL if the caller does not require them. 2145 * 2146 * This is the same as get_user_pages_remote(), just with a less-flexible 2147 * calling convention where we assume that the mm being operated on belongs to 2148 * the current task, and doesn't allow passing of a locked parameter. We also 2149 * obviously don't pass FOLL_REMOTE in here. 2150 */ 2151 long get_user_pages(unsigned long start, unsigned long nr_pages, 2152 unsigned int gup_flags, struct page **pages, 2153 struct vm_area_struct **vmas) 2154 { 2155 if (!is_valid_gup_flags(gup_flags)) 2156 return -EINVAL; 2157 2158 return __gup_longterm_locked(current->mm, start, nr_pages, 2159 pages, vmas, gup_flags | FOLL_TOUCH); 2160 } 2161 EXPORT_SYMBOL(get_user_pages); 2162 2163 /* 2164 * get_user_pages_unlocked() is suitable to replace the form: 2165 * 2166 * mmap_read_lock(mm); 2167 * get_user_pages(mm, ..., pages, NULL); 2168 * mmap_read_unlock(mm); 2169 * 2170 * with: 2171 * 2172 * get_user_pages_unlocked(mm, ..., pages); 2173 * 2174 * It is functionally equivalent to get_user_pages_fast so 2175 * get_user_pages_fast should be used instead if specific gup_flags 2176 * (e.g. FOLL_FORCE) are not required. 2177 */ 2178 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2179 struct page **pages, unsigned int gup_flags) 2180 { 2181 struct mm_struct *mm = current->mm; 2182 int locked = 1; 2183 long ret; 2184 2185 /* 2186 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2187 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2188 * vmas. As there are no users of this flag in this call we simply 2189 * disallow this option for now. 2190 */ 2191 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2192 return -EINVAL; 2193 2194 mmap_read_lock(mm); 2195 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2196 &locked, gup_flags | FOLL_TOUCH); 2197 if (locked) 2198 mmap_read_unlock(mm); 2199 return ret; 2200 } 2201 EXPORT_SYMBOL(get_user_pages_unlocked); 2202 2203 /* 2204 * Fast GUP 2205 * 2206 * get_user_pages_fast attempts to pin user pages by walking the page 2207 * tables directly and avoids taking locks. Thus the walker needs to be 2208 * protected from page table pages being freed from under it, and should 2209 * block any THP splits. 2210 * 2211 * One way to achieve this is to have the walker disable interrupts, and 2212 * rely on IPIs from the TLB flushing code blocking before the page table 2213 * pages are freed. This is unsuitable for architectures that do not need 2214 * to broadcast an IPI when invalidating TLBs. 2215 * 2216 * Another way to achieve this is to batch up page table containing pages 2217 * belonging to more than one mm_user, then rcu_sched a callback to free those 2218 * pages. Disabling interrupts will allow the fast_gup walker to both block 2219 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2220 * (which is a relatively rare event). The code below adopts this strategy. 2221 * 2222 * Before activating this code, please be aware that the following assumptions 2223 * are currently made: 2224 * 2225 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2226 * free pages containing page tables or TLB flushing requires IPI broadcast. 2227 * 2228 * *) ptes can be read atomically by the architecture. 2229 * 2230 * *) access_ok is sufficient to validate userspace address ranges. 2231 * 2232 * The last two assumptions can be relaxed by the addition of helper functions. 2233 * 2234 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2235 */ 2236 #ifdef CONFIG_HAVE_FAST_GUP 2237 2238 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2239 unsigned int flags, 2240 struct page **pages) 2241 { 2242 while ((*nr) - nr_start) { 2243 struct page *page = pages[--(*nr)]; 2244 2245 ClearPageReferenced(page); 2246 if (flags & FOLL_PIN) 2247 unpin_user_page(page); 2248 else 2249 put_page(page); 2250 } 2251 } 2252 2253 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2254 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2255 unsigned int flags, struct page **pages, int *nr) 2256 { 2257 struct dev_pagemap *pgmap = NULL; 2258 int nr_start = *nr, ret = 0; 2259 pte_t *ptep, *ptem; 2260 2261 ptem = ptep = pte_offset_map(&pmd, addr); 2262 do { 2263 pte_t pte = ptep_get_lockless(ptep); 2264 struct page *page; 2265 struct folio *folio; 2266 2267 /* 2268 * Similar to the PMD case below, NUMA hinting must take slow 2269 * path using the pte_protnone check. 2270 */ 2271 if (pte_protnone(pte)) 2272 goto pte_unmap; 2273 2274 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2275 goto pte_unmap; 2276 2277 if (pte_devmap(pte)) { 2278 if (unlikely(flags & FOLL_LONGTERM)) 2279 goto pte_unmap; 2280 2281 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2282 if (unlikely(!pgmap)) { 2283 undo_dev_pagemap(nr, nr_start, flags, pages); 2284 goto pte_unmap; 2285 } 2286 } else if (pte_special(pte)) 2287 goto pte_unmap; 2288 2289 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2290 page = pte_page(pte); 2291 2292 folio = try_grab_folio(page, 1, flags); 2293 if (!folio) 2294 goto pte_unmap; 2295 2296 if (unlikely(page_is_secretmem(page))) { 2297 gup_put_folio(folio, 1, flags); 2298 goto pte_unmap; 2299 } 2300 2301 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2302 gup_put_folio(folio, 1, flags); 2303 goto pte_unmap; 2304 } 2305 2306 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2307 gup_put_folio(folio, 1, flags); 2308 goto pte_unmap; 2309 } 2310 2311 /* 2312 * We need to make the page accessible if and only if we are 2313 * going to access its content (the FOLL_PIN case). Please 2314 * see Documentation/core-api/pin_user_pages.rst for 2315 * details. 2316 */ 2317 if (flags & FOLL_PIN) { 2318 ret = arch_make_page_accessible(page); 2319 if (ret) { 2320 gup_put_folio(folio, 1, flags); 2321 goto pte_unmap; 2322 } 2323 } 2324 folio_set_referenced(folio); 2325 pages[*nr] = page; 2326 (*nr)++; 2327 } while (ptep++, addr += PAGE_SIZE, addr != end); 2328 2329 ret = 1; 2330 2331 pte_unmap: 2332 if (pgmap) 2333 put_dev_pagemap(pgmap); 2334 pte_unmap(ptem); 2335 return ret; 2336 } 2337 #else 2338 2339 /* 2340 * If we can't determine whether or not a pte is special, then fail immediately 2341 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2342 * to be special. 2343 * 2344 * For a futex to be placed on a THP tail page, get_futex_key requires a 2345 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2346 * useful to have gup_huge_pmd even if we can't operate on ptes. 2347 */ 2348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2349 unsigned int flags, struct page **pages, int *nr) 2350 { 2351 return 0; 2352 } 2353 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2354 2355 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2356 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2357 unsigned long end, unsigned int flags, 2358 struct page **pages, int *nr) 2359 { 2360 int nr_start = *nr; 2361 struct dev_pagemap *pgmap = NULL; 2362 2363 do { 2364 struct page *page = pfn_to_page(pfn); 2365 2366 pgmap = get_dev_pagemap(pfn, pgmap); 2367 if (unlikely(!pgmap)) { 2368 undo_dev_pagemap(nr, nr_start, flags, pages); 2369 break; 2370 } 2371 SetPageReferenced(page); 2372 pages[*nr] = page; 2373 if (unlikely(!try_grab_page(page, flags))) { 2374 undo_dev_pagemap(nr, nr_start, flags, pages); 2375 break; 2376 } 2377 (*nr)++; 2378 pfn++; 2379 } while (addr += PAGE_SIZE, addr != end); 2380 2381 put_dev_pagemap(pgmap); 2382 return addr == end; 2383 } 2384 2385 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2386 unsigned long end, unsigned int flags, 2387 struct page **pages, int *nr) 2388 { 2389 unsigned long fault_pfn; 2390 int nr_start = *nr; 2391 2392 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2393 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2394 return 0; 2395 2396 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2397 undo_dev_pagemap(nr, nr_start, flags, pages); 2398 return 0; 2399 } 2400 return 1; 2401 } 2402 2403 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2404 unsigned long end, unsigned int flags, 2405 struct page **pages, int *nr) 2406 { 2407 unsigned long fault_pfn; 2408 int nr_start = *nr; 2409 2410 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2411 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2412 return 0; 2413 2414 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2415 undo_dev_pagemap(nr, nr_start, flags, pages); 2416 return 0; 2417 } 2418 return 1; 2419 } 2420 #else 2421 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2422 unsigned long end, unsigned int flags, 2423 struct page **pages, int *nr) 2424 { 2425 BUILD_BUG(); 2426 return 0; 2427 } 2428 2429 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2430 unsigned long end, unsigned int flags, 2431 struct page **pages, int *nr) 2432 { 2433 BUILD_BUG(); 2434 return 0; 2435 } 2436 #endif 2437 2438 static int record_subpages(struct page *page, unsigned long addr, 2439 unsigned long end, struct page **pages) 2440 { 2441 int nr; 2442 2443 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2444 pages[nr] = nth_page(page, nr); 2445 2446 return nr; 2447 } 2448 2449 #ifdef CONFIG_ARCH_HAS_HUGEPD 2450 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2451 unsigned long sz) 2452 { 2453 unsigned long __boundary = (addr + sz) & ~(sz-1); 2454 return (__boundary - 1 < end - 1) ? __boundary : end; 2455 } 2456 2457 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2458 unsigned long end, unsigned int flags, 2459 struct page **pages, int *nr) 2460 { 2461 unsigned long pte_end; 2462 struct page *page; 2463 struct folio *folio; 2464 pte_t pte; 2465 int refs; 2466 2467 pte_end = (addr + sz) & ~(sz-1); 2468 if (pte_end < end) 2469 end = pte_end; 2470 2471 pte = huge_ptep_get(ptep); 2472 2473 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2474 return 0; 2475 2476 /* hugepages are never "special" */ 2477 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2478 2479 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2480 refs = record_subpages(page, addr, end, pages + *nr); 2481 2482 folio = try_grab_folio(page, refs, flags); 2483 if (!folio) 2484 return 0; 2485 2486 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2487 gup_put_folio(folio, refs, flags); 2488 return 0; 2489 } 2490 2491 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2492 gup_put_folio(folio, refs, flags); 2493 return 0; 2494 } 2495 2496 *nr += refs; 2497 folio_set_referenced(folio); 2498 return 1; 2499 } 2500 2501 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2502 unsigned int pdshift, unsigned long end, unsigned int flags, 2503 struct page **pages, int *nr) 2504 { 2505 pte_t *ptep; 2506 unsigned long sz = 1UL << hugepd_shift(hugepd); 2507 unsigned long next; 2508 2509 ptep = hugepte_offset(hugepd, addr, pdshift); 2510 do { 2511 next = hugepte_addr_end(addr, end, sz); 2512 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2513 return 0; 2514 } while (ptep++, addr = next, addr != end); 2515 2516 return 1; 2517 } 2518 #else 2519 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2520 unsigned int pdshift, unsigned long end, unsigned int flags, 2521 struct page **pages, int *nr) 2522 { 2523 return 0; 2524 } 2525 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2526 2527 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2528 unsigned long end, unsigned int flags, 2529 struct page **pages, int *nr) 2530 { 2531 struct page *page; 2532 struct folio *folio; 2533 int refs; 2534 2535 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2536 return 0; 2537 2538 if (pmd_devmap(orig)) { 2539 if (unlikely(flags & FOLL_LONGTERM)) 2540 return 0; 2541 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2542 pages, nr); 2543 } 2544 2545 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2546 refs = record_subpages(page, addr, end, pages + *nr); 2547 2548 folio = try_grab_folio(page, refs, flags); 2549 if (!folio) 2550 return 0; 2551 2552 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2553 gup_put_folio(folio, refs, flags); 2554 return 0; 2555 } 2556 2557 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2558 gup_put_folio(folio, refs, flags); 2559 return 0; 2560 } 2561 2562 *nr += refs; 2563 folio_set_referenced(folio); 2564 return 1; 2565 } 2566 2567 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2568 unsigned long end, unsigned int flags, 2569 struct page **pages, int *nr) 2570 { 2571 struct page *page; 2572 struct folio *folio; 2573 int refs; 2574 2575 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2576 return 0; 2577 2578 if (pud_devmap(orig)) { 2579 if (unlikely(flags & FOLL_LONGTERM)) 2580 return 0; 2581 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2582 pages, nr); 2583 } 2584 2585 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2586 refs = record_subpages(page, addr, end, pages + *nr); 2587 2588 folio = try_grab_folio(page, refs, flags); 2589 if (!folio) 2590 return 0; 2591 2592 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2593 gup_put_folio(folio, refs, flags); 2594 return 0; 2595 } 2596 2597 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2598 gup_put_folio(folio, refs, flags); 2599 return 0; 2600 } 2601 2602 *nr += refs; 2603 folio_set_referenced(folio); 2604 return 1; 2605 } 2606 2607 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2608 unsigned long end, unsigned int flags, 2609 struct page **pages, int *nr) 2610 { 2611 int refs; 2612 struct page *page; 2613 struct folio *folio; 2614 2615 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2616 return 0; 2617 2618 BUILD_BUG_ON(pgd_devmap(orig)); 2619 2620 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2621 refs = record_subpages(page, addr, end, pages + *nr); 2622 2623 folio = try_grab_folio(page, refs, flags); 2624 if (!folio) 2625 return 0; 2626 2627 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2628 gup_put_folio(folio, refs, flags); 2629 return 0; 2630 } 2631 2632 *nr += refs; 2633 folio_set_referenced(folio); 2634 return 1; 2635 } 2636 2637 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2638 unsigned int flags, struct page **pages, int *nr) 2639 { 2640 unsigned long next; 2641 pmd_t *pmdp; 2642 2643 pmdp = pmd_offset_lockless(pudp, pud, addr); 2644 do { 2645 pmd_t pmd = READ_ONCE(*pmdp); 2646 2647 next = pmd_addr_end(addr, end); 2648 if (!pmd_present(pmd)) 2649 return 0; 2650 2651 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2652 pmd_devmap(pmd))) { 2653 /* 2654 * NUMA hinting faults need to be handled in the GUP 2655 * slowpath for accounting purposes and so that they 2656 * can be serialised against THP migration. 2657 */ 2658 if (pmd_protnone(pmd)) 2659 return 0; 2660 2661 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2662 pages, nr)) 2663 return 0; 2664 2665 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2666 /* 2667 * architecture have different format for hugetlbfs 2668 * pmd format and THP pmd format 2669 */ 2670 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2671 PMD_SHIFT, next, flags, pages, nr)) 2672 return 0; 2673 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2674 return 0; 2675 } while (pmdp++, addr = next, addr != end); 2676 2677 return 1; 2678 } 2679 2680 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2681 unsigned int flags, struct page **pages, int *nr) 2682 { 2683 unsigned long next; 2684 pud_t *pudp; 2685 2686 pudp = pud_offset_lockless(p4dp, p4d, addr); 2687 do { 2688 pud_t pud = READ_ONCE(*pudp); 2689 2690 next = pud_addr_end(addr, end); 2691 if (unlikely(!pud_present(pud))) 2692 return 0; 2693 if (unlikely(pud_huge(pud))) { 2694 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2695 pages, nr)) 2696 return 0; 2697 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2698 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2699 PUD_SHIFT, next, flags, pages, nr)) 2700 return 0; 2701 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2702 return 0; 2703 } while (pudp++, addr = next, addr != end); 2704 2705 return 1; 2706 } 2707 2708 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2709 unsigned int flags, struct page **pages, int *nr) 2710 { 2711 unsigned long next; 2712 p4d_t *p4dp; 2713 2714 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2715 do { 2716 p4d_t p4d = READ_ONCE(*p4dp); 2717 2718 next = p4d_addr_end(addr, end); 2719 if (p4d_none(p4d)) 2720 return 0; 2721 BUILD_BUG_ON(p4d_huge(p4d)); 2722 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2723 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2724 P4D_SHIFT, next, flags, pages, nr)) 2725 return 0; 2726 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2727 return 0; 2728 } while (p4dp++, addr = next, addr != end); 2729 2730 return 1; 2731 } 2732 2733 static void gup_pgd_range(unsigned long addr, unsigned long end, 2734 unsigned int flags, struct page **pages, int *nr) 2735 { 2736 unsigned long next; 2737 pgd_t *pgdp; 2738 2739 pgdp = pgd_offset(current->mm, addr); 2740 do { 2741 pgd_t pgd = READ_ONCE(*pgdp); 2742 2743 next = pgd_addr_end(addr, end); 2744 if (pgd_none(pgd)) 2745 return; 2746 if (unlikely(pgd_huge(pgd))) { 2747 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2748 pages, nr)) 2749 return; 2750 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2751 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2752 PGDIR_SHIFT, next, flags, pages, nr)) 2753 return; 2754 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2755 return; 2756 } while (pgdp++, addr = next, addr != end); 2757 } 2758 #else 2759 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2760 unsigned int flags, struct page **pages, int *nr) 2761 { 2762 } 2763 #endif /* CONFIG_HAVE_FAST_GUP */ 2764 2765 #ifndef gup_fast_permitted 2766 /* 2767 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2768 * we need to fall back to the slow version: 2769 */ 2770 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2771 { 2772 return true; 2773 } 2774 #endif 2775 2776 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2777 unsigned int gup_flags, struct page **pages) 2778 { 2779 int ret; 2780 2781 /* 2782 * FIXME: FOLL_LONGTERM does not work with 2783 * get_user_pages_unlocked() (see comments in that function) 2784 */ 2785 if (gup_flags & FOLL_LONGTERM) { 2786 mmap_read_lock(current->mm); 2787 ret = __gup_longterm_locked(current->mm, 2788 start, nr_pages, 2789 pages, NULL, gup_flags); 2790 mmap_read_unlock(current->mm); 2791 } else { 2792 ret = get_user_pages_unlocked(start, nr_pages, 2793 pages, gup_flags); 2794 } 2795 2796 return ret; 2797 } 2798 2799 static unsigned long lockless_pages_from_mm(unsigned long start, 2800 unsigned long end, 2801 unsigned int gup_flags, 2802 struct page **pages) 2803 { 2804 unsigned long flags; 2805 int nr_pinned = 0; 2806 unsigned seq; 2807 2808 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2809 !gup_fast_permitted(start, end)) 2810 return 0; 2811 2812 if (gup_flags & FOLL_PIN) { 2813 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2814 if (seq & 1) 2815 return 0; 2816 } 2817 2818 /* 2819 * Disable interrupts. The nested form is used, in order to allow full, 2820 * general purpose use of this routine. 2821 * 2822 * With interrupts disabled, we block page table pages from being freed 2823 * from under us. See struct mmu_table_batch comments in 2824 * include/asm-generic/tlb.h for more details. 2825 * 2826 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2827 * that come from THPs splitting. 2828 */ 2829 local_irq_save(flags); 2830 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2831 local_irq_restore(flags); 2832 2833 /* 2834 * When pinning pages for DMA there could be a concurrent write protect 2835 * from fork() via copy_page_range(), in this case always fail fast GUP. 2836 */ 2837 if (gup_flags & FOLL_PIN) { 2838 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2839 unpin_user_pages_lockless(pages, nr_pinned); 2840 return 0; 2841 } else { 2842 sanity_check_pinned_pages(pages, nr_pinned); 2843 } 2844 } 2845 return nr_pinned; 2846 } 2847 2848 static int internal_get_user_pages_fast(unsigned long start, 2849 unsigned long nr_pages, 2850 unsigned int gup_flags, 2851 struct page **pages) 2852 { 2853 unsigned long len, end; 2854 unsigned long nr_pinned; 2855 int ret; 2856 2857 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2858 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2859 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2860 return -EINVAL; 2861 2862 if (gup_flags & FOLL_PIN) 2863 mm_set_has_pinned_flag(¤t->mm->flags); 2864 2865 if (!(gup_flags & FOLL_FAST_ONLY)) 2866 might_lock_read(¤t->mm->mmap_lock); 2867 2868 start = untagged_addr(start) & PAGE_MASK; 2869 len = nr_pages << PAGE_SHIFT; 2870 if (check_add_overflow(start, len, &end)) 2871 return 0; 2872 if (unlikely(!access_ok((void __user *)start, len))) 2873 return -EFAULT; 2874 2875 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2876 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2877 return nr_pinned; 2878 2879 /* Slow path: try to get the remaining pages with get_user_pages */ 2880 start += nr_pinned << PAGE_SHIFT; 2881 pages += nr_pinned; 2882 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2883 pages); 2884 if (ret < 0) { 2885 /* 2886 * The caller has to unpin the pages we already pinned so 2887 * returning -errno is not an option 2888 */ 2889 if (nr_pinned) 2890 return nr_pinned; 2891 return ret; 2892 } 2893 return ret + nr_pinned; 2894 } 2895 2896 /** 2897 * get_user_pages_fast_only() - pin user pages in memory 2898 * @start: starting user address 2899 * @nr_pages: number of pages from start to pin 2900 * @gup_flags: flags modifying pin behaviour 2901 * @pages: array that receives pointers to the pages pinned. 2902 * Should be at least nr_pages long. 2903 * 2904 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2905 * the regular GUP. 2906 * Note a difference with get_user_pages_fast: this always returns the 2907 * number of pages pinned, 0 if no pages were pinned. 2908 * 2909 * If the architecture does not support this function, simply return with no 2910 * pages pinned. 2911 * 2912 * Careful, careful! COW breaking can go either way, so a non-write 2913 * access can get ambiguous page results. If you call this function without 2914 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2915 */ 2916 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2917 unsigned int gup_flags, struct page **pages) 2918 { 2919 int nr_pinned; 2920 /* 2921 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2922 * because gup fast is always a "pin with a +1 page refcount" request. 2923 * 2924 * FOLL_FAST_ONLY is required in order to match the API description of 2925 * this routine: no fall back to regular ("slow") GUP. 2926 */ 2927 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2928 2929 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2930 pages); 2931 2932 /* 2933 * As specified in the API description above, this routine is not 2934 * allowed to return negative values. However, the common core 2935 * routine internal_get_user_pages_fast() *can* return -errno. 2936 * Therefore, correct for that here: 2937 */ 2938 if (nr_pinned < 0) 2939 nr_pinned = 0; 2940 2941 return nr_pinned; 2942 } 2943 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2944 2945 /** 2946 * get_user_pages_fast() - pin user pages in memory 2947 * @start: starting user address 2948 * @nr_pages: number of pages from start to pin 2949 * @gup_flags: flags modifying pin behaviour 2950 * @pages: array that receives pointers to the pages pinned. 2951 * Should be at least nr_pages long. 2952 * 2953 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2954 * If not successful, it will fall back to taking the lock and 2955 * calling get_user_pages(). 2956 * 2957 * Returns number of pages pinned. This may be fewer than the number requested. 2958 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2959 * -errno. 2960 */ 2961 int get_user_pages_fast(unsigned long start, int nr_pages, 2962 unsigned int gup_flags, struct page **pages) 2963 { 2964 if (!is_valid_gup_flags(gup_flags)) 2965 return -EINVAL; 2966 2967 /* 2968 * The caller may or may not have explicitly set FOLL_GET; either way is 2969 * OK. However, internally (within mm/gup.c), gup fast variants must set 2970 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2971 * request. 2972 */ 2973 gup_flags |= FOLL_GET; 2974 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2975 } 2976 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2977 2978 /** 2979 * pin_user_pages_fast() - pin user pages in memory without taking locks 2980 * 2981 * @start: starting user address 2982 * @nr_pages: number of pages from start to pin 2983 * @gup_flags: flags modifying pin behaviour 2984 * @pages: array that receives pointers to the pages pinned. 2985 * Should be at least nr_pages long. 2986 * 2987 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2988 * get_user_pages_fast() for documentation on the function arguments, because 2989 * the arguments here are identical. 2990 * 2991 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2992 * see Documentation/core-api/pin_user_pages.rst for further details. 2993 */ 2994 int pin_user_pages_fast(unsigned long start, int nr_pages, 2995 unsigned int gup_flags, struct page **pages) 2996 { 2997 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2998 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2999 return -EINVAL; 3000 3001 if (WARN_ON_ONCE(!pages)) 3002 return -EINVAL; 3003 3004 gup_flags |= FOLL_PIN; 3005 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3006 } 3007 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3008 3009 /* 3010 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3011 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3012 * 3013 * The API rules are the same, too: no negative values may be returned. 3014 */ 3015 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3016 unsigned int gup_flags, struct page **pages) 3017 { 3018 int nr_pinned; 3019 3020 /* 3021 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3022 * rules require returning 0, rather than -errno: 3023 */ 3024 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3025 return 0; 3026 3027 if (WARN_ON_ONCE(!pages)) 3028 return 0; 3029 /* 3030 * FOLL_FAST_ONLY is required in order to match the API description of 3031 * this routine: no fall back to regular ("slow") GUP. 3032 */ 3033 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3034 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3035 pages); 3036 /* 3037 * This routine is not allowed to return negative values. However, 3038 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3039 * correct for that here: 3040 */ 3041 if (nr_pinned < 0) 3042 nr_pinned = 0; 3043 3044 return nr_pinned; 3045 } 3046 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3047 3048 /** 3049 * pin_user_pages_remote() - pin pages of a remote process 3050 * 3051 * @mm: mm_struct of target mm 3052 * @start: starting user address 3053 * @nr_pages: number of pages from start to pin 3054 * @gup_flags: flags modifying lookup behaviour 3055 * @pages: array that receives pointers to the pages pinned. 3056 * Should be at least nr_pages long. 3057 * @vmas: array of pointers to vmas corresponding to each page. 3058 * Or NULL if the caller does not require them. 3059 * @locked: pointer to lock flag indicating whether lock is held and 3060 * subsequently whether VM_FAULT_RETRY functionality can be 3061 * utilised. Lock must initially be held. 3062 * 3063 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3064 * get_user_pages_remote() for documentation on the function arguments, because 3065 * the arguments here are identical. 3066 * 3067 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3068 * see Documentation/core-api/pin_user_pages.rst for details. 3069 */ 3070 long pin_user_pages_remote(struct mm_struct *mm, 3071 unsigned long start, unsigned long nr_pages, 3072 unsigned int gup_flags, struct page **pages, 3073 struct vm_area_struct **vmas, int *locked) 3074 { 3075 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3076 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3077 return -EINVAL; 3078 3079 if (WARN_ON_ONCE(!pages)) 3080 return -EINVAL; 3081 3082 gup_flags |= FOLL_PIN; 3083 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3084 pages, vmas, locked); 3085 } 3086 EXPORT_SYMBOL(pin_user_pages_remote); 3087 3088 /** 3089 * pin_user_pages() - pin user pages in memory for use by other devices 3090 * 3091 * @start: starting user address 3092 * @nr_pages: number of pages from start to pin 3093 * @gup_flags: flags modifying lookup behaviour 3094 * @pages: array that receives pointers to the pages pinned. 3095 * Should be at least nr_pages long. 3096 * @vmas: array of pointers to vmas corresponding to each page. 3097 * Or NULL if the caller does not require them. 3098 * 3099 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3100 * FOLL_PIN is set. 3101 * 3102 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3103 * see Documentation/core-api/pin_user_pages.rst for details. 3104 */ 3105 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3106 unsigned int gup_flags, struct page **pages, 3107 struct vm_area_struct **vmas) 3108 { 3109 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3110 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3111 return -EINVAL; 3112 3113 if (WARN_ON_ONCE(!pages)) 3114 return -EINVAL; 3115 3116 gup_flags |= FOLL_PIN; 3117 return __gup_longterm_locked(current->mm, start, nr_pages, 3118 pages, vmas, gup_flags); 3119 } 3120 EXPORT_SYMBOL(pin_user_pages); 3121 3122 /* 3123 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3124 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3125 * FOLL_PIN and rejects FOLL_GET. 3126 */ 3127 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3128 struct page **pages, unsigned int gup_flags) 3129 { 3130 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3131 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3132 return -EINVAL; 3133 3134 if (WARN_ON_ONCE(!pages)) 3135 return -EINVAL; 3136 3137 gup_flags |= FOLL_PIN; 3138 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3139 } 3140 EXPORT_SYMBOL(pin_user_pages_unlocked); 3141