1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct page *page; 815 struct mm_struct *mm = vma->vm_mm; 816 817 ctx->page_mask = 0; 818 819 /* 820 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 821 * special hugetlb page table walking code. This eliminates the 822 * need to check for hugetlb entries in the general walking code. 823 * 824 * hugetlb_follow_page_mask is only for follow_page() handling here. 825 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 826 */ 827 if (is_vm_hugetlb_page(vma)) { 828 page = hugetlb_follow_page_mask(vma, address, flags); 829 if (!page) 830 page = no_page_table(vma, flags); 831 return page; 832 } 833 834 pgd = pgd_offset(mm, address); 835 836 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 837 return no_page_table(vma, flags); 838 839 return follow_p4d_mask(vma, address, pgd, flags, ctx); 840 } 841 842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 843 unsigned int foll_flags) 844 { 845 struct follow_page_context ctx = { NULL }; 846 struct page *page; 847 848 if (vma_is_secretmem(vma)) 849 return NULL; 850 851 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 852 return NULL; 853 854 page = follow_page_mask(vma, address, foll_flags, &ctx); 855 if (ctx.pgmap) 856 put_dev_pagemap(ctx.pgmap); 857 return page; 858 } 859 860 static int get_gate_page(struct mm_struct *mm, unsigned long address, 861 unsigned int gup_flags, struct vm_area_struct **vma, 862 struct page **page) 863 { 864 pgd_t *pgd; 865 p4d_t *p4d; 866 pud_t *pud; 867 pmd_t *pmd; 868 pte_t *pte; 869 pte_t entry; 870 int ret = -EFAULT; 871 872 /* user gate pages are read-only */ 873 if (gup_flags & FOLL_WRITE) 874 return -EFAULT; 875 if (address > TASK_SIZE) 876 pgd = pgd_offset_k(address); 877 else 878 pgd = pgd_offset_gate(mm, address); 879 if (pgd_none(*pgd)) 880 return -EFAULT; 881 p4d = p4d_offset(pgd, address); 882 if (p4d_none(*p4d)) 883 return -EFAULT; 884 pud = pud_offset(p4d, address); 885 if (pud_none(*pud)) 886 return -EFAULT; 887 pmd = pmd_offset(pud, address); 888 if (!pmd_present(*pmd)) 889 return -EFAULT; 890 pte = pte_offset_map(pmd, address); 891 if (!pte) 892 return -EFAULT; 893 entry = ptep_get(pte); 894 if (pte_none(entry)) 895 goto unmap; 896 *vma = get_gate_vma(mm); 897 if (!page) 898 goto out; 899 *page = vm_normal_page(*vma, address, entry); 900 if (!*page) { 901 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 902 goto unmap; 903 *page = pte_page(entry); 904 } 905 ret = try_grab_page(*page, gup_flags); 906 if (unlikely(ret)) 907 goto unmap; 908 out: 909 ret = 0; 910 unmap: 911 pte_unmap(pte); 912 return ret; 913 } 914 915 /* 916 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 917 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 918 * to 0 and -EBUSY returned. 919 */ 920 static int faultin_page(struct vm_area_struct *vma, 921 unsigned long address, unsigned int *flags, bool unshare, 922 int *locked) 923 { 924 unsigned int fault_flags = 0; 925 vm_fault_t ret; 926 927 if (*flags & FOLL_NOFAULT) 928 return -EFAULT; 929 if (*flags & FOLL_WRITE) 930 fault_flags |= FAULT_FLAG_WRITE; 931 if (*flags & FOLL_REMOTE) 932 fault_flags |= FAULT_FLAG_REMOTE; 933 if (*flags & FOLL_UNLOCKABLE) { 934 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 935 /* 936 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 937 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 938 * That's because some callers may not be prepared to 939 * handle early exits caused by non-fatal signals. 940 */ 941 if (*flags & FOLL_INTERRUPTIBLE) 942 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 943 } 944 if (*flags & FOLL_NOWAIT) 945 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 946 if (*flags & FOLL_TRIED) { 947 /* 948 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 949 * can co-exist 950 */ 951 fault_flags |= FAULT_FLAG_TRIED; 952 } 953 if (unshare) { 954 fault_flags |= FAULT_FLAG_UNSHARE; 955 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 956 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 957 } 958 959 ret = handle_mm_fault(vma, address, fault_flags, NULL); 960 961 if (ret & VM_FAULT_COMPLETED) { 962 /* 963 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 964 * mmap lock in the page fault handler. Sanity check this. 965 */ 966 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 967 *locked = 0; 968 969 /* 970 * We should do the same as VM_FAULT_RETRY, but let's not 971 * return -EBUSY since that's not reflecting the reality of 972 * what has happened - we've just fully completed a page 973 * fault, with the mmap lock released. Use -EAGAIN to show 974 * that we want to take the mmap lock _again_. 975 */ 976 return -EAGAIN; 977 } 978 979 if (ret & VM_FAULT_ERROR) { 980 int err = vm_fault_to_errno(ret, *flags); 981 982 if (err) 983 return err; 984 BUG(); 985 } 986 987 if (ret & VM_FAULT_RETRY) { 988 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 989 *locked = 0; 990 return -EBUSY; 991 } 992 993 return 0; 994 } 995 996 /* 997 * Writing to file-backed mappings which require folio dirty tracking using GUP 998 * is a fundamentally broken operation, as kernel write access to GUP mappings 999 * do not adhere to the semantics expected by a file system. 1000 * 1001 * Consider the following scenario:- 1002 * 1003 * 1. A folio is written to via GUP which write-faults the memory, notifying 1004 * the file system and dirtying the folio. 1005 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1006 * the PTE being marked read-only. 1007 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1008 * direct mapping. 1009 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1010 * (though it does not have to). 1011 * 1012 * This results in both data being written to a folio without writenotify, and 1013 * the folio being dirtied unexpectedly (if the caller decides to do so). 1014 */ 1015 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1016 unsigned long gup_flags) 1017 { 1018 /* 1019 * If we aren't pinning then no problematic write can occur. A long term 1020 * pin is the most egregious case so this is the case we disallow. 1021 */ 1022 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1023 (FOLL_PIN | FOLL_LONGTERM)) 1024 return true; 1025 1026 /* 1027 * If the VMA does not require dirty tracking then no problematic write 1028 * can occur either. 1029 */ 1030 return !vma_needs_dirty_tracking(vma); 1031 } 1032 1033 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1034 { 1035 vm_flags_t vm_flags = vma->vm_flags; 1036 int write = (gup_flags & FOLL_WRITE); 1037 int foreign = (gup_flags & FOLL_REMOTE); 1038 bool vma_anon = vma_is_anonymous(vma); 1039 1040 if (vm_flags & (VM_IO | VM_PFNMAP)) 1041 return -EFAULT; 1042 1043 if ((gup_flags & FOLL_ANON) && !vma_anon) 1044 return -EFAULT; 1045 1046 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1047 return -EOPNOTSUPP; 1048 1049 if (vma_is_secretmem(vma)) 1050 return -EFAULT; 1051 1052 if (write) { 1053 if (!vma_anon && 1054 !writable_file_mapping_allowed(vma, gup_flags)) 1055 return -EFAULT; 1056 1057 if (!(vm_flags & VM_WRITE)) { 1058 if (!(gup_flags & FOLL_FORCE)) 1059 return -EFAULT; 1060 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1061 if (is_vm_hugetlb_page(vma)) 1062 return -EFAULT; 1063 /* 1064 * We used to let the write,force case do COW in a 1065 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1066 * set a breakpoint in a read-only mapping of an 1067 * executable, without corrupting the file (yet only 1068 * when that file had been opened for writing!). 1069 * Anon pages in shared mappings are surprising: now 1070 * just reject it. 1071 */ 1072 if (!is_cow_mapping(vm_flags)) 1073 return -EFAULT; 1074 } 1075 } else if (!(vm_flags & VM_READ)) { 1076 if (!(gup_flags & FOLL_FORCE)) 1077 return -EFAULT; 1078 /* 1079 * Is there actually any vma we can reach here which does not 1080 * have VM_MAYREAD set? 1081 */ 1082 if (!(vm_flags & VM_MAYREAD)) 1083 return -EFAULT; 1084 } 1085 /* 1086 * gups are always data accesses, not instruction 1087 * fetches, so execute=false here 1088 */ 1089 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1090 return -EFAULT; 1091 return 0; 1092 } 1093 1094 /* 1095 * This is "vma_lookup()", but with a warning if we would have 1096 * historically expanded the stack in the GUP code. 1097 */ 1098 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1099 unsigned long addr) 1100 { 1101 #ifdef CONFIG_STACK_GROWSUP 1102 return vma_lookup(mm, addr); 1103 #else 1104 static volatile unsigned long next_warn; 1105 struct vm_area_struct *vma; 1106 unsigned long now, next; 1107 1108 vma = find_vma(mm, addr); 1109 if (!vma || (addr >= vma->vm_start)) 1110 return vma; 1111 1112 /* Only warn for half-way relevant accesses */ 1113 if (!(vma->vm_flags & VM_GROWSDOWN)) 1114 return NULL; 1115 if (vma->vm_start - addr > 65536) 1116 return NULL; 1117 1118 /* Let's not warn more than once an hour.. */ 1119 now = jiffies; next = next_warn; 1120 if (next && time_before(now, next)) 1121 return NULL; 1122 next_warn = now + 60*60*HZ; 1123 1124 /* Let people know things may have changed. */ 1125 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1126 current->comm, task_pid_nr(current), 1127 vma->vm_start, vma->vm_end, addr); 1128 dump_stack(); 1129 return NULL; 1130 #endif 1131 } 1132 1133 /** 1134 * __get_user_pages() - pin user pages in memory 1135 * @mm: mm_struct of target mm 1136 * @start: starting user address 1137 * @nr_pages: number of pages from start to pin 1138 * @gup_flags: flags modifying pin behaviour 1139 * @pages: array that receives pointers to the pages pinned. 1140 * Should be at least nr_pages long. Or NULL, if caller 1141 * only intends to ensure the pages are faulted in. 1142 * @locked: whether we're still with the mmap_lock held 1143 * 1144 * Returns either number of pages pinned (which may be less than the 1145 * number requested), or an error. Details about the return value: 1146 * 1147 * -- If nr_pages is 0, returns 0. 1148 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1149 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1150 * pages pinned. Again, this may be less than nr_pages. 1151 * -- 0 return value is possible when the fault would need to be retried. 1152 * 1153 * The caller is responsible for releasing returned @pages, via put_page(). 1154 * 1155 * Must be called with mmap_lock held. It may be released. See below. 1156 * 1157 * __get_user_pages walks a process's page tables and takes a reference to 1158 * each struct page that each user address corresponds to at a given 1159 * instant. That is, it takes the page that would be accessed if a user 1160 * thread accesses the given user virtual address at that instant. 1161 * 1162 * This does not guarantee that the page exists in the user mappings when 1163 * __get_user_pages returns, and there may even be a completely different 1164 * page there in some cases (eg. if mmapped pagecache has been invalidated 1165 * and subsequently re-faulted). However it does guarantee that the page 1166 * won't be freed completely. And mostly callers simply care that the page 1167 * contains data that was valid *at some point in time*. Typically, an IO 1168 * or similar operation cannot guarantee anything stronger anyway because 1169 * locks can't be held over the syscall boundary. 1170 * 1171 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1172 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1173 * appropriate) must be called after the page is finished with, and 1174 * before put_page is called. 1175 * 1176 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1177 * be released. If this happens *@locked will be set to 0 on return. 1178 * 1179 * A caller using such a combination of @gup_flags must therefore hold the 1180 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1181 * it must be held for either reading or writing and will not be released. 1182 * 1183 * In most cases, get_user_pages or get_user_pages_fast should be used 1184 * instead of __get_user_pages. __get_user_pages should be used only if 1185 * you need some special @gup_flags. 1186 */ 1187 static long __get_user_pages(struct mm_struct *mm, 1188 unsigned long start, unsigned long nr_pages, 1189 unsigned int gup_flags, struct page **pages, 1190 int *locked) 1191 { 1192 long ret = 0, i = 0; 1193 struct vm_area_struct *vma = NULL; 1194 struct follow_page_context ctx = { NULL }; 1195 1196 if (!nr_pages) 1197 return 0; 1198 1199 start = untagged_addr_remote(mm, start); 1200 1201 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1202 1203 do { 1204 struct page *page; 1205 unsigned int foll_flags = gup_flags; 1206 unsigned int page_increm; 1207 1208 /* first iteration or cross vma bound */ 1209 if (!vma || start >= vma->vm_end) { 1210 vma = gup_vma_lookup(mm, start); 1211 if (!vma && in_gate_area(mm, start)) { 1212 ret = get_gate_page(mm, start & PAGE_MASK, 1213 gup_flags, &vma, 1214 pages ? &pages[i] : NULL); 1215 if (ret) 1216 goto out; 1217 ctx.page_mask = 0; 1218 goto next_page; 1219 } 1220 1221 if (!vma) { 1222 ret = -EFAULT; 1223 goto out; 1224 } 1225 ret = check_vma_flags(vma, gup_flags); 1226 if (ret) 1227 goto out; 1228 1229 if (is_vm_hugetlb_page(vma)) { 1230 i = follow_hugetlb_page(mm, vma, pages, 1231 &start, &nr_pages, i, 1232 gup_flags, locked); 1233 if (!*locked) { 1234 /* 1235 * We've got a VM_FAULT_RETRY 1236 * and we've lost mmap_lock. 1237 * We must stop here. 1238 */ 1239 BUG_ON(gup_flags & FOLL_NOWAIT); 1240 goto out; 1241 } 1242 continue; 1243 } 1244 } 1245 retry: 1246 /* 1247 * If we have a pending SIGKILL, don't keep faulting pages and 1248 * potentially allocating memory. 1249 */ 1250 if (fatal_signal_pending(current)) { 1251 ret = -EINTR; 1252 goto out; 1253 } 1254 cond_resched(); 1255 1256 page = follow_page_mask(vma, start, foll_flags, &ctx); 1257 if (!page || PTR_ERR(page) == -EMLINK) { 1258 ret = faultin_page(vma, start, &foll_flags, 1259 PTR_ERR(page) == -EMLINK, locked); 1260 switch (ret) { 1261 case 0: 1262 goto retry; 1263 case -EBUSY: 1264 case -EAGAIN: 1265 ret = 0; 1266 fallthrough; 1267 case -EFAULT: 1268 case -ENOMEM: 1269 case -EHWPOISON: 1270 goto out; 1271 } 1272 BUG(); 1273 } else if (PTR_ERR(page) == -EEXIST) { 1274 /* 1275 * Proper page table entry exists, but no corresponding 1276 * struct page. If the caller expects **pages to be 1277 * filled in, bail out now, because that can't be done 1278 * for this page. 1279 */ 1280 if (pages) { 1281 ret = PTR_ERR(page); 1282 goto out; 1283 } 1284 1285 goto next_page; 1286 } else if (IS_ERR(page)) { 1287 ret = PTR_ERR(page); 1288 goto out; 1289 } 1290 if (pages) { 1291 pages[i] = page; 1292 flush_anon_page(vma, page, start); 1293 flush_dcache_page(page); 1294 ctx.page_mask = 0; 1295 } 1296 next_page: 1297 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1298 if (page_increm > nr_pages) 1299 page_increm = nr_pages; 1300 i += page_increm; 1301 start += page_increm * PAGE_SIZE; 1302 nr_pages -= page_increm; 1303 } while (nr_pages); 1304 out: 1305 if (ctx.pgmap) 1306 put_dev_pagemap(ctx.pgmap); 1307 return i ? i : ret; 1308 } 1309 1310 static bool vma_permits_fault(struct vm_area_struct *vma, 1311 unsigned int fault_flags) 1312 { 1313 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1314 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1315 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1316 1317 if (!(vm_flags & vma->vm_flags)) 1318 return false; 1319 1320 /* 1321 * The architecture might have a hardware protection 1322 * mechanism other than read/write that can deny access. 1323 * 1324 * gup always represents data access, not instruction 1325 * fetches, so execute=false here: 1326 */ 1327 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1328 return false; 1329 1330 return true; 1331 } 1332 1333 /** 1334 * fixup_user_fault() - manually resolve a user page fault 1335 * @mm: mm_struct of target mm 1336 * @address: user address 1337 * @fault_flags:flags to pass down to handle_mm_fault() 1338 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1339 * does not allow retry. If NULL, the caller must guarantee 1340 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1341 * 1342 * This is meant to be called in the specific scenario where for locking reasons 1343 * we try to access user memory in atomic context (within a pagefault_disable() 1344 * section), this returns -EFAULT, and we want to resolve the user fault before 1345 * trying again. 1346 * 1347 * Typically this is meant to be used by the futex code. 1348 * 1349 * The main difference with get_user_pages() is that this function will 1350 * unconditionally call handle_mm_fault() which will in turn perform all the 1351 * necessary SW fixup of the dirty and young bits in the PTE, while 1352 * get_user_pages() only guarantees to update these in the struct page. 1353 * 1354 * This is important for some architectures where those bits also gate the 1355 * access permission to the page because they are maintained in software. On 1356 * such architectures, gup() will not be enough to make a subsequent access 1357 * succeed. 1358 * 1359 * This function will not return with an unlocked mmap_lock. So it has not the 1360 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1361 */ 1362 int fixup_user_fault(struct mm_struct *mm, 1363 unsigned long address, unsigned int fault_flags, 1364 bool *unlocked) 1365 { 1366 struct vm_area_struct *vma; 1367 vm_fault_t ret; 1368 1369 address = untagged_addr_remote(mm, address); 1370 1371 if (unlocked) 1372 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1373 1374 retry: 1375 vma = gup_vma_lookup(mm, address); 1376 if (!vma) 1377 return -EFAULT; 1378 1379 if (!vma_permits_fault(vma, fault_flags)) 1380 return -EFAULT; 1381 1382 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1383 fatal_signal_pending(current)) 1384 return -EINTR; 1385 1386 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1387 1388 if (ret & VM_FAULT_COMPLETED) { 1389 /* 1390 * NOTE: it's a pity that we need to retake the lock here 1391 * to pair with the unlock() in the callers. Ideally we 1392 * could tell the callers so they do not need to unlock. 1393 */ 1394 mmap_read_lock(mm); 1395 *unlocked = true; 1396 return 0; 1397 } 1398 1399 if (ret & VM_FAULT_ERROR) { 1400 int err = vm_fault_to_errno(ret, 0); 1401 1402 if (err) 1403 return err; 1404 BUG(); 1405 } 1406 1407 if (ret & VM_FAULT_RETRY) { 1408 mmap_read_lock(mm); 1409 *unlocked = true; 1410 fault_flags |= FAULT_FLAG_TRIED; 1411 goto retry; 1412 } 1413 1414 return 0; 1415 } 1416 EXPORT_SYMBOL_GPL(fixup_user_fault); 1417 1418 /* 1419 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1420 * specified, it'll also respond to generic signals. The caller of GUP 1421 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1422 */ 1423 static bool gup_signal_pending(unsigned int flags) 1424 { 1425 if (fatal_signal_pending(current)) 1426 return true; 1427 1428 if (!(flags & FOLL_INTERRUPTIBLE)) 1429 return false; 1430 1431 return signal_pending(current); 1432 } 1433 1434 /* 1435 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1436 * the caller. This function may drop the mmap_lock. If it does so, then it will 1437 * set (*locked = 0). 1438 * 1439 * (*locked == 0) means that the caller expects this function to acquire and 1440 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1441 * the function returns, even though it may have changed temporarily during 1442 * function execution. 1443 * 1444 * Please note that this function, unlike __get_user_pages(), will not return 0 1445 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1446 */ 1447 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1448 unsigned long start, 1449 unsigned long nr_pages, 1450 struct page **pages, 1451 int *locked, 1452 unsigned int flags) 1453 { 1454 long ret, pages_done; 1455 bool must_unlock = false; 1456 1457 /* 1458 * The internal caller expects GUP to manage the lock internally and the 1459 * lock must be released when this returns. 1460 */ 1461 if (!*locked) { 1462 if (mmap_read_lock_killable(mm)) 1463 return -EAGAIN; 1464 must_unlock = true; 1465 *locked = 1; 1466 } 1467 else 1468 mmap_assert_locked(mm); 1469 1470 if (flags & FOLL_PIN) 1471 mm_set_has_pinned_flag(&mm->flags); 1472 1473 /* 1474 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1475 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1476 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1477 * for FOLL_GET, not for the newer FOLL_PIN. 1478 * 1479 * FOLL_PIN always expects pages to be non-null, but no need to assert 1480 * that here, as any failures will be obvious enough. 1481 */ 1482 if (pages && !(flags & FOLL_PIN)) 1483 flags |= FOLL_GET; 1484 1485 pages_done = 0; 1486 for (;;) { 1487 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1488 locked); 1489 if (!(flags & FOLL_UNLOCKABLE)) { 1490 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1491 pages_done = ret; 1492 break; 1493 } 1494 1495 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1496 if (!*locked) { 1497 BUG_ON(ret < 0); 1498 BUG_ON(ret >= nr_pages); 1499 } 1500 1501 if (ret > 0) { 1502 nr_pages -= ret; 1503 pages_done += ret; 1504 if (!nr_pages) 1505 break; 1506 } 1507 if (*locked) { 1508 /* 1509 * VM_FAULT_RETRY didn't trigger or it was a 1510 * FOLL_NOWAIT. 1511 */ 1512 if (!pages_done) 1513 pages_done = ret; 1514 break; 1515 } 1516 /* 1517 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1518 * For the prefault case (!pages) we only update counts. 1519 */ 1520 if (likely(pages)) 1521 pages += ret; 1522 start += ret << PAGE_SHIFT; 1523 1524 /* The lock was temporarily dropped, so we must unlock later */ 1525 must_unlock = true; 1526 1527 retry: 1528 /* 1529 * Repeat on the address that fired VM_FAULT_RETRY 1530 * with both FAULT_FLAG_ALLOW_RETRY and 1531 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1532 * by fatal signals of even common signals, depending on 1533 * the caller's request. So we need to check it before we 1534 * start trying again otherwise it can loop forever. 1535 */ 1536 if (gup_signal_pending(flags)) { 1537 if (!pages_done) 1538 pages_done = -EINTR; 1539 break; 1540 } 1541 1542 ret = mmap_read_lock_killable(mm); 1543 if (ret) { 1544 BUG_ON(ret > 0); 1545 if (!pages_done) 1546 pages_done = ret; 1547 break; 1548 } 1549 1550 *locked = 1; 1551 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1552 pages, locked); 1553 if (!*locked) { 1554 /* Continue to retry until we succeeded */ 1555 BUG_ON(ret != 0); 1556 goto retry; 1557 } 1558 if (ret != 1) { 1559 BUG_ON(ret > 1); 1560 if (!pages_done) 1561 pages_done = ret; 1562 break; 1563 } 1564 nr_pages--; 1565 pages_done++; 1566 if (!nr_pages) 1567 break; 1568 if (likely(pages)) 1569 pages++; 1570 start += PAGE_SIZE; 1571 } 1572 if (must_unlock && *locked) { 1573 /* 1574 * We either temporarily dropped the lock, or the caller 1575 * requested that we both acquire and drop the lock. Either way, 1576 * we must now unlock, and notify the caller of that state. 1577 */ 1578 mmap_read_unlock(mm); 1579 *locked = 0; 1580 } 1581 return pages_done; 1582 } 1583 1584 /** 1585 * populate_vma_page_range() - populate a range of pages in the vma. 1586 * @vma: target vma 1587 * @start: start address 1588 * @end: end address 1589 * @locked: whether the mmap_lock is still held 1590 * 1591 * This takes care of mlocking the pages too if VM_LOCKED is set. 1592 * 1593 * Return either number of pages pinned in the vma, or a negative error 1594 * code on error. 1595 * 1596 * vma->vm_mm->mmap_lock must be held. 1597 * 1598 * If @locked is NULL, it may be held for read or write and will 1599 * be unperturbed. 1600 * 1601 * If @locked is non-NULL, it must held for read only and may be 1602 * released. If it's released, *@locked will be set to 0. 1603 */ 1604 long populate_vma_page_range(struct vm_area_struct *vma, 1605 unsigned long start, unsigned long end, int *locked) 1606 { 1607 struct mm_struct *mm = vma->vm_mm; 1608 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1609 int local_locked = 1; 1610 int gup_flags; 1611 long ret; 1612 1613 VM_BUG_ON(!PAGE_ALIGNED(start)); 1614 VM_BUG_ON(!PAGE_ALIGNED(end)); 1615 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1616 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1617 mmap_assert_locked(mm); 1618 1619 /* 1620 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1621 * faultin_page() to break COW, so it has no work to do here. 1622 */ 1623 if (vma->vm_flags & VM_LOCKONFAULT) 1624 return nr_pages; 1625 1626 gup_flags = FOLL_TOUCH; 1627 /* 1628 * We want to touch writable mappings with a write fault in order 1629 * to break COW, except for shared mappings because these don't COW 1630 * and we would not want to dirty them for nothing. 1631 */ 1632 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1633 gup_flags |= FOLL_WRITE; 1634 1635 /* 1636 * We want mlock to succeed for regions that have any permissions 1637 * other than PROT_NONE. 1638 */ 1639 if (vma_is_accessible(vma)) 1640 gup_flags |= FOLL_FORCE; 1641 1642 if (locked) 1643 gup_flags |= FOLL_UNLOCKABLE; 1644 1645 /* 1646 * We made sure addr is within a VMA, so the following will 1647 * not result in a stack expansion that recurses back here. 1648 */ 1649 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1650 NULL, locked ? locked : &local_locked); 1651 lru_add_drain(); 1652 return ret; 1653 } 1654 1655 /* 1656 * faultin_vma_page_range() - populate (prefault) page tables inside the 1657 * given VMA range readable/writable 1658 * 1659 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1660 * 1661 * @vma: target vma 1662 * @start: start address 1663 * @end: end address 1664 * @write: whether to prefault readable or writable 1665 * @locked: whether the mmap_lock is still held 1666 * 1667 * Returns either number of processed pages in the vma, or a negative error 1668 * code on error (see __get_user_pages()). 1669 * 1670 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1671 * covered by the VMA. If it's released, *@locked will be set to 0. 1672 */ 1673 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1674 unsigned long end, bool write, int *locked) 1675 { 1676 struct mm_struct *mm = vma->vm_mm; 1677 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1678 int gup_flags; 1679 long ret; 1680 1681 VM_BUG_ON(!PAGE_ALIGNED(start)); 1682 VM_BUG_ON(!PAGE_ALIGNED(end)); 1683 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1684 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1685 mmap_assert_locked(mm); 1686 1687 /* 1688 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1689 * the page dirty with FOLL_WRITE -- which doesn't make a 1690 * difference with !FOLL_FORCE, because the page is writable 1691 * in the page table. 1692 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1693 * a poisoned page. 1694 * !FOLL_FORCE: Require proper access permissions. 1695 */ 1696 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1697 if (write) 1698 gup_flags |= FOLL_WRITE; 1699 1700 /* 1701 * We want to report -EINVAL instead of -EFAULT for any permission 1702 * problems or incompatible mappings. 1703 */ 1704 if (check_vma_flags(vma, gup_flags)) 1705 return -EINVAL; 1706 1707 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1708 NULL, locked); 1709 lru_add_drain(); 1710 return ret; 1711 } 1712 1713 /* 1714 * __mm_populate - populate and/or mlock pages within a range of address space. 1715 * 1716 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1717 * flags. VMAs must be already marked with the desired vm_flags, and 1718 * mmap_lock must not be held. 1719 */ 1720 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1721 { 1722 struct mm_struct *mm = current->mm; 1723 unsigned long end, nstart, nend; 1724 struct vm_area_struct *vma = NULL; 1725 int locked = 0; 1726 long ret = 0; 1727 1728 end = start + len; 1729 1730 for (nstart = start; nstart < end; nstart = nend) { 1731 /* 1732 * We want to fault in pages for [nstart; end) address range. 1733 * Find first corresponding VMA. 1734 */ 1735 if (!locked) { 1736 locked = 1; 1737 mmap_read_lock(mm); 1738 vma = find_vma_intersection(mm, nstart, end); 1739 } else if (nstart >= vma->vm_end) 1740 vma = find_vma_intersection(mm, vma->vm_end, end); 1741 1742 if (!vma) 1743 break; 1744 /* 1745 * Set [nstart; nend) to intersection of desired address 1746 * range with the first VMA. Also, skip undesirable VMA types. 1747 */ 1748 nend = min(end, vma->vm_end); 1749 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1750 continue; 1751 if (nstart < vma->vm_start) 1752 nstart = vma->vm_start; 1753 /* 1754 * Now fault in a range of pages. populate_vma_page_range() 1755 * double checks the vma flags, so that it won't mlock pages 1756 * if the vma was already munlocked. 1757 */ 1758 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1759 if (ret < 0) { 1760 if (ignore_errors) { 1761 ret = 0; 1762 continue; /* continue at next VMA */ 1763 } 1764 break; 1765 } 1766 nend = nstart + ret * PAGE_SIZE; 1767 ret = 0; 1768 } 1769 if (locked) 1770 mmap_read_unlock(mm); 1771 return ret; /* 0 or negative error code */ 1772 } 1773 #else /* CONFIG_MMU */ 1774 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1775 unsigned long nr_pages, struct page **pages, 1776 int *locked, unsigned int foll_flags) 1777 { 1778 struct vm_area_struct *vma; 1779 bool must_unlock = false; 1780 unsigned long vm_flags; 1781 long i; 1782 1783 if (!nr_pages) 1784 return 0; 1785 1786 /* 1787 * The internal caller expects GUP to manage the lock internally and the 1788 * lock must be released when this returns. 1789 */ 1790 if (!*locked) { 1791 if (mmap_read_lock_killable(mm)) 1792 return -EAGAIN; 1793 must_unlock = true; 1794 *locked = 1; 1795 } 1796 1797 /* calculate required read or write permissions. 1798 * If FOLL_FORCE is set, we only require the "MAY" flags. 1799 */ 1800 vm_flags = (foll_flags & FOLL_WRITE) ? 1801 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1802 vm_flags &= (foll_flags & FOLL_FORCE) ? 1803 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1804 1805 for (i = 0; i < nr_pages; i++) { 1806 vma = find_vma(mm, start); 1807 if (!vma) 1808 break; 1809 1810 /* protect what we can, including chardevs */ 1811 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1812 !(vm_flags & vma->vm_flags)) 1813 break; 1814 1815 if (pages) { 1816 pages[i] = virt_to_page((void *)start); 1817 if (pages[i]) 1818 get_page(pages[i]); 1819 } 1820 1821 start = (start + PAGE_SIZE) & PAGE_MASK; 1822 } 1823 1824 if (must_unlock && *locked) { 1825 mmap_read_unlock(mm); 1826 *locked = 0; 1827 } 1828 1829 return i ? : -EFAULT; 1830 } 1831 #endif /* !CONFIG_MMU */ 1832 1833 /** 1834 * fault_in_writeable - fault in userspace address range for writing 1835 * @uaddr: start of address range 1836 * @size: size of address range 1837 * 1838 * Returns the number of bytes not faulted in (like copy_to_user() and 1839 * copy_from_user()). 1840 */ 1841 size_t fault_in_writeable(char __user *uaddr, size_t size) 1842 { 1843 char __user *start = uaddr, *end; 1844 1845 if (unlikely(size == 0)) 1846 return 0; 1847 if (!user_write_access_begin(uaddr, size)) 1848 return size; 1849 if (!PAGE_ALIGNED(uaddr)) { 1850 unsafe_put_user(0, uaddr, out); 1851 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1852 } 1853 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1854 if (unlikely(end < start)) 1855 end = NULL; 1856 while (uaddr != end) { 1857 unsafe_put_user(0, uaddr, out); 1858 uaddr += PAGE_SIZE; 1859 } 1860 1861 out: 1862 user_write_access_end(); 1863 if (size > uaddr - start) 1864 return size - (uaddr - start); 1865 return 0; 1866 } 1867 EXPORT_SYMBOL(fault_in_writeable); 1868 1869 /** 1870 * fault_in_subpage_writeable - fault in an address range for writing 1871 * @uaddr: start of address range 1872 * @size: size of address range 1873 * 1874 * Fault in a user address range for writing while checking for permissions at 1875 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1876 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1877 * 1878 * Returns the number of bytes not faulted in (like copy_to_user() and 1879 * copy_from_user()). 1880 */ 1881 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1882 { 1883 size_t faulted_in; 1884 1885 /* 1886 * Attempt faulting in at page granularity first for page table 1887 * permission checking. The arch-specific probe_subpage_writeable() 1888 * functions may not check for this. 1889 */ 1890 faulted_in = size - fault_in_writeable(uaddr, size); 1891 if (faulted_in) 1892 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1893 1894 return size - faulted_in; 1895 } 1896 EXPORT_SYMBOL(fault_in_subpage_writeable); 1897 1898 /* 1899 * fault_in_safe_writeable - fault in an address range for writing 1900 * @uaddr: start of address range 1901 * @size: length of address range 1902 * 1903 * Faults in an address range for writing. This is primarily useful when we 1904 * already know that some or all of the pages in the address range aren't in 1905 * memory. 1906 * 1907 * Unlike fault_in_writeable(), this function is non-destructive. 1908 * 1909 * Note that we don't pin or otherwise hold the pages referenced that we fault 1910 * in. There's no guarantee that they'll stay in memory for any duration of 1911 * time. 1912 * 1913 * Returns the number of bytes not faulted in, like copy_to_user() and 1914 * copy_from_user(). 1915 */ 1916 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1917 { 1918 unsigned long start = (unsigned long)uaddr, end; 1919 struct mm_struct *mm = current->mm; 1920 bool unlocked = false; 1921 1922 if (unlikely(size == 0)) 1923 return 0; 1924 end = PAGE_ALIGN(start + size); 1925 if (end < start) 1926 end = 0; 1927 1928 mmap_read_lock(mm); 1929 do { 1930 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1931 break; 1932 start = (start + PAGE_SIZE) & PAGE_MASK; 1933 } while (start != end); 1934 mmap_read_unlock(mm); 1935 1936 if (size > (unsigned long)uaddr - start) 1937 return size - ((unsigned long)uaddr - start); 1938 return 0; 1939 } 1940 EXPORT_SYMBOL(fault_in_safe_writeable); 1941 1942 /** 1943 * fault_in_readable - fault in userspace address range for reading 1944 * @uaddr: start of user address range 1945 * @size: size of user address range 1946 * 1947 * Returns the number of bytes not faulted in (like copy_to_user() and 1948 * copy_from_user()). 1949 */ 1950 size_t fault_in_readable(const char __user *uaddr, size_t size) 1951 { 1952 const char __user *start = uaddr, *end; 1953 volatile char c; 1954 1955 if (unlikely(size == 0)) 1956 return 0; 1957 if (!user_read_access_begin(uaddr, size)) 1958 return size; 1959 if (!PAGE_ALIGNED(uaddr)) { 1960 unsafe_get_user(c, uaddr, out); 1961 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1962 } 1963 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1964 if (unlikely(end < start)) 1965 end = NULL; 1966 while (uaddr != end) { 1967 unsafe_get_user(c, uaddr, out); 1968 uaddr += PAGE_SIZE; 1969 } 1970 1971 out: 1972 user_read_access_end(); 1973 (void)c; 1974 if (size > uaddr - start) 1975 return size - (uaddr - start); 1976 return 0; 1977 } 1978 EXPORT_SYMBOL(fault_in_readable); 1979 1980 /** 1981 * get_dump_page() - pin user page in memory while writing it to core dump 1982 * @addr: user address 1983 * 1984 * Returns struct page pointer of user page pinned for dump, 1985 * to be freed afterwards by put_page(). 1986 * 1987 * Returns NULL on any kind of failure - a hole must then be inserted into 1988 * the corefile, to preserve alignment with its headers; and also returns 1989 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1990 * allowing a hole to be left in the corefile to save disk space. 1991 * 1992 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1993 */ 1994 #ifdef CONFIG_ELF_CORE 1995 struct page *get_dump_page(unsigned long addr) 1996 { 1997 struct page *page; 1998 int locked = 0; 1999 int ret; 2000 2001 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2002 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2003 return (ret == 1) ? page : NULL; 2004 } 2005 #endif /* CONFIG_ELF_CORE */ 2006 2007 #ifdef CONFIG_MIGRATION 2008 /* 2009 * Returns the number of collected pages. Return value is always >= 0. 2010 */ 2011 static unsigned long collect_longterm_unpinnable_pages( 2012 struct list_head *movable_page_list, 2013 unsigned long nr_pages, 2014 struct page **pages) 2015 { 2016 unsigned long i, collected = 0; 2017 struct folio *prev_folio = NULL; 2018 bool drain_allow = true; 2019 2020 for (i = 0; i < nr_pages; i++) { 2021 struct folio *folio = page_folio(pages[i]); 2022 2023 if (folio == prev_folio) 2024 continue; 2025 prev_folio = folio; 2026 2027 if (folio_is_longterm_pinnable(folio)) 2028 continue; 2029 2030 collected++; 2031 2032 if (folio_is_device_coherent(folio)) 2033 continue; 2034 2035 if (folio_test_hugetlb(folio)) { 2036 isolate_hugetlb(folio, movable_page_list); 2037 continue; 2038 } 2039 2040 if (!folio_test_lru(folio) && drain_allow) { 2041 lru_add_drain_all(); 2042 drain_allow = false; 2043 } 2044 2045 if (!folio_isolate_lru(folio)) 2046 continue; 2047 2048 list_add_tail(&folio->lru, movable_page_list); 2049 node_stat_mod_folio(folio, 2050 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2051 folio_nr_pages(folio)); 2052 } 2053 2054 return collected; 2055 } 2056 2057 /* 2058 * Unpins all pages and migrates device coherent pages and movable_page_list. 2059 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2060 * (or partial success). 2061 */ 2062 static int migrate_longterm_unpinnable_pages( 2063 struct list_head *movable_page_list, 2064 unsigned long nr_pages, 2065 struct page **pages) 2066 { 2067 int ret; 2068 unsigned long i; 2069 2070 for (i = 0; i < nr_pages; i++) { 2071 struct folio *folio = page_folio(pages[i]); 2072 2073 if (folio_is_device_coherent(folio)) { 2074 /* 2075 * Migration will fail if the page is pinned, so convert 2076 * the pin on the source page to a normal reference. 2077 */ 2078 pages[i] = NULL; 2079 folio_get(folio); 2080 gup_put_folio(folio, 1, FOLL_PIN); 2081 2082 if (migrate_device_coherent_page(&folio->page)) { 2083 ret = -EBUSY; 2084 goto err; 2085 } 2086 2087 continue; 2088 } 2089 2090 /* 2091 * We can't migrate pages with unexpected references, so drop 2092 * the reference obtained by __get_user_pages_locked(). 2093 * Migrating pages have been added to movable_page_list after 2094 * calling folio_isolate_lru() which takes a reference so the 2095 * page won't be freed if it's migrating. 2096 */ 2097 unpin_user_page(pages[i]); 2098 pages[i] = NULL; 2099 } 2100 2101 if (!list_empty(movable_page_list)) { 2102 struct migration_target_control mtc = { 2103 .nid = NUMA_NO_NODE, 2104 .gfp_mask = GFP_USER | __GFP_NOWARN, 2105 }; 2106 2107 if (migrate_pages(movable_page_list, alloc_migration_target, 2108 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2109 MR_LONGTERM_PIN, NULL)) { 2110 ret = -ENOMEM; 2111 goto err; 2112 } 2113 } 2114 2115 putback_movable_pages(movable_page_list); 2116 2117 return -EAGAIN; 2118 2119 err: 2120 for (i = 0; i < nr_pages; i++) 2121 if (pages[i]) 2122 unpin_user_page(pages[i]); 2123 putback_movable_pages(movable_page_list); 2124 2125 return ret; 2126 } 2127 2128 /* 2129 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2130 * pages in the range are required to be pinned via FOLL_PIN, before calling 2131 * this routine. 2132 * 2133 * If any pages in the range are not allowed to be pinned, then this routine 2134 * will migrate those pages away, unpin all the pages in the range and return 2135 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2136 * call this routine again. 2137 * 2138 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2139 * The caller should give up, and propagate the error back up the call stack. 2140 * 2141 * If everything is OK and all pages in the range are allowed to be pinned, then 2142 * this routine leaves all pages pinned and returns zero for success. 2143 */ 2144 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2145 struct page **pages) 2146 { 2147 unsigned long collected; 2148 LIST_HEAD(movable_page_list); 2149 2150 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2151 nr_pages, pages); 2152 if (!collected) 2153 return 0; 2154 2155 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2156 pages); 2157 } 2158 #else 2159 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2160 struct page **pages) 2161 { 2162 return 0; 2163 } 2164 #endif /* CONFIG_MIGRATION */ 2165 2166 /* 2167 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2168 * allows us to process the FOLL_LONGTERM flag. 2169 */ 2170 static long __gup_longterm_locked(struct mm_struct *mm, 2171 unsigned long start, 2172 unsigned long nr_pages, 2173 struct page **pages, 2174 int *locked, 2175 unsigned int gup_flags) 2176 { 2177 unsigned int flags; 2178 long rc, nr_pinned_pages; 2179 2180 if (!(gup_flags & FOLL_LONGTERM)) 2181 return __get_user_pages_locked(mm, start, nr_pages, pages, 2182 locked, gup_flags); 2183 2184 flags = memalloc_pin_save(); 2185 do { 2186 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2187 pages, locked, 2188 gup_flags); 2189 if (nr_pinned_pages <= 0) { 2190 rc = nr_pinned_pages; 2191 break; 2192 } 2193 2194 /* FOLL_LONGTERM implies FOLL_PIN */ 2195 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2196 } while (rc == -EAGAIN); 2197 memalloc_pin_restore(flags); 2198 return rc ? rc : nr_pinned_pages; 2199 } 2200 2201 /* 2202 * Check that the given flags are valid for the exported gup/pup interface, and 2203 * update them with the required flags that the caller must have set. 2204 */ 2205 static bool is_valid_gup_args(struct page **pages, int *locked, 2206 unsigned int *gup_flags_p, unsigned int to_set) 2207 { 2208 unsigned int gup_flags = *gup_flags_p; 2209 2210 /* 2211 * These flags not allowed to be specified externally to the gup 2212 * interfaces: 2213 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2214 * - FOLL_REMOTE is internal only and used on follow_page() 2215 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2216 */ 2217 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2218 FOLL_REMOTE | FOLL_FAST_ONLY))) 2219 return false; 2220 2221 gup_flags |= to_set; 2222 if (locked) { 2223 /* At the external interface locked must be set */ 2224 if (WARN_ON_ONCE(*locked != 1)) 2225 return false; 2226 2227 gup_flags |= FOLL_UNLOCKABLE; 2228 } 2229 2230 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2231 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2232 (FOLL_PIN | FOLL_GET))) 2233 return false; 2234 2235 /* LONGTERM can only be specified when pinning */ 2236 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2237 return false; 2238 2239 /* Pages input must be given if using GET/PIN */ 2240 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2241 return false; 2242 2243 /* We want to allow the pgmap to be hot-unplugged at all times */ 2244 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2245 (gup_flags & FOLL_PCI_P2PDMA))) 2246 return false; 2247 2248 *gup_flags_p = gup_flags; 2249 return true; 2250 } 2251 2252 #ifdef CONFIG_MMU 2253 /** 2254 * get_user_pages_remote() - pin user pages in memory 2255 * @mm: mm_struct of target mm 2256 * @start: starting user address 2257 * @nr_pages: number of pages from start to pin 2258 * @gup_flags: flags modifying lookup behaviour 2259 * @pages: array that receives pointers to the pages pinned. 2260 * Should be at least nr_pages long. Or NULL, if caller 2261 * only intends to ensure the pages are faulted in. 2262 * @locked: pointer to lock flag indicating whether lock is held and 2263 * subsequently whether VM_FAULT_RETRY functionality can be 2264 * utilised. Lock must initially be held. 2265 * 2266 * Returns either number of pages pinned (which may be less than the 2267 * number requested), or an error. Details about the return value: 2268 * 2269 * -- If nr_pages is 0, returns 0. 2270 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2271 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2272 * pages pinned. Again, this may be less than nr_pages. 2273 * 2274 * The caller is responsible for releasing returned @pages, via put_page(). 2275 * 2276 * Must be called with mmap_lock held for read or write. 2277 * 2278 * get_user_pages_remote walks a process's page tables and takes a reference 2279 * to each struct page that each user address corresponds to at a given 2280 * instant. That is, it takes the page that would be accessed if a user 2281 * thread accesses the given user virtual address at that instant. 2282 * 2283 * This does not guarantee that the page exists in the user mappings when 2284 * get_user_pages_remote returns, and there may even be a completely different 2285 * page there in some cases (eg. if mmapped pagecache has been invalidated 2286 * and subsequently re-faulted). However it does guarantee that the page 2287 * won't be freed completely. And mostly callers simply care that the page 2288 * contains data that was valid *at some point in time*. Typically, an IO 2289 * or similar operation cannot guarantee anything stronger anyway because 2290 * locks can't be held over the syscall boundary. 2291 * 2292 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2293 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2294 * be called after the page is finished with, and before put_page is called. 2295 * 2296 * get_user_pages_remote is typically used for fewer-copy IO operations, 2297 * to get a handle on the memory by some means other than accesses 2298 * via the user virtual addresses. The pages may be submitted for 2299 * DMA to devices or accessed via their kernel linear mapping (via the 2300 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2301 * 2302 * See also get_user_pages_fast, for performance critical applications. 2303 * 2304 * get_user_pages_remote should be phased out in favor of 2305 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2306 * should use get_user_pages_remote because it cannot pass 2307 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2308 */ 2309 long get_user_pages_remote(struct mm_struct *mm, 2310 unsigned long start, unsigned long nr_pages, 2311 unsigned int gup_flags, struct page **pages, 2312 int *locked) 2313 { 2314 int local_locked = 1; 2315 2316 if (!is_valid_gup_args(pages, locked, &gup_flags, 2317 FOLL_TOUCH | FOLL_REMOTE)) 2318 return -EINVAL; 2319 2320 return __get_user_pages_locked(mm, start, nr_pages, pages, 2321 locked ? locked : &local_locked, 2322 gup_flags); 2323 } 2324 EXPORT_SYMBOL(get_user_pages_remote); 2325 2326 #else /* CONFIG_MMU */ 2327 long get_user_pages_remote(struct mm_struct *mm, 2328 unsigned long start, unsigned long nr_pages, 2329 unsigned int gup_flags, struct page **pages, 2330 int *locked) 2331 { 2332 return 0; 2333 } 2334 #endif /* !CONFIG_MMU */ 2335 2336 /** 2337 * get_user_pages() - pin user pages in memory 2338 * @start: starting user address 2339 * @nr_pages: number of pages from start to pin 2340 * @gup_flags: flags modifying lookup behaviour 2341 * @pages: array that receives pointers to the pages pinned. 2342 * Should be at least nr_pages long. Or NULL, if caller 2343 * only intends to ensure the pages are faulted in. 2344 * 2345 * This is the same as get_user_pages_remote(), just with a less-flexible 2346 * calling convention where we assume that the mm being operated on belongs to 2347 * the current task, and doesn't allow passing of a locked parameter. We also 2348 * obviously don't pass FOLL_REMOTE in here. 2349 */ 2350 long get_user_pages(unsigned long start, unsigned long nr_pages, 2351 unsigned int gup_flags, struct page **pages) 2352 { 2353 int locked = 1; 2354 2355 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2356 return -EINVAL; 2357 2358 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2359 &locked, gup_flags); 2360 } 2361 EXPORT_SYMBOL(get_user_pages); 2362 2363 /* 2364 * get_user_pages_unlocked() is suitable to replace the form: 2365 * 2366 * mmap_read_lock(mm); 2367 * get_user_pages(mm, ..., pages, NULL); 2368 * mmap_read_unlock(mm); 2369 * 2370 * with: 2371 * 2372 * get_user_pages_unlocked(mm, ..., pages); 2373 * 2374 * It is functionally equivalent to get_user_pages_fast so 2375 * get_user_pages_fast should be used instead if specific gup_flags 2376 * (e.g. FOLL_FORCE) are not required. 2377 */ 2378 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2379 struct page **pages, unsigned int gup_flags) 2380 { 2381 int locked = 0; 2382 2383 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2384 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2385 return -EINVAL; 2386 2387 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2388 &locked, gup_flags); 2389 } 2390 EXPORT_SYMBOL(get_user_pages_unlocked); 2391 2392 /* 2393 * Fast GUP 2394 * 2395 * get_user_pages_fast attempts to pin user pages by walking the page 2396 * tables directly and avoids taking locks. Thus the walker needs to be 2397 * protected from page table pages being freed from under it, and should 2398 * block any THP splits. 2399 * 2400 * One way to achieve this is to have the walker disable interrupts, and 2401 * rely on IPIs from the TLB flushing code blocking before the page table 2402 * pages are freed. This is unsuitable for architectures that do not need 2403 * to broadcast an IPI when invalidating TLBs. 2404 * 2405 * Another way to achieve this is to batch up page table containing pages 2406 * belonging to more than one mm_user, then rcu_sched a callback to free those 2407 * pages. Disabling interrupts will allow the fast_gup walker to both block 2408 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2409 * (which is a relatively rare event). The code below adopts this strategy. 2410 * 2411 * Before activating this code, please be aware that the following assumptions 2412 * are currently made: 2413 * 2414 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2415 * free pages containing page tables or TLB flushing requires IPI broadcast. 2416 * 2417 * *) ptes can be read atomically by the architecture. 2418 * 2419 * *) access_ok is sufficient to validate userspace address ranges. 2420 * 2421 * The last two assumptions can be relaxed by the addition of helper functions. 2422 * 2423 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2424 */ 2425 #ifdef CONFIG_HAVE_FAST_GUP 2426 2427 /* 2428 * Used in the GUP-fast path to determine whether a pin is permitted for a 2429 * specific folio. 2430 * 2431 * This call assumes the caller has pinned the folio, that the lowest page table 2432 * level still points to this folio, and that interrupts have been disabled. 2433 * 2434 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2435 * (see comment describing the writable_file_mapping_allowed() function). We 2436 * therefore try to avoid the most egregious case of a long-term mapping doing 2437 * so. 2438 * 2439 * This function cannot be as thorough as that one as the VMA is not available 2440 * in the fast path, so instead we whitelist known good cases and if in doubt, 2441 * fall back to the slow path. 2442 */ 2443 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2444 { 2445 struct address_space *mapping; 2446 unsigned long mapping_flags; 2447 2448 /* 2449 * If we aren't pinning then no problematic write can occur. A long term 2450 * pin is the most egregious case so this is the one we disallow. 2451 */ 2452 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2453 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2454 return true; 2455 2456 /* The folio is pinned, so we can safely access folio fields. */ 2457 2458 if (WARN_ON_ONCE(folio_test_slab(folio))) 2459 return false; 2460 2461 /* hugetlb mappings do not require dirty-tracking. */ 2462 if (folio_test_hugetlb(folio)) 2463 return true; 2464 2465 /* 2466 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2467 * cannot proceed, which means no actions performed under RCU can 2468 * proceed either. 2469 * 2470 * inodes and thus their mappings are freed under RCU, which means the 2471 * mapping cannot be freed beneath us and thus we can safely dereference 2472 * it. 2473 */ 2474 lockdep_assert_irqs_disabled(); 2475 2476 /* 2477 * However, there may be operations which _alter_ the mapping, so ensure 2478 * we read it once and only once. 2479 */ 2480 mapping = READ_ONCE(folio->mapping); 2481 2482 /* 2483 * The mapping may have been truncated, in any case we cannot determine 2484 * if this mapping is safe - fall back to slow path to determine how to 2485 * proceed. 2486 */ 2487 if (!mapping) 2488 return false; 2489 2490 /* Anonymous folios pose no problem. */ 2491 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2492 if (mapping_flags) 2493 return mapping_flags & PAGE_MAPPING_ANON; 2494 2495 /* 2496 * At this point, we know the mapping is non-null and points to an 2497 * address_space object. The only remaining whitelisted file system is 2498 * shmem. 2499 */ 2500 return shmem_mapping(mapping); 2501 } 2502 2503 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2504 unsigned int flags, 2505 struct page **pages) 2506 { 2507 while ((*nr) - nr_start) { 2508 struct page *page = pages[--(*nr)]; 2509 2510 ClearPageReferenced(page); 2511 if (flags & FOLL_PIN) 2512 unpin_user_page(page); 2513 else 2514 put_page(page); 2515 } 2516 } 2517 2518 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2519 /* 2520 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2521 * operations. 2522 * 2523 * To pin the page, fast-gup needs to do below in order: 2524 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2525 * 2526 * For the rest of pgtable operations where pgtable updates can be racy 2527 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2528 * is pinned. 2529 * 2530 * Above will work for all pte-level operations, including THP split. 2531 * 2532 * For THP collapse, it's a bit more complicated because fast-gup may be 2533 * walking a pgtable page that is being freed (pte is still valid but pmd 2534 * can be cleared already). To avoid race in such condition, we need to 2535 * also check pmd here to make sure pmd doesn't change (corresponds to 2536 * pmdp_collapse_flush() in the THP collapse code path). 2537 */ 2538 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2539 unsigned long end, unsigned int flags, 2540 struct page **pages, int *nr) 2541 { 2542 struct dev_pagemap *pgmap = NULL; 2543 int nr_start = *nr, ret = 0; 2544 pte_t *ptep, *ptem; 2545 2546 ptem = ptep = pte_offset_map(&pmd, addr); 2547 if (!ptep) 2548 return 0; 2549 do { 2550 pte_t pte = ptep_get_lockless(ptep); 2551 struct page *page; 2552 struct folio *folio; 2553 2554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2555 goto pte_unmap; 2556 2557 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2558 goto pte_unmap; 2559 2560 if (pte_devmap(pte)) { 2561 if (unlikely(flags & FOLL_LONGTERM)) 2562 goto pte_unmap; 2563 2564 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2565 if (unlikely(!pgmap)) { 2566 undo_dev_pagemap(nr, nr_start, flags, pages); 2567 goto pte_unmap; 2568 } 2569 } else if (pte_special(pte)) 2570 goto pte_unmap; 2571 2572 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2573 page = pte_page(pte); 2574 2575 folio = try_grab_folio(page, 1, flags); 2576 if (!folio) 2577 goto pte_unmap; 2578 2579 if (unlikely(page_is_secretmem(page))) { 2580 gup_put_folio(folio, 1, flags); 2581 goto pte_unmap; 2582 } 2583 2584 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2585 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2586 gup_put_folio(folio, 1, flags); 2587 goto pte_unmap; 2588 } 2589 2590 if (!folio_fast_pin_allowed(folio, flags)) { 2591 gup_put_folio(folio, 1, flags); 2592 goto pte_unmap; 2593 } 2594 2595 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2596 gup_put_folio(folio, 1, flags); 2597 goto pte_unmap; 2598 } 2599 2600 /* 2601 * We need to make the page accessible if and only if we are 2602 * going to access its content (the FOLL_PIN case). Please 2603 * see Documentation/core-api/pin_user_pages.rst for 2604 * details. 2605 */ 2606 if (flags & FOLL_PIN) { 2607 ret = arch_make_page_accessible(page); 2608 if (ret) { 2609 gup_put_folio(folio, 1, flags); 2610 goto pte_unmap; 2611 } 2612 } 2613 folio_set_referenced(folio); 2614 pages[*nr] = page; 2615 (*nr)++; 2616 } while (ptep++, addr += PAGE_SIZE, addr != end); 2617 2618 ret = 1; 2619 2620 pte_unmap: 2621 if (pgmap) 2622 put_dev_pagemap(pgmap); 2623 pte_unmap(ptem); 2624 return ret; 2625 } 2626 #else 2627 2628 /* 2629 * If we can't determine whether or not a pte is special, then fail immediately 2630 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2631 * to be special. 2632 * 2633 * For a futex to be placed on a THP tail page, get_futex_key requires a 2634 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2635 * useful to have gup_huge_pmd even if we can't operate on ptes. 2636 */ 2637 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2638 unsigned long end, unsigned int flags, 2639 struct page **pages, int *nr) 2640 { 2641 return 0; 2642 } 2643 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2644 2645 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2646 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2647 unsigned long end, unsigned int flags, 2648 struct page **pages, int *nr) 2649 { 2650 int nr_start = *nr; 2651 struct dev_pagemap *pgmap = NULL; 2652 2653 do { 2654 struct page *page = pfn_to_page(pfn); 2655 2656 pgmap = get_dev_pagemap(pfn, pgmap); 2657 if (unlikely(!pgmap)) { 2658 undo_dev_pagemap(nr, nr_start, flags, pages); 2659 break; 2660 } 2661 2662 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2663 undo_dev_pagemap(nr, nr_start, flags, pages); 2664 break; 2665 } 2666 2667 SetPageReferenced(page); 2668 pages[*nr] = page; 2669 if (unlikely(try_grab_page(page, flags))) { 2670 undo_dev_pagemap(nr, nr_start, flags, pages); 2671 break; 2672 } 2673 (*nr)++; 2674 pfn++; 2675 } while (addr += PAGE_SIZE, addr != end); 2676 2677 put_dev_pagemap(pgmap); 2678 return addr == end; 2679 } 2680 2681 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2682 unsigned long end, unsigned int flags, 2683 struct page **pages, int *nr) 2684 { 2685 unsigned long fault_pfn; 2686 int nr_start = *nr; 2687 2688 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2689 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2690 return 0; 2691 2692 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2693 undo_dev_pagemap(nr, nr_start, flags, pages); 2694 return 0; 2695 } 2696 return 1; 2697 } 2698 2699 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2700 unsigned long end, unsigned int flags, 2701 struct page **pages, int *nr) 2702 { 2703 unsigned long fault_pfn; 2704 int nr_start = *nr; 2705 2706 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2707 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2708 return 0; 2709 2710 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2711 undo_dev_pagemap(nr, nr_start, flags, pages); 2712 return 0; 2713 } 2714 return 1; 2715 } 2716 #else 2717 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2718 unsigned long end, unsigned int flags, 2719 struct page **pages, int *nr) 2720 { 2721 BUILD_BUG(); 2722 return 0; 2723 } 2724 2725 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2726 unsigned long end, unsigned int flags, 2727 struct page **pages, int *nr) 2728 { 2729 BUILD_BUG(); 2730 return 0; 2731 } 2732 #endif 2733 2734 static int record_subpages(struct page *page, unsigned long addr, 2735 unsigned long end, struct page **pages) 2736 { 2737 int nr; 2738 2739 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2740 pages[nr] = nth_page(page, nr); 2741 2742 return nr; 2743 } 2744 2745 #ifdef CONFIG_ARCH_HAS_HUGEPD 2746 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2747 unsigned long sz) 2748 { 2749 unsigned long __boundary = (addr + sz) & ~(sz-1); 2750 return (__boundary - 1 < end - 1) ? __boundary : end; 2751 } 2752 2753 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2754 unsigned long end, unsigned int flags, 2755 struct page **pages, int *nr) 2756 { 2757 unsigned long pte_end; 2758 struct page *page; 2759 struct folio *folio; 2760 pte_t pte; 2761 int refs; 2762 2763 pte_end = (addr + sz) & ~(sz-1); 2764 if (pte_end < end) 2765 end = pte_end; 2766 2767 pte = huge_ptep_get(ptep); 2768 2769 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2770 return 0; 2771 2772 /* hugepages are never "special" */ 2773 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2774 2775 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2776 refs = record_subpages(page, addr, end, pages + *nr); 2777 2778 folio = try_grab_folio(page, refs, flags); 2779 if (!folio) 2780 return 0; 2781 2782 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2783 gup_put_folio(folio, refs, flags); 2784 return 0; 2785 } 2786 2787 if (!folio_fast_pin_allowed(folio, flags)) { 2788 gup_put_folio(folio, refs, flags); 2789 return 0; 2790 } 2791 2792 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2793 gup_put_folio(folio, refs, flags); 2794 return 0; 2795 } 2796 2797 *nr += refs; 2798 folio_set_referenced(folio); 2799 return 1; 2800 } 2801 2802 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2803 unsigned int pdshift, unsigned long end, unsigned int flags, 2804 struct page **pages, int *nr) 2805 { 2806 pte_t *ptep; 2807 unsigned long sz = 1UL << hugepd_shift(hugepd); 2808 unsigned long next; 2809 2810 ptep = hugepte_offset(hugepd, addr, pdshift); 2811 do { 2812 next = hugepte_addr_end(addr, end, sz); 2813 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2814 return 0; 2815 } while (ptep++, addr = next, addr != end); 2816 2817 return 1; 2818 } 2819 #else 2820 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2821 unsigned int pdshift, unsigned long end, unsigned int flags, 2822 struct page **pages, int *nr) 2823 { 2824 return 0; 2825 } 2826 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2827 2828 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2829 unsigned long end, unsigned int flags, 2830 struct page **pages, int *nr) 2831 { 2832 struct page *page; 2833 struct folio *folio; 2834 int refs; 2835 2836 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2837 return 0; 2838 2839 if (pmd_devmap(orig)) { 2840 if (unlikely(flags & FOLL_LONGTERM)) 2841 return 0; 2842 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2843 pages, nr); 2844 } 2845 2846 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2847 refs = record_subpages(page, addr, end, pages + *nr); 2848 2849 folio = try_grab_folio(page, refs, flags); 2850 if (!folio) 2851 return 0; 2852 2853 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2854 gup_put_folio(folio, refs, flags); 2855 return 0; 2856 } 2857 2858 if (!folio_fast_pin_allowed(folio, flags)) { 2859 gup_put_folio(folio, refs, flags); 2860 return 0; 2861 } 2862 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2863 gup_put_folio(folio, refs, flags); 2864 return 0; 2865 } 2866 2867 *nr += refs; 2868 folio_set_referenced(folio); 2869 return 1; 2870 } 2871 2872 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2873 unsigned long end, unsigned int flags, 2874 struct page **pages, int *nr) 2875 { 2876 struct page *page; 2877 struct folio *folio; 2878 int refs; 2879 2880 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2881 return 0; 2882 2883 if (pud_devmap(orig)) { 2884 if (unlikely(flags & FOLL_LONGTERM)) 2885 return 0; 2886 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2887 pages, nr); 2888 } 2889 2890 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2891 refs = record_subpages(page, addr, end, pages + *nr); 2892 2893 folio = try_grab_folio(page, refs, flags); 2894 if (!folio) 2895 return 0; 2896 2897 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2898 gup_put_folio(folio, refs, flags); 2899 return 0; 2900 } 2901 2902 if (!folio_fast_pin_allowed(folio, flags)) { 2903 gup_put_folio(folio, refs, flags); 2904 return 0; 2905 } 2906 2907 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2908 gup_put_folio(folio, refs, flags); 2909 return 0; 2910 } 2911 2912 *nr += refs; 2913 folio_set_referenced(folio); 2914 return 1; 2915 } 2916 2917 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2918 unsigned long end, unsigned int flags, 2919 struct page **pages, int *nr) 2920 { 2921 int refs; 2922 struct page *page; 2923 struct folio *folio; 2924 2925 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2926 return 0; 2927 2928 BUILD_BUG_ON(pgd_devmap(orig)); 2929 2930 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2931 refs = record_subpages(page, addr, end, pages + *nr); 2932 2933 folio = try_grab_folio(page, refs, flags); 2934 if (!folio) 2935 return 0; 2936 2937 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2938 gup_put_folio(folio, refs, flags); 2939 return 0; 2940 } 2941 2942 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2943 gup_put_folio(folio, refs, flags); 2944 return 0; 2945 } 2946 2947 if (!folio_fast_pin_allowed(folio, flags)) { 2948 gup_put_folio(folio, refs, flags); 2949 return 0; 2950 } 2951 2952 *nr += refs; 2953 folio_set_referenced(folio); 2954 return 1; 2955 } 2956 2957 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2958 unsigned int flags, struct page **pages, int *nr) 2959 { 2960 unsigned long next; 2961 pmd_t *pmdp; 2962 2963 pmdp = pmd_offset_lockless(pudp, pud, addr); 2964 do { 2965 pmd_t pmd = pmdp_get_lockless(pmdp); 2966 2967 next = pmd_addr_end(addr, end); 2968 if (!pmd_present(pmd)) 2969 return 0; 2970 2971 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2972 pmd_devmap(pmd))) { 2973 if (pmd_protnone(pmd) && 2974 !gup_can_follow_protnone(flags)) 2975 return 0; 2976 2977 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2978 pages, nr)) 2979 return 0; 2980 2981 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2982 /* 2983 * architecture have different format for hugetlbfs 2984 * pmd format and THP pmd format 2985 */ 2986 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2987 PMD_SHIFT, next, flags, pages, nr)) 2988 return 0; 2989 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2990 return 0; 2991 } while (pmdp++, addr = next, addr != end); 2992 2993 return 1; 2994 } 2995 2996 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2997 unsigned int flags, struct page **pages, int *nr) 2998 { 2999 unsigned long next; 3000 pud_t *pudp; 3001 3002 pudp = pud_offset_lockless(p4dp, p4d, addr); 3003 do { 3004 pud_t pud = READ_ONCE(*pudp); 3005 3006 next = pud_addr_end(addr, end); 3007 if (unlikely(!pud_present(pud))) 3008 return 0; 3009 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3010 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3011 pages, nr)) 3012 return 0; 3013 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3014 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3015 PUD_SHIFT, next, flags, pages, nr)) 3016 return 0; 3017 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3018 return 0; 3019 } while (pudp++, addr = next, addr != end); 3020 3021 return 1; 3022 } 3023 3024 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3025 unsigned int flags, struct page **pages, int *nr) 3026 { 3027 unsigned long next; 3028 p4d_t *p4dp; 3029 3030 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3031 do { 3032 p4d_t p4d = READ_ONCE(*p4dp); 3033 3034 next = p4d_addr_end(addr, end); 3035 if (p4d_none(p4d)) 3036 return 0; 3037 BUILD_BUG_ON(p4d_huge(p4d)); 3038 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3039 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3040 P4D_SHIFT, next, flags, pages, nr)) 3041 return 0; 3042 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3043 return 0; 3044 } while (p4dp++, addr = next, addr != end); 3045 3046 return 1; 3047 } 3048 3049 static void gup_pgd_range(unsigned long addr, unsigned long end, 3050 unsigned int flags, struct page **pages, int *nr) 3051 { 3052 unsigned long next; 3053 pgd_t *pgdp; 3054 3055 pgdp = pgd_offset(current->mm, addr); 3056 do { 3057 pgd_t pgd = READ_ONCE(*pgdp); 3058 3059 next = pgd_addr_end(addr, end); 3060 if (pgd_none(pgd)) 3061 return; 3062 if (unlikely(pgd_huge(pgd))) { 3063 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3064 pages, nr)) 3065 return; 3066 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3067 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3068 PGDIR_SHIFT, next, flags, pages, nr)) 3069 return; 3070 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3071 return; 3072 } while (pgdp++, addr = next, addr != end); 3073 } 3074 #else 3075 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3076 unsigned int flags, struct page **pages, int *nr) 3077 { 3078 } 3079 #endif /* CONFIG_HAVE_FAST_GUP */ 3080 3081 #ifndef gup_fast_permitted 3082 /* 3083 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3084 * we need to fall back to the slow version: 3085 */ 3086 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3087 { 3088 return true; 3089 } 3090 #endif 3091 3092 static unsigned long lockless_pages_from_mm(unsigned long start, 3093 unsigned long end, 3094 unsigned int gup_flags, 3095 struct page **pages) 3096 { 3097 unsigned long flags; 3098 int nr_pinned = 0; 3099 unsigned seq; 3100 3101 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3102 !gup_fast_permitted(start, end)) 3103 return 0; 3104 3105 if (gup_flags & FOLL_PIN) { 3106 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3107 if (seq & 1) 3108 return 0; 3109 } 3110 3111 /* 3112 * Disable interrupts. The nested form is used, in order to allow full, 3113 * general purpose use of this routine. 3114 * 3115 * With interrupts disabled, we block page table pages from being freed 3116 * from under us. See struct mmu_table_batch comments in 3117 * include/asm-generic/tlb.h for more details. 3118 * 3119 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3120 * that come from THPs splitting. 3121 */ 3122 local_irq_save(flags); 3123 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3124 local_irq_restore(flags); 3125 3126 /* 3127 * When pinning pages for DMA there could be a concurrent write protect 3128 * from fork() via copy_page_range(), in this case always fail fast GUP. 3129 */ 3130 if (gup_flags & FOLL_PIN) { 3131 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3132 unpin_user_pages_lockless(pages, nr_pinned); 3133 return 0; 3134 } else { 3135 sanity_check_pinned_pages(pages, nr_pinned); 3136 } 3137 } 3138 return nr_pinned; 3139 } 3140 3141 static int internal_get_user_pages_fast(unsigned long start, 3142 unsigned long nr_pages, 3143 unsigned int gup_flags, 3144 struct page **pages) 3145 { 3146 unsigned long len, end; 3147 unsigned long nr_pinned; 3148 int locked = 0; 3149 int ret; 3150 3151 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3152 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3153 FOLL_FAST_ONLY | FOLL_NOFAULT | 3154 FOLL_PCI_P2PDMA))) 3155 return -EINVAL; 3156 3157 if (gup_flags & FOLL_PIN) 3158 mm_set_has_pinned_flag(¤t->mm->flags); 3159 3160 if (!(gup_flags & FOLL_FAST_ONLY)) 3161 might_lock_read(¤t->mm->mmap_lock); 3162 3163 start = untagged_addr(start) & PAGE_MASK; 3164 len = nr_pages << PAGE_SHIFT; 3165 if (check_add_overflow(start, len, &end)) 3166 return -EOVERFLOW; 3167 if (end > TASK_SIZE_MAX) 3168 return -EFAULT; 3169 if (unlikely(!access_ok((void __user *)start, len))) 3170 return -EFAULT; 3171 3172 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3173 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3174 return nr_pinned; 3175 3176 /* Slow path: try to get the remaining pages with get_user_pages */ 3177 start += nr_pinned << PAGE_SHIFT; 3178 pages += nr_pinned; 3179 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3180 pages, &locked, 3181 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3182 if (ret < 0) { 3183 /* 3184 * The caller has to unpin the pages we already pinned so 3185 * returning -errno is not an option 3186 */ 3187 if (nr_pinned) 3188 return nr_pinned; 3189 return ret; 3190 } 3191 return ret + nr_pinned; 3192 } 3193 3194 /** 3195 * get_user_pages_fast_only() - pin user pages in memory 3196 * @start: starting user address 3197 * @nr_pages: number of pages from start to pin 3198 * @gup_flags: flags modifying pin behaviour 3199 * @pages: array that receives pointers to the pages pinned. 3200 * Should be at least nr_pages long. 3201 * 3202 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3203 * the regular GUP. 3204 * 3205 * If the architecture does not support this function, simply return with no 3206 * pages pinned. 3207 * 3208 * Careful, careful! COW breaking can go either way, so a non-write 3209 * access can get ambiguous page results. If you call this function without 3210 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3211 */ 3212 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3213 unsigned int gup_flags, struct page **pages) 3214 { 3215 /* 3216 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3217 * because gup fast is always a "pin with a +1 page refcount" request. 3218 * 3219 * FOLL_FAST_ONLY is required in order to match the API description of 3220 * this routine: no fall back to regular ("slow") GUP. 3221 */ 3222 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3223 FOLL_GET | FOLL_FAST_ONLY)) 3224 return -EINVAL; 3225 3226 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3227 } 3228 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3229 3230 /** 3231 * get_user_pages_fast() - pin user pages in memory 3232 * @start: starting user address 3233 * @nr_pages: number of pages from start to pin 3234 * @gup_flags: flags modifying pin behaviour 3235 * @pages: array that receives pointers to the pages pinned. 3236 * Should be at least nr_pages long. 3237 * 3238 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3239 * If not successful, it will fall back to taking the lock and 3240 * calling get_user_pages(). 3241 * 3242 * Returns number of pages pinned. This may be fewer than the number requested. 3243 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3244 * -errno. 3245 */ 3246 int get_user_pages_fast(unsigned long start, int nr_pages, 3247 unsigned int gup_flags, struct page **pages) 3248 { 3249 /* 3250 * The caller may or may not have explicitly set FOLL_GET; either way is 3251 * OK. However, internally (within mm/gup.c), gup fast variants must set 3252 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3253 * request. 3254 */ 3255 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3256 return -EINVAL; 3257 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3258 } 3259 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3260 3261 /** 3262 * pin_user_pages_fast() - pin user pages in memory without taking locks 3263 * 3264 * @start: starting user address 3265 * @nr_pages: number of pages from start to pin 3266 * @gup_flags: flags modifying pin behaviour 3267 * @pages: array that receives pointers to the pages pinned. 3268 * Should be at least nr_pages long. 3269 * 3270 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3271 * get_user_pages_fast() for documentation on the function arguments, because 3272 * the arguments here are identical. 3273 * 3274 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3275 * see Documentation/core-api/pin_user_pages.rst for further details. 3276 * 3277 * Note that if a zero_page is amongst the returned pages, it will not have 3278 * pins in it and unpin_user_page() will not remove pins from it. 3279 */ 3280 int pin_user_pages_fast(unsigned long start, int nr_pages, 3281 unsigned int gup_flags, struct page **pages) 3282 { 3283 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3284 return -EINVAL; 3285 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3286 } 3287 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3288 3289 /** 3290 * pin_user_pages_remote() - pin pages of a remote process 3291 * 3292 * @mm: mm_struct of target mm 3293 * @start: starting user address 3294 * @nr_pages: number of pages from start to pin 3295 * @gup_flags: flags modifying lookup behaviour 3296 * @pages: array that receives pointers to the pages pinned. 3297 * Should be at least nr_pages long. 3298 * @locked: pointer to lock flag indicating whether lock is held and 3299 * subsequently whether VM_FAULT_RETRY functionality can be 3300 * utilised. Lock must initially be held. 3301 * 3302 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3303 * get_user_pages_remote() for documentation on the function arguments, because 3304 * the arguments here are identical. 3305 * 3306 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3307 * see Documentation/core-api/pin_user_pages.rst for details. 3308 * 3309 * Note that if a zero_page is amongst the returned pages, it will not have 3310 * pins in it and unpin_user_page*() will not remove pins from it. 3311 */ 3312 long pin_user_pages_remote(struct mm_struct *mm, 3313 unsigned long start, unsigned long nr_pages, 3314 unsigned int gup_flags, struct page **pages, 3315 int *locked) 3316 { 3317 int local_locked = 1; 3318 3319 if (!is_valid_gup_args(pages, locked, &gup_flags, 3320 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3321 return 0; 3322 return __gup_longterm_locked(mm, start, nr_pages, pages, 3323 locked ? locked : &local_locked, 3324 gup_flags); 3325 } 3326 EXPORT_SYMBOL(pin_user_pages_remote); 3327 3328 /** 3329 * pin_user_pages() - pin user pages in memory for use by other devices 3330 * 3331 * @start: starting user address 3332 * @nr_pages: number of pages from start to pin 3333 * @gup_flags: flags modifying lookup behaviour 3334 * @pages: array that receives pointers to the pages pinned. 3335 * Should be at least nr_pages long. 3336 * 3337 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3338 * FOLL_PIN is set. 3339 * 3340 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3341 * see Documentation/core-api/pin_user_pages.rst for details. 3342 * 3343 * Note that if a zero_page is amongst the returned pages, it will not have 3344 * pins in it and unpin_user_page*() will not remove pins from it. 3345 */ 3346 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3347 unsigned int gup_flags, struct page **pages) 3348 { 3349 int locked = 1; 3350 3351 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3352 return 0; 3353 return __gup_longterm_locked(current->mm, start, nr_pages, 3354 pages, &locked, gup_flags); 3355 } 3356 EXPORT_SYMBOL(pin_user_pages); 3357 3358 /* 3359 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3360 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3361 * FOLL_PIN and rejects FOLL_GET. 3362 * 3363 * Note that if a zero_page is amongst the returned pages, it will not have 3364 * pins in it and unpin_user_page*() will not remove pins from it. 3365 */ 3366 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3367 struct page **pages, unsigned int gup_flags) 3368 { 3369 int locked = 0; 3370 3371 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3372 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3373 return 0; 3374 3375 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3376 &locked, gup_flags); 3377 } 3378 EXPORT_SYMBOL(pin_user_pages_unlocked); 3379