1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 212 unsigned long address, pud_t *pudp, 213 unsigned int flags, unsigned int *page_mask) 214 { 215 pmd_t *pmd; 216 spinlock_t *ptl; 217 struct page *page; 218 struct mm_struct *mm = vma->vm_mm; 219 220 pmd = pmd_offset(pudp, address); 221 if (pmd_none(*pmd)) 222 return no_page_table(vma, flags); 223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 224 page = follow_huge_pmd(mm, address, pmd, flags); 225 if (page) 226 return page; 227 return no_page_table(vma, flags); 228 } 229 if (is_hugepd(__hugepd(pmd_val(*pmd)))) { 230 page = follow_huge_pd(vma, address, 231 __hugepd(pmd_val(*pmd)), flags, 232 PMD_SHIFT); 233 if (page) 234 return page; 235 return no_page_table(vma, flags); 236 } 237 retry: 238 if (!pmd_present(*pmd)) { 239 if (likely(!(flags & FOLL_MIGRATION))) 240 return no_page_table(vma, flags); 241 VM_BUG_ON(thp_migration_supported() && 242 !is_pmd_migration_entry(*pmd)); 243 if (is_pmd_migration_entry(*pmd)) 244 pmd_migration_entry_wait(mm, pmd); 245 goto retry; 246 } 247 if (pmd_devmap(*pmd)) { 248 ptl = pmd_lock(mm, pmd); 249 page = follow_devmap_pmd(vma, address, pmd, flags); 250 spin_unlock(ptl); 251 if (page) 252 return page; 253 } 254 if (likely(!pmd_trans_huge(*pmd))) 255 return follow_page_pte(vma, address, pmd, flags); 256 257 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 258 return no_page_table(vma, flags); 259 260 retry_locked: 261 ptl = pmd_lock(mm, pmd); 262 if (unlikely(!pmd_present(*pmd))) { 263 spin_unlock(ptl); 264 if (likely(!(flags & FOLL_MIGRATION))) 265 return no_page_table(vma, flags); 266 pmd_migration_entry_wait(mm, pmd); 267 goto retry_locked; 268 } 269 if (unlikely(!pmd_trans_huge(*pmd))) { 270 spin_unlock(ptl); 271 return follow_page_pte(vma, address, pmd, flags); 272 } 273 if (flags & FOLL_SPLIT) { 274 int ret; 275 page = pmd_page(*pmd); 276 if (is_huge_zero_page(page)) { 277 spin_unlock(ptl); 278 ret = 0; 279 split_huge_pmd(vma, pmd, address); 280 if (pmd_trans_unstable(pmd)) 281 ret = -EBUSY; 282 } else { 283 get_page(page); 284 spin_unlock(ptl); 285 lock_page(page); 286 ret = split_huge_page(page); 287 unlock_page(page); 288 put_page(page); 289 if (pmd_none(*pmd)) 290 return no_page_table(vma, flags); 291 } 292 293 return ret ? ERR_PTR(ret) : 294 follow_page_pte(vma, address, pmd, flags); 295 } 296 page = follow_trans_huge_pmd(vma, address, pmd, flags); 297 spin_unlock(ptl); 298 *page_mask = HPAGE_PMD_NR - 1; 299 return page; 300 } 301 302 303 static struct page *follow_pud_mask(struct vm_area_struct *vma, 304 unsigned long address, p4d_t *p4dp, 305 unsigned int flags, unsigned int *page_mask) 306 { 307 pud_t *pud; 308 spinlock_t *ptl; 309 struct page *page; 310 struct mm_struct *mm = vma->vm_mm; 311 312 pud = pud_offset(p4dp, address); 313 if (pud_none(*pud)) 314 return no_page_table(vma, flags); 315 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 316 page = follow_huge_pud(mm, address, pud, flags); 317 if (page) 318 return page; 319 return no_page_table(vma, flags); 320 } 321 if (is_hugepd(__hugepd(pud_val(*pud)))) { 322 page = follow_huge_pd(vma, address, 323 __hugepd(pud_val(*pud)), flags, 324 PUD_SHIFT); 325 if (page) 326 return page; 327 return no_page_table(vma, flags); 328 } 329 if (pud_devmap(*pud)) { 330 ptl = pud_lock(mm, pud); 331 page = follow_devmap_pud(vma, address, pud, flags); 332 spin_unlock(ptl); 333 if (page) 334 return page; 335 } 336 if (unlikely(pud_bad(*pud))) 337 return no_page_table(vma, flags); 338 339 return follow_pmd_mask(vma, address, pud, flags, page_mask); 340 } 341 342 343 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 344 unsigned long address, pgd_t *pgdp, 345 unsigned int flags, unsigned int *page_mask) 346 { 347 p4d_t *p4d; 348 struct page *page; 349 350 p4d = p4d_offset(pgdp, address); 351 if (p4d_none(*p4d)) 352 return no_page_table(vma, flags); 353 BUILD_BUG_ON(p4d_huge(*p4d)); 354 if (unlikely(p4d_bad(*p4d))) 355 return no_page_table(vma, flags); 356 357 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 358 page = follow_huge_pd(vma, address, 359 __hugepd(p4d_val(*p4d)), flags, 360 P4D_SHIFT); 361 if (page) 362 return page; 363 return no_page_table(vma, flags); 364 } 365 return follow_pud_mask(vma, address, p4d, flags, page_mask); 366 } 367 368 /** 369 * follow_page_mask - look up a page descriptor from a user-virtual address 370 * @vma: vm_area_struct mapping @address 371 * @address: virtual address to look up 372 * @flags: flags modifying lookup behaviour 373 * @page_mask: on output, *page_mask is set according to the size of the page 374 * 375 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 376 * 377 * Returns the mapped (struct page *), %NULL if no mapping exists, or 378 * an error pointer if there is a mapping to something not represented 379 * by a page descriptor (see also vm_normal_page()). 380 */ 381 struct page *follow_page_mask(struct vm_area_struct *vma, 382 unsigned long address, unsigned int flags, 383 unsigned int *page_mask) 384 { 385 pgd_t *pgd; 386 struct page *page; 387 struct mm_struct *mm = vma->vm_mm; 388 389 *page_mask = 0; 390 391 /* make this handle hugepd */ 392 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 393 if (!IS_ERR(page)) { 394 BUG_ON(flags & FOLL_GET); 395 return page; 396 } 397 398 pgd = pgd_offset(mm, address); 399 400 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 401 return no_page_table(vma, flags); 402 403 if (pgd_huge(*pgd)) { 404 page = follow_huge_pgd(mm, address, pgd, flags); 405 if (page) 406 return page; 407 return no_page_table(vma, flags); 408 } 409 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 410 page = follow_huge_pd(vma, address, 411 __hugepd(pgd_val(*pgd)), flags, 412 PGDIR_SHIFT); 413 if (page) 414 return page; 415 return no_page_table(vma, flags); 416 } 417 418 return follow_p4d_mask(vma, address, pgd, flags, page_mask); 419 } 420 421 static int get_gate_page(struct mm_struct *mm, unsigned long address, 422 unsigned int gup_flags, struct vm_area_struct **vma, 423 struct page **page) 424 { 425 pgd_t *pgd; 426 p4d_t *p4d; 427 pud_t *pud; 428 pmd_t *pmd; 429 pte_t *pte; 430 int ret = -EFAULT; 431 432 /* user gate pages are read-only */ 433 if (gup_flags & FOLL_WRITE) 434 return -EFAULT; 435 if (address > TASK_SIZE) 436 pgd = pgd_offset_k(address); 437 else 438 pgd = pgd_offset_gate(mm, address); 439 BUG_ON(pgd_none(*pgd)); 440 p4d = p4d_offset(pgd, address); 441 BUG_ON(p4d_none(*p4d)); 442 pud = pud_offset(p4d, address); 443 BUG_ON(pud_none(*pud)); 444 pmd = pmd_offset(pud, address); 445 if (!pmd_present(*pmd)) 446 return -EFAULT; 447 VM_BUG_ON(pmd_trans_huge(*pmd)); 448 pte = pte_offset_map(pmd, address); 449 if (pte_none(*pte)) 450 goto unmap; 451 *vma = get_gate_vma(mm); 452 if (!page) 453 goto out; 454 *page = vm_normal_page(*vma, address, *pte); 455 if (!*page) { 456 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 457 goto unmap; 458 *page = pte_page(*pte); 459 460 /* 461 * This should never happen (a device public page in the gate 462 * area). 463 */ 464 if (is_device_public_page(*page)) 465 goto unmap; 466 } 467 get_page(*page); 468 out: 469 ret = 0; 470 unmap: 471 pte_unmap(pte); 472 return ret; 473 } 474 475 /* 476 * mmap_sem must be held on entry. If @nonblocking != NULL and 477 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 478 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 479 */ 480 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 481 unsigned long address, unsigned int *flags, int *nonblocking) 482 { 483 unsigned int fault_flags = 0; 484 int ret; 485 486 /* mlock all present pages, but do not fault in new pages */ 487 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 488 return -ENOENT; 489 if (*flags & FOLL_WRITE) 490 fault_flags |= FAULT_FLAG_WRITE; 491 if (*flags & FOLL_REMOTE) 492 fault_flags |= FAULT_FLAG_REMOTE; 493 if (nonblocking) 494 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 495 if (*flags & FOLL_NOWAIT) 496 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 497 if (*flags & FOLL_TRIED) { 498 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 499 fault_flags |= FAULT_FLAG_TRIED; 500 } 501 502 ret = handle_mm_fault(vma, address, fault_flags); 503 if (ret & VM_FAULT_ERROR) { 504 int err = vm_fault_to_errno(ret, *flags); 505 506 if (err) 507 return err; 508 BUG(); 509 } 510 511 if (tsk) { 512 if (ret & VM_FAULT_MAJOR) 513 tsk->maj_flt++; 514 else 515 tsk->min_flt++; 516 } 517 518 if (ret & VM_FAULT_RETRY) { 519 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 520 *nonblocking = 0; 521 return -EBUSY; 522 } 523 524 /* 525 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 526 * necessary, even if maybe_mkwrite decided not to set pte_write. We 527 * can thus safely do subsequent page lookups as if they were reads. 528 * But only do so when looping for pte_write is futile: in some cases 529 * userspace may also be wanting to write to the gotten user page, 530 * which a read fault here might prevent (a readonly page might get 531 * reCOWed by userspace write). 532 */ 533 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 534 *flags |= FOLL_COW; 535 return 0; 536 } 537 538 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 539 { 540 vm_flags_t vm_flags = vma->vm_flags; 541 int write = (gup_flags & FOLL_WRITE); 542 int foreign = (gup_flags & FOLL_REMOTE); 543 544 if (vm_flags & (VM_IO | VM_PFNMAP)) 545 return -EFAULT; 546 547 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 548 return -EFAULT; 549 550 if (write) { 551 if (!(vm_flags & VM_WRITE)) { 552 if (!(gup_flags & FOLL_FORCE)) 553 return -EFAULT; 554 /* 555 * We used to let the write,force case do COW in a 556 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 557 * set a breakpoint in a read-only mapping of an 558 * executable, without corrupting the file (yet only 559 * when that file had been opened for writing!). 560 * Anon pages in shared mappings are surprising: now 561 * just reject it. 562 */ 563 if (!is_cow_mapping(vm_flags)) 564 return -EFAULT; 565 } 566 } else if (!(vm_flags & VM_READ)) { 567 if (!(gup_flags & FOLL_FORCE)) 568 return -EFAULT; 569 /* 570 * Is there actually any vma we can reach here which does not 571 * have VM_MAYREAD set? 572 */ 573 if (!(vm_flags & VM_MAYREAD)) 574 return -EFAULT; 575 } 576 /* 577 * gups are always data accesses, not instruction 578 * fetches, so execute=false here 579 */ 580 if (!arch_vma_access_permitted(vma, write, false, foreign)) 581 return -EFAULT; 582 return 0; 583 } 584 585 /** 586 * __get_user_pages() - pin user pages in memory 587 * @tsk: task_struct of target task 588 * @mm: mm_struct of target mm 589 * @start: starting user address 590 * @nr_pages: number of pages from start to pin 591 * @gup_flags: flags modifying pin behaviour 592 * @pages: array that receives pointers to the pages pinned. 593 * Should be at least nr_pages long. Or NULL, if caller 594 * only intends to ensure the pages are faulted in. 595 * @vmas: array of pointers to vmas corresponding to each page. 596 * Or NULL if the caller does not require them. 597 * @nonblocking: whether waiting for disk IO or mmap_sem contention 598 * 599 * Returns number of pages pinned. This may be fewer than the number 600 * requested. If nr_pages is 0 or negative, returns 0. If no pages 601 * were pinned, returns -errno. Each page returned must be released 602 * with a put_page() call when it is finished with. vmas will only 603 * remain valid while mmap_sem is held. 604 * 605 * Must be called with mmap_sem held. It may be released. See below. 606 * 607 * __get_user_pages walks a process's page tables and takes a reference to 608 * each struct page that each user address corresponds to at a given 609 * instant. That is, it takes the page that would be accessed if a user 610 * thread accesses the given user virtual address at that instant. 611 * 612 * This does not guarantee that the page exists in the user mappings when 613 * __get_user_pages returns, and there may even be a completely different 614 * page there in some cases (eg. if mmapped pagecache has been invalidated 615 * and subsequently re faulted). However it does guarantee that the page 616 * won't be freed completely. And mostly callers simply care that the page 617 * contains data that was valid *at some point in time*. Typically, an IO 618 * or similar operation cannot guarantee anything stronger anyway because 619 * locks can't be held over the syscall boundary. 620 * 621 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 622 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 623 * appropriate) must be called after the page is finished with, and 624 * before put_page is called. 625 * 626 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 627 * or mmap_sem contention, and if waiting is needed to pin all pages, 628 * *@nonblocking will be set to 0. Further, if @gup_flags does not 629 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 630 * this case. 631 * 632 * A caller using such a combination of @nonblocking and @gup_flags 633 * must therefore hold the mmap_sem for reading only, and recognize 634 * when it's been released. Otherwise, it must be held for either 635 * reading or writing and will not be released. 636 * 637 * In most cases, get_user_pages or get_user_pages_fast should be used 638 * instead of __get_user_pages. __get_user_pages should be used only if 639 * you need some special @gup_flags. 640 */ 641 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 642 unsigned long start, unsigned long nr_pages, 643 unsigned int gup_flags, struct page **pages, 644 struct vm_area_struct **vmas, int *nonblocking) 645 { 646 long i = 0; 647 unsigned int page_mask; 648 struct vm_area_struct *vma = NULL; 649 650 if (!nr_pages) 651 return 0; 652 653 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 654 655 /* 656 * If FOLL_FORCE is set then do not force a full fault as the hinting 657 * fault information is unrelated to the reference behaviour of a task 658 * using the address space 659 */ 660 if (!(gup_flags & FOLL_FORCE)) 661 gup_flags |= FOLL_NUMA; 662 663 do { 664 struct page *page; 665 unsigned int foll_flags = gup_flags; 666 unsigned int page_increm; 667 668 /* first iteration or cross vma bound */ 669 if (!vma || start >= vma->vm_end) { 670 vma = find_extend_vma(mm, start); 671 if (!vma && in_gate_area(mm, start)) { 672 int ret; 673 ret = get_gate_page(mm, start & PAGE_MASK, 674 gup_flags, &vma, 675 pages ? &pages[i] : NULL); 676 if (ret) 677 return i ? : ret; 678 page_mask = 0; 679 goto next_page; 680 } 681 682 if (!vma || check_vma_flags(vma, gup_flags)) 683 return i ? : -EFAULT; 684 if (is_vm_hugetlb_page(vma)) { 685 i = follow_hugetlb_page(mm, vma, pages, vmas, 686 &start, &nr_pages, i, 687 gup_flags, nonblocking); 688 continue; 689 } 690 } 691 retry: 692 /* 693 * If we have a pending SIGKILL, don't keep faulting pages and 694 * potentially allocating memory. 695 */ 696 if (unlikely(fatal_signal_pending(current))) 697 return i ? i : -ERESTARTSYS; 698 cond_resched(); 699 page = follow_page_mask(vma, start, foll_flags, &page_mask); 700 if (!page) { 701 int ret; 702 ret = faultin_page(tsk, vma, start, &foll_flags, 703 nonblocking); 704 switch (ret) { 705 case 0: 706 goto retry; 707 case -EFAULT: 708 case -ENOMEM: 709 case -EHWPOISON: 710 return i ? i : ret; 711 case -EBUSY: 712 return i; 713 case -ENOENT: 714 goto next_page; 715 } 716 BUG(); 717 } else if (PTR_ERR(page) == -EEXIST) { 718 /* 719 * Proper page table entry exists, but no corresponding 720 * struct page. 721 */ 722 goto next_page; 723 } else if (IS_ERR(page)) { 724 return i ? i : PTR_ERR(page); 725 } 726 if (pages) { 727 pages[i] = page; 728 flush_anon_page(vma, page, start); 729 flush_dcache_page(page); 730 page_mask = 0; 731 } 732 next_page: 733 if (vmas) { 734 vmas[i] = vma; 735 page_mask = 0; 736 } 737 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 738 if (page_increm > nr_pages) 739 page_increm = nr_pages; 740 i += page_increm; 741 start += page_increm * PAGE_SIZE; 742 nr_pages -= page_increm; 743 } while (nr_pages); 744 return i; 745 } 746 747 static bool vma_permits_fault(struct vm_area_struct *vma, 748 unsigned int fault_flags) 749 { 750 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 751 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 752 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 753 754 if (!(vm_flags & vma->vm_flags)) 755 return false; 756 757 /* 758 * The architecture might have a hardware protection 759 * mechanism other than read/write that can deny access. 760 * 761 * gup always represents data access, not instruction 762 * fetches, so execute=false here: 763 */ 764 if (!arch_vma_access_permitted(vma, write, false, foreign)) 765 return false; 766 767 return true; 768 } 769 770 /* 771 * fixup_user_fault() - manually resolve a user page fault 772 * @tsk: the task_struct to use for page fault accounting, or 773 * NULL if faults are not to be recorded. 774 * @mm: mm_struct of target mm 775 * @address: user address 776 * @fault_flags:flags to pass down to handle_mm_fault() 777 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 778 * does not allow retry 779 * 780 * This is meant to be called in the specific scenario where for locking reasons 781 * we try to access user memory in atomic context (within a pagefault_disable() 782 * section), this returns -EFAULT, and we want to resolve the user fault before 783 * trying again. 784 * 785 * Typically this is meant to be used by the futex code. 786 * 787 * The main difference with get_user_pages() is that this function will 788 * unconditionally call handle_mm_fault() which will in turn perform all the 789 * necessary SW fixup of the dirty and young bits in the PTE, while 790 * get_user_pages() only guarantees to update these in the struct page. 791 * 792 * This is important for some architectures where those bits also gate the 793 * access permission to the page because they are maintained in software. On 794 * such architectures, gup() will not be enough to make a subsequent access 795 * succeed. 796 * 797 * This function will not return with an unlocked mmap_sem. So it has not the 798 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 799 */ 800 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 801 unsigned long address, unsigned int fault_flags, 802 bool *unlocked) 803 { 804 struct vm_area_struct *vma; 805 int ret, major = 0; 806 807 if (unlocked) 808 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 809 810 retry: 811 vma = find_extend_vma(mm, address); 812 if (!vma || address < vma->vm_start) 813 return -EFAULT; 814 815 if (!vma_permits_fault(vma, fault_flags)) 816 return -EFAULT; 817 818 ret = handle_mm_fault(vma, address, fault_flags); 819 major |= ret & VM_FAULT_MAJOR; 820 if (ret & VM_FAULT_ERROR) { 821 int err = vm_fault_to_errno(ret, 0); 822 823 if (err) 824 return err; 825 BUG(); 826 } 827 828 if (ret & VM_FAULT_RETRY) { 829 down_read(&mm->mmap_sem); 830 if (!(fault_flags & FAULT_FLAG_TRIED)) { 831 *unlocked = true; 832 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 833 fault_flags |= FAULT_FLAG_TRIED; 834 goto retry; 835 } 836 } 837 838 if (tsk) { 839 if (major) 840 tsk->maj_flt++; 841 else 842 tsk->min_flt++; 843 } 844 return 0; 845 } 846 EXPORT_SYMBOL_GPL(fixup_user_fault); 847 848 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 849 struct mm_struct *mm, 850 unsigned long start, 851 unsigned long nr_pages, 852 struct page **pages, 853 struct vm_area_struct **vmas, 854 int *locked, 855 unsigned int flags) 856 { 857 long ret, pages_done; 858 bool lock_dropped; 859 860 if (locked) { 861 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 862 BUG_ON(vmas); 863 /* check caller initialized locked */ 864 BUG_ON(*locked != 1); 865 } 866 867 if (pages) 868 flags |= FOLL_GET; 869 870 pages_done = 0; 871 lock_dropped = false; 872 for (;;) { 873 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 874 vmas, locked); 875 if (!locked) 876 /* VM_FAULT_RETRY couldn't trigger, bypass */ 877 return ret; 878 879 /* VM_FAULT_RETRY cannot return errors */ 880 if (!*locked) { 881 BUG_ON(ret < 0); 882 BUG_ON(ret >= nr_pages); 883 } 884 885 if (!pages) 886 /* If it's a prefault don't insist harder */ 887 return ret; 888 889 if (ret > 0) { 890 nr_pages -= ret; 891 pages_done += ret; 892 if (!nr_pages) 893 break; 894 } 895 if (*locked) { 896 /* 897 * VM_FAULT_RETRY didn't trigger or it was a 898 * FOLL_NOWAIT. 899 */ 900 if (!pages_done) 901 pages_done = ret; 902 break; 903 } 904 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 905 pages += ret; 906 start += ret << PAGE_SHIFT; 907 908 /* 909 * Repeat on the address that fired VM_FAULT_RETRY 910 * without FAULT_FLAG_ALLOW_RETRY but with 911 * FAULT_FLAG_TRIED. 912 */ 913 *locked = 1; 914 lock_dropped = true; 915 down_read(&mm->mmap_sem); 916 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 917 pages, NULL, NULL); 918 if (ret != 1) { 919 BUG_ON(ret > 1); 920 if (!pages_done) 921 pages_done = ret; 922 break; 923 } 924 nr_pages--; 925 pages_done++; 926 if (!nr_pages) 927 break; 928 pages++; 929 start += PAGE_SIZE; 930 } 931 if (lock_dropped && *locked) { 932 /* 933 * We must let the caller know we temporarily dropped the lock 934 * and so the critical section protected by it was lost. 935 */ 936 up_read(&mm->mmap_sem); 937 *locked = 0; 938 } 939 return pages_done; 940 } 941 942 /* 943 * We can leverage the VM_FAULT_RETRY functionality in the page fault 944 * paths better by using either get_user_pages_locked() or 945 * get_user_pages_unlocked(). 946 * 947 * get_user_pages_locked() is suitable to replace the form: 948 * 949 * down_read(&mm->mmap_sem); 950 * do_something() 951 * get_user_pages(tsk, mm, ..., pages, NULL); 952 * up_read(&mm->mmap_sem); 953 * 954 * to: 955 * 956 * int locked = 1; 957 * down_read(&mm->mmap_sem); 958 * do_something() 959 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 960 * if (locked) 961 * up_read(&mm->mmap_sem); 962 */ 963 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 964 unsigned int gup_flags, struct page **pages, 965 int *locked) 966 { 967 return __get_user_pages_locked(current, current->mm, start, nr_pages, 968 pages, NULL, locked, 969 gup_flags | FOLL_TOUCH); 970 } 971 EXPORT_SYMBOL(get_user_pages_locked); 972 973 /* 974 * get_user_pages_unlocked() is suitable to replace the form: 975 * 976 * down_read(&mm->mmap_sem); 977 * get_user_pages(tsk, mm, ..., pages, NULL); 978 * up_read(&mm->mmap_sem); 979 * 980 * with: 981 * 982 * get_user_pages_unlocked(tsk, mm, ..., pages); 983 * 984 * It is functionally equivalent to get_user_pages_fast so 985 * get_user_pages_fast should be used instead if specific gup_flags 986 * (e.g. FOLL_FORCE) are not required. 987 */ 988 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 989 struct page **pages, unsigned int gup_flags) 990 { 991 struct mm_struct *mm = current->mm; 992 int locked = 1; 993 long ret; 994 995 down_read(&mm->mmap_sem); 996 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 997 &locked, gup_flags | FOLL_TOUCH); 998 if (locked) 999 up_read(&mm->mmap_sem); 1000 return ret; 1001 } 1002 EXPORT_SYMBOL(get_user_pages_unlocked); 1003 1004 /* 1005 * get_user_pages_remote() - pin user pages in memory 1006 * @tsk: the task_struct to use for page fault accounting, or 1007 * NULL if faults are not to be recorded. 1008 * @mm: mm_struct of target mm 1009 * @start: starting user address 1010 * @nr_pages: number of pages from start to pin 1011 * @gup_flags: flags modifying lookup behaviour 1012 * @pages: array that receives pointers to the pages pinned. 1013 * Should be at least nr_pages long. Or NULL, if caller 1014 * only intends to ensure the pages are faulted in. 1015 * @vmas: array of pointers to vmas corresponding to each page. 1016 * Or NULL if the caller does not require them. 1017 * @locked: pointer to lock flag indicating whether lock is held and 1018 * subsequently whether VM_FAULT_RETRY functionality can be 1019 * utilised. Lock must initially be held. 1020 * 1021 * Returns number of pages pinned. This may be fewer than the number 1022 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1023 * were pinned, returns -errno. Each page returned must be released 1024 * with a put_page() call when it is finished with. vmas will only 1025 * remain valid while mmap_sem is held. 1026 * 1027 * Must be called with mmap_sem held for read or write. 1028 * 1029 * get_user_pages walks a process's page tables and takes a reference to 1030 * each struct page that each user address corresponds to at a given 1031 * instant. That is, it takes the page that would be accessed if a user 1032 * thread accesses the given user virtual address at that instant. 1033 * 1034 * This does not guarantee that the page exists in the user mappings when 1035 * get_user_pages returns, and there may even be a completely different 1036 * page there in some cases (eg. if mmapped pagecache has been invalidated 1037 * and subsequently re faulted). However it does guarantee that the page 1038 * won't be freed completely. And mostly callers simply care that the page 1039 * contains data that was valid *at some point in time*. Typically, an IO 1040 * or similar operation cannot guarantee anything stronger anyway because 1041 * locks can't be held over the syscall boundary. 1042 * 1043 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1044 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1045 * be called after the page is finished with, and before put_page is called. 1046 * 1047 * get_user_pages is typically used for fewer-copy IO operations, to get a 1048 * handle on the memory by some means other than accesses via the user virtual 1049 * addresses. The pages may be submitted for DMA to devices or accessed via 1050 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1051 * use the correct cache flushing APIs. 1052 * 1053 * See also get_user_pages_fast, for performance critical applications. 1054 * 1055 * get_user_pages should be phased out in favor of 1056 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1057 * should use get_user_pages because it cannot pass 1058 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1059 */ 1060 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1061 unsigned long start, unsigned long nr_pages, 1062 unsigned int gup_flags, struct page **pages, 1063 struct vm_area_struct **vmas, int *locked) 1064 { 1065 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1066 locked, 1067 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1068 } 1069 EXPORT_SYMBOL(get_user_pages_remote); 1070 1071 /* 1072 * This is the same as get_user_pages_remote(), just with a 1073 * less-flexible calling convention where we assume that the task 1074 * and mm being operated on are the current task's and don't allow 1075 * passing of a locked parameter. We also obviously don't pass 1076 * FOLL_REMOTE in here. 1077 */ 1078 long get_user_pages(unsigned long start, unsigned long nr_pages, 1079 unsigned int gup_flags, struct page **pages, 1080 struct vm_area_struct **vmas) 1081 { 1082 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1083 pages, vmas, NULL, 1084 gup_flags | FOLL_TOUCH); 1085 } 1086 EXPORT_SYMBOL(get_user_pages); 1087 1088 #ifdef CONFIG_FS_DAX 1089 /* 1090 * This is the same as get_user_pages() in that it assumes we are 1091 * operating on the current task's mm, but it goes further to validate 1092 * that the vmas associated with the address range are suitable for 1093 * longterm elevated page reference counts. For example, filesystem-dax 1094 * mappings are subject to the lifetime enforced by the filesystem and 1095 * we need guarantees that longterm users like RDMA and V4L2 only 1096 * establish mappings that have a kernel enforced revocation mechanism. 1097 * 1098 * "longterm" == userspace controlled elevated page count lifetime. 1099 * Contrast this to iov_iter_get_pages() usages which are transient. 1100 */ 1101 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1102 unsigned int gup_flags, struct page **pages, 1103 struct vm_area_struct **vmas_arg) 1104 { 1105 struct vm_area_struct **vmas = vmas_arg; 1106 struct vm_area_struct *vma_prev = NULL; 1107 long rc, i; 1108 1109 if (!pages) 1110 return -EINVAL; 1111 1112 if (!vmas) { 1113 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1114 GFP_KERNEL); 1115 if (!vmas) 1116 return -ENOMEM; 1117 } 1118 1119 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1120 1121 for (i = 0; i < rc; i++) { 1122 struct vm_area_struct *vma = vmas[i]; 1123 1124 if (vma == vma_prev) 1125 continue; 1126 1127 vma_prev = vma; 1128 1129 if (vma_is_fsdax(vma)) 1130 break; 1131 } 1132 1133 /* 1134 * Either get_user_pages() failed, or the vma validation 1135 * succeeded, in either case we don't need to put_page() before 1136 * returning. 1137 */ 1138 if (i >= rc) 1139 goto out; 1140 1141 for (i = 0; i < rc; i++) 1142 put_page(pages[i]); 1143 rc = -EOPNOTSUPP; 1144 out: 1145 if (vmas != vmas_arg) 1146 kfree(vmas); 1147 return rc; 1148 } 1149 EXPORT_SYMBOL(get_user_pages_longterm); 1150 #endif /* CONFIG_FS_DAX */ 1151 1152 /** 1153 * populate_vma_page_range() - populate a range of pages in the vma. 1154 * @vma: target vma 1155 * @start: start address 1156 * @end: end address 1157 * @nonblocking: 1158 * 1159 * This takes care of mlocking the pages too if VM_LOCKED is set. 1160 * 1161 * return 0 on success, negative error code on error. 1162 * 1163 * vma->vm_mm->mmap_sem must be held. 1164 * 1165 * If @nonblocking is NULL, it may be held for read or write and will 1166 * be unperturbed. 1167 * 1168 * If @nonblocking is non-NULL, it must held for read only and may be 1169 * released. If it's released, *@nonblocking will be set to 0. 1170 */ 1171 long populate_vma_page_range(struct vm_area_struct *vma, 1172 unsigned long start, unsigned long end, int *nonblocking) 1173 { 1174 struct mm_struct *mm = vma->vm_mm; 1175 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1176 int gup_flags; 1177 1178 VM_BUG_ON(start & ~PAGE_MASK); 1179 VM_BUG_ON(end & ~PAGE_MASK); 1180 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1181 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1182 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1183 1184 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1185 if (vma->vm_flags & VM_LOCKONFAULT) 1186 gup_flags &= ~FOLL_POPULATE; 1187 /* 1188 * We want to touch writable mappings with a write fault in order 1189 * to break COW, except for shared mappings because these don't COW 1190 * and we would not want to dirty them for nothing. 1191 */ 1192 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1193 gup_flags |= FOLL_WRITE; 1194 1195 /* 1196 * We want mlock to succeed for regions that have any permissions 1197 * other than PROT_NONE. 1198 */ 1199 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1200 gup_flags |= FOLL_FORCE; 1201 1202 /* 1203 * We made sure addr is within a VMA, so the following will 1204 * not result in a stack expansion that recurses back here. 1205 */ 1206 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1207 NULL, NULL, nonblocking); 1208 } 1209 1210 /* 1211 * __mm_populate - populate and/or mlock pages within a range of address space. 1212 * 1213 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1214 * flags. VMAs must be already marked with the desired vm_flags, and 1215 * mmap_sem must not be held. 1216 */ 1217 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 unsigned long end, nstart, nend; 1221 struct vm_area_struct *vma = NULL; 1222 int locked = 0; 1223 long ret = 0; 1224 1225 VM_BUG_ON(start & ~PAGE_MASK); 1226 VM_BUG_ON(len != PAGE_ALIGN(len)); 1227 end = start + len; 1228 1229 for (nstart = start; nstart < end; nstart = nend) { 1230 /* 1231 * We want to fault in pages for [nstart; end) address range. 1232 * Find first corresponding VMA. 1233 */ 1234 if (!locked) { 1235 locked = 1; 1236 down_read(&mm->mmap_sem); 1237 vma = find_vma(mm, nstart); 1238 } else if (nstart >= vma->vm_end) 1239 vma = vma->vm_next; 1240 if (!vma || vma->vm_start >= end) 1241 break; 1242 /* 1243 * Set [nstart; nend) to intersection of desired address 1244 * range with the first VMA. Also, skip undesirable VMA types. 1245 */ 1246 nend = min(end, vma->vm_end); 1247 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1248 continue; 1249 if (nstart < vma->vm_start) 1250 nstart = vma->vm_start; 1251 /* 1252 * Now fault in a range of pages. populate_vma_page_range() 1253 * double checks the vma flags, so that it won't mlock pages 1254 * if the vma was already munlocked. 1255 */ 1256 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1257 if (ret < 0) { 1258 if (ignore_errors) { 1259 ret = 0; 1260 continue; /* continue at next VMA */ 1261 } 1262 break; 1263 } 1264 nend = nstart + ret * PAGE_SIZE; 1265 ret = 0; 1266 } 1267 if (locked) 1268 up_read(&mm->mmap_sem); 1269 return ret; /* 0 or negative error code */ 1270 } 1271 1272 /** 1273 * get_dump_page() - pin user page in memory while writing it to core dump 1274 * @addr: user address 1275 * 1276 * Returns struct page pointer of user page pinned for dump, 1277 * to be freed afterwards by put_page(). 1278 * 1279 * Returns NULL on any kind of failure - a hole must then be inserted into 1280 * the corefile, to preserve alignment with its headers; and also returns 1281 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1282 * allowing a hole to be left in the corefile to save diskspace. 1283 * 1284 * Called without mmap_sem, but after all other threads have been killed. 1285 */ 1286 #ifdef CONFIG_ELF_CORE 1287 struct page *get_dump_page(unsigned long addr) 1288 { 1289 struct vm_area_struct *vma; 1290 struct page *page; 1291 1292 if (__get_user_pages(current, current->mm, addr, 1, 1293 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1294 NULL) < 1) 1295 return NULL; 1296 flush_cache_page(vma, addr, page_to_pfn(page)); 1297 return page; 1298 } 1299 #endif /* CONFIG_ELF_CORE */ 1300 1301 /* 1302 * Generic Fast GUP 1303 * 1304 * get_user_pages_fast attempts to pin user pages by walking the page 1305 * tables directly and avoids taking locks. Thus the walker needs to be 1306 * protected from page table pages being freed from under it, and should 1307 * block any THP splits. 1308 * 1309 * One way to achieve this is to have the walker disable interrupts, and 1310 * rely on IPIs from the TLB flushing code blocking before the page table 1311 * pages are freed. This is unsuitable for architectures that do not need 1312 * to broadcast an IPI when invalidating TLBs. 1313 * 1314 * Another way to achieve this is to batch up page table containing pages 1315 * belonging to more than one mm_user, then rcu_sched a callback to free those 1316 * pages. Disabling interrupts will allow the fast_gup walker to both block 1317 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1318 * (which is a relatively rare event). The code below adopts this strategy. 1319 * 1320 * Before activating this code, please be aware that the following assumptions 1321 * are currently made: 1322 * 1323 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1324 * free pages containing page tables or TLB flushing requires IPI broadcast. 1325 * 1326 * *) ptes can be read atomically by the architecture. 1327 * 1328 * *) access_ok is sufficient to validate userspace address ranges. 1329 * 1330 * The last two assumptions can be relaxed by the addition of helper functions. 1331 * 1332 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1333 */ 1334 #ifdef CONFIG_HAVE_GENERIC_GUP 1335 1336 #ifndef gup_get_pte 1337 /* 1338 * We assume that the PTE can be read atomically. If this is not the case for 1339 * your architecture, please provide the helper. 1340 */ 1341 static inline pte_t gup_get_pte(pte_t *ptep) 1342 { 1343 return READ_ONCE(*ptep); 1344 } 1345 #endif 1346 1347 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1348 { 1349 while ((*nr) - nr_start) { 1350 struct page *page = pages[--(*nr)]; 1351 1352 ClearPageReferenced(page); 1353 put_page(page); 1354 } 1355 } 1356 1357 #ifdef __HAVE_ARCH_PTE_SPECIAL 1358 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1359 int write, struct page **pages, int *nr) 1360 { 1361 struct dev_pagemap *pgmap = NULL; 1362 int nr_start = *nr, ret = 0; 1363 pte_t *ptep, *ptem; 1364 1365 ptem = ptep = pte_offset_map(&pmd, addr); 1366 do { 1367 pte_t pte = gup_get_pte(ptep); 1368 struct page *head, *page; 1369 1370 /* 1371 * Similar to the PMD case below, NUMA hinting must take slow 1372 * path using the pte_protnone check. 1373 */ 1374 if (pte_protnone(pte)) 1375 goto pte_unmap; 1376 1377 if (!pte_access_permitted(pte, write)) 1378 goto pte_unmap; 1379 1380 if (pte_devmap(pte)) { 1381 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1382 if (unlikely(!pgmap)) { 1383 undo_dev_pagemap(nr, nr_start, pages); 1384 goto pte_unmap; 1385 } 1386 } else if (pte_special(pte)) 1387 goto pte_unmap; 1388 1389 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1390 page = pte_page(pte); 1391 head = compound_head(page); 1392 1393 if (!page_cache_get_speculative(head)) 1394 goto pte_unmap; 1395 1396 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1397 put_page(head); 1398 goto pte_unmap; 1399 } 1400 1401 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1402 1403 SetPageReferenced(page); 1404 pages[*nr] = page; 1405 (*nr)++; 1406 1407 } while (ptep++, addr += PAGE_SIZE, addr != end); 1408 1409 ret = 1; 1410 1411 pte_unmap: 1412 if (pgmap) 1413 put_dev_pagemap(pgmap); 1414 pte_unmap(ptem); 1415 return ret; 1416 } 1417 #else 1418 1419 /* 1420 * If we can't determine whether or not a pte is special, then fail immediately 1421 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1422 * to be special. 1423 * 1424 * For a futex to be placed on a THP tail page, get_futex_key requires a 1425 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1426 * useful to have gup_huge_pmd even if we can't operate on ptes. 1427 */ 1428 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1429 int write, struct page **pages, int *nr) 1430 { 1431 return 0; 1432 } 1433 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1434 1435 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1436 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1437 unsigned long end, struct page **pages, int *nr) 1438 { 1439 int nr_start = *nr; 1440 struct dev_pagemap *pgmap = NULL; 1441 1442 do { 1443 struct page *page = pfn_to_page(pfn); 1444 1445 pgmap = get_dev_pagemap(pfn, pgmap); 1446 if (unlikely(!pgmap)) { 1447 undo_dev_pagemap(nr, nr_start, pages); 1448 return 0; 1449 } 1450 SetPageReferenced(page); 1451 pages[*nr] = page; 1452 get_page(page); 1453 (*nr)++; 1454 pfn++; 1455 } while (addr += PAGE_SIZE, addr != end); 1456 1457 if (pgmap) 1458 put_dev_pagemap(pgmap); 1459 return 1; 1460 } 1461 1462 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1463 unsigned long end, struct page **pages, int *nr) 1464 { 1465 unsigned long fault_pfn; 1466 1467 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1468 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1469 } 1470 1471 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1472 unsigned long end, struct page **pages, int *nr) 1473 { 1474 unsigned long fault_pfn; 1475 1476 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1477 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1478 } 1479 #else 1480 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1481 unsigned long end, struct page **pages, int *nr) 1482 { 1483 BUILD_BUG(); 1484 return 0; 1485 } 1486 1487 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1488 unsigned long end, struct page **pages, int *nr) 1489 { 1490 BUILD_BUG(); 1491 return 0; 1492 } 1493 #endif 1494 1495 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1496 unsigned long end, int write, struct page **pages, int *nr) 1497 { 1498 struct page *head, *page; 1499 int refs; 1500 1501 if (!pmd_access_permitted(orig, write)) 1502 return 0; 1503 1504 if (pmd_devmap(orig)) 1505 return __gup_device_huge_pmd(orig, addr, end, pages, nr); 1506 1507 refs = 0; 1508 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1509 do { 1510 pages[*nr] = page; 1511 (*nr)++; 1512 page++; 1513 refs++; 1514 } while (addr += PAGE_SIZE, addr != end); 1515 1516 head = compound_head(pmd_page(orig)); 1517 if (!page_cache_add_speculative(head, refs)) { 1518 *nr -= refs; 1519 return 0; 1520 } 1521 1522 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1523 *nr -= refs; 1524 while (refs--) 1525 put_page(head); 1526 return 0; 1527 } 1528 1529 SetPageReferenced(head); 1530 return 1; 1531 } 1532 1533 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1534 unsigned long end, int write, struct page **pages, int *nr) 1535 { 1536 struct page *head, *page; 1537 int refs; 1538 1539 if (!pud_access_permitted(orig, write)) 1540 return 0; 1541 1542 if (pud_devmap(orig)) 1543 return __gup_device_huge_pud(orig, addr, end, pages, nr); 1544 1545 refs = 0; 1546 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1547 do { 1548 pages[*nr] = page; 1549 (*nr)++; 1550 page++; 1551 refs++; 1552 } while (addr += PAGE_SIZE, addr != end); 1553 1554 head = compound_head(pud_page(orig)); 1555 if (!page_cache_add_speculative(head, refs)) { 1556 *nr -= refs; 1557 return 0; 1558 } 1559 1560 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1561 *nr -= refs; 1562 while (refs--) 1563 put_page(head); 1564 return 0; 1565 } 1566 1567 SetPageReferenced(head); 1568 return 1; 1569 } 1570 1571 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1572 unsigned long end, int write, 1573 struct page **pages, int *nr) 1574 { 1575 int refs; 1576 struct page *head, *page; 1577 1578 if (!pgd_access_permitted(orig, write)) 1579 return 0; 1580 1581 BUILD_BUG_ON(pgd_devmap(orig)); 1582 refs = 0; 1583 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1584 do { 1585 pages[*nr] = page; 1586 (*nr)++; 1587 page++; 1588 refs++; 1589 } while (addr += PAGE_SIZE, addr != end); 1590 1591 head = compound_head(pgd_page(orig)); 1592 if (!page_cache_add_speculative(head, refs)) { 1593 *nr -= refs; 1594 return 0; 1595 } 1596 1597 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1598 *nr -= refs; 1599 while (refs--) 1600 put_page(head); 1601 return 0; 1602 } 1603 1604 SetPageReferenced(head); 1605 return 1; 1606 } 1607 1608 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1609 int write, struct page **pages, int *nr) 1610 { 1611 unsigned long next; 1612 pmd_t *pmdp; 1613 1614 pmdp = pmd_offset(&pud, addr); 1615 do { 1616 pmd_t pmd = READ_ONCE(*pmdp); 1617 1618 next = pmd_addr_end(addr, end); 1619 if (!pmd_present(pmd)) 1620 return 0; 1621 1622 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1623 /* 1624 * NUMA hinting faults need to be handled in the GUP 1625 * slowpath for accounting purposes and so that they 1626 * can be serialised against THP migration. 1627 */ 1628 if (pmd_protnone(pmd)) 1629 return 0; 1630 1631 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1632 pages, nr)) 1633 return 0; 1634 1635 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1636 /* 1637 * architecture have different format for hugetlbfs 1638 * pmd format and THP pmd format 1639 */ 1640 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1641 PMD_SHIFT, next, write, pages, nr)) 1642 return 0; 1643 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1644 return 0; 1645 } while (pmdp++, addr = next, addr != end); 1646 1647 return 1; 1648 } 1649 1650 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1651 int write, struct page **pages, int *nr) 1652 { 1653 unsigned long next; 1654 pud_t *pudp; 1655 1656 pudp = pud_offset(&p4d, addr); 1657 do { 1658 pud_t pud = READ_ONCE(*pudp); 1659 1660 next = pud_addr_end(addr, end); 1661 if (pud_none(pud)) 1662 return 0; 1663 if (unlikely(pud_huge(pud))) { 1664 if (!gup_huge_pud(pud, pudp, addr, next, write, 1665 pages, nr)) 1666 return 0; 1667 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1668 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1669 PUD_SHIFT, next, write, pages, nr)) 1670 return 0; 1671 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1672 return 0; 1673 } while (pudp++, addr = next, addr != end); 1674 1675 return 1; 1676 } 1677 1678 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1679 int write, struct page **pages, int *nr) 1680 { 1681 unsigned long next; 1682 p4d_t *p4dp; 1683 1684 p4dp = p4d_offset(&pgd, addr); 1685 do { 1686 p4d_t p4d = READ_ONCE(*p4dp); 1687 1688 next = p4d_addr_end(addr, end); 1689 if (p4d_none(p4d)) 1690 return 0; 1691 BUILD_BUG_ON(p4d_huge(p4d)); 1692 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1693 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1694 P4D_SHIFT, next, write, pages, nr)) 1695 return 0; 1696 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1697 return 0; 1698 } while (p4dp++, addr = next, addr != end); 1699 1700 return 1; 1701 } 1702 1703 static void gup_pgd_range(unsigned long addr, unsigned long end, 1704 int write, struct page **pages, int *nr) 1705 { 1706 unsigned long next; 1707 pgd_t *pgdp; 1708 1709 pgdp = pgd_offset(current->mm, addr); 1710 do { 1711 pgd_t pgd = READ_ONCE(*pgdp); 1712 1713 next = pgd_addr_end(addr, end); 1714 if (pgd_none(pgd)) 1715 return; 1716 if (unlikely(pgd_huge(pgd))) { 1717 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1718 pages, nr)) 1719 return; 1720 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1721 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1722 PGDIR_SHIFT, next, write, pages, nr)) 1723 return; 1724 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1725 return; 1726 } while (pgdp++, addr = next, addr != end); 1727 } 1728 1729 #ifndef gup_fast_permitted 1730 /* 1731 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1732 * we need to fall back to the slow version: 1733 */ 1734 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1735 { 1736 unsigned long len, end; 1737 1738 len = (unsigned long) nr_pages << PAGE_SHIFT; 1739 end = start + len; 1740 return end >= start; 1741 } 1742 #endif 1743 1744 /* 1745 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1746 * the regular GUP. 1747 * Note a difference with get_user_pages_fast: this always returns the 1748 * number of pages pinned, 0 if no pages were pinned. 1749 */ 1750 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1751 struct page **pages) 1752 { 1753 unsigned long addr, len, end; 1754 unsigned long flags; 1755 int nr = 0; 1756 1757 start &= PAGE_MASK; 1758 addr = start; 1759 len = (unsigned long) nr_pages << PAGE_SHIFT; 1760 end = start + len; 1761 1762 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1763 (void __user *)start, len))) 1764 return 0; 1765 1766 /* 1767 * Disable interrupts. We use the nested form as we can already have 1768 * interrupts disabled by get_futex_key. 1769 * 1770 * With interrupts disabled, we block page table pages from being 1771 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1772 * for more details. 1773 * 1774 * We do not adopt an rcu_read_lock(.) here as we also want to 1775 * block IPIs that come from THPs splitting. 1776 */ 1777 1778 if (gup_fast_permitted(start, nr_pages, write)) { 1779 local_irq_save(flags); 1780 gup_pgd_range(addr, end, write, pages, &nr); 1781 local_irq_restore(flags); 1782 } 1783 1784 return nr; 1785 } 1786 1787 /** 1788 * get_user_pages_fast() - pin user pages in memory 1789 * @start: starting user address 1790 * @nr_pages: number of pages from start to pin 1791 * @write: whether pages will be written to 1792 * @pages: array that receives pointers to the pages pinned. 1793 * Should be at least nr_pages long. 1794 * 1795 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1796 * If not successful, it will fall back to taking the lock and 1797 * calling get_user_pages(). 1798 * 1799 * Returns number of pages pinned. This may be fewer than the number 1800 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1801 * were pinned, returns -errno. 1802 */ 1803 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1804 struct page **pages) 1805 { 1806 unsigned long addr, len, end; 1807 int nr = 0, ret = 0; 1808 1809 start &= PAGE_MASK; 1810 addr = start; 1811 len = (unsigned long) nr_pages << PAGE_SHIFT; 1812 end = start + len; 1813 1814 if (nr_pages <= 0) 1815 return 0; 1816 1817 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1818 (void __user *)start, len))) 1819 return -EFAULT; 1820 1821 if (gup_fast_permitted(start, nr_pages, write)) { 1822 local_irq_disable(); 1823 gup_pgd_range(addr, end, write, pages, &nr); 1824 local_irq_enable(); 1825 ret = nr; 1826 } 1827 1828 if (nr < nr_pages) { 1829 /* Try to get the remaining pages with get_user_pages */ 1830 start += nr << PAGE_SHIFT; 1831 pages += nr; 1832 1833 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1834 write ? FOLL_WRITE : 0); 1835 1836 /* Have to be a bit careful with return values */ 1837 if (nr > 0) { 1838 if (ret < 0) 1839 ret = nr; 1840 else 1841 ret += nr; 1842 } 1843 } 1844 1845 return ret; 1846 } 1847 1848 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1849