xref: /openbmc/linux/mm/gup.c (revision d2999e1b)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/hugetlb.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include "internal.h"
14 
15 static struct page *no_page_table(struct vm_area_struct *vma,
16 		unsigned int flags)
17 {
18 	/*
19 	 * When core dumping an enormous anonymous area that nobody
20 	 * has touched so far, we don't want to allocate unnecessary pages or
21 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
22 	 * then get_dump_page() will return NULL to leave a hole in the dump.
23 	 * But we can only make this optimization where a hole would surely
24 	 * be zero-filled if handle_mm_fault() actually did handle it.
25 	 */
26 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
27 		return ERR_PTR(-EFAULT);
28 	return NULL;
29 }
30 
31 static struct page *follow_page_pte(struct vm_area_struct *vma,
32 		unsigned long address, pmd_t *pmd, unsigned int flags)
33 {
34 	struct mm_struct *mm = vma->vm_mm;
35 	struct page *page;
36 	spinlock_t *ptl;
37 	pte_t *ptep, pte;
38 
39 retry:
40 	if (unlikely(pmd_bad(*pmd)))
41 		return no_page_table(vma, flags);
42 
43 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
44 	pte = *ptep;
45 	if (!pte_present(pte)) {
46 		swp_entry_t entry;
47 		/*
48 		 * KSM's break_ksm() relies upon recognizing a ksm page
49 		 * even while it is being migrated, so for that case we
50 		 * need migration_entry_wait().
51 		 */
52 		if (likely(!(flags & FOLL_MIGRATION)))
53 			goto no_page;
54 		if (pte_none(pte) || pte_file(pte))
55 			goto no_page;
56 		entry = pte_to_swp_entry(pte);
57 		if (!is_migration_entry(entry))
58 			goto no_page;
59 		pte_unmap_unlock(ptep, ptl);
60 		migration_entry_wait(mm, pmd, address);
61 		goto retry;
62 	}
63 	if ((flags & FOLL_NUMA) && pte_numa(pte))
64 		goto no_page;
65 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
66 		pte_unmap_unlock(ptep, ptl);
67 		return NULL;
68 	}
69 
70 	page = vm_normal_page(vma, address, pte);
71 	if (unlikely(!page)) {
72 		if ((flags & FOLL_DUMP) ||
73 		    !is_zero_pfn(pte_pfn(pte)))
74 			goto bad_page;
75 		page = pte_page(pte);
76 	}
77 
78 	if (flags & FOLL_GET)
79 		get_page_foll(page);
80 	if (flags & FOLL_TOUCH) {
81 		if ((flags & FOLL_WRITE) &&
82 		    !pte_dirty(pte) && !PageDirty(page))
83 			set_page_dirty(page);
84 		/*
85 		 * pte_mkyoung() would be more correct here, but atomic care
86 		 * is needed to avoid losing the dirty bit: it is easier to use
87 		 * mark_page_accessed().
88 		 */
89 		mark_page_accessed(page);
90 	}
91 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
92 		/*
93 		 * The preliminary mapping check is mainly to avoid the
94 		 * pointless overhead of lock_page on the ZERO_PAGE
95 		 * which might bounce very badly if there is contention.
96 		 *
97 		 * If the page is already locked, we don't need to
98 		 * handle it now - vmscan will handle it later if and
99 		 * when it attempts to reclaim the page.
100 		 */
101 		if (page->mapping && trylock_page(page)) {
102 			lru_add_drain();  /* push cached pages to LRU */
103 			/*
104 			 * Because we lock page here, and migration is
105 			 * blocked by the pte's page reference, and we
106 			 * know the page is still mapped, we don't even
107 			 * need to check for file-cache page truncation.
108 			 */
109 			mlock_vma_page(page);
110 			unlock_page(page);
111 		}
112 	}
113 	pte_unmap_unlock(ptep, ptl);
114 	return page;
115 bad_page:
116 	pte_unmap_unlock(ptep, ptl);
117 	return ERR_PTR(-EFAULT);
118 
119 no_page:
120 	pte_unmap_unlock(ptep, ptl);
121 	if (!pte_none(pte))
122 		return NULL;
123 	return no_page_table(vma, flags);
124 }
125 
126 /**
127  * follow_page_mask - look up a page descriptor from a user-virtual address
128  * @vma: vm_area_struct mapping @address
129  * @address: virtual address to look up
130  * @flags: flags modifying lookup behaviour
131  * @page_mask: on output, *page_mask is set according to the size of the page
132  *
133  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
134  *
135  * Returns the mapped (struct page *), %NULL if no mapping exists, or
136  * an error pointer if there is a mapping to something not represented
137  * by a page descriptor (see also vm_normal_page()).
138  */
139 struct page *follow_page_mask(struct vm_area_struct *vma,
140 			      unsigned long address, unsigned int flags,
141 			      unsigned int *page_mask)
142 {
143 	pgd_t *pgd;
144 	pud_t *pud;
145 	pmd_t *pmd;
146 	spinlock_t *ptl;
147 	struct page *page;
148 	struct mm_struct *mm = vma->vm_mm;
149 
150 	*page_mask = 0;
151 
152 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
153 	if (!IS_ERR(page)) {
154 		BUG_ON(flags & FOLL_GET);
155 		return page;
156 	}
157 
158 	pgd = pgd_offset(mm, address);
159 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
160 		return no_page_table(vma, flags);
161 
162 	pud = pud_offset(pgd, address);
163 	if (pud_none(*pud))
164 		return no_page_table(vma, flags);
165 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
166 		if (flags & FOLL_GET)
167 			return NULL;
168 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
169 		return page;
170 	}
171 	if (unlikely(pud_bad(*pud)))
172 		return no_page_table(vma, flags);
173 
174 	pmd = pmd_offset(pud, address);
175 	if (pmd_none(*pmd))
176 		return no_page_table(vma, flags);
177 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
178 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
179 		if (flags & FOLL_GET) {
180 			/*
181 			 * Refcount on tail pages are not well-defined and
182 			 * shouldn't be taken. The caller should handle a NULL
183 			 * return when trying to follow tail pages.
184 			 */
185 			if (PageHead(page))
186 				get_page(page);
187 			else
188 				page = NULL;
189 		}
190 		return page;
191 	}
192 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
193 		return no_page_table(vma, flags);
194 	if (pmd_trans_huge(*pmd)) {
195 		if (flags & FOLL_SPLIT) {
196 			split_huge_page_pmd(vma, address, pmd);
197 			return follow_page_pte(vma, address, pmd, flags);
198 		}
199 		ptl = pmd_lock(mm, pmd);
200 		if (likely(pmd_trans_huge(*pmd))) {
201 			if (unlikely(pmd_trans_splitting(*pmd))) {
202 				spin_unlock(ptl);
203 				wait_split_huge_page(vma->anon_vma, pmd);
204 			} else {
205 				page = follow_trans_huge_pmd(vma, address,
206 							     pmd, flags);
207 				spin_unlock(ptl);
208 				*page_mask = HPAGE_PMD_NR - 1;
209 				return page;
210 			}
211 		} else
212 			spin_unlock(ptl);
213 	}
214 	return follow_page_pte(vma, address, pmd, flags);
215 }
216 
217 static int get_gate_page(struct mm_struct *mm, unsigned long address,
218 		unsigned int gup_flags, struct vm_area_struct **vma,
219 		struct page **page)
220 {
221 	pgd_t *pgd;
222 	pud_t *pud;
223 	pmd_t *pmd;
224 	pte_t *pte;
225 	int ret = -EFAULT;
226 
227 	/* user gate pages are read-only */
228 	if (gup_flags & FOLL_WRITE)
229 		return -EFAULT;
230 	if (address > TASK_SIZE)
231 		pgd = pgd_offset_k(address);
232 	else
233 		pgd = pgd_offset_gate(mm, address);
234 	BUG_ON(pgd_none(*pgd));
235 	pud = pud_offset(pgd, address);
236 	BUG_ON(pud_none(*pud));
237 	pmd = pmd_offset(pud, address);
238 	if (pmd_none(*pmd))
239 		return -EFAULT;
240 	VM_BUG_ON(pmd_trans_huge(*pmd));
241 	pte = pte_offset_map(pmd, address);
242 	if (pte_none(*pte))
243 		goto unmap;
244 	*vma = get_gate_vma(mm);
245 	if (!page)
246 		goto out;
247 	*page = vm_normal_page(*vma, address, *pte);
248 	if (!*page) {
249 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
250 			goto unmap;
251 		*page = pte_page(*pte);
252 	}
253 	get_page(*page);
254 out:
255 	ret = 0;
256 unmap:
257 	pte_unmap(pte);
258 	return ret;
259 }
260 
261 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
262 		unsigned long address, unsigned int *flags, int *nonblocking)
263 {
264 	struct mm_struct *mm = vma->vm_mm;
265 	unsigned int fault_flags = 0;
266 	int ret;
267 
268 	/* For mlock, just skip the stack guard page. */
269 	if ((*flags & FOLL_MLOCK) &&
270 			(stack_guard_page_start(vma, address) ||
271 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
272 		return -ENOENT;
273 	if (*flags & FOLL_WRITE)
274 		fault_flags |= FAULT_FLAG_WRITE;
275 	if (nonblocking)
276 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
277 	if (*flags & FOLL_NOWAIT)
278 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
279 
280 	ret = handle_mm_fault(mm, vma, address, fault_flags);
281 	if (ret & VM_FAULT_ERROR) {
282 		if (ret & VM_FAULT_OOM)
283 			return -ENOMEM;
284 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
285 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
286 		if (ret & VM_FAULT_SIGBUS)
287 			return -EFAULT;
288 		BUG();
289 	}
290 
291 	if (tsk) {
292 		if (ret & VM_FAULT_MAJOR)
293 			tsk->maj_flt++;
294 		else
295 			tsk->min_flt++;
296 	}
297 
298 	if (ret & VM_FAULT_RETRY) {
299 		if (nonblocking)
300 			*nonblocking = 0;
301 		return -EBUSY;
302 	}
303 
304 	/*
305 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
306 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
307 	 * can thus safely do subsequent page lookups as if they were reads.
308 	 * But only do so when looping for pte_write is futile: in some cases
309 	 * userspace may also be wanting to write to the gotten user page,
310 	 * which a read fault here might prevent (a readonly page might get
311 	 * reCOWed by userspace write).
312 	 */
313 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
314 		*flags &= ~FOLL_WRITE;
315 	return 0;
316 }
317 
318 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
319 {
320 	vm_flags_t vm_flags = vma->vm_flags;
321 
322 	if (vm_flags & (VM_IO | VM_PFNMAP))
323 		return -EFAULT;
324 
325 	if (gup_flags & FOLL_WRITE) {
326 		if (!(vm_flags & VM_WRITE)) {
327 			if (!(gup_flags & FOLL_FORCE))
328 				return -EFAULT;
329 			/*
330 			 * We used to let the write,force case do COW in a
331 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
332 			 * set a breakpoint in a read-only mapping of an
333 			 * executable, without corrupting the file (yet only
334 			 * when that file had been opened for writing!).
335 			 * Anon pages in shared mappings are surprising: now
336 			 * just reject it.
337 			 */
338 			if (!is_cow_mapping(vm_flags)) {
339 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
340 				return -EFAULT;
341 			}
342 		}
343 	} else if (!(vm_flags & VM_READ)) {
344 		if (!(gup_flags & FOLL_FORCE))
345 			return -EFAULT;
346 		/*
347 		 * Is there actually any vma we can reach here which does not
348 		 * have VM_MAYREAD set?
349 		 */
350 		if (!(vm_flags & VM_MAYREAD))
351 			return -EFAULT;
352 	}
353 	return 0;
354 }
355 
356 /**
357  * __get_user_pages() - pin user pages in memory
358  * @tsk:	task_struct of target task
359  * @mm:		mm_struct of target mm
360  * @start:	starting user address
361  * @nr_pages:	number of pages from start to pin
362  * @gup_flags:	flags modifying pin behaviour
363  * @pages:	array that receives pointers to the pages pinned.
364  *		Should be at least nr_pages long. Or NULL, if caller
365  *		only intends to ensure the pages are faulted in.
366  * @vmas:	array of pointers to vmas corresponding to each page.
367  *		Or NULL if the caller does not require them.
368  * @nonblocking: whether waiting for disk IO or mmap_sem contention
369  *
370  * Returns number of pages pinned. This may be fewer than the number
371  * requested. If nr_pages is 0 or negative, returns 0. If no pages
372  * were pinned, returns -errno. Each page returned must be released
373  * with a put_page() call when it is finished with. vmas will only
374  * remain valid while mmap_sem is held.
375  *
376  * Must be called with mmap_sem held for read or write.
377  *
378  * __get_user_pages walks a process's page tables and takes a reference to
379  * each struct page that each user address corresponds to at a given
380  * instant. That is, it takes the page that would be accessed if a user
381  * thread accesses the given user virtual address at that instant.
382  *
383  * This does not guarantee that the page exists in the user mappings when
384  * __get_user_pages returns, and there may even be a completely different
385  * page there in some cases (eg. if mmapped pagecache has been invalidated
386  * and subsequently re faulted). However it does guarantee that the page
387  * won't be freed completely. And mostly callers simply care that the page
388  * contains data that was valid *at some point in time*. Typically, an IO
389  * or similar operation cannot guarantee anything stronger anyway because
390  * locks can't be held over the syscall boundary.
391  *
392  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
393  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
394  * appropriate) must be called after the page is finished with, and
395  * before put_page is called.
396  *
397  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
398  * or mmap_sem contention, and if waiting is needed to pin all pages,
399  * *@nonblocking will be set to 0.
400  *
401  * In most cases, get_user_pages or get_user_pages_fast should be used
402  * instead of __get_user_pages. __get_user_pages should be used only if
403  * you need some special @gup_flags.
404  */
405 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
406 		unsigned long start, unsigned long nr_pages,
407 		unsigned int gup_flags, struct page **pages,
408 		struct vm_area_struct **vmas, int *nonblocking)
409 {
410 	long i = 0;
411 	unsigned int page_mask;
412 	struct vm_area_struct *vma = NULL;
413 
414 	if (!nr_pages)
415 		return 0;
416 
417 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
418 
419 	/*
420 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
421 	 * fault information is unrelated to the reference behaviour of a task
422 	 * using the address space
423 	 */
424 	if (!(gup_flags & FOLL_FORCE))
425 		gup_flags |= FOLL_NUMA;
426 
427 	do {
428 		struct page *page;
429 		unsigned int foll_flags = gup_flags;
430 		unsigned int page_increm;
431 
432 		/* first iteration or cross vma bound */
433 		if (!vma || start >= vma->vm_end) {
434 			vma = find_extend_vma(mm, start);
435 			if (!vma && in_gate_area(mm, start)) {
436 				int ret;
437 				ret = get_gate_page(mm, start & PAGE_MASK,
438 						gup_flags, &vma,
439 						pages ? &pages[i] : NULL);
440 				if (ret)
441 					return i ? : ret;
442 				page_mask = 0;
443 				goto next_page;
444 			}
445 
446 			if (!vma || check_vma_flags(vma, gup_flags))
447 				return i ? : -EFAULT;
448 			if (is_vm_hugetlb_page(vma)) {
449 				i = follow_hugetlb_page(mm, vma, pages, vmas,
450 						&start, &nr_pages, i,
451 						gup_flags);
452 				continue;
453 			}
454 		}
455 retry:
456 		/*
457 		 * If we have a pending SIGKILL, don't keep faulting pages and
458 		 * potentially allocating memory.
459 		 */
460 		if (unlikely(fatal_signal_pending(current)))
461 			return i ? i : -ERESTARTSYS;
462 		cond_resched();
463 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
464 		if (!page) {
465 			int ret;
466 			ret = faultin_page(tsk, vma, start, &foll_flags,
467 					nonblocking);
468 			switch (ret) {
469 			case 0:
470 				goto retry;
471 			case -EFAULT:
472 			case -ENOMEM:
473 			case -EHWPOISON:
474 				return i ? i : ret;
475 			case -EBUSY:
476 				return i;
477 			case -ENOENT:
478 				goto next_page;
479 			}
480 			BUG();
481 		}
482 		if (IS_ERR(page))
483 			return i ? i : PTR_ERR(page);
484 		if (pages) {
485 			pages[i] = page;
486 			flush_anon_page(vma, page, start);
487 			flush_dcache_page(page);
488 			page_mask = 0;
489 		}
490 next_page:
491 		if (vmas) {
492 			vmas[i] = vma;
493 			page_mask = 0;
494 		}
495 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
496 		if (page_increm > nr_pages)
497 			page_increm = nr_pages;
498 		i += page_increm;
499 		start += page_increm * PAGE_SIZE;
500 		nr_pages -= page_increm;
501 	} while (nr_pages);
502 	return i;
503 }
504 EXPORT_SYMBOL(__get_user_pages);
505 
506 /*
507  * fixup_user_fault() - manually resolve a user page fault
508  * @tsk:	the task_struct to use for page fault accounting, or
509  *		NULL if faults are not to be recorded.
510  * @mm:		mm_struct of target mm
511  * @address:	user address
512  * @fault_flags:flags to pass down to handle_mm_fault()
513  *
514  * This is meant to be called in the specific scenario where for locking reasons
515  * we try to access user memory in atomic context (within a pagefault_disable()
516  * section), this returns -EFAULT, and we want to resolve the user fault before
517  * trying again.
518  *
519  * Typically this is meant to be used by the futex code.
520  *
521  * The main difference with get_user_pages() is that this function will
522  * unconditionally call handle_mm_fault() which will in turn perform all the
523  * necessary SW fixup of the dirty and young bits in the PTE, while
524  * handle_mm_fault() only guarantees to update these in the struct page.
525  *
526  * This is important for some architectures where those bits also gate the
527  * access permission to the page because they are maintained in software.  On
528  * such architectures, gup() will not be enough to make a subsequent access
529  * succeed.
530  *
531  * This should be called with the mm_sem held for read.
532  */
533 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
534 		     unsigned long address, unsigned int fault_flags)
535 {
536 	struct vm_area_struct *vma;
537 	vm_flags_t vm_flags;
538 	int ret;
539 
540 	vma = find_extend_vma(mm, address);
541 	if (!vma || address < vma->vm_start)
542 		return -EFAULT;
543 
544 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
545 	if (!(vm_flags & vma->vm_flags))
546 		return -EFAULT;
547 
548 	ret = handle_mm_fault(mm, vma, address, fault_flags);
549 	if (ret & VM_FAULT_ERROR) {
550 		if (ret & VM_FAULT_OOM)
551 			return -ENOMEM;
552 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
553 			return -EHWPOISON;
554 		if (ret & VM_FAULT_SIGBUS)
555 			return -EFAULT;
556 		BUG();
557 	}
558 	if (tsk) {
559 		if (ret & VM_FAULT_MAJOR)
560 			tsk->maj_flt++;
561 		else
562 			tsk->min_flt++;
563 	}
564 	return 0;
565 }
566 
567 /*
568  * get_user_pages() - pin user pages in memory
569  * @tsk:	the task_struct to use for page fault accounting, or
570  *		NULL if faults are not to be recorded.
571  * @mm:		mm_struct of target mm
572  * @start:	starting user address
573  * @nr_pages:	number of pages from start to pin
574  * @write:	whether pages will be written to by the caller
575  * @force:	whether to force access even when user mapping is currently
576  *		protected (but never forces write access to shared mapping).
577  * @pages:	array that receives pointers to the pages pinned.
578  *		Should be at least nr_pages long. Or NULL, if caller
579  *		only intends to ensure the pages are faulted in.
580  * @vmas:	array of pointers to vmas corresponding to each page.
581  *		Or NULL if the caller does not require them.
582  *
583  * Returns number of pages pinned. This may be fewer than the number
584  * requested. If nr_pages is 0 or negative, returns 0. If no pages
585  * were pinned, returns -errno. Each page returned must be released
586  * with a put_page() call when it is finished with. vmas will only
587  * remain valid while mmap_sem is held.
588  *
589  * Must be called with mmap_sem held for read or write.
590  *
591  * get_user_pages walks a process's page tables and takes a reference to
592  * each struct page that each user address corresponds to at a given
593  * instant. That is, it takes the page that would be accessed if a user
594  * thread accesses the given user virtual address at that instant.
595  *
596  * This does not guarantee that the page exists in the user mappings when
597  * get_user_pages returns, and there may even be a completely different
598  * page there in some cases (eg. if mmapped pagecache has been invalidated
599  * and subsequently re faulted). However it does guarantee that the page
600  * won't be freed completely. And mostly callers simply care that the page
601  * contains data that was valid *at some point in time*. Typically, an IO
602  * or similar operation cannot guarantee anything stronger anyway because
603  * locks can't be held over the syscall boundary.
604  *
605  * If write=0, the page must not be written to. If the page is written to,
606  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
607  * after the page is finished with, and before put_page is called.
608  *
609  * get_user_pages is typically used for fewer-copy IO operations, to get a
610  * handle on the memory by some means other than accesses via the user virtual
611  * addresses. The pages may be submitted for DMA to devices or accessed via
612  * their kernel linear mapping (via the kmap APIs). Care should be taken to
613  * use the correct cache flushing APIs.
614  *
615  * See also get_user_pages_fast, for performance critical applications.
616  */
617 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
618 		unsigned long start, unsigned long nr_pages, int write,
619 		int force, struct page **pages, struct vm_area_struct **vmas)
620 {
621 	int flags = FOLL_TOUCH;
622 
623 	if (pages)
624 		flags |= FOLL_GET;
625 	if (write)
626 		flags |= FOLL_WRITE;
627 	if (force)
628 		flags |= FOLL_FORCE;
629 
630 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
631 				NULL);
632 }
633 EXPORT_SYMBOL(get_user_pages);
634 
635 /**
636  * get_dump_page() - pin user page in memory while writing it to core dump
637  * @addr: user address
638  *
639  * Returns struct page pointer of user page pinned for dump,
640  * to be freed afterwards by page_cache_release() or put_page().
641  *
642  * Returns NULL on any kind of failure - a hole must then be inserted into
643  * the corefile, to preserve alignment with its headers; and also returns
644  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
645  * allowing a hole to be left in the corefile to save diskspace.
646  *
647  * Called without mmap_sem, but after all other threads have been killed.
648  */
649 #ifdef CONFIG_ELF_CORE
650 struct page *get_dump_page(unsigned long addr)
651 {
652 	struct vm_area_struct *vma;
653 	struct page *page;
654 
655 	if (__get_user_pages(current, current->mm, addr, 1,
656 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
657 			     NULL) < 1)
658 		return NULL;
659 	flush_cache_page(vma, addr, page_to_pfn(page));
660 	return page;
661 }
662 #endif /* CONFIG_ELF_CORE */
663