1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 struct follow_page_context { 24 struct dev_pagemap *pgmap; 25 unsigned int page_mask; 26 }; 27 28 static struct page *no_page_table(struct vm_area_struct *vma, 29 unsigned int flags) 30 { 31 /* 32 * When core dumping an enormous anonymous area that nobody 33 * has touched so far, we don't want to allocate unnecessary pages or 34 * page tables. Return error instead of NULL to skip handle_mm_fault, 35 * then get_dump_page() will return NULL to leave a hole in the dump. 36 * But we can only make this optimization where a hole would surely 37 * be zero-filled if handle_mm_fault() actually did handle it. 38 */ 39 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 40 return ERR_PTR(-EFAULT); 41 return NULL; 42 } 43 44 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 45 pte_t *pte, unsigned int flags) 46 { 47 /* No page to get reference */ 48 if (flags & FOLL_GET) 49 return -EFAULT; 50 51 if (flags & FOLL_TOUCH) { 52 pte_t entry = *pte; 53 54 if (flags & FOLL_WRITE) 55 entry = pte_mkdirty(entry); 56 entry = pte_mkyoung(entry); 57 58 if (!pte_same(*pte, entry)) { 59 set_pte_at(vma->vm_mm, address, pte, entry); 60 update_mmu_cache(vma, address, pte); 61 } 62 } 63 64 /* Proper page table entry exists, but no corresponding struct page */ 65 return -EEXIST; 66 } 67 68 /* 69 * FOLL_FORCE can write to even unwritable pte's, but only 70 * after we've gone through a COW cycle and they are dirty. 71 */ 72 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 73 { 74 return pte_write(pte) || 75 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 76 } 77 78 static struct page *follow_page_pte(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmd, unsigned int flags, 80 struct dev_pagemap **pgmap) 81 { 82 struct mm_struct *mm = vma->vm_mm; 83 struct page *page; 84 spinlock_t *ptl; 85 pte_t *ptep, pte; 86 87 retry: 88 if (unlikely(pmd_bad(*pmd))) 89 return no_page_table(vma, flags); 90 91 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 92 pte = *ptep; 93 if (!pte_present(pte)) { 94 swp_entry_t entry; 95 /* 96 * KSM's break_ksm() relies upon recognizing a ksm page 97 * even while it is being migrated, so for that case we 98 * need migration_entry_wait(). 99 */ 100 if (likely(!(flags & FOLL_MIGRATION))) 101 goto no_page; 102 if (pte_none(pte)) 103 goto no_page; 104 entry = pte_to_swp_entry(pte); 105 if (!is_migration_entry(entry)) 106 goto no_page; 107 pte_unmap_unlock(ptep, ptl); 108 migration_entry_wait(mm, pmd, address); 109 goto retry; 110 } 111 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 112 goto no_page; 113 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 114 pte_unmap_unlock(ptep, ptl); 115 return NULL; 116 } 117 118 page = vm_normal_page(vma, address, pte); 119 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 120 /* 121 * Only return device mapping pages in the FOLL_GET case since 122 * they are only valid while holding the pgmap reference. 123 */ 124 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 125 if (*pgmap) 126 page = pte_page(pte); 127 else 128 goto no_page; 129 } else if (unlikely(!page)) { 130 if (flags & FOLL_DUMP) { 131 /* Avoid special (like zero) pages in core dumps */ 132 page = ERR_PTR(-EFAULT); 133 goto out; 134 } 135 136 if (is_zero_pfn(pte_pfn(pte))) { 137 page = pte_page(pte); 138 } else { 139 int ret; 140 141 ret = follow_pfn_pte(vma, address, ptep, flags); 142 page = ERR_PTR(ret); 143 goto out; 144 } 145 } 146 147 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 148 int ret; 149 get_page(page); 150 pte_unmap_unlock(ptep, ptl); 151 lock_page(page); 152 ret = split_huge_page(page); 153 unlock_page(page); 154 put_page(page); 155 if (ret) 156 return ERR_PTR(ret); 157 goto retry; 158 } 159 160 if (flags & FOLL_GET) 161 get_page(page); 162 if (flags & FOLL_TOUCH) { 163 if ((flags & FOLL_WRITE) && 164 !pte_dirty(pte) && !PageDirty(page)) 165 set_page_dirty(page); 166 /* 167 * pte_mkyoung() would be more correct here, but atomic care 168 * is needed to avoid losing the dirty bit: it is easier to use 169 * mark_page_accessed(). 170 */ 171 mark_page_accessed(page); 172 } 173 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 174 /* Do not mlock pte-mapped THP */ 175 if (PageTransCompound(page)) 176 goto out; 177 178 /* 179 * The preliminary mapping check is mainly to avoid the 180 * pointless overhead of lock_page on the ZERO_PAGE 181 * which might bounce very badly if there is contention. 182 * 183 * If the page is already locked, we don't need to 184 * handle it now - vmscan will handle it later if and 185 * when it attempts to reclaim the page. 186 */ 187 if (page->mapping && trylock_page(page)) { 188 lru_add_drain(); /* push cached pages to LRU */ 189 /* 190 * Because we lock page here, and migration is 191 * blocked by the pte's page reference, and we 192 * know the page is still mapped, we don't even 193 * need to check for file-cache page truncation. 194 */ 195 mlock_vma_page(page); 196 unlock_page(page); 197 } 198 } 199 out: 200 pte_unmap_unlock(ptep, ptl); 201 return page; 202 no_page: 203 pte_unmap_unlock(ptep, ptl); 204 if (!pte_none(pte)) 205 return NULL; 206 return no_page_table(vma, flags); 207 } 208 209 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 210 unsigned long address, pud_t *pudp, 211 unsigned int flags, 212 struct follow_page_context *ctx) 213 { 214 pmd_t *pmd, pmdval; 215 spinlock_t *ptl; 216 struct page *page; 217 struct mm_struct *mm = vma->vm_mm; 218 219 pmd = pmd_offset(pudp, address); 220 /* 221 * The READ_ONCE() will stabilize the pmdval in a register or 222 * on the stack so that it will stop changing under the code. 223 */ 224 pmdval = READ_ONCE(*pmd); 225 if (pmd_none(pmdval)) 226 return no_page_table(vma, flags); 227 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 228 page = follow_huge_pmd(mm, address, pmd, flags); 229 if (page) 230 return page; 231 return no_page_table(vma, flags); 232 } 233 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 234 page = follow_huge_pd(vma, address, 235 __hugepd(pmd_val(pmdval)), flags, 236 PMD_SHIFT); 237 if (page) 238 return page; 239 return no_page_table(vma, flags); 240 } 241 retry: 242 if (!pmd_present(pmdval)) { 243 if (likely(!(flags & FOLL_MIGRATION))) 244 return no_page_table(vma, flags); 245 VM_BUG_ON(thp_migration_supported() && 246 !is_pmd_migration_entry(pmdval)); 247 if (is_pmd_migration_entry(pmdval)) 248 pmd_migration_entry_wait(mm, pmd); 249 pmdval = READ_ONCE(*pmd); 250 /* 251 * MADV_DONTNEED may convert the pmd to null because 252 * mmap_sem is held in read mode 253 */ 254 if (pmd_none(pmdval)) 255 return no_page_table(vma, flags); 256 goto retry; 257 } 258 if (pmd_devmap(pmdval)) { 259 ptl = pmd_lock(mm, pmd); 260 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 261 spin_unlock(ptl); 262 if (page) 263 return page; 264 } 265 if (likely(!pmd_trans_huge(pmdval))) 266 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 267 268 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 269 return no_page_table(vma, flags); 270 271 retry_locked: 272 ptl = pmd_lock(mm, pmd); 273 if (unlikely(pmd_none(*pmd))) { 274 spin_unlock(ptl); 275 return no_page_table(vma, flags); 276 } 277 if (unlikely(!pmd_present(*pmd))) { 278 spin_unlock(ptl); 279 if (likely(!(flags & FOLL_MIGRATION))) 280 return no_page_table(vma, flags); 281 pmd_migration_entry_wait(mm, pmd); 282 goto retry_locked; 283 } 284 if (unlikely(!pmd_trans_huge(*pmd))) { 285 spin_unlock(ptl); 286 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 287 } 288 if (flags & FOLL_SPLIT) { 289 int ret; 290 page = pmd_page(*pmd); 291 if (is_huge_zero_page(page)) { 292 spin_unlock(ptl); 293 ret = 0; 294 split_huge_pmd(vma, pmd, address); 295 if (pmd_trans_unstable(pmd)) 296 ret = -EBUSY; 297 } else { 298 get_page(page); 299 spin_unlock(ptl); 300 lock_page(page); 301 ret = split_huge_page(page); 302 unlock_page(page); 303 put_page(page); 304 if (pmd_none(*pmd)) 305 return no_page_table(vma, flags); 306 } 307 308 return ret ? ERR_PTR(ret) : 309 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 310 } 311 page = follow_trans_huge_pmd(vma, address, pmd, flags); 312 spin_unlock(ptl); 313 ctx->page_mask = HPAGE_PMD_NR - 1; 314 return page; 315 } 316 317 static struct page *follow_pud_mask(struct vm_area_struct *vma, 318 unsigned long address, p4d_t *p4dp, 319 unsigned int flags, 320 struct follow_page_context *ctx) 321 { 322 pud_t *pud; 323 spinlock_t *ptl; 324 struct page *page; 325 struct mm_struct *mm = vma->vm_mm; 326 327 pud = pud_offset(p4dp, address); 328 if (pud_none(*pud)) 329 return no_page_table(vma, flags); 330 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 331 page = follow_huge_pud(mm, address, pud, flags); 332 if (page) 333 return page; 334 return no_page_table(vma, flags); 335 } 336 if (is_hugepd(__hugepd(pud_val(*pud)))) { 337 page = follow_huge_pd(vma, address, 338 __hugepd(pud_val(*pud)), flags, 339 PUD_SHIFT); 340 if (page) 341 return page; 342 return no_page_table(vma, flags); 343 } 344 if (pud_devmap(*pud)) { 345 ptl = pud_lock(mm, pud); 346 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 347 spin_unlock(ptl); 348 if (page) 349 return page; 350 } 351 if (unlikely(pud_bad(*pud))) 352 return no_page_table(vma, flags); 353 354 return follow_pmd_mask(vma, address, pud, flags, ctx); 355 } 356 357 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 358 unsigned long address, pgd_t *pgdp, 359 unsigned int flags, 360 struct follow_page_context *ctx) 361 { 362 p4d_t *p4d; 363 struct page *page; 364 365 p4d = p4d_offset(pgdp, address); 366 if (p4d_none(*p4d)) 367 return no_page_table(vma, flags); 368 BUILD_BUG_ON(p4d_huge(*p4d)); 369 if (unlikely(p4d_bad(*p4d))) 370 return no_page_table(vma, flags); 371 372 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 373 page = follow_huge_pd(vma, address, 374 __hugepd(p4d_val(*p4d)), flags, 375 P4D_SHIFT); 376 if (page) 377 return page; 378 return no_page_table(vma, flags); 379 } 380 return follow_pud_mask(vma, address, p4d, flags, ctx); 381 } 382 383 /** 384 * follow_page_mask - look up a page descriptor from a user-virtual address 385 * @vma: vm_area_struct mapping @address 386 * @address: virtual address to look up 387 * @flags: flags modifying lookup behaviour 388 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 389 * pointer to output page_mask 390 * 391 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 392 * 393 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 394 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 395 * 396 * On output, the @ctx->page_mask is set according to the size of the page. 397 * 398 * Return: the mapped (struct page *), %NULL if no mapping exists, or 399 * an error pointer if there is a mapping to something not represented 400 * by a page descriptor (see also vm_normal_page()). 401 */ 402 struct page *follow_page_mask(struct vm_area_struct *vma, 403 unsigned long address, unsigned int flags, 404 struct follow_page_context *ctx) 405 { 406 pgd_t *pgd; 407 struct page *page; 408 struct mm_struct *mm = vma->vm_mm; 409 410 ctx->page_mask = 0; 411 412 /* make this handle hugepd */ 413 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 414 if (!IS_ERR(page)) { 415 BUG_ON(flags & FOLL_GET); 416 return page; 417 } 418 419 pgd = pgd_offset(mm, address); 420 421 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 422 return no_page_table(vma, flags); 423 424 if (pgd_huge(*pgd)) { 425 page = follow_huge_pgd(mm, address, pgd, flags); 426 if (page) 427 return page; 428 return no_page_table(vma, flags); 429 } 430 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 431 page = follow_huge_pd(vma, address, 432 __hugepd(pgd_val(*pgd)), flags, 433 PGDIR_SHIFT); 434 if (page) 435 return page; 436 return no_page_table(vma, flags); 437 } 438 439 return follow_p4d_mask(vma, address, pgd, flags, ctx); 440 } 441 442 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 443 unsigned int foll_flags) 444 { 445 struct follow_page_context ctx = { NULL }; 446 struct page *page; 447 448 page = follow_page_mask(vma, address, foll_flags, &ctx); 449 if (ctx.pgmap) 450 put_dev_pagemap(ctx.pgmap); 451 return page; 452 } 453 454 static int get_gate_page(struct mm_struct *mm, unsigned long address, 455 unsigned int gup_flags, struct vm_area_struct **vma, 456 struct page **page) 457 { 458 pgd_t *pgd; 459 p4d_t *p4d; 460 pud_t *pud; 461 pmd_t *pmd; 462 pte_t *pte; 463 int ret = -EFAULT; 464 465 /* user gate pages are read-only */ 466 if (gup_flags & FOLL_WRITE) 467 return -EFAULT; 468 if (address > TASK_SIZE) 469 pgd = pgd_offset_k(address); 470 else 471 pgd = pgd_offset_gate(mm, address); 472 BUG_ON(pgd_none(*pgd)); 473 p4d = p4d_offset(pgd, address); 474 BUG_ON(p4d_none(*p4d)); 475 pud = pud_offset(p4d, address); 476 BUG_ON(pud_none(*pud)); 477 pmd = pmd_offset(pud, address); 478 if (!pmd_present(*pmd)) 479 return -EFAULT; 480 VM_BUG_ON(pmd_trans_huge(*pmd)); 481 pte = pte_offset_map(pmd, address); 482 if (pte_none(*pte)) 483 goto unmap; 484 *vma = get_gate_vma(mm); 485 if (!page) 486 goto out; 487 *page = vm_normal_page(*vma, address, *pte); 488 if (!*page) { 489 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 490 goto unmap; 491 *page = pte_page(*pte); 492 493 /* 494 * This should never happen (a device public page in the gate 495 * area). 496 */ 497 if (is_device_public_page(*page)) 498 goto unmap; 499 } 500 get_page(*page); 501 out: 502 ret = 0; 503 unmap: 504 pte_unmap(pte); 505 return ret; 506 } 507 508 /* 509 * mmap_sem must be held on entry. If @nonblocking != NULL and 510 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 511 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 512 */ 513 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 514 unsigned long address, unsigned int *flags, int *nonblocking) 515 { 516 unsigned int fault_flags = 0; 517 vm_fault_t ret; 518 519 /* mlock all present pages, but do not fault in new pages */ 520 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 521 return -ENOENT; 522 if (*flags & FOLL_WRITE) 523 fault_flags |= FAULT_FLAG_WRITE; 524 if (*flags & FOLL_REMOTE) 525 fault_flags |= FAULT_FLAG_REMOTE; 526 if (nonblocking) 527 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 528 if (*flags & FOLL_NOWAIT) 529 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 530 if (*flags & FOLL_TRIED) { 531 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 532 fault_flags |= FAULT_FLAG_TRIED; 533 } 534 535 ret = handle_mm_fault(vma, address, fault_flags); 536 if (ret & VM_FAULT_ERROR) { 537 int err = vm_fault_to_errno(ret, *flags); 538 539 if (err) 540 return err; 541 BUG(); 542 } 543 544 if (tsk) { 545 if (ret & VM_FAULT_MAJOR) 546 tsk->maj_flt++; 547 else 548 tsk->min_flt++; 549 } 550 551 if (ret & VM_FAULT_RETRY) { 552 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 553 *nonblocking = 0; 554 return -EBUSY; 555 } 556 557 /* 558 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 559 * necessary, even if maybe_mkwrite decided not to set pte_write. We 560 * can thus safely do subsequent page lookups as if they were reads. 561 * But only do so when looping for pte_write is futile: in some cases 562 * userspace may also be wanting to write to the gotten user page, 563 * which a read fault here might prevent (a readonly page might get 564 * reCOWed by userspace write). 565 */ 566 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 567 *flags |= FOLL_COW; 568 return 0; 569 } 570 571 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 572 { 573 vm_flags_t vm_flags = vma->vm_flags; 574 int write = (gup_flags & FOLL_WRITE); 575 int foreign = (gup_flags & FOLL_REMOTE); 576 577 if (vm_flags & (VM_IO | VM_PFNMAP)) 578 return -EFAULT; 579 580 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 581 return -EFAULT; 582 583 if (write) { 584 if (!(vm_flags & VM_WRITE)) { 585 if (!(gup_flags & FOLL_FORCE)) 586 return -EFAULT; 587 /* 588 * We used to let the write,force case do COW in a 589 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 590 * set a breakpoint in a read-only mapping of an 591 * executable, without corrupting the file (yet only 592 * when that file had been opened for writing!). 593 * Anon pages in shared mappings are surprising: now 594 * just reject it. 595 */ 596 if (!is_cow_mapping(vm_flags)) 597 return -EFAULT; 598 } 599 } else if (!(vm_flags & VM_READ)) { 600 if (!(gup_flags & FOLL_FORCE)) 601 return -EFAULT; 602 /* 603 * Is there actually any vma we can reach here which does not 604 * have VM_MAYREAD set? 605 */ 606 if (!(vm_flags & VM_MAYREAD)) 607 return -EFAULT; 608 } 609 /* 610 * gups are always data accesses, not instruction 611 * fetches, so execute=false here 612 */ 613 if (!arch_vma_access_permitted(vma, write, false, foreign)) 614 return -EFAULT; 615 return 0; 616 } 617 618 /** 619 * __get_user_pages() - pin user pages in memory 620 * @tsk: task_struct of target task 621 * @mm: mm_struct of target mm 622 * @start: starting user address 623 * @nr_pages: number of pages from start to pin 624 * @gup_flags: flags modifying pin behaviour 625 * @pages: array that receives pointers to the pages pinned. 626 * Should be at least nr_pages long. Or NULL, if caller 627 * only intends to ensure the pages are faulted in. 628 * @vmas: array of pointers to vmas corresponding to each page. 629 * Or NULL if the caller does not require them. 630 * @nonblocking: whether waiting for disk IO or mmap_sem contention 631 * 632 * Returns number of pages pinned. This may be fewer than the number 633 * requested. If nr_pages is 0 or negative, returns 0. If no pages 634 * were pinned, returns -errno. Each page returned must be released 635 * with a put_page() call when it is finished with. vmas will only 636 * remain valid while mmap_sem is held. 637 * 638 * Must be called with mmap_sem held. It may be released. See below. 639 * 640 * __get_user_pages walks a process's page tables and takes a reference to 641 * each struct page that each user address corresponds to at a given 642 * instant. That is, it takes the page that would be accessed if a user 643 * thread accesses the given user virtual address at that instant. 644 * 645 * This does not guarantee that the page exists in the user mappings when 646 * __get_user_pages returns, and there may even be a completely different 647 * page there in some cases (eg. if mmapped pagecache has been invalidated 648 * and subsequently re faulted). However it does guarantee that the page 649 * won't be freed completely. And mostly callers simply care that the page 650 * contains data that was valid *at some point in time*. Typically, an IO 651 * or similar operation cannot guarantee anything stronger anyway because 652 * locks can't be held over the syscall boundary. 653 * 654 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 655 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 656 * appropriate) must be called after the page is finished with, and 657 * before put_page is called. 658 * 659 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 660 * or mmap_sem contention, and if waiting is needed to pin all pages, 661 * *@nonblocking will be set to 0. Further, if @gup_flags does not 662 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 663 * this case. 664 * 665 * A caller using such a combination of @nonblocking and @gup_flags 666 * must therefore hold the mmap_sem for reading only, and recognize 667 * when it's been released. Otherwise, it must be held for either 668 * reading or writing and will not be released. 669 * 670 * In most cases, get_user_pages or get_user_pages_fast should be used 671 * instead of __get_user_pages. __get_user_pages should be used only if 672 * you need some special @gup_flags. 673 */ 674 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 675 unsigned long start, unsigned long nr_pages, 676 unsigned int gup_flags, struct page **pages, 677 struct vm_area_struct **vmas, int *nonblocking) 678 { 679 long ret = 0, i = 0; 680 struct vm_area_struct *vma = NULL; 681 struct follow_page_context ctx = { NULL }; 682 683 if (!nr_pages) 684 return 0; 685 686 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 687 688 /* 689 * If FOLL_FORCE is set then do not force a full fault as the hinting 690 * fault information is unrelated to the reference behaviour of a task 691 * using the address space 692 */ 693 if (!(gup_flags & FOLL_FORCE)) 694 gup_flags |= FOLL_NUMA; 695 696 do { 697 struct page *page; 698 unsigned int foll_flags = gup_flags; 699 unsigned int page_increm; 700 701 /* first iteration or cross vma bound */ 702 if (!vma || start >= vma->vm_end) { 703 vma = find_extend_vma(mm, start); 704 if (!vma && in_gate_area(mm, start)) { 705 ret = get_gate_page(mm, start & PAGE_MASK, 706 gup_flags, &vma, 707 pages ? &pages[i] : NULL); 708 if (ret) 709 goto out; 710 ctx.page_mask = 0; 711 goto next_page; 712 } 713 714 if (!vma || check_vma_flags(vma, gup_flags)) { 715 ret = -EFAULT; 716 goto out; 717 } 718 if (is_vm_hugetlb_page(vma)) { 719 i = follow_hugetlb_page(mm, vma, pages, vmas, 720 &start, &nr_pages, i, 721 gup_flags, nonblocking); 722 continue; 723 } 724 } 725 retry: 726 /* 727 * If we have a pending SIGKILL, don't keep faulting pages and 728 * potentially allocating memory. 729 */ 730 if (unlikely(fatal_signal_pending(current))) { 731 ret = -ERESTARTSYS; 732 goto out; 733 } 734 cond_resched(); 735 736 page = follow_page_mask(vma, start, foll_flags, &ctx); 737 if (!page) { 738 ret = faultin_page(tsk, vma, start, &foll_flags, 739 nonblocking); 740 switch (ret) { 741 case 0: 742 goto retry; 743 case -EBUSY: 744 ret = 0; 745 /* FALLTHRU */ 746 case -EFAULT: 747 case -ENOMEM: 748 case -EHWPOISON: 749 goto out; 750 case -ENOENT: 751 goto next_page; 752 } 753 BUG(); 754 } else if (PTR_ERR(page) == -EEXIST) { 755 /* 756 * Proper page table entry exists, but no corresponding 757 * struct page. 758 */ 759 goto next_page; 760 } else if (IS_ERR(page)) { 761 ret = PTR_ERR(page); 762 goto out; 763 } 764 if (pages) { 765 pages[i] = page; 766 flush_anon_page(vma, page, start); 767 flush_dcache_page(page); 768 ctx.page_mask = 0; 769 } 770 next_page: 771 if (vmas) { 772 vmas[i] = vma; 773 ctx.page_mask = 0; 774 } 775 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 776 if (page_increm > nr_pages) 777 page_increm = nr_pages; 778 i += page_increm; 779 start += page_increm * PAGE_SIZE; 780 nr_pages -= page_increm; 781 } while (nr_pages); 782 out: 783 if (ctx.pgmap) 784 put_dev_pagemap(ctx.pgmap); 785 return i ? i : ret; 786 } 787 788 static bool vma_permits_fault(struct vm_area_struct *vma, 789 unsigned int fault_flags) 790 { 791 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 792 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 793 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 794 795 if (!(vm_flags & vma->vm_flags)) 796 return false; 797 798 /* 799 * The architecture might have a hardware protection 800 * mechanism other than read/write that can deny access. 801 * 802 * gup always represents data access, not instruction 803 * fetches, so execute=false here: 804 */ 805 if (!arch_vma_access_permitted(vma, write, false, foreign)) 806 return false; 807 808 return true; 809 } 810 811 /* 812 * fixup_user_fault() - manually resolve a user page fault 813 * @tsk: the task_struct to use for page fault accounting, or 814 * NULL if faults are not to be recorded. 815 * @mm: mm_struct of target mm 816 * @address: user address 817 * @fault_flags:flags to pass down to handle_mm_fault() 818 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 819 * does not allow retry 820 * 821 * This is meant to be called in the specific scenario where for locking reasons 822 * we try to access user memory in atomic context (within a pagefault_disable() 823 * section), this returns -EFAULT, and we want to resolve the user fault before 824 * trying again. 825 * 826 * Typically this is meant to be used by the futex code. 827 * 828 * The main difference with get_user_pages() is that this function will 829 * unconditionally call handle_mm_fault() which will in turn perform all the 830 * necessary SW fixup of the dirty and young bits in the PTE, while 831 * get_user_pages() only guarantees to update these in the struct page. 832 * 833 * This is important for some architectures where those bits also gate the 834 * access permission to the page because they are maintained in software. On 835 * such architectures, gup() will not be enough to make a subsequent access 836 * succeed. 837 * 838 * This function will not return with an unlocked mmap_sem. So it has not the 839 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 840 */ 841 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 842 unsigned long address, unsigned int fault_flags, 843 bool *unlocked) 844 { 845 struct vm_area_struct *vma; 846 vm_fault_t ret, major = 0; 847 848 if (unlocked) 849 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 850 851 retry: 852 vma = find_extend_vma(mm, address); 853 if (!vma || address < vma->vm_start) 854 return -EFAULT; 855 856 if (!vma_permits_fault(vma, fault_flags)) 857 return -EFAULT; 858 859 ret = handle_mm_fault(vma, address, fault_flags); 860 major |= ret & VM_FAULT_MAJOR; 861 if (ret & VM_FAULT_ERROR) { 862 int err = vm_fault_to_errno(ret, 0); 863 864 if (err) 865 return err; 866 BUG(); 867 } 868 869 if (ret & VM_FAULT_RETRY) { 870 down_read(&mm->mmap_sem); 871 if (!(fault_flags & FAULT_FLAG_TRIED)) { 872 *unlocked = true; 873 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 874 fault_flags |= FAULT_FLAG_TRIED; 875 goto retry; 876 } 877 } 878 879 if (tsk) { 880 if (major) 881 tsk->maj_flt++; 882 else 883 tsk->min_flt++; 884 } 885 return 0; 886 } 887 EXPORT_SYMBOL_GPL(fixup_user_fault); 888 889 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 890 struct mm_struct *mm, 891 unsigned long start, 892 unsigned long nr_pages, 893 struct page **pages, 894 struct vm_area_struct **vmas, 895 int *locked, 896 unsigned int flags) 897 { 898 long ret, pages_done; 899 bool lock_dropped; 900 901 if (locked) { 902 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 903 BUG_ON(vmas); 904 /* check caller initialized locked */ 905 BUG_ON(*locked != 1); 906 } 907 908 if (pages) 909 flags |= FOLL_GET; 910 911 pages_done = 0; 912 lock_dropped = false; 913 for (;;) { 914 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 915 vmas, locked); 916 if (!locked) 917 /* VM_FAULT_RETRY couldn't trigger, bypass */ 918 return ret; 919 920 /* VM_FAULT_RETRY cannot return errors */ 921 if (!*locked) { 922 BUG_ON(ret < 0); 923 BUG_ON(ret >= nr_pages); 924 } 925 926 if (!pages) 927 /* If it's a prefault don't insist harder */ 928 return ret; 929 930 if (ret > 0) { 931 nr_pages -= ret; 932 pages_done += ret; 933 if (!nr_pages) 934 break; 935 } 936 if (*locked) { 937 /* 938 * VM_FAULT_RETRY didn't trigger or it was a 939 * FOLL_NOWAIT. 940 */ 941 if (!pages_done) 942 pages_done = ret; 943 break; 944 } 945 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 946 pages += ret; 947 start += ret << PAGE_SHIFT; 948 949 /* 950 * Repeat on the address that fired VM_FAULT_RETRY 951 * without FAULT_FLAG_ALLOW_RETRY but with 952 * FAULT_FLAG_TRIED. 953 */ 954 *locked = 1; 955 lock_dropped = true; 956 down_read(&mm->mmap_sem); 957 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 958 pages, NULL, NULL); 959 if (ret != 1) { 960 BUG_ON(ret > 1); 961 if (!pages_done) 962 pages_done = ret; 963 break; 964 } 965 nr_pages--; 966 pages_done++; 967 if (!nr_pages) 968 break; 969 pages++; 970 start += PAGE_SIZE; 971 } 972 if (lock_dropped && *locked) { 973 /* 974 * We must let the caller know we temporarily dropped the lock 975 * and so the critical section protected by it was lost. 976 */ 977 up_read(&mm->mmap_sem); 978 *locked = 0; 979 } 980 return pages_done; 981 } 982 983 /* 984 * We can leverage the VM_FAULT_RETRY functionality in the page fault 985 * paths better by using either get_user_pages_locked() or 986 * get_user_pages_unlocked(). 987 * 988 * get_user_pages_locked() is suitable to replace the form: 989 * 990 * down_read(&mm->mmap_sem); 991 * do_something() 992 * get_user_pages(tsk, mm, ..., pages, NULL); 993 * up_read(&mm->mmap_sem); 994 * 995 * to: 996 * 997 * int locked = 1; 998 * down_read(&mm->mmap_sem); 999 * do_something() 1000 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1001 * if (locked) 1002 * up_read(&mm->mmap_sem); 1003 */ 1004 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1005 unsigned int gup_flags, struct page **pages, 1006 int *locked) 1007 { 1008 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1009 pages, NULL, locked, 1010 gup_flags | FOLL_TOUCH); 1011 } 1012 EXPORT_SYMBOL(get_user_pages_locked); 1013 1014 /* 1015 * get_user_pages_unlocked() is suitable to replace the form: 1016 * 1017 * down_read(&mm->mmap_sem); 1018 * get_user_pages(tsk, mm, ..., pages, NULL); 1019 * up_read(&mm->mmap_sem); 1020 * 1021 * with: 1022 * 1023 * get_user_pages_unlocked(tsk, mm, ..., pages); 1024 * 1025 * It is functionally equivalent to get_user_pages_fast so 1026 * get_user_pages_fast should be used instead if specific gup_flags 1027 * (e.g. FOLL_FORCE) are not required. 1028 */ 1029 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1030 struct page **pages, unsigned int gup_flags) 1031 { 1032 struct mm_struct *mm = current->mm; 1033 int locked = 1; 1034 long ret; 1035 1036 down_read(&mm->mmap_sem); 1037 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1038 &locked, gup_flags | FOLL_TOUCH); 1039 if (locked) 1040 up_read(&mm->mmap_sem); 1041 return ret; 1042 } 1043 EXPORT_SYMBOL(get_user_pages_unlocked); 1044 1045 /* 1046 * get_user_pages_remote() - pin user pages in memory 1047 * @tsk: the task_struct to use for page fault accounting, or 1048 * NULL if faults are not to be recorded. 1049 * @mm: mm_struct of target mm 1050 * @start: starting user address 1051 * @nr_pages: number of pages from start to pin 1052 * @gup_flags: flags modifying lookup behaviour 1053 * @pages: array that receives pointers to the pages pinned. 1054 * Should be at least nr_pages long. Or NULL, if caller 1055 * only intends to ensure the pages are faulted in. 1056 * @vmas: array of pointers to vmas corresponding to each page. 1057 * Or NULL if the caller does not require them. 1058 * @locked: pointer to lock flag indicating whether lock is held and 1059 * subsequently whether VM_FAULT_RETRY functionality can be 1060 * utilised. Lock must initially be held. 1061 * 1062 * Returns number of pages pinned. This may be fewer than the number 1063 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1064 * were pinned, returns -errno. Each page returned must be released 1065 * with a put_page() call when it is finished with. vmas will only 1066 * remain valid while mmap_sem is held. 1067 * 1068 * Must be called with mmap_sem held for read or write. 1069 * 1070 * get_user_pages walks a process's page tables and takes a reference to 1071 * each struct page that each user address corresponds to at a given 1072 * instant. That is, it takes the page that would be accessed if a user 1073 * thread accesses the given user virtual address at that instant. 1074 * 1075 * This does not guarantee that the page exists in the user mappings when 1076 * get_user_pages returns, and there may even be a completely different 1077 * page there in some cases (eg. if mmapped pagecache has been invalidated 1078 * and subsequently re faulted). However it does guarantee that the page 1079 * won't be freed completely. And mostly callers simply care that the page 1080 * contains data that was valid *at some point in time*. Typically, an IO 1081 * or similar operation cannot guarantee anything stronger anyway because 1082 * locks can't be held over the syscall boundary. 1083 * 1084 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1085 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1086 * be called after the page is finished with, and before put_page is called. 1087 * 1088 * get_user_pages is typically used for fewer-copy IO operations, to get a 1089 * handle on the memory by some means other than accesses via the user virtual 1090 * addresses. The pages may be submitted for DMA to devices or accessed via 1091 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1092 * use the correct cache flushing APIs. 1093 * 1094 * See also get_user_pages_fast, for performance critical applications. 1095 * 1096 * get_user_pages should be phased out in favor of 1097 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1098 * should use get_user_pages because it cannot pass 1099 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1100 */ 1101 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1102 unsigned long start, unsigned long nr_pages, 1103 unsigned int gup_flags, struct page **pages, 1104 struct vm_area_struct **vmas, int *locked) 1105 { 1106 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1107 locked, 1108 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1109 } 1110 EXPORT_SYMBOL(get_user_pages_remote); 1111 1112 /* 1113 * This is the same as get_user_pages_remote(), just with a 1114 * less-flexible calling convention where we assume that the task 1115 * and mm being operated on are the current task's and don't allow 1116 * passing of a locked parameter. We also obviously don't pass 1117 * FOLL_REMOTE in here. 1118 */ 1119 long get_user_pages(unsigned long start, unsigned long nr_pages, 1120 unsigned int gup_flags, struct page **pages, 1121 struct vm_area_struct **vmas) 1122 { 1123 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1124 pages, vmas, NULL, 1125 gup_flags | FOLL_TOUCH); 1126 } 1127 EXPORT_SYMBOL(get_user_pages); 1128 1129 #ifdef CONFIG_FS_DAX 1130 /* 1131 * This is the same as get_user_pages() in that it assumes we are 1132 * operating on the current task's mm, but it goes further to validate 1133 * that the vmas associated with the address range are suitable for 1134 * longterm elevated page reference counts. For example, filesystem-dax 1135 * mappings are subject to the lifetime enforced by the filesystem and 1136 * we need guarantees that longterm users like RDMA and V4L2 only 1137 * establish mappings that have a kernel enforced revocation mechanism. 1138 * 1139 * "longterm" == userspace controlled elevated page count lifetime. 1140 * Contrast this to iov_iter_get_pages() usages which are transient. 1141 */ 1142 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1143 unsigned int gup_flags, struct page **pages, 1144 struct vm_area_struct **vmas_arg) 1145 { 1146 struct vm_area_struct **vmas = vmas_arg; 1147 struct vm_area_struct *vma_prev = NULL; 1148 long rc, i; 1149 1150 if (!pages) 1151 return -EINVAL; 1152 1153 if (!vmas) { 1154 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1155 GFP_KERNEL); 1156 if (!vmas) 1157 return -ENOMEM; 1158 } 1159 1160 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1161 1162 for (i = 0; i < rc; i++) { 1163 struct vm_area_struct *vma = vmas[i]; 1164 1165 if (vma == vma_prev) 1166 continue; 1167 1168 vma_prev = vma; 1169 1170 if (vma_is_fsdax(vma)) 1171 break; 1172 } 1173 1174 /* 1175 * Either get_user_pages() failed, or the vma validation 1176 * succeeded, in either case we don't need to put_page() before 1177 * returning. 1178 */ 1179 if (i >= rc) 1180 goto out; 1181 1182 for (i = 0; i < rc; i++) 1183 put_page(pages[i]); 1184 rc = -EOPNOTSUPP; 1185 out: 1186 if (vmas != vmas_arg) 1187 kfree(vmas); 1188 return rc; 1189 } 1190 EXPORT_SYMBOL(get_user_pages_longterm); 1191 #endif /* CONFIG_FS_DAX */ 1192 1193 /** 1194 * populate_vma_page_range() - populate a range of pages in the vma. 1195 * @vma: target vma 1196 * @start: start address 1197 * @end: end address 1198 * @nonblocking: 1199 * 1200 * This takes care of mlocking the pages too if VM_LOCKED is set. 1201 * 1202 * return 0 on success, negative error code on error. 1203 * 1204 * vma->vm_mm->mmap_sem must be held. 1205 * 1206 * If @nonblocking is NULL, it may be held for read or write and will 1207 * be unperturbed. 1208 * 1209 * If @nonblocking is non-NULL, it must held for read only and may be 1210 * released. If it's released, *@nonblocking will be set to 0. 1211 */ 1212 long populate_vma_page_range(struct vm_area_struct *vma, 1213 unsigned long start, unsigned long end, int *nonblocking) 1214 { 1215 struct mm_struct *mm = vma->vm_mm; 1216 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1217 int gup_flags; 1218 1219 VM_BUG_ON(start & ~PAGE_MASK); 1220 VM_BUG_ON(end & ~PAGE_MASK); 1221 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1222 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1223 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1224 1225 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1226 if (vma->vm_flags & VM_LOCKONFAULT) 1227 gup_flags &= ~FOLL_POPULATE; 1228 /* 1229 * We want to touch writable mappings with a write fault in order 1230 * to break COW, except for shared mappings because these don't COW 1231 * and we would not want to dirty them for nothing. 1232 */ 1233 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1234 gup_flags |= FOLL_WRITE; 1235 1236 /* 1237 * We want mlock to succeed for regions that have any permissions 1238 * other than PROT_NONE. 1239 */ 1240 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1241 gup_flags |= FOLL_FORCE; 1242 1243 /* 1244 * We made sure addr is within a VMA, so the following will 1245 * not result in a stack expansion that recurses back here. 1246 */ 1247 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1248 NULL, NULL, nonblocking); 1249 } 1250 1251 /* 1252 * __mm_populate - populate and/or mlock pages within a range of address space. 1253 * 1254 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1255 * flags. VMAs must be already marked with the desired vm_flags, and 1256 * mmap_sem must not be held. 1257 */ 1258 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1259 { 1260 struct mm_struct *mm = current->mm; 1261 unsigned long end, nstart, nend; 1262 struct vm_area_struct *vma = NULL; 1263 int locked = 0; 1264 long ret = 0; 1265 1266 end = start + len; 1267 1268 for (nstart = start; nstart < end; nstart = nend) { 1269 /* 1270 * We want to fault in pages for [nstart; end) address range. 1271 * Find first corresponding VMA. 1272 */ 1273 if (!locked) { 1274 locked = 1; 1275 down_read(&mm->mmap_sem); 1276 vma = find_vma(mm, nstart); 1277 } else if (nstart >= vma->vm_end) 1278 vma = vma->vm_next; 1279 if (!vma || vma->vm_start >= end) 1280 break; 1281 /* 1282 * Set [nstart; nend) to intersection of desired address 1283 * range with the first VMA. Also, skip undesirable VMA types. 1284 */ 1285 nend = min(end, vma->vm_end); 1286 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1287 continue; 1288 if (nstart < vma->vm_start) 1289 nstart = vma->vm_start; 1290 /* 1291 * Now fault in a range of pages. populate_vma_page_range() 1292 * double checks the vma flags, so that it won't mlock pages 1293 * if the vma was already munlocked. 1294 */ 1295 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1296 if (ret < 0) { 1297 if (ignore_errors) { 1298 ret = 0; 1299 continue; /* continue at next VMA */ 1300 } 1301 break; 1302 } 1303 nend = nstart + ret * PAGE_SIZE; 1304 ret = 0; 1305 } 1306 if (locked) 1307 up_read(&mm->mmap_sem); 1308 return ret; /* 0 or negative error code */ 1309 } 1310 1311 /** 1312 * get_dump_page() - pin user page in memory while writing it to core dump 1313 * @addr: user address 1314 * 1315 * Returns struct page pointer of user page pinned for dump, 1316 * to be freed afterwards by put_page(). 1317 * 1318 * Returns NULL on any kind of failure - a hole must then be inserted into 1319 * the corefile, to preserve alignment with its headers; and also returns 1320 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1321 * allowing a hole to be left in the corefile to save diskspace. 1322 * 1323 * Called without mmap_sem, but after all other threads have been killed. 1324 */ 1325 #ifdef CONFIG_ELF_CORE 1326 struct page *get_dump_page(unsigned long addr) 1327 { 1328 struct vm_area_struct *vma; 1329 struct page *page; 1330 1331 if (__get_user_pages(current, current->mm, addr, 1, 1332 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1333 NULL) < 1) 1334 return NULL; 1335 flush_cache_page(vma, addr, page_to_pfn(page)); 1336 return page; 1337 } 1338 #endif /* CONFIG_ELF_CORE */ 1339 1340 /* 1341 * Generic Fast GUP 1342 * 1343 * get_user_pages_fast attempts to pin user pages by walking the page 1344 * tables directly and avoids taking locks. Thus the walker needs to be 1345 * protected from page table pages being freed from under it, and should 1346 * block any THP splits. 1347 * 1348 * One way to achieve this is to have the walker disable interrupts, and 1349 * rely on IPIs from the TLB flushing code blocking before the page table 1350 * pages are freed. This is unsuitable for architectures that do not need 1351 * to broadcast an IPI when invalidating TLBs. 1352 * 1353 * Another way to achieve this is to batch up page table containing pages 1354 * belonging to more than one mm_user, then rcu_sched a callback to free those 1355 * pages. Disabling interrupts will allow the fast_gup walker to both block 1356 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1357 * (which is a relatively rare event). The code below adopts this strategy. 1358 * 1359 * Before activating this code, please be aware that the following assumptions 1360 * are currently made: 1361 * 1362 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1363 * free pages containing page tables or TLB flushing requires IPI broadcast. 1364 * 1365 * *) ptes can be read atomically by the architecture. 1366 * 1367 * *) access_ok is sufficient to validate userspace address ranges. 1368 * 1369 * The last two assumptions can be relaxed by the addition of helper functions. 1370 * 1371 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1372 */ 1373 #ifdef CONFIG_HAVE_GENERIC_GUP 1374 1375 #ifndef gup_get_pte 1376 /* 1377 * We assume that the PTE can be read atomically. If this is not the case for 1378 * your architecture, please provide the helper. 1379 */ 1380 static inline pte_t gup_get_pte(pte_t *ptep) 1381 { 1382 return READ_ONCE(*ptep); 1383 } 1384 #endif 1385 1386 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1387 { 1388 while ((*nr) - nr_start) { 1389 struct page *page = pages[--(*nr)]; 1390 1391 ClearPageReferenced(page); 1392 put_page(page); 1393 } 1394 } 1395 1396 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1397 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1398 int write, struct page **pages, int *nr) 1399 { 1400 struct dev_pagemap *pgmap = NULL; 1401 int nr_start = *nr, ret = 0; 1402 pte_t *ptep, *ptem; 1403 1404 ptem = ptep = pte_offset_map(&pmd, addr); 1405 do { 1406 pte_t pte = gup_get_pte(ptep); 1407 struct page *head, *page; 1408 1409 /* 1410 * Similar to the PMD case below, NUMA hinting must take slow 1411 * path using the pte_protnone check. 1412 */ 1413 if (pte_protnone(pte)) 1414 goto pte_unmap; 1415 1416 if (!pte_access_permitted(pte, write)) 1417 goto pte_unmap; 1418 1419 if (pte_devmap(pte)) { 1420 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1421 if (unlikely(!pgmap)) { 1422 undo_dev_pagemap(nr, nr_start, pages); 1423 goto pte_unmap; 1424 } 1425 } else if (pte_special(pte)) 1426 goto pte_unmap; 1427 1428 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1429 page = pte_page(pte); 1430 head = compound_head(page); 1431 1432 if (!page_cache_get_speculative(head)) 1433 goto pte_unmap; 1434 1435 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1436 put_page(head); 1437 goto pte_unmap; 1438 } 1439 1440 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1441 1442 SetPageReferenced(page); 1443 pages[*nr] = page; 1444 (*nr)++; 1445 1446 } while (ptep++, addr += PAGE_SIZE, addr != end); 1447 1448 ret = 1; 1449 1450 pte_unmap: 1451 if (pgmap) 1452 put_dev_pagemap(pgmap); 1453 pte_unmap(ptem); 1454 return ret; 1455 } 1456 #else 1457 1458 /* 1459 * If we can't determine whether or not a pte is special, then fail immediately 1460 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1461 * to be special. 1462 * 1463 * For a futex to be placed on a THP tail page, get_futex_key requires a 1464 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1465 * useful to have gup_huge_pmd even if we can't operate on ptes. 1466 */ 1467 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1468 int write, struct page **pages, int *nr) 1469 { 1470 return 0; 1471 } 1472 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1473 1474 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1475 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1476 unsigned long end, struct page **pages, int *nr) 1477 { 1478 int nr_start = *nr; 1479 struct dev_pagemap *pgmap = NULL; 1480 1481 do { 1482 struct page *page = pfn_to_page(pfn); 1483 1484 pgmap = get_dev_pagemap(pfn, pgmap); 1485 if (unlikely(!pgmap)) { 1486 undo_dev_pagemap(nr, nr_start, pages); 1487 return 0; 1488 } 1489 SetPageReferenced(page); 1490 pages[*nr] = page; 1491 get_page(page); 1492 (*nr)++; 1493 pfn++; 1494 } while (addr += PAGE_SIZE, addr != end); 1495 1496 if (pgmap) 1497 put_dev_pagemap(pgmap); 1498 return 1; 1499 } 1500 1501 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1502 unsigned long end, struct page **pages, int *nr) 1503 { 1504 unsigned long fault_pfn; 1505 int nr_start = *nr; 1506 1507 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1508 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1509 return 0; 1510 1511 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1512 undo_dev_pagemap(nr, nr_start, pages); 1513 return 0; 1514 } 1515 return 1; 1516 } 1517 1518 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1519 unsigned long end, struct page **pages, int *nr) 1520 { 1521 unsigned long fault_pfn; 1522 int nr_start = *nr; 1523 1524 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1525 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1526 return 0; 1527 1528 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1529 undo_dev_pagemap(nr, nr_start, pages); 1530 return 0; 1531 } 1532 return 1; 1533 } 1534 #else 1535 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1536 unsigned long end, struct page **pages, int *nr) 1537 { 1538 BUILD_BUG(); 1539 return 0; 1540 } 1541 1542 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1543 unsigned long end, struct page **pages, int *nr) 1544 { 1545 BUILD_BUG(); 1546 return 0; 1547 } 1548 #endif 1549 1550 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1551 unsigned long end, int write, struct page **pages, int *nr) 1552 { 1553 struct page *head, *page; 1554 int refs; 1555 1556 if (!pmd_access_permitted(orig, write)) 1557 return 0; 1558 1559 if (pmd_devmap(orig)) 1560 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1561 1562 refs = 0; 1563 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1564 do { 1565 pages[*nr] = page; 1566 (*nr)++; 1567 page++; 1568 refs++; 1569 } while (addr += PAGE_SIZE, addr != end); 1570 1571 head = compound_head(pmd_page(orig)); 1572 if (!page_cache_add_speculative(head, refs)) { 1573 *nr -= refs; 1574 return 0; 1575 } 1576 1577 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1578 *nr -= refs; 1579 while (refs--) 1580 put_page(head); 1581 return 0; 1582 } 1583 1584 SetPageReferenced(head); 1585 return 1; 1586 } 1587 1588 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1589 unsigned long end, int write, struct page **pages, int *nr) 1590 { 1591 struct page *head, *page; 1592 int refs; 1593 1594 if (!pud_access_permitted(orig, write)) 1595 return 0; 1596 1597 if (pud_devmap(orig)) 1598 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1599 1600 refs = 0; 1601 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1602 do { 1603 pages[*nr] = page; 1604 (*nr)++; 1605 page++; 1606 refs++; 1607 } while (addr += PAGE_SIZE, addr != end); 1608 1609 head = compound_head(pud_page(orig)); 1610 if (!page_cache_add_speculative(head, refs)) { 1611 *nr -= refs; 1612 return 0; 1613 } 1614 1615 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1616 *nr -= refs; 1617 while (refs--) 1618 put_page(head); 1619 return 0; 1620 } 1621 1622 SetPageReferenced(head); 1623 return 1; 1624 } 1625 1626 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1627 unsigned long end, int write, 1628 struct page **pages, int *nr) 1629 { 1630 int refs; 1631 struct page *head, *page; 1632 1633 if (!pgd_access_permitted(orig, write)) 1634 return 0; 1635 1636 BUILD_BUG_ON(pgd_devmap(orig)); 1637 refs = 0; 1638 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1639 do { 1640 pages[*nr] = page; 1641 (*nr)++; 1642 page++; 1643 refs++; 1644 } while (addr += PAGE_SIZE, addr != end); 1645 1646 head = compound_head(pgd_page(orig)); 1647 if (!page_cache_add_speculative(head, refs)) { 1648 *nr -= refs; 1649 return 0; 1650 } 1651 1652 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1653 *nr -= refs; 1654 while (refs--) 1655 put_page(head); 1656 return 0; 1657 } 1658 1659 SetPageReferenced(head); 1660 return 1; 1661 } 1662 1663 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1664 int write, struct page **pages, int *nr) 1665 { 1666 unsigned long next; 1667 pmd_t *pmdp; 1668 1669 pmdp = pmd_offset(&pud, addr); 1670 do { 1671 pmd_t pmd = READ_ONCE(*pmdp); 1672 1673 next = pmd_addr_end(addr, end); 1674 if (!pmd_present(pmd)) 1675 return 0; 1676 1677 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1678 /* 1679 * NUMA hinting faults need to be handled in the GUP 1680 * slowpath for accounting purposes and so that they 1681 * can be serialised against THP migration. 1682 */ 1683 if (pmd_protnone(pmd)) 1684 return 0; 1685 1686 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1687 pages, nr)) 1688 return 0; 1689 1690 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1691 /* 1692 * architecture have different format for hugetlbfs 1693 * pmd format and THP pmd format 1694 */ 1695 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1696 PMD_SHIFT, next, write, pages, nr)) 1697 return 0; 1698 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1699 return 0; 1700 } while (pmdp++, addr = next, addr != end); 1701 1702 return 1; 1703 } 1704 1705 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1706 int write, struct page **pages, int *nr) 1707 { 1708 unsigned long next; 1709 pud_t *pudp; 1710 1711 pudp = pud_offset(&p4d, addr); 1712 do { 1713 pud_t pud = READ_ONCE(*pudp); 1714 1715 next = pud_addr_end(addr, end); 1716 if (pud_none(pud)) 1717 return 0; 1718 if (unlikely(pud_huge(pud))) { 1719 if (!gup_huge_pud(pud, pudp, addr, next, write, 1720 pages, nr)) 1721 return 0; 1722 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1723 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1724 PUD_SHIFT, next, write, pages, nr)) 1725 return 0; 1726 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1727 return 0; 1728 } while (pudp++, addr = next, addr != end); 1729 1730 return 1; 1731 } 1732 1733 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1734 int write, struct page **pages, int *nr) 1735 { 1736 unsigned long next; 1737 p4d_t *p4dp; 1738 1739 p4dp = p4d_offset(&pgd, addr); 1740 do { 1741 p4d_t p4d = READ_ONCE(*p4dp); 1742 1743 next = p4d_addr_end(addr, end); 1744 if (p4d_none(p4d)) 1745 return 0; 1746 BUILD_BUG_ON(p4d_huge(p4d)); 1747 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1748 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1749 P4D_SHIFT, next, write, pages, nr)) 1750 return 0; 1751 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1752 return 0; 1753 } while (p4dp++, addr = next, addr != end); 1754 1755 return 1; 1756 } 1757 1758 static void gup_pgd_range(unsigned long addr, unsigned long end, 1759 int write, struct page **pages, int *nr) 1760 { 1761 unsigned long next; 1762 pgd_t *pgdp; 1763 1764 pgdp = pgd_offset(current->mm, addr); 1765 do { 1766 pgd_t pgd = READ_ONCE(*pgdp); 1767 1768 next = pgd_addr_end(addr, end); 1769 if (pgd_none(pgd)) 1770 return; 1771 if (unlikely(pgd_huge(pgd))) { 1772 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1773 pages, nr)) 1774 return; 1775 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1776 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1777 PGDIR_SHIFT, next, write, pages, nr)) 1778 return; 1779 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1780 return; 1781 } while (pgdp++, addr = next, addr != end); 1782 } 1783 1784 #ifndef gup_fast_permitted 1785 /* 1786 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1787 * we need to fall back to the slow version: 1788 */ 1789 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1790 { 1791 unsigned long len, end; 1792 1793 len = (unsigned long) nr_pages << PAGE_SHIFT; 1794 end = start + len; 1795 return end >= start; 1796 } 1797 #endif 1798 1799 /* 1800 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1801 * the regular GUP. 1802 * Note a difference with get_user_pages_fast: this always returns the 1803 * number of pages pinned, 0 if no pages were pinned. 1804 */ 1805 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1806 struct page **pages) 1807 { 1808 unsigned long len, end; 1809 unsigned long flags; 1810 int nr = 0; 1811 1812 start &= PAGE_MASK; 1813 len = (unsigned long) nr_pages << PAGE_SHIFT; 1814 end = start + len; 1815 1816 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1817 (void __user *)start, len))) 1818 return 0; 1819 1820 /* 1821 * Disable interrupts. We use the nested form as we can already have 1822 * interrupts disabled by get_futex_key. 1823 * 1824 * With interrupts disabled, we block page table pages from being 1825 * freed from under us. See struct mmu_table_batch comments in 1826 * include/asm-generic/tlb.h for more details. 1827 * 1828 * We do not adopt an rcu_read_lock(.) here as we also want to 1829 * block IPIs that come from THPs splitting. 1830 */ 1831 1832 if (gup_fast_permitted(start, nr_pages, write)) { 1833 local_irq_save(flags); 1834 gup_pgd_range(start, end, write, pages, &nr); 1835 local_irq_restore(flags); 1836 } 1837 1838 return nr; 1839 } 1840 1841 /** 1842 * get_user_pages_fast() - pin user pages in memory 1843 * @start: starting user address 1844 * @nr_pages: number of pages from start to pin 1845 * @write: whether pages will be written to 1846 * @pages: array that receives pointers to the pages pinned. 1847 * Should be at least nr_pages long. 1848 * 1849 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1850 * If not successful, it will fall back to taking the lock and 1851 * calling get_user_pages(). 1852 * 1853 * Returns number of pages pinned. This may be fewer than the number 1854 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1855 * were pinned, returns -errno. 1856 */ 1857 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1858 struct page **pages) 1859 { 1860 unsigned long addr, len, end; 1861 int nr = 0, ret = 0; 1862 1863 start &= PAGE_MASK; 1864 addr = start; 1865 len = (unsigned long) nr_pages << PAGE_SHIFT; 1866 end = start + len; 1867 1868 if (nr_pages <= 0) 1869 return 0; 1870 1871 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1872 (void __user *)start, len))) 1873 return -EFAULT; 1874 1875 if (gup_fast_permitted(start, nr_pages, write)) { 1876 local_irq_disable(); 1877 gup_pgd_range(addr, end, write, pages, &nr); 1878 local_irq_enable(); 1879 ret = nr; 1880 } 1881 1882 if (nr < nr_pages) { 1883 /* Try to get the remaining pages with get_user_pages */ 1884 start += nr << PAGE_SHIFT; 1885 pages += nr; 1886 1887 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1888 write ? FOLL_WRITE : 0); 1889 1890 /* Have to be a bit careful with return values */ 1891 if (nr > 0) { 1892 if (ret < 0) 1893 ret = nr; 1894 else 1895 ret += nr; 1896 } 1897 } 1898 1899 return ret; 1900 } 1901 1902 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1903