1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* 49 * Return the compound head page with ref appropriately incremented, 50 * or NULL if that failed. 51 */ 52 static inline struct page *try_get_compound_head(struct page *page, int refs) 53 { 54 struct page *head = compound_head(page); 55 56 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 57 return NULL; 58 if (unlikely(!page_cache_add_speculative(head, refs))) 59 return NULL; 60 return head; 61 } 62 63 /* 64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 65 * flags-dependent amount. 66 * 67 * "grab" names in this file mean, "look at flags to decide whether to use 68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 69 * 70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 71 * same time. (That's true throughout the get_user_pages*() and 72 * pin_user_pages*() APIs.) Cases: 73 * 74 * FOLL_GET: page's refcount will be incremented by 1. 75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 76 * 77 * Return: head page (with refcount appropriately incremented) for success, or 78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 79 * considered failure, and furthermore, a likely bug in the caller, so a warning 80 * is also emitted. 81 */ 82 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 83 int refs, 84 unsigned int flags) 85 { 86 if (flags & FOLL_GET) 87 return try_get_compound_head(page, refs); 88 else if (flags & FOLL_PIN) { 89 int orig_refs = refs; 90 91 /* 92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 93 * path, so fail and let the caller fall back to the slow path. 94 */ 95 if (unlikely(flags & FOLL_LONGTERM) && 96 is_migrate_cma_page(page)) 97 return NULL; 98 99 /* 100 * When pinning a compound page of order > 1 (which is what 101 * hpage_pincount_available() checks for), use an exact count to 102 * track it, via hpage_pincount_add/_sub(). 103 * 104 * However, be sure to *also* increment the normal page refcount 105 * field at least once, so that the page really is pinned. 106 */ 107 if (!hpage_pincount_available(page)) 108 refs *= GUP_PIN_COUNTING_BIAS; 109 110 page = try_get_compound_head(page, refs); 111 if (!page) 112 return NULL; 113 114 if (hpage_pincount_available(page)) 115 hpage_pincount_add(page, refs); 116 117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 118 orig_refs); 119 120 return page; 121 } 122 123 WARN_ON_ONCE(1); 124 return NULL; 125 } 126 127 /** 128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 129 * 130 * This might not do anything at all, depending on the flags argument. 131 * 132 * "grab" names in this file mean, "look at flags to decide whether to use 133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 134 * 135 * @page: pointer to page to be grabbed 136 * @flags: gup flags: these are the FOLL_* flag values. 137 * 138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 139 * time. Cases: 140 * 141 * FOLL_GET: page's refcount will be incremented by 1. 142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 143 * 144 * Return: true for success, or if no action was required (if neither FOLL_PIN 145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 146 * FOLL_PIN was set, but the page could not be grabbed. 147 */ 148 bool __must_check try_grab_page(struct page *page, unsigned int flags) 149 { 150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 151 152 if (flags & FOLL_GET) 153 return try_get_page(page); 154 else if (flags & FOLL_PIN) { 155 int refs = 1; 156 157 page = compound_head(page); 158 159 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 160 return false; 161 162 if (hpage_pincount_available(page)) 163 hpage_pincount_add(page, 1); 164 else 165 refs = GUP_PIN_COUNTING_BIAS; 166 167 /* 168 * Similar to try_grab_compound_head(): even if using the 169 * hpage_pincount_add/_sub() routines, be sure to 170 * *also* increment the normal page refcount field at least 171 * once, so that the page really is pinned. 172 */ 173 page_ref_add(page, refs); 174 175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 176 } 177 178 return true; 179 } 180 181 #ifdef CONFIG_DEV_PAGEMAP_OPS 182 static bool __unpin_devmap_managed_user_page(struct page *page) 183 { 184 int count, refs = 1; 185 186 if (!page_is_devmap_managed(page)) 187 return false; 188 189 if (hpage_pincount_available(page)) 190 hpage_pincount_sub(page, 1); 191 else 192 refs = GUP_PIN_COUNTING_BIAS; 193 194 count = page_ref_sub_return(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 197 /* 198 * devmap page refcounts are 1-based, rather than 0-based: if 199 * refcount is 1, then the page is free and the refcount is 200 * stable because nobody holds a reference on the page. 201 */ 202 if (count == 1) 203 free_devmap_managed_page(page); 204 else if (!count) 205 __put_page(page); 206 207 return true; 208 } 209 #else 210 static bool __unpin_devmap_managed_user_page(struct page *page) 211 { 212 return false; 213 } 214 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 215 216 /** 217 * unpin_user_page() - release a dma-pinned page 218 * @page: pointer to page to be released 219 * 220 * Pages that were pinned via pin_user_pages*() must be released via either 221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 222 * that such pages can be separately tracked and uniquely handled. In 223 * particular, interactions with RDMA and filesystems need special handling. 224 */ 225 void unpin_user_page(struct page *page) 226 { 227 int refs = 1; 228 229 page = compound_head(page); 230 231 /* 232 * For devmap managed pages we need to catch refcount transition from 233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 234 * page is free and we need to inform the device driver through 235 * callback. See include/linux/memremap.h and HMM for details. 236 */ 237 if (__unpin_devmap_managed_user_page(page)) 238 return; 239 240 if (hpage_pincount_available(page)) 241 hpage_pincount_sub(page, 1); 242 else 243 refs = GUP_PIN_COUNTING_BIAS; 244 245 if (page_ref_sub_and_test(page, refs)) 246 __put_page(page); 247 248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 249 } 250 EXPORT_SYMBOL(unpin_user_page); 251 252 /** 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 254 * @pages: array of pages to be maybe marked dirty, and definitely released. 255 * @npages: number of pages in the @pages array. 256 * @make_dirty: whether to mark the pages dirty 257 * 258 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 259 * variants called on that page. 260 * 261 * For each page in the @pages array, make that page (or its head page, if a 262 * compound page) dirty, if @make_dirty is true, and if the page was previously 263 * listed as clean. In any case, releases all pages using unpin_user_page(), 264 * possibly via unpin_user_pages(), for the non-dirty case. 265 * 266 * Please see the unpin_user_page() documentation for details. 267 * 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 269 * required, then the caller should a) verify that this is really correct, 270 * because _lock() is usually required, and b) hand code it: 271 * set_page_dirty_lock(), unpin_user_page(). 272 * 273 */ 274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 275 bool make_dirty) 276 { 277 unsigned long index; 278 279 /* 280 * TODO: this can be optimized for huge pages: if a series of pages is 281 * physically contiguous and part of the same compound page, then a 282 * single operation to the head page should suffice. 283 */ 284 285 if (!make_dirty) { 286 unpin_user_pages(pages, npages); 287 return; 288 } 289 290 for (index = 0; index < npages; index++) { 291 struct page *page = compound_head(pages[index]); 292 /* 293 * Checking PageDirty at this point may race with 294 * clear_page_dirty_for_io(), but that's OK. Two key 295 * cases: 296 * 297 * 1) This code sees the page as already dirty, so it 298 * skips the call to set_page_dirty(). That could happen 299 * because clear_page_dirty_for_io() called 300 * page_mkclean(), followed by set_page_dirty(). 301 * However, now the page is going to get written back, 302 * which meets the original intention of setting it 303 * dirty, so all is well: clear_page_dirty_for_io() goes 304 * on to call TestClearPageDirty(), and write the page 305 * back. 306 * 307 * 2) This code sees the page as clean, so it calls 308 * set_page_dirty(). The page stays dirty, despite being 309 * written back, so it gets written back again in the 310 * next writeback cycle. This is harmless. 311 */ 312 if (!PageDirty(page)) 313 set_page_dirty_lock(page); 314 unpin_user_page(page); 315 } 316 } 317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 318 319 /** 320 * unpin_user_pages() - release an array of gup-pinned pages. 321 * @pages: array of pages to be marked dirty and released. 322 * @npages: number of pages in the @pages array. 323 * 324 * For each page in the @pages array, release the page using unpin_user_page(). 325 * 326 * Please see the unpin_user_page() documentation for details. 327 */ 328 void unpin_user_pages(struct page **pages, unsigned long npages) 329 { 330 unsigned long index; 331 332 /* 333 * TODO: this can be optimized for huge pages: if a series of pages is 334 * physically contiguous and part of the same compound page, then a 335 * single operation to the head page should suffice. 336 */ 337 for (index = 0; index < npages; index++) 338 unpin_user_page(pages[index]); 339 } 340 EXPORT_SYMBOL(unpin_user_pages); 341 342 #ifdef CONFIG_MMU 343 static struct page *no_page_table(struct vm_area_struct *vma, 344 unsigned int flags) 345 { 346 /* 347 * When core dumping an enormous anonymous area that nobody 348 * has touched so far, we don't want to allocate unnecessary pages or 349 * page tables. Return error instead of NULL to skip handle_mm_fault, 350 * then get_dump_page() will return NULL to leave a hole in the dump. 351 * But we can only make this optimization where a hole would surely 352 * be zero-filled if handle_mm_fault() actually did handle it. 353 */ 354 if ((flags & FOLL_DUMP) && 355 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 356 return ERR_PTR(-EFAULT); 357 return NULL; 358 } 359 360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 361 pte_t *pte, unsigned int flags) 362 { 363 /* No page to get reference */ 364 if (flags & FOLL_GET) 365 return -EFAULT; 366 367 if (flags & FOLL_TOUCH) { 368 pte_t entry = *pte; 369 370 if (flags & FOLL_WRITE) 371 entry = pte_mkdirty(entry); 372 entry = pte_mkyoung(entry); 373 374 if (!pte_same(*pte, entry)) { 375 set_pte_at(vma->vm_mm, address, pte, entry); 376 update_mmu_cache(vma, address, pte); 377 } 378 } 379 380 /* Proper page table entry exists, but no corresponding struct page */ 381 return -EEXIST; 382 } 383 384 /* 385 * FOLL_FORCE or a forced COW break can write even to unwritable pte's, 386 * but only after we've gone through a COW cycle and they are dirty. 387 */ 388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 389 { 390 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte)); 391 } 392 393 /* 394 * A (separate) COW fault might break the page the other way and 395 * get_user_pages() would return the page from what is now the wrong 396 * VM. So we need to force a COW break at GUP time even for reads. 397 */ 398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags) 399 { 400 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN)); 401 } 402 403 static struct page *follow_page_pte(struct vm_area_struct *vma, 404 unsigned long address, pmd_t *pmd, unsigned int flags, 405 struct dev_pagemap **pgmap) 406 { 407 struct mm_struct *mm = vma->vm_mm; 408 struct page *page; 409 spinlock_t *ptl; 410 pte_t *ptep, pte; 411 int ret; 412 413 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 414 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 415 (FOLL_PIN | FOLL_GET))) 416 return ERR_PTR(-EINVAL); 417 retry: 418 if (unlikely(pmd_bad(*pmd))) 419 return no_page_table(vma, flags); 420 421 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 422 pte = *ptep; 423 if (!pte_present(pte)) { 424 swp_entry_t entry; 425 /* 426 * KSM's break_ksm() relies upon recognizing a ksm page 427 * even while it is being migrated, so for that case we 428 * need migration_entry_wait(). 429 */ 430 if (likely(!(flags & FOLL_MIGRATION))) 431 goto no_page; 432 if (pte_none(pte)) 433 goto no_page; 434 entry = pte_to_swp_entry(pte); 435 if (!is_migration_entry(entry)) 436 goto no_page; 437 pte_unmap_unlock(ptep, ptl); 438 migration_entry_wait(mm, pmd, address); 439 goto retry; 440 } 441 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 442 goto no_page; 443 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 444 pte_unmap_unlock(ptep, ptl); 445 return NULL; 446 } 447 448 page = vm_normal_page(vma, address, pte); 449 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 450 /* 451 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 452 * case since they are only valid while holding the pgmap 453 * reference. 454 */ 455 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 456 if (*pgmap) 457 page = pte_page(pte); 458 else 459 goto no_page; 460 } else if (unlikely(!page)) { 461 if (flags & FOLL_DUMP) { 462 /* Avoid special (like zero) pages in core dumps */ 463 page = ERR_PTR(-EFAULT); 464 goto out; 465 } 466 467 if (is_zero_pfn(pte_pfn(pte))) { 468 page = pte_page(pte); 469 } else { 470 ret = follow_pfn_pte(vma, address, ptep, flags); 471 page = ERR_PTR(ret); 472 goto out; 473 } 474 } 475 476 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 477 get_page(page); 478 pte_unmap_unlock(ptep, ptl); 479 lock_page(page); 480 ret = split_huge_page(page); 481 unlock_page(page); 482 put_page(page); 483 if (ret) 484 return ERR_PTR(ret); 485 goto retry; 486 } 487 488 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 489 if (unlikely(!try_grab_page(page, flags))) { 490 page = ERR_PTR(-ENOMEM); 491 goto out; 492 } 493 /* 494 * We need to make the page accessible if and only if we are going 495 * to access its content (the FOLL_PIN case). Please see 496 * Documentation/core-api/pin_user_pages.rst for details. 497 */ 498 if (flags & FOLL_PIN) { 499 ret = arch_make_page_accessible(page); 500 if (ret) { 501 unpin_user_page(page); 502 page = ERR_PTR(ret); 503 goto out; 504 } 505 } 506 if (flags & FOLL_TOUCH) { 507 if ((flags & FOLL_WRITE) && 508 !pte_dirty(pte) && !PageDirty(page)) 509 set_page_dirty(page); 510 /* 511 * pte_mkyoung() would be more correct here, but atomic care 512 * is needed to avoid losing the dirty bit: it is easier to use 513 * mark_page_accessed(). 514 */ 515 mark_page_accessed(page); 516 } 517 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 518 /* Do not mlock pte-mapped THP */ 519 if (PageTransCompound(page)) 520 goto out; 521 522 /* 523 * The preliminary mapping check is mainly to avoid the 524 * pointless overhead of lock_page on the ZERO_PAGE 525 * which might bounce very badly if there is contention. 526 * 527 * If the page is already locked, we don't need to 528 * handle it now - vmscan will handle it later if and 529 * when it attempts to reclaim the page. 530 */ 531 if (page->mapping && trylock_page(page)) { 532 lru_add_drain(); /* push cached pages to LRU */ 533 /* 534 * Because we lock page here, and migration is 535 * blocked by the pte's page reference, and we 536 * know the page is still mapped, we don't even 537 * need to check for file-cache page truncation. 538 */ 539 mlock_vma_page(page); 540 unlock_page(page); 541 } 542 } 543 out: 544 pte_unmap_unlock(ptep, ptl); 545 return page; 546 no_page: 547 pte_unmap_unlock(ptep, ptl); 548 if (!pte_none(pte)) 549 return NULL; 550 return no_page_table(vma, flags); 551 } 552 553 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 554 unsigned long address, pud_t *pudp, 555 unsigned int flags, 556 struct follow_page_context *ctx) 557 { 558 pmd_t *pmd, pmdval; 559 spinlock_t *ptl; 560 struct page *page; 561 struct mm_struct *mm = vma->vm_mm; 562 563 pmd = pmd_offset(pudp, address); 564 /* 565 * The READ_ONCE() will stabilize the pmdval in a register or 566 * on the stack so that it will stop changing under the code. 567 */ 568 pmdval = READ_ONCE(*pmd); 569 if (pmd_none(pmdval)) 570 return no_page_table(vma, flags); 571 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 572 page = follow_huge_pmd(mm, address, pmd, flags); 573 if (page) 574 return page; 575 return no_page_table(vma, flags); 576 } 577 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 578 page = follow_huge_pd(vma, address, 579 __hugepd(pmd_val(pmdval)), flags, 580 PMD_SHIFT); 581 if (page) 582 return page; 583 return no_page_table(vma, flags); 584 } 585 retry: 586 if (!pmd_present(pmdval)) { 587 if (likely(!(flags & FOLL_MIGRATION))) 588 return no_page_table(vma, flags); 589 VM_BUG_ON(thp_migration_supported() && 590 !is_pmd_migration_entry(pmdval)); 591 if (is_pmd_migration_entry(pmdval)) 592 pmd_migration_entry_wait(mm, pmd); 593 pmdval = READ_ONCE(*pmd); 594 /* 595 * MADV_DONTNEED may convert the pmd to null because 596 * mmap_sem is held in read mode 597 */ 598 if (pmd_none(pmdval)) 599 return no_page_table(vma, flags); 600 goto retry; 601 } 602 if (pmd_devmap(pmdval)) { 603 ptl = pmd_lock(mm, pmd); 604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 605 spin_unlock(ptl); 606 if (page) 607 return page; 608 } 609 if (likely(!pmd_trans_huge(pmdval))) 610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 611 612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 613 return no_page_table(vma, flags); 614 615 retry_locked: 616 ptl = pmd_lock(mm, pmd); 617 if (unlikely(pmd_none(*pmd))) { 618 spin_unlock(ptl); 619 return no_page_table(vma, flags); 620 } 621 if (unlikely(!pmd_present(*pmd))) { 622 spin_unlock(ptl); 623 if (likely(!(flags & FOLL_MIGRATION))) 624 return no_page_table(vma, flags); 625 pmd_migration_entry_wait(mm, pmd); 626 goto retry_locked; 627 } 628 if (unlikely(!pmd_trans_huge(*pmd))) { 629 spin_unlock(ptl); 630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 631 } 632 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 633 int ret; 634 page = pmd_page(*pmd); 635 if (is_huge_zero_page(page)) { 636 spin_unlock(ptl); 637 ret = 0; 638 split_huge_pmd(vma, pmd, address); 639 if (pmd_trans_unstable(pmd)) 640 ret = -EBUSY; 641 } else if (flags & FOLL_SPLIT) { 642 if (unlikely(!try_get_page(page))) { 643 spin_unlock(ptl); 644 return ERR_PTR(-ENOMEM); 645 } 646 spin_unlock(ptl); 647 lock_page(page); 648 ret = split_huge_page(page); 649 unlock_page(page); 650 put_page(page); 651 if (pmd_none(*pmd)) 652 return no_page_table(vma, flags); 653 } else { /* flags & FOLL_SPLIT_PMD */ 654 spin_unlock(ptl); 655 split_huge_pmd(vma, pmd, address); 656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 657 } 658 659 return ret ? ERR_PTR(ret) : 660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 661 } 662 page = follow_trans_huge_pmd(vma, address, pmd, flags); 663 spin_unlock(ptl); 664 ctx->page_mask = HPAGE_PMD_NR - 1; 665 return page; 666 } 667 668 static struct page *follow_pud_mask(struct vm_area_struct *vma, 669 unsigned long address, p4d_t *p4dp, 670 unsigned int flags, 671 struct follow_page_context *ctx) 672 { 673 pud_t *pud; 674 spinlock_t *ptl; 675 struct page *page; 676 struct mm_struct *mm = vma->vm_mm; 677 678 pud = pud_offset(p4dp, address); 679 if (pud_none(*pud)) 680 return no_page_table(vma, flags); 681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 682 page = follow_huge_pud(mm, address, pud, flags); 683 if (page) 684 return page; 685 return no_page_table(vma, flags); 686 } 687 if (is_hugepd(__hugepd(pud_val(*pud)))) { 688 page = follow_huge_pd(vma, address, 689 __hugepd(pud_val(*pud)), flags, 690 PUD_SHIFT); 691 if (page) 692 return page; 693 return no_page_table(vma, flags); 694 } 695 if (pud_devmap(*pud)) { 696 ptl = pud_lock(mm, pud); 697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 698 spin_unlock(ptl); 699 if (page) 700 return page; 701 } 702 if (unlikely(pud_bad(*pud))) 703 return no_page_table(vma, flags); 704 705 return follow_pmd_mask(vma, address, pud, flags, ctx); 706 } 707 708 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 709 unsigned long address, pgd_t *pgdp, 710 unsigned int flags, 711 struct follow_page_context *ctx) 712 { 713 p4d_t *p4d; 714 struct page *page; 715 716 p4d = p4d_offset(pgdp, address); 717 if (p4d_none(*p4d)) 718 return no_page_table(vma, flags); 719 BUILD_BUG_ON(p4d_huge(*p4d)); 720 if (unlikely(p4d_bad(*p4d))) 721 return no_page_table(vma, flags); 722 723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 724 page = follow_huge_pd(vma, address, 725 __hugepd(p4d_val(*p4d)), flags, 726 P4D_SHIFT); 727 if (page) 728 return page; 729 return no_page_table(vma, flags); 730 } 731 return follow_pud_mask(vma, address, p4d, flags, ctx); 732 } 733 734 /** 735 * follow_page_mask - look up a page descriptor from a user-virtual address 736 * @vma: vm_area_struct mapping @address 737 * @address: virtual address to look up 738 * @flags: flags modifying lookup behaviour 739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 740 * pointer to output page_mask 741 * 742 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 743 * 744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 745 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 746 * 747 * On output, the @ctx->page_mask is set according to the size of the page. 748 * 749 * Return: the mapped (struct page *), %NULL if no mapping exists, or 750 * an error pointer if there is a mapping to something not represented 751 * by a page descriptor (see also vm_normal_page()). 752 */ 753 static struct page *follow_page_mask(struct vm_area_struct *vma, 754 unsigned long address, unsigned int flags, 755 struct follow_page_context *ctx) 756 { 757 pgd_t *pgd; 758 struct page *page; 759 struct mm_struct *mm = vma->vm_mm; 760 761 ctx->page_mask = 0; 762 763 /* make this handle hugepd */ 764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 765 if (!IS_ERR(page)) { 766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 767 return page; 768 } 769 770 pgd = pgd_offset(mm, address); 771 772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 773 return no_page_table(vma, flags); 774 775 if (pgd_huge(*pgd)) { 776 page = follow_huge_pgd(mm, address, pgd, flags); 777 if (page) 778 return page; 779 return no_page_table(vma, flags); 780 } 781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 782 page = follow_huge_pd(vma, address, 783 __hugepd(pgd_val(*pgd)), flags, 784 PGDIR_SHIFT); 785 if (page) 786 return page; 787 return no_page_table(vma, flags); 788 } 789 790 return follow_p4d_mask(vma, address, pgd, flags, ctx); 791 } 792 793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 794 unsigned int foll_flags) 795 { 796 struct follow_page_context ctx = { NULL }; 797 struct page *page; 798 799 page = follow_page_mask(vma, address, foll_flags, &ctx); 800 if (ctx.pgmap) 801 put_dev_pagemap(ctx.pgmap); 802 return page; 803 } 804 805 static int get_gate_page(struct mm_struct *mm, unsigned long address, 806 unsigned int gup_flags, struct vm_area_struct **vma, 807 struct page **page) 808 { 809 pgd_t *pgd; 810 p4d_t *p4d; 811 pud_t *pud; 812 pmd_t *pmd; 813 pte_t *pte; 814 int ret = -EFAULT; 815 816 /* user gate pages are read-only */ 817 if (gup_flags & FOLL_WRITE) 818 return -EFAULT; 819 if (address > TASK_SIZE) 820 pgd = pgd_offset_k(address); 821 else 822 pgd = pgd_offset_gate(mm, address); 823 if (pgd_none(*pgd)) 824 return -EFAULT; 825 p4d = p4d_offset(pgd, address); 826 if (p4d_none(*p4d)) 827 return -EFAULT; 828 pud = pud_offset(p4d, address); 829 if (pud_none(*pud)) 830 return -EFAULT; 831 pmd = pmd_offset(pud, address); 832 if (!pmd_present(*pmd)) 833 return -EFAULT; 834 VM_BUG_ON(pmd_trans_huge(*pmd)); 835 pte = pte_offset_map(pmd, address); 836 if (pte_none(*pte)) 837 goto unmap; 838 *vma = get_gate_vma(mm); 839 if (!page) 840 goto out; 841 *page = vm_normal_page(*vma, address, *pte); 842 if (!*page) { 843 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 844 goto unmap; 845 *page = pte_page(*pte); 846 } 847 if (unlikely(!try_get_page(*page))) { 848 ret = -ENOMEM; 849 goto unmap; 850 } 851 out: 852 ret = 0; 853 unmap: 854 pte_unmap(pte); 855 return ret; 856 } 857 858 /* 859 * mmap_sem must be held on entry. If @locked != NULL and *@flags 860 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it 861 * is, *@locked will be set to 0 and -EBUSY returned. 862 */ 863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 864 unsigned long address, unsigned int *flags, int *locked) 865 { 866 unsigned int fault_flags = 0; 867 vm_fault_t ret; 868 869 /* mlock all present pages, but do not fault in new pages */ 870 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 871 return -ENOENT; 872 if (*flags & FOLL_WRITE) 873 fault_flags |= FAULT_FLAG_WRITE; 874 if (*flags & FOLL_REMOTE) 875 fault_flags |= FAULT_FLAG_REMOTE; 876 if (locked) 877 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 878 if (*flags & FOLL_NOWAIT) 879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 880 if (*flags & FOLL_TRIED) { 881 /* 882 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 883 * can co-exist 884 */ 885 fault_flags |= FAULT_FLAG_TRIED; 886 } 887 888 ret = handle_mm_fault(vma, address, fault_flags); 889 if (ret & VM_FAULT_ERROR) { 890 int err = vm_fault_to_errno(ret, *flags); 891 892 if (err) 893 return err; 894 BUG(); 895 } 896 897 if (tsk) { 898 if (ret & VM_FAULT_MAJOR) 899 tsk->maj_flt++; 900 else 901 tsk->min_flt++; 902 } 903 904 if (ret & VM_FAULT_RETRY) { 905 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 906 *locked = 0; 907 return -EBUSY; 908 } 909 910 /* 911 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 912 * necessary, even if maybe_mkwrite decided not to set pte_write. We 913 * can thus safely do subsequent page lookups as if they were reads. 914 * But only do so when looping for pte_write is futile: in some cases 915 * userspace may also be wanting to write to the gotten user page, 916 * which a read fault here might prevent (a readonly page might get 917 * reCOWed by userspace write). 918 */ 919 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 920 *flags |= FOLL_COW; 921 return 0; 922 } 923 924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 925 { 926 vm_flags_t vm_flags = vma->vm_flags; 927 int write = (gup_flags & FOLL_WRITE); 928 int foreign = (gup_flags & FOLL_REMOTE); 929 930 if (vm_flags & (VM_IO | VM_PFNMAP)) 931 return -EFAULT; 932 933 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 934 return -EFAULT; 935 936 if (write) { 937 if (!(vm_flags & VM_WRITE)) { 938 if (!(gup_flags & FOLL_FORCE)) 939 return -EFAULT; 940 /* 941 * We used to let the write,force case do COW in a 942 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 943 * set a breakpoint in a read-only mapping of an 944 * executable, without corrupting the file (yet only 945 * when that file had been opened for writing!). 946 * Anon pages in shared mappings are surprising: now 947 * just reject it. 948 */ 949 if (!is_cow_mapping(vm_flags)) 950 return -EFAULT; 951 } 952 } else if (!(vm_flags & VM_READ)) { 953 if (!(gup_flags & FOLL_FORCE)) 954 return -EFAULT; 955 /* 956 * Is there actually any vma we can reach here which does not 957 * have VM_MAYREAD set? 958 */ 959 if (!(vm_flags & VM_MAYREAD)) 960 return -EFAULT; 961 } 962 /* 963 * gups are always data accesses, not instruction 964 * fetches, so execute=false here 965 */ 966 if (!arch_vma_access_permitted(vma, write, false, foreign)) 967 return -EFAULT; 968 return 0; 969 } 970 971 /** 972 * __get_user_pages() - pin user pages in memory 973 * @tsk: task_struct of target task 974 * @mm: mm_struct of target mm 975 * @start: starting user address 976 * @nr_pages: number of pages from start to pin 977 * @gup_flags: flags modifying pin behaviour 978 * @pages: array that receives pointers to the pages pinned. 979 * Should be at least nr_pages long. Or NULL, if caller 980 * only intends to ensure the pages are faulted in. 981 * @vmas: array of pointers to vmas corresponding to each page. 982 * Or NULL if the caller does not require them. 983 * @locked: whether we're still with the mmap_sem held 984 * 985 * Returns either number of pages pinned (which may be less than the 986 * number requested), or an error. Details about the return value: 987 * 988 * -- If nr_pages is 0, returns 0. 989 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 990 * -- If nr_pages is >0, and some pages were pinned, returns the number of 991 * pages pinned. Again, this may be less than nr_pages. 992 * -- 0 return value is possible when the fault would need to be retried. 993 * 994 * The caller is responsible for releasing returned @pages, via put_page(). 995 * 996 * @vmas are valid only as long as mmap_sem is held. 997 * 998 * Must be called with mmap_sem held. It may be released. See below. 999 * 1000 * __get_user_pages walks a process's page tables and takes a reference to 1001 * each struct page that each user address corresponds to at a given 1002 * instant. That is, it takes the page that would be accessed if a user 1003 * thread accesses the given user virtual address at that instant. 1004 * 1005 * This does not guarantee that the page exists in the user mappings when 1006 * __get_user_pages returns, and there may even be a completely different 1007 * page there in some cases (eg. if mmapped pagecache has been invalidated 1008 * and subsequently re faulted). However it does guarantee that the page 1009 * won't be freed completely. And mostly callers simply care that the page 1010 * contains data that was valid *at some point in time*. Typically, an IO 1011 * or similar operation cannot guarantee anything stronger anyway because 1012 * locks can't be held over the syscall boundary. 1013 * 1014 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1015 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1016 * appropriate) must be called after the page is finished with, and 1017 * before put_page is called. 1018 * 1019 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is 1020 * released by an up_read(). That can happen if @gup_flags does not 1021 * have FOLL_NOWAIT. 1022 * 1023 * A caller using such a combination of @locked and @gup_flags 1024 * must therefore hold the mmap_sem for reading only, and recognize 1025 * when it's been released. Otherwise, it must be held for either 1026 * reading or writing and will not be released. 1027 * 1028 * In most cases, get_user_pages or get_user_pages_fast should be used 1029 * instead of __get_user_pages. __get_user_pages should be used only if 1030 * you need some special @gup_flags. 1031 */ 1032 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1033 unsigned long start, unsigned long nr_pages, 1034 unsigned int gup_flags, struct page **pages, 1035 struct vm_area_struct **vmas, int *locked) 1036 { 1037 long ret = 0, i = 0; 1038 struct vm_area_struct *vma = NULL; 1039 struct follow_page_context ctx = { NULL }; 1040 1041 if (!nr_pages) 1042 return 0; 1043 1044 start = untagged_addr(start); 1045 1046 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1047 1048 /* 1049 * If FOLL_FORCE is set then do not force a full fault as the hinting 1050 * fault information is unrelated to the reference behaviour of a task 1051 * using the address space 1052 */ 1053 if (!(gup_flags & FOLL_FORCE)) 1054 gup_flags |= FOLL_NUMA; 1055 1056 do { 1057 struct page *page; 1058 unsigned int foll_flags = gup_flags; 1059 unsigned int page_increm; 1060 1061 /* first iteration or cross vma bound */ 1062 if (!vma || start >= vma->vm_end) { 1063 vma = find_extend_vma(mm, start); 1064 if (!vma && in_gate_area(mm, start)) { 1065 ret = get_gate_page(mm, start & PAGE_MASK, 1066 gup_flags, &vma, 1067 pages ? &pages[i] : NULL); 1068 if (ret) 1069 goto out; 1070 ctx.page_mask = 0; 1071 goto next_page; 1072 } 1073 1074 if (!vma || check_vma_flags(vma, gup_flags)) { 1075 ret = -EFAULT; 1076 goto out; 1077 } 1078 if (is_vm_hugetlb_page(vma)) { 1079 if (should_force_cow_break(vma, foll_flags)) 1080 foll_flags |= FOLL_WRITE; 1081 i = follow_hugetlb_page(mm, vma, pages, vmas, 1082 &start, &nr_pages, i, 1083 foll_flags, locked); 1084 if (locked && *locked == 0) { 1085 /* 1086 * We've got a VM_FAULT_RETRY 1087 * and we've lost mmap_sem. 1088 * We must stop here. 1089 */ 1090 BUG_ON(gup_flags & FOLL_NOWAIT); 1091 BUG_ON(ret != 0); 1092 goto out; 1093 } 1094 continue; 1095 } 1096 } 1097 1098 if (should_force_cow_break(vma, foll_flags)) 1099 foll_flags |= FOLL_WRITE; 1100 1101 retry: 1102 /* 1103 * If we have a pending SIGKILL, don't keep faulting pages and 1104 * potentially allocating memory. 1105 */ 1106 if (fatal_signal_pending(current)) { 1107 ret = -EINTR; 1108 goto out; 1109 } 1110 cond_resched(); 1111 1112 page = follow_page_mask(vma, start, foll_flags, &ctx); 1113 if (!page) { 1114 ret = faultin_page(tsk, vma, start, &foll_flags, 1115 locked); 1116 switch (ret) { 1117 case 0: 1118 goto retry; 1119 case -EBUSY: 1120 ret = 0; 1121 fallthrough; 1122 case -EFAULT: 1123 case -ENOMEM: 1124 case -EHWPOISON: 1125 goto out; 1126 case -ENOENT: 1127 goto next_page; 1128 } 1129 BUG(); 1130 } else if (PTR_ERR(page) == -EEXIST) { 1131 /* 1132 * Proper page table entry exists, but no corresponding 1133 * struct page. 1134 */ 1135 goto next_page; 1136 } else if (IS_ERR(page)) { 1137 ret = PTR_ERR(page); 1138 goto out; 1139 } 1140 if (pages) { 1141 pages[i] = page; 1142 flush_anon_page(vma, page, start); 1143 flush_dcache_page(page); 1144 ctx.page_mask = 0; 1145 } 1146 next_page: 1147 if (vmas) { 1148 vmas[i] = vma; 1149 ctx.page_mask = 0; 1150 } 1151 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1152 if (page_increm > nr_pages) 1153 page_increm = nr_pages; 1154 i += page_increm; 1155 start += page_increm * PAGE_SIZE; 1156 nr_pages -= page_increm; 1157 } while (nr_pages); 1158 out: 1159 if (ctx.pgmap) 1160 put_dev_pagemap(ctx.pgmap); 1161 return i ? i : ret; 1162 } 1163 1164 static bool vma_permits_fault(struct vm_area_struct *vma, 1165 unsigned int fault_flags) 1166 { 1167 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1168 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1169 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1170 1171 if (!(vm_flags & vma->vm_flags)) 1172 return false; 1173 1174 /* 1175 * The architecture might have a hardware protection 1176 * mechanism other than read/write that can deny access. 1177 * 1178 * gup always represents data access, not instruction 1179 * fetches, so execute=false here: 1180 */ 1181 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1182 return false; 1183 1184 return true; 1185 } 1186 1187 /** 1188 * fixup_user_fault() - manually resolve a user page fault 1189 * @tsk: the task_struct to use for page fault accounting, or 1190 * NULL if faults are not to be recorded. 1191 * @mm: mm_struct of target mm 1192 * @address: user address 1193 * @fault_flags:flags to pass down to handle_mm_fault() 1194 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 1195 * does not allow retry. If NULL, the caller must guarantee 1196 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1197 * 1198 * This is meant to be called in the specific scenario where for locking reasons 1199 * we try to access user memory in atomic context (within a pagefault_disable() 1200 * section), this returns -EFAULT, and we want to resolve the user fault before 1201 * trying again. 1202 * 1203 * Typically this is meant to be used by the futex code. 1204 * 1205 * The main difference with get_user_pages() is that this function will 1206 * unconditionally call handle_mm_fault() which will in turn perform all the 1207 * necessary SW fixup of the dirty and young bits in the PTE, while 1208 * get_user_pages() only guarantees to update these in the struct page. 1209 * 1210 * This is important for some architectures where those bits also gate the 1211 * access permission to the page because they are maintained in software. On 1212 * such architectures, gup() will not be enough to make a subsequent access 1213 * succeed. 1214 * 1215 * This function will not return with an unlocked mmap_sem. So it has not the 1216 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 1217 */ 1218 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1219 unsigned long address, unsigned int fault_flags, 1220 bool *unlocked) 1221 { 1222 struct vm_area_struct *vma; 1223 vm_fault_t ret, major = 0; 1224 1225 address = untagged_addr(address); 1226 1227 if (unlocked) 1228 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1229 1230 retry: 1231 vma = find_extend_vma(mm, address); 1232 if (!vma || address < vma->vm_start) 1233 return -EFAULT; 1234 1235 if (!vma_permits_fault(vma, fault_flags)) 1236 return -EFAULT; 1237 1238 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1239 fatal_signal_pending(current)) 1240 return -EINTR; 1241 1242 ret = handle_mm_fault(vma, address, fault_flags); 1243 major |= ret & VM_FAULT_MAJOR; 1244 if (ret & VM_FAULT_ERROR) { 1245 int err = vm_fault_to_errno(ret, 0); 1246 1247 if (err) 1248 return err; 1249 BUG(); 1250 } 1251 1252 if (ret & VM_FAULT_RETRY) { 1253 down_read(&mm->mmap_sem); 1254 *unlocked = true; 1255 fault_flags |= FAULT_FLAG_TRIED; 1256 goto retry; 1257 } 1258 1259 if (tsk) { 1260 if (major) 1261 tsk->maj_flt++; 1262 else 1263 tsk->min_flt++; 1264 } 1265 return 0; 1266 } 1267 EXPORT_SYMBOL_GPL(fixup_user_fault); 1268 1269 /* 1270 * Please note that this function, unlike __get_user_pages will not 1271 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1272 */ 1273 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1274 struct mm_struct *mm, 1275 unsigned long start, 1276 unsigned long nr_pages, 1277 struct page **pages, 1278 struct vm_area_struct **vmas, 1279 int *locked, 1280 unsigned int flags) 1281 { 1282 long ret, pages_done; 1283 bool lock_dropped; 1284 1285 if (locked) { 1286 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1287 BUG_ON(vmas); 1288 /* check caller initialized locked */ 1289 BUG_ON(*locked != 1); 1290 } 1291 1292 /* 1293 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1294 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1295 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1296 * for FOLL_GET, not for the newer FOLL_PIN. 1297 * 1298 * FOLL_PIN always expects pages to be non-null, but no need to assert 1299 * that here, as any failures will be obvious enough. 1300 */ 1301 if (pages && !(flags & FOLL_PIN)) 1302 flags |= FOLL_GET; 1303 1304 pages_done = 0; 1305 lock_dropped = false; 1306 for (;;) { 1307 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1308 vmas, locked); 1309 if (!locked) 1310 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1311 return ret; 1312 1313 /* VM_FAULT_RETRY cannot return errors */ 1314 if (!*locked) { 1315 BUG_ON(ret < 0); 1316 BUG_ON(ret >= nr_pages); 1317 } 1318 1319 if (ret > 0) { 1320 nr_pages -= ret; 1321 pages_done += ret; 1322 if (!nr_pages) 1323 break; 1324 } 1325 if (*locked) { 1326 /* 1327 * VM_FAULT_RETRY didn't trigger or it was a 1328 * FOLL_NOWAIT. 1329 */ 1330 if (!pages_done) 1331 pages_done = ret; 1332 break; 1333 } 1334 /* 1335 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1336 * For the prefault case (!pages) we only update counts. 1337 */ 1338 if (likely(pages)) 1339 pages += ret; 1340 start += ret << PAGE_SHIFT; 1341 lock_dropped = true; 1342 1343 retry: 1344 /* 1345 * Repeat on the address that fired VM_FAULT_RETRY 1346 * with both FAULT_FLAG_ALLOW_RETRY and 1347 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1348 * by fatal signals, so we need to check it before we 1349 * start trying again otherwise it can loop forever. 1350 */ 1351 1352 if (fatal_signal_pending(current)) { 1353 if (!pages_done) 1354 pages_done = -EINTR; 1355 break; 1356 } 1357 1358 ret = down_read_killable(&mm->mmap_sem); 1359 if (ret) { 1360 BUG_ON(ret > 0); 1361 if (!pages_done) 1362 pages_done = ret; 1363 break; 1364 } 1365 1366 *locked = 1; 1367 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1368 pages, NULL, locked); 1369 if (!*locked) { 1370 /* Continue to retry until we succeeded */ 1371 BUG_ON(ret != 0); 1372 goto retry; 1373 } 1374 if (ret != 1) { 1375 BUG_ON(ret > 1); 1376 if (!pages_done) 1377 pages_done = ret; 1378 break; 1379 } 1380 nr_pages--; 1381 pages_done++; 1382 if (!nr_pages) 1383 break; 1384 if (likely(pages)) 1385 pages++; 1386 start += PAGE_SIZE; 1387 } 1388 if (lock_dropped && *locked) { 1389 /* 1390 * We must let the caller know we temporarily dropped the lock 1391 * and so the critical section protected by it was lost. 1392 */ 1393 up_read(&mm->mmap_sem); 1394 *locked = 0; 1395 } 1396 return pages_done; 1397 } 1398 1399 /** 1400 * populate_vma_page_range() - populate a range of pages in the vma. 1401 * @vma: target vma 1402 * @start: start address 1403 * @end: end address 1404 * @locked: whether the mmap_sem is still held 1405 * 1406 * This takes care of mlocking the pages too if VM_LOCKED is set. 1407 * 1408 * return 0 on success, negative error code on error. 1409 * 1410 * vma->vm_mm->mmap_sem must be held. 1411 * 1412 * If @locked is NULL, it may be held for read or write and will 1413 * be unperturbed. 1414 * 1415 * If @locked is non-NULL, it must held for read only and may be 1416 * released. If it's released, *@locked will be set to 0. 1417 */ 1418 long populate_vma_page_range(struct vm_area_struct *vma, 1419 unsigned long start, unsigned long end, int *locked) 1420 { 1421 struct mm_struct *mm = vma->vm_mm; 1422 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1423 int gup_flags; 1424 1425 VM_BUG_ON(start & ~PAGE_MASK); 1426 VM_BUG_ON(end & ~PAGE_MASK); 1427 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1428 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1429 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1430 1431 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1432 if (vma->vm_flags & VM_LOCKONFAULT) 1433 gup_flags &= ~FOLL_POPULATE; 1434 /* 1435 * We want to touch writable mappings with a write fault in order 1436 * to break COW, except for shared mappings because these don't COW 1437 * and we would not want to dirty them for nothing. 1438 */ 1439 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1440 gup_flags |= FOLL_WRITE; 1441 1442 /* 1443 * We want mlock to succeed for regions that have any permissions 1444 * other than PROT_NONE. 1445 */ 1446 if (vma_is_accessible(vma)) 1447 gup_flags |= FOLL_FORCE; 1448 1449 /* 1450 * We made sure addr is within a VMA, so the following will 1451 * not result in a stack expansion that recurses back here. 1452 */ 1453 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1454 NULL, NULL, locked); 1455 } 1456 1457 /* 1458 * __mm_populate - populate and/or mlock pages within a range of address space. 1459 * 1460 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1461 * flags. VMAs must be already marked with the desired vm_flags, and 1462 * mmap_sem must not be held. 1463 */ 1464 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1465 { 1466 struct mm_struct *mm = current->mm; 1467 unsigned long end, nstart, nend; 1468 struct vm_area_struct *vma = NULL; 1469 int locked = 0; 1470 long ret = 0; 1471 1472 end = start + len; 1473 1474 for (nstart = start; nstart < end; nstart = nend) { 1475 /* 1476 * We want to fault in pages for [nstart; end) address range. 1477 * Find first corresponding VMA. 1478 */ 1479 if (!locked) { 1480 locked = 1; 1481 down_read(&mm->mmap_sem); 1482 vma = find_vma(mm, nstart); 1483 } else if (nstart >= vma->vm_end) 1484 vma = vma->vm_next; 1485 if (!vma || vma->vm_start >= end) 1486 break; 1487 /* 1488 * Set [nstart; nend) to intersection of desired address 1489 * range with the first VMA. Also, skip undesirable VMA types. 1490 */ 1491 nend = min(end, vma->vm_end); 1492 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1493 continue; 1494 if (nstart < vma->vm_start) 1495 nstart = vma->vm_start; 1496 /* 1497 * Now fault in a range of pages. populate_vma_page_range() 1498 * double checks the vma flags, so that it won't mlock pages 1499 * if the vma was already munlocked. 1500 */ 1501 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1502 if (ret < 0) { 1503 if (ignore_errors) { 1504 ret = 0; 1505 continue; /* continue at next VMA */ 1506 } 1507 break; 1508 } 1509 nend = nstart + ret * PAGE_SIZE; 1510 ret = 0; 1511 } 1512 if (locked) 1513 up_read(&mm->mmap_sem); 1514 return ret; /* 0 or negative error code */ 1515 } 1516 1517 /** 1518 * get_dump_page() - pin user page in memory while writing it to core dump 1519 * @addr: user address 1520 * 1521 * Returns struct page pointer of user page pinned for dump, 1522 * to be freed afterwards by put_page(). 1523 * 1524 * Returns NULL on any kind of failure - a hole must then be inserted into 1525 * the corefile, to preserve alignment with its headers; and also returns 1526 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1527 * allowing a hole to be left in the corefile to save diskspace. 1528 * 1529 * Called without mmap_sem, but after all other threads have been killed. 1530 */ 1531 #ifdef CONFIG_ELF_CORE 1532 struct page *get_dump_page(unsigned long addr) 1533 { 1534 struct vm_area_struct *vma; 1535 struct page *page; 1536 1537 if (__get_user_pages(current, current->mm, addr, 1, 1538 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1539 NULL) < 1) 1540 return NULL; 1541 flush_cache_page(vma, addr, page_to_pfn(page)); 1542 return page; 1543 } 1544 #endif /* CONFIG_ELF_CORE */ 1545 #else /* CONFIG_MMU */ 1546 static long __get_user_pages_locked(struct task_struct *tsk, 1547 struct mm_struct *mm, unsigned long start, 1548 unsigned long nr_pages, struct page **pages, 1549 struct vm_area_struct **vmas, int *locked, 1550 unsigned int foll_flags) 1551 { 1552 struct vm_area_struct *vma; 1553 unsigned long vm_flags; 1554 int i; 1555 1556 /* calculate required read or write permissions. 1557 * If FOLL_FORCE is set, we only require the "MAY" flags. 1558 */ 1559 vm_flags = (foll_flags & FOLL_WRITE) ? 1560 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1561 vm_flags &= (foll_flags & FOLL_FORCE) ? 1562 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1563 1564 for (i = 0; i < nr_pages; i++) { 1565 vma = find_vma(mm, start); 1566 if (!vma) 1567 goto finish_or_fault; 1568 1569 /* protect what we can, including chardevs */ 1570 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1571 !(vm_flags & vma->vm_flags)) 1572 goto finish_or_fault; 1573 1574 if (pages) { 1575 pages[i] = virt_to_page(start); 1576 if (pages[i]) 1577 get_page(pages[i]); 1578 } 1579 if (vmas) 1580 vmas[i] = vma; 1581 start = (start + PAGE_SIZE) & PAGE_MASK; 1582 } 1583 1584 return i; 1585 1586 finish_or_fault: 1587 return i ? : -EFAULT; 1588 } 1589 #endif /* !CONFIG_MMU */ 1590 1591 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1592 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1593 { 1594 long i; 1595 struct vm_area_struct *vma_prev = NULL; 1596 1597 for (i = 0; i < nr_pages; i++) { 1598 struct vm_area_struct *vma = vmas[i]; 1599 1600 if (vma == vma_prev) 1601 continue; 1602 1603 vma_prev = vma; 1604 1605 if (vma_is_fsdax(vma)) 1606 return true; 1607 } 1608 return false; 1609 } 1610 1611 #ifdef CONFIG_CMA 1612 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1613 { 1614 /* 1615 * We want to make sure we allocate the new page from the same node 1616 * as the source page. 1617 */ 1618 int nid = page_to_nid(page); 1619 /* 1620 * Trying to allocate a page for migration. Ignore allocation 1621 * failure warnings. We don't force __GFP_THISNODE here because 1622 * this node here is the node where we have CMA reservation and 1623 * in some case these nodes will have really less non movable 1624 * allocation memory. 1625 */ 1626 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1627 1628 if (PageHighMem(page)) 1629 gfp_mask |= __GFP_HIGHMEM; 1630 1631 #ifdef CONFIG_HUGETLB_PAGE 1632 if (PageHuge(page)) { 1633 struct hstate *h = page_hstate(page); 1634 /* 1635 * We don't want to dequeue from the pool because pool pages will 1636 * mostly be from the CMA region. 1637 */ 1638 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1639 } 1640 #endif 1641 if (PageTransHuge(page)) { 1642 struct page *thp; 1643 /* 1644 * ignore allocation failure warnings 1645 */ 1646 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1647 1648 /* 1649 * Remove the movable mask so that we don't allocate from 1650 * CMA area again. 1651 */ 1652 thp_gfpmask &= ~__GFP_MOVABLE; 1653 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1654 if (!thp) 1655 return NULL; 1656 prep_transhuge_page(thp); 1657 return thp; 1658 } 1659 1660 return __alloc_pages_node(nid, gfp_mask, 0); 1661 } 1662 1663 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1664 struct mm_struct *mm, 1665 unsigned long start, 1666 unsigned long nr_pages, 1667 struct page **pages, 1668 struct vm_area_struct **vmas, 1669 unsigned int gup_flags) 1670 { 1671 unsigned long i; 1672 unsigned long step; 1673 bool drain_allow = true; 1674 bool migrate_allow = true; 1675 LIST_HEAD(cma_page_list); 1676 long ret = nr_pages; 1677 1678 check_again: 1679 for (i = 0; i < nr_pages;) { 1680 1681 struct page *head = compound_head(pages[i]); 1682 1683 /* 1684 * gup may start from a tail page. Advance step by the left 1685 * part. 1686 */ 1687 step = compound_nr(head) - (pages[i] - head); 1688 /* 1689 * If we get a page from the CMA zone, since we are going to 1690 * be pinning these entries, we might as well move them out 1691 * of the CMA zone if possible. 1692 */ 1693 if (is_migrate_cma_page(head)) { 1694 if (PageHuge(head)) 1695 isolate_huge_page(head, &cma_page_list); 1696 else { 1697 if (!PageLRU(head) && drain_allow) { 1698 lru_add_drain_all(); 1699 drain_allow = false; 1700 } 1701 1702 if (!isolate_lru_page(head)) { 1703 list_add_tail(&head->lru, &cma_page_list); 1704 mod_node_page_state(page_pgdat(head), 1705 NR_ISOLATED_ANON + 1706 page_is_file_lru(head), 1707 hpage_nr_pages(head)); 1708 } 1709 } 1710 } 1711 1712 i += step; 1713 } 1714 1715 if (!list_empty(&cma_page_list)) { 1716 /* 1717 * drop the above get_user_pages reference. 1718 */ 1719 for (i = 0; i < nr_pages; i++) 1720 put_page(pages[i]); 1721 1722 if (migrate_pages(&cma_page_list, new_non_cma_page, 1723 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1724 /* 1725 * some of the pages failed migration. Do get_user_pages 1726 * without migration. 1727 */ 1728 migrate_allow = false; 1729 1730 if (!list_empty(&cma_page_list)) 1731 putback_movable_pages(&cma_page_list); 1732 } 1733 /* 1734 * We did migrate all the pages, Try to get the page references 1735 * again migrating any new CMA pages which we failed to isolate 1736 * earlier. 1737 */ 1738 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1739 pages, vmas, NULL, 1740 gup_flags); 1741 1742 if ((ret > 0) && migrate_allow) { 1743 nr_pages = ret; 1744 drain_allow = true; 1745 goto check_again; 1746 } 1747 } 1748 1749 return ret; 1750 } 1751 #else 1752 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1753 struct mm_struct *mm, 1754 unsigned long start, 1755 unsigned long nr_pages, 1756 struct page **pages, 1757 struct vm_area_struct **vmas, 1758 unsigned int gup_flags) 1759 { 1760 return nr_pages; 1761 } 1762 #endif /* CONFIG_CMA */ 1763 1764 /* 1765 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1766 * allows us to process the FOLL_LONGTERM flag. 1767 */ 1768 static long __gup_longterm_locked(struct task_struct *tsk, 1769 struct mm_struct *mm, 1770 unsigned long start, 1771 unsigned long nr_pages, 1772 struct page **pages, 1773 struct vm_area_struct **vmas, 1774 unsigned int gup_flags) 1775 { 1776 struct vm_area_struct **vmas_tmp = vmas; 1777 unsigned long flags = 0; 1778 long rc, i; 1779 1780 if (gup_flags & FOLL_LONGTERM) { 1781 if (!pages) 1782 return -EINVAL; 1783 1784 if (!vmas_tmp) { 1785 vmas_tmp = kcalloc(nr_pages, 1786 sizeof(struct vm_area_struct *), 1787 GFP_KERNEL); 1788 if (!vmas_tmp) 1789 return -ENOMEM; 1790 } 1791 flags = memalloc_nocma_save(); 1792 } 1793 1794 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1795 vmas_tmp, NULL, gup_flags); 1796 1797 if (gup_flags & FOLL_LONGTERM) { 1798 memalloc_nocma_restore(flags); 1799 if (rc < 0) 1800 goto out; 1801 1802 if (check_dax_vmas(vmas_tmp, rc)) { 1803 for (i = 0; i < rc; i++) 1804 put_page(pages[i]); 1805 rc = -EOPNOTSUPP; 1806 goto out; 1807 } 1808 1809 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1810 vmas_tmp, gup_flags); 1811 } 1812 1813 out: 1814 if (vmas_tmp != vmas) 1815 kfree(vmas_tmp); 1816 return rc; 1817 } 1818 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1819 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1820 struct mm_struct *mm, 1821 unsigned long start, 1822 unsigned long nr_pages, 1823 struct page **pages, 1824 struct vm_area_struct **vmas, 1825 unsigned int flags) 1826 { 1827 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1828 NULL, flags); 1829 } 1830 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1831 1832 #ifdef CONFIG_MMU 1833 static long __get_user_pages_remote(struct task_struct *tsk, 1834 struct mm_struct *mm, 1835 unsigned long start, unsigned long nr_pages, 1836 unsigned int gup_flags, struct page **pages, 1837 struct vm_area_struct **vmas, int *locked) 1838 { 1839 /* 1840 * Parts of FOLL_LONGTERM behavior are incompatible with 1841 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1842 * vmas. However, this only comes up if locked is set, and there are 1843 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1844 * allow what we can. 1845 */ 1846 if (gup_flags & FOLL_LONGTERM) { 1847 if (WARN_ON_ONCE(locked)) 1848 return -EINVAL; 1849 /* 1850 * This will check the vmas (even if our vmas arg is NULL) 1851 * and return -ENOTSUPP if DAX isn't allowed in this case: 1852 */ 1853 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1854 vmas, gup_flags | FOLL_TOUCH | 1855 FOLL_REMOTE); 1856 } 1857 1858 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1859 locked, 1860 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1861 } 1862 1863 /** 1864 * get_user_pages_remote() - pin user pages in memory 1865 * @tsk: the task_struct to use for page fault accounting, or 1866 * NULL if faults are not to be recorded. 1867 * @mm: mm_struct of target mm 1868 * @start: starting user address 1869 * @nr_pages: number of pages from start to pin 1870 * @gup_flags: flags modifying lookup behaviour 1871 * @pages: array that receives pointers to the pages pinned. 1872 * Should be at least nr_pages long. Or NULL, if caller 1873 * only intends to ensure the pages are faulted in. 1874 * @vmas: array of pointers to vmas corresponding to each page. 1875 * Or NULL if the caller does not require them. 1876 * @locked: pointer to lock flag indicating whether lock is held and 1877 * subsequently whether VM_FAULT_RETRY functionality can be 1878 * utilised. Lock must initially be held. 1879 * 1880 * Returns either number of pages pinned (which may be less than the 1881 * number requested), or an error. Details about the return value: 1882 * 1883 * -- If nr_pages is 0, returns 0. 1884 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1885 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1886 * pages pinned. Again, this may be less than nr_pages. 1887 * 1888 * The caller is responsible for releasing returned @pages, via put_page(). 1889 * 1890 * @vmas are valid only as long as mmap_sem is held. 1891 * 1892 * Must be called with mmap_sem held for read or write. 1893 * 1894 * get_user_pages_remote walks a process's page tables and takes a reference 1895 * to each struct page that each user address corresponds to at a given 1896 * instant. That is, it takes the page that would be accessed if a user 1897 * thread accesses the given user virtual address at that instant. 1898 * 1899 * This does not guarantee that the page exists in the user mappings when 1900 * get_user_pages_remote returns, and there may even be a completely different 1901 * page there in some cases (eg. if mmapped pagecache has been invalidated 1902 * and subsequently re faulted). However it does guarantee that the page 1903 * won't be freed completely. And mostly callers simply care that the page 1904 * contains data that was valid *at some point in time*. Typically, an IO 1905 * or similar operation cannot guarantee anything stronger anyway because 1906 * locks can't be held over the syscall boundary. 1907 * 1908 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1909 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1910 * be called after the page is finished with, and before put_page is called. 1911 * 1912 * get_user_pages_remote is typically used for fewer-copy IO operations, 1913 * to get a handle on the memory by some means other than accesses 1914 * via the user virtual addresses. The pages may be submitted for 1915 * DMA to devices or accessed via their kernel linear mapping (via the 1916 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1917 * 1918 * See also get_user_pages_fast, for performance critical applications. 1919 * 1920 * get_user_pages_remote should be phased out in favor of 1921 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1922 * should use get_user_pages_remote because it cannot pass 1923 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1924 */ 1925 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1926 unsigned long start, unsigned long nr_pages, 1927 unsigned int gup_flags, struct page **pages, 1928 struct vm_area_struct **vmas, int *locked) 1929 { 1930 /* 1931 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1932 * never directly by the caller, so enforce that with an assertion: 1933 */ 1934 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1935 return -EINVAL; 1936 1937 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1938 pages, vmas, locked); 1939 } 1940 EXPORT_SYMBOL(get_user_pages_remote); 1941 1942 #else /* CONFIG_MMU */ 1943 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1944 unsigned long start, unsigned long nr_pages, 1945 unsigned int gup_flags, struct page **pages, 1946 struct vm_area_struct **vmas, int *locked) 1947 { 1948 return 0; 1949 } 1950 1951 static long __get_user_pages_remote(struct task_struct *tsk, 1952 struct mm_struct *mm, 1953 unsigned long start, unsigned long nr_pages, 1954 unsigned int gup_flags, struct page **pages, 1955 struct vm_area_struct **vmas, int *locked) 1956 { 1957 return 0; 1958 } 1959 #endif /* !CONFIG_MMU */ 1960 1961 /** 1962 * get_user_pages() - pin user pages in memory 1963 * @start: starting user address 1964 * @nr_pages: number of pages from start to pin 1965 * @gup_flags: flags modifying lookup behaviour 1966 * @pages: array that receives pointers to the pages pinned. 1967 * Should be at least nr_pages long. Or NULL, if caller 1968 * only intends to ensure the pages are faulted in. 1969 * @vmas: array of pointers to vmas corresponding to each page. 1970 * Or NULL if the caller does not require them. 1971 * 1972 * This is the same as get_user_pages_remote(), just with a 1973 * less-flexible calling convention where we assume that the task 1974 * and mm being operated on are the current task's and don't allow 1975 * passing of a locked parameter. We also obviously don't pass 1976 * FOLL_REMOTE in here. 1977 */ 1978 long get_user_pages(unsigned long start, unsigned long nr_pages, 1979 unsigned int gup_flags, struct page **pages, 1980 struct vm_area_struct **vmas) 1981 { 1982 /* 1983 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1984 * never directly by the caller, so enforce that with an assertion: 1985 */ 1986 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1987 return -EINVAL; 1988 1989 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1990 pages, vmas, gup_flags | FOLL_TOUCH); 1991 } 1992 EXPORT_SYMBOL(get_user_pages); 1993 1994 /** 1995 * get_user_pages_locked() is suitable to replace the form: 1996 * 1997 * down_read(&mm->mmap_sem); 1998 * do_something() 1999 * get_user_pages(tsk, mm, ..., pages, NULL); 2000 * up_read(&mm->mmap_sem); 2001 * 2002 * to: 2003 * 2004 * int locked = 1; 2005 * down_read(&mm->mmap_sem); 2006 * do_something() 2007 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 2008 * if (locked) 2009 * up_read(&mm->mmap_sem); 2010 * 2011 * @start: starting user address 2012 * @nr_pages: number of pages from start to pin 2013 * @gup_flags: flags modifying lookup behaviour 2014 * @pages: array that receives pointers to the pages pinned. 2015 * Should be at least nr_pages long. Or NULL, if caller 2016 * only intends to ensure the pages are faulted in. 2017 * @locked: pointer to lock flag indicating whether lock is held and 2018 * subsequently whether VM_FAULT_RETRY functionality can be 2019 * utilised. Lock must initially be held. 2020 * 2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2022 * paths better by using either get_user_pages_locked() or 2023 * get_user_pages_unlocked(). 2024 * 2025 */ 2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2027 unsigned int gup_flags, struct page **pages, 2028 int *locked) 2029 { 2030 /* 2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2033 * vmas. As there are no users of this flag in this call we simply 2034 * disallow this option for now. 2035 */ 2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2037 return -EINVAL; 2038 2039 return __get_user_pages_locked(current, current->mm, start, nr_pages, 2040 pages, NULL, locked, 2041 gup_flags | FOLL_TOUCH); 2042 } 2043 EXPORT_SYMBOL(get_user_pages_locked); 2044 2045 /* 2046 * get_user_pages_unlocked() is suitable to replace the form: 2047 * 2048 * down_read(&mm->mmap_sem); 2049 * get_user_pages(tsk, mm, ..., pages, NULL); 2050 * up_read(&mm->mmap_sem); 2051 * 2052 * with: 2053 * 2054 * get_user_pages_unlocked(tsk, mm, ..., pages); 2055 * 2056 * It is functionally equivalent to get_user_pages_fast so 2057 * get_user_pages_fast should be used instead if specific gup_flags 2058 * (e.g. FOLL_FORCE) are not required. 2059 */ 2060 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2061 struct page **pages, unsigned int gup_flags) 2062 { 2063 struct mm_struct *mm = current->mm; 2064 int locked = 1; 2065 long ret; 2066 2067 /* 2068 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2069 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2070 * vmas. As there are no users of this flag in this call we simply 2071 * disallow this option for now. 2072 */ 2073 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2074 return -EINVAL; 2075 2076 down_read(&mm->mmap_sem); 2077 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2078 &locked, gup_flags | FOLL_TOUCH); 2079 if (locked) 2080 up_read(&mm->mmap_sem); 2081 return ret; 2082 } 2083 EXPORT_SYMBOL(get_user_pages_unlocked); 2084 2085 /* 2086 * Fast GUP 2087 * 2088 * get_user_pages_fast attempts to pin user pages by walking the page 2089 * tables directly and avoids taking locks. Thus the walker needs to be 2090 * protected from page table pages being freed from under it, and should 2091 * block any THP splits. 2092 * 2093 * One way to achieve this is to have the walker disable interrupts, and 2094 * rely on IPIs from the TLB flushing code blocking before the page table 2095 * pages are freed. This is unsuitable for architectures that do not need 2096 * to broadcast an IPI when invalidating TLBs. 2097 * 2098 * Another way to achieve this is to batch up page table containing pages 2099 * belonging to more than one mm_user, then rcu_sched a callback to free those 2100 * pages. Disabling interrupts will allow the fast_gup walker to both block 2101 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2102 * (which is a relatively rare event). The code below adopts this strategy. 2103 * 2104 * Before activating this code, please be aware that the following assumptions 2105 * are currently made: 2106 * 2107 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2108 * free pages containing page tables or TLB flushing requires IPI broadcast. 2109 * 2110 * *) ptes can be read atomically by the architecture. 2111 * 2112 * *) access_ok is sufficient to validate userspace address ranges. 2113 * 2114 * The last two assumptions can be relaxed by the addition of helper functions. 2115 * 2116 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2117 */ 2118 #ifdef CONFIG_HAVE_FAST_GUP 2119 2120 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2121 { 2122 if (flags & FOLL_PIN) { 2123 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2124 refs); 2125 2126 if (hpage_pincount_available(page)) 2127 hpage_pincount_sub(page, refs); 2128 else 2129 refs *= GUP_PIN_COUNTING_BIAS; 2130 } 2131 2132 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2133 /* 2134 * Calling put_page() for each ref is unnecessarily slow. Only the last 2135 * ref needs a put_page(). 2136 */ 2137 if (refs > 1) 2138 page_ref_sub(page, refs - 1); 2139 put_page(page); 2140 } 2141 2142 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2143 2144 /* 2145 * WARNING: only to be used in the get_user_pages_fast() implementation. 2146 * 2147 * With get_user_pages_fast(), we walk down the pagetables without taking any 2148 * locks. For this we would like to load the pointers atomically, but sometimes 2149 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2150 * we do have is the guarantee that a PTE will only either go from not present 2151 * to present, or present to not present or both -- it will not switch to a 2152 * completely different present page without a TLB flush in between; something 2153 * that we are blocking by holding interrupts off. 2154 * 2155 * Setting ptes from not present to present goes: 2156 * 2157 * ptep->pte_high = h; 2158 * smp_wmb(); 2159 * ptep->pte_low = l; 2160 * 2161 * And present to not present goes: 2162 * 2163 * ptep->pte_low = 0; 2164 * smp_wmb(); 2165 * ptep->pte_high = 0; 2166 * 2167 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2168 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2169 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2170 * picked up a changed pte high. We might have gotten rubbish values from 2171 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2172 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2173 * operates on present ptes we're safe. 2174 */ 2175 static inline pte_t gup_get_pte(pte_t *ptep) 2176 { 2177 pte_t pte; 2178 2179 do { 2180 pte.pte_low = ptep->pte_low; 2181 smp_rmb(); 2182 pte.pte_high = ptep->pte_high; 2183 smp_rmb(); 2184 } while (unlikely(pte.pte_low != ptep->pte_low)); 2185 2186 return pte; 2187 } 2188 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2189 /* 2190 * We require that the PTE can be read atomically. 2191 */ 2192 static inline pte_t gup_get_pte(pte_t *ptep) 2193 { 2194 return READ_ONCE(*ptep); 2195 } 2196 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2197 2198 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2199 unsigned int flags, 2200 struct page **pages) 2201 { 2202 while ((*nr) - nr_start) { 2203 struct page *page = pages[--(*nr)]; 2204 2205 ClearPageReferenced(page); 2206 if (flags & FOLL_PIN) 2207 unpin_user_page(page); 2208 else 2209 put_page(page); 2210 } 2211 } 2212 2213 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2214 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2215 unsigned int flags, struct page **pages, int *nr) 2216 { 2217 struct dev_pagemap *pgmap = NULL; 2218 int nr_start = *nr, ret = 0; 2219 pte_t *ptep, *ptem; 2220 2221 ptem = ptep = pte_offset_map(&pmd, addr); 2222 do { 2223 pte_t pte = gup_get_pte(ptep); 2224 struct page *head, *page; 2225 2226 /* 2227 * Similar to the PMD case below, NUMA hinting must take slow 2228 * path using the pte_protnone check. 2229 */ 2230 if (pte_protnone(pte)) 2231 goto pte_unmap; 2232 2233 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2234 goto pte_unmap; 2235 2236 if (pte_devmap(pte)) { 2237 if (unlikely(flags & FOLL_LONGTERM)) 2238 goto pte_unmap; 2239 2240 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2241 if (unlikely(!pgmap)) { 2242 undo_dev_pagemap(nr, nr_start, flags, pages); 2243 goto pte_unmap; 2244 } 2245 } else if (pte_special(pte)) 2246 goto pte_unmap; 2247 2248 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2249 page = pte_page(pte); 2250 2251 head = try_grab_compound_head(page, 1, flags); 2252 if (!head) 2253 goto pte_unmap; 2254 2255 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2256 put_compound_head(head, 1, flags); 2257 goto pte_unmap; 2258 } 2259 2260 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2261 2262 /* 2263 * We need to make the page accessible if and only if we are 2264 * going to access its content (the FOLL_PIN case). Please 2265 * see Documentation/core-api/pin_user_pages.rst for 2266 * details. 2267 */ 2268 if (flags & FOLL_PIN) { 2269 ret = arch_make_page_accessible(page); 2270 if (ret) { 2271 unpin_user_page(page); 2272 goto pte_unmap; 2273 } 2274 } 2275 SetPageReferenced(page); 2276 pages[*nr] = page; 2277 (*nr)++; 2278 2279 } while (ptep++, addr += PAGE_SIZE, addr != end); 2280 2281 ret = 1; 2282 2283 pte_unmap: 2284 if (pgmap) 2285 put_dev_pagemap(pgmap); 2286 pte_unmap(ptem); 2287 return ret; 2288 } 2289 #else 2290 2291 /* 2292 * If we can't determine whether or not a pte is special, then fail immediately 2293 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2294 * to be special. 2295 * 2296 * For a futex to be placed on a THP tail page, get_futex_key requires a 2297 * __get_user_pages_fast implementation that can pin pages. Thus it's still 2298 * useful to have gup_huge_pmd even if we can't operate on ptes. 2299 */ 2300 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2301 unsigned int flags, struct page **pages, int *nr) 2302 { 2303 return 0; 2304 } 2305 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2306 2307 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2308 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2309 unsigned long end, unsigned int flags, 2310 struct page **pages, int *nr) 2311 { 2312 int nr_start = *nr; 2313 struct dev_pagemap *pgmap = NULL; 2314 2315 do { 2316 struct page *page = pfn_to_page(pfn); 2317 2318 pgmap = get_dev_pagemap(pfn, pgmap); 2319 if (unlikely(!pgmap)) { 2320 undo_dev_pagemap(nr, nr_start, flags, pages); 2321 return 0; 2322 } 2323 SetPageReferenced(page); 2324 pages[*nr] = page; 2325 if (unlikely(!try_grab_page(page, flags))) { 2326 undo_dev_pagemap(nr, nr_start, flags, pages); 2327 return 0; 2328 } 2329 (*nr)++; 2330 pfn++; 2331 } while (addr += PAGE_SIZE, addr != end); 2332 2333 if (pgmap) 2334 put_dev_pagemap(pgmap); 2335 return 1; 2336 } 2337 2338 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2339 unsigned long end, unsigned int flags, 2340 struct page **pages, int *nr) 2341 { 2342 unsigned long fault_pfn; 2343 int nr_start = *nr; 2344 2345 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2346 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2347 return 0; 2348 2349 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2350 undo_dev_pagemap(nr, nr_start, flags, pages); 2351 return 0; 2352 } 2353 return 1; 2354 } 2355 2356 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2357 unsigned long end, unsigned int flags, 2358 struct page **pages, int *nr) 2359 { 2360 unsigned long fault_pfn; 2361 int nr_start = *nr; 2362 2363 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2364 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2365 return 0; 2366 2367 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2368 undo_dev_pagemap(nr, nr_start, flags, pages); 2369 return 0; 2370 } 2371 return 1; 2372 } 2373 #else 2374 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2375 unsigned long end, unsigned int flags, 2376 struct page **pages, int *nr) 2377 { 2378 BUILD_BUG(); 2379 return 0; 2380 } 2381 2382 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2383 unsigned long end, unsigned int flags, 2384 struct page **pages, int *nr) 2385 { 2386 BUILD_BUG(); 2387 return 0; 2388 } 2389 #endif 2390 2391 static int record_subpages(struct page *page, unsigned long addr, 2392 unsigned long end, struct page **pages) 2393 { 2394 int nr; 2395 2396 for (nr = 0; addr != end; addr += PAGE_SIZE) 2397 pages[nr++] = page++; 2398 2399 return nr; 2400 } 2401 2402 #ifdef CONFIG_ARCH_HAS_HUGEPD 2403 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2404 unsigned long sz) 2405 { 2406 unsigned long __boundary = (addr + sz) & ~(sz-1); 2407 return (__boundary - 1 < end - 1) ? __boundary : end; 2408 } 2409 2410 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2411 unsigned long end, unsigned int flags, 2412 struct page **pages, int *nr) 2413 { 2414 unsigned long pte_end; 2415 struct page *head, *page; 2416 pte_t pte; 2417 int refs; 2418 2419 pte_end = (addr + sz) & ~(sz-1); 2420 if (pte_end < end) 2421 end = pte_end; 2422 2423 pte = READ_ONCE(*ptep); 2424 2425 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2426 return 0; 2427 2428 /* hugepages are never "special" */ 2429 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2430 2431 head = pte_page(pte); 2432 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2433 refs = record_subpages(page, addr, end, pages + *nr); 2434 2435 head = try_grab_compound_head(head, refs, flags); 2436 if (!head) 2437 return 0; 2438 2439 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2440 put_compound_head(head, refs, flags); 2441 return 0; 2442 } 2443 2444 *nr += refs; 2445 SetPageReferenced(head); 2446 return 1; 2447 } 2448 2449 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2450 unsigned int pdshift, unsigned long end, unsigned int flags, 2451 struct page **pages, int *nr) 2452 { 2453 pte_t *ptep; 2454 unsigned long sz = 1UL << hugepd_shift(hugepd); 2455 unsigned long next; 2456 2457 ptep = hugepte_offset(hugepd, addr, pdshift); 2458 do { 2459 next = hugepte_addr_end(addr, end, sz); 2460 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2461 return 0; 2462 } while (ptep++, addr = next, addr != end); 2463 2464 return 1; 2465 } 2466 #else 2467 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2468 unsigned int pdshift, unsigned long end, unsigned int flags, 2469 struct page **pages, int *nr) 2470 { 2471 return 0; 2472 } 2473 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2474 2475 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2476 unsigned long end, unsigned int flags, 2477 struct page **pages, int *nr) 2478 { 2479 struct page *head, *page; 2480 int refs; 2481 2482 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2483 return 0; 2484 2485 if (pmd_devmap(orig)) { 2486 if (unlikely(flags & FOLL_LONGTERM)) 2487 return 0; 2488 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2489 pages, nr); 2490 } 2491 2492 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2493 refs = record_subpages(page, addr, end, pages + *nr); 2494 2495 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2496 if (!head) 2497 return 0; 2498 2499 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2500 put_compound_head(head, refs, flags); 2501 return 0; 2502 } 2503 2504 *nr += refs; 2505 SetPageReferenced(head); 2506 return 1; 2507 } 2508 2509 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2510 unsigned long end, unsigned int flags, 2511 struct page **pages, int *nr) 2512 { 2513 struct page *head, *page; 2514 int refs; 2515 2516 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2517 return 0; 2518 2519 if (pud_devmap(orig)) { 2520 if (unlikely(flags & FOLL_LONGTERM)) 2521 return 0; 2522 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2523 pages, nr); 2524 } 2525 2526 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2527 refs = record_subpages(page, addr, end, pages + *nr); 2528 2529 head = try_grab_compound_head(pud_page(orig), refs, flags); 2530 if (!head) 2531 return 0; 2532 2533 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2534 put_compound_head(head, refs, flags); 2535 return 0; 2536 } 2537 2538 *nr += refs; 2539 SetPageReferenced(head); 2540 return 1; 2541 } 2542 2543 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2544 unsigned long end, unsigned int flags, 2545 struct page **pages, int *nr) 2546 { 2547 int refs; 2548 struct page *head, *page; 2549 2550 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2551 return 0; 2552 2553 BUILD_BUG_ON(pgd_devmap(orig)); 2554 2555 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2556 refs = record_subpages(page, addr, end, pages + *nr); 2557 2558 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2559 if (!head) 2560 return 0; 2561 2562 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2563 put_compound_head(head, refs, flags); 2564 return 0; 2565 } 2566 2567 *nr += refs; 2568 SetPageReferenced(head); 2569 return 1; 2570 } 2571 2572 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2573 unsigned int flags, struct page **pages, int *nr) 2574 { 2575 unsigned long next; 2576 pmd_t *pmdp; 2577 2578 pmdp = pmd_offset(&pud, addr); 2579 do { 2580 pmd_t pmd = READ_ONCE(*pmdp); 2581 2582 next = pmd_addr_end(addr, end); 2583 if (!pmd_present(pmd)) 2584 return 0; 2585 2586 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2587 pmd_devmap(pmd))) { 2588 /* 2589 * NUMA hinting faults need to be handled in the GUP 2590 * slowpath for accounting purposes and so that they 2591 * can be serialised against THP migration. 2592 */ 2593 if (pmd_protnone(pmd)) 2594 return 0; 2595 2596 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2597 pages, nr)) 2598 return 0; 2599 2600 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2601 /* 2602 * architecture have different format for hugetlbfs 2603 * pmd format and THP pmd format 2604 */ 2605 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2606 PMD_SHIFT, next, flags, pages, nr)) 2607 return 0; 2608 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2609 return 0; 2610 } while (pmdp++, addr = next, addr != end); 2611 2612 return 1; 2613 } 2614 2615 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2616 unsigned int flags, struct page **pages, int *nr) 2617 { 2618 unsigned long next; 2619 pud_t *pudp; 2620 2621 pudp = pud_offset(&p4d, addr); 2622 do { 2623 pud_t pud = READ_ONCE(*pudp); 2624 2625 next = pud_addr_end(addr, end); 2626 if (unlikely(!pud_present(pud))) 2627 return 0; 2628 if (unlikely(pud_huge(pud))) { 2629 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2630 pages, nr)) 2631 return 0; 2632 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2633 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2634 PUD_SHIFT, next, flags, pages, nr)) 2635 return 0; 2636 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2637 return 0; 2638 } while (pudp++, addr = next, addr != end); 2639 2640 return 1; 2641 } 2642 2643 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2644 unsigned int flags, struct page **pages, int *nr) 2645 { 2646 unsigned long next; 2647 p4d_t *p4dp; 2648 2649 p4dp = p4d_offset(&pgd, addr); 2650 do { 2651 p4d_t p4d = READ_ONCE(*p4dp); 2652 2653 next = p4d_addr_end(addr, end); 2654 if (p4d_none(p4d)) 2655 return 0; 2656 BUILD_BUG_ON(p4d_huge(p4d)); 2657 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2658 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2659 P4D_SHIFT, next, flags, pages, nr)) 2660 return 0; 2661 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2662 return 0; 2663 } while (p4dp++, addr = next, addr != end); 2664 2665 return 1; 2666 } 2667 2668 static void gup_pgd_range(unsigned long addr, unsigned long end, 2669 unsigned int flags, struct page **pages, int *nr) 2670 { 2671 unsigned long next; 2672 pgd_t *pgdp; 2673 2674 pgdp = pgd_offset(current->mm, addr); 2675 do { 2676 pgd_t pgd = READ_ONCE(*pgdp); 2677 2678 next = pgd_addr_end(addr, end); 2679 if (pgd_none(pgd)) 2680 return; 2681 if (unlikely(pgd_huge(pgd))) { 2682 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2683 pages, nr)) 2684 return; 2685 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2686 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2687 PGDIR_SHIFT, next, flags, pages, nr)) 2688 return; 2689 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2690 return; 2691 } while (pgdp++, addr = next, addr != end); 2692 } 2693 #else 2694 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2695 unsigned int flags, struct page **pages, int *nr) 2696 { 2697 } 2698 #endif /* CONFIG_HAVE_FAST_GUP */ 2699 2700 #ifndef gup_fast_permitted 2701 /* 2702 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2703 * we need to fall back to the slow version: 2704 */ 2705 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2706 { 2707 return true; 2708 } 2709 #endif 2710 2711 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2712 unsigned int gup_flags, struct page **pages) 2713 { 2714 int ret; 2715 2716 /* 2717 * FIXME: FOLL_LONGTERM does not work with 2718 * get_user_pages_unlocked() (see comments in that function) 2719 */ 2720 if (gup_flags & FOLL_LONGTERM) { 2721 down_read(¤t->mm->mmap_sem); 2722 ret = __gup_longterm_locked(current, current->mm, 2723 start, nr_pages, 2724 pages, NULL, gup_flags); 2725 up_read(¤t->mm->mmap_sem); 2726 } else { 2727 ret = get_user_pages_unlocked(start, nr_pages, 2728 pages, gup_flags); 2729 } 2730 2731 return ret; 2732 } 2733 2734 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2735 unsigned int gup_flags, 2736 struct page **pages) 2737 { 2738 unsigned long addr, len, end; 2739 unsigned long flags; 2740 int nr_pinned = 0, ret = 0; 2741 2742 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2743 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2744 FOLL_FAST_ONLY))) 2745 return -EINVAL; 2746 2747 if (!(gup_flags & FOLL_FAST_ONLY)) 2748 might_lock_read(¤t->mm->mmap_sem); 2749 2750 start = untagged_addr(start) & PAGE_MASK; 2751 addr = start; 2752 len = (unsigned long) nr_pages << PAGE_SHIFT; 2753 end = start + len; 2754 2755 if (end <= start) 2756 return 0; 2757 if (unlikely(!access_ok((void __user *)start, len))) 2758 return -EFAULT; 2759 2760 /* 2761 * The FAST_GUP case requires FOLL_WRITE even for pure reads, 2762 * because get_user_pages() may need to cause an early COW in 2763 * order to avoid confusing the normal COW routines. So only 2764 * targets that are already writable are safe to do by just 2765 * looking at the page tables. 2766 * 2767 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here, 2768 * because there is no slow path to fall back on. But you'd 2769 * better be careful about possible COW pages - you'll get _a_ 2770 * COW page, but not necessarily the one you intended to get 2771 * depending on what COW event happens after this. COW may break 2772 * the page copy in a random direction. 2773 * 2774 * Disable interrupts. The nested form is used, in order to allow 2775 * full, general purpose use of this routine. 2776 * 2777 * With interrupts disabled, we block page table pages from being 2778 * freed from under us. See struct mmu_table_batch comments in 2779 * include/asm-generic/tlb.h for more details. 2780 * 2781 * We do not adopt an rcu_read_lock(.) here as we also want to 2782 * block IPIs that come from THPs splitting. 2783 */ 2784 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2785 unsigned long fast_flags = gup_flags; 2786 if (!(gup_flags & FOLL_FAST_ONLY)) 2787 fast_flags |= FOLL_WRITE; 2788 2789 local_irq_save(flags); 2790 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2791 local_irq_restore(flags); 2792 ret = nr_pinned; 2793 } 2794 2795 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2796 /* Try to get the remaining pages with get_user_pages */ 2797 start += nr_pinned << PAGE_SHIFT; 2798 pages += nr_pinned; 2799 2800 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2801 gup_flags, pages); 2802 2803 /* Have to be a bit careful with return values */ 2804 if (nr_pinned > 0) { 2805 if (ret < 0) 2806 ret = nr_pinned; 2807 else 2808 ret += nr_pinned; 2809 } 2810 } 2811 2812 return ret; 2813 } 2814 2815 /* 2816 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2817 * the regular GUP. 2818 * Note a difference with get_user_pages_fast: this always returns the 2819 * number of pages pinned, 0 if no pages were pinned. 2820 * 2821 * If the architecture does not support this function, simply return with no 2822 * pages pinned. 2823 * 2824 * Careful, careful! COW breaking can go either way, so a non-write 2825 * access can get ambiguous page results. If you call this function without 2826 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2827 */ 2828 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2829 struct page **pages) 2830 { 2831 int nr_pinned; 2832 /* 2833 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2834 * because gup fast is always a "pin with a +1 page refcount" request. 2835 * 2836 * FOLL_FAST_ONLY is required in order to match the API description of 2837 * this routine: no fall back to regular ("slow") GUP. 2838 */ 2839 unsigned int gup_flags = FOLL_GET | FOLL_FAST_ONLY; 2840 2841 if (write) 2842 gup_flags |= FOLL_WRITE; 2843 2844 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2845 pages); 2846 2847 /* 2848 * As specified in the API description above, this routine is not 2849 * allowed to return negative values. However, the common core 2850 * routine internal_get_user_pages_fast() *can* return -errno. 2851 * Therefore, correct for that here: 2852 */ 2853 if (nr_pinned < 0) 2854 nr_pinned = 0; 2855 2856 return nr_pinned; 2857 } 2858 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2859 2860 /** 2861 * get_user_pages_fast() - pin user pages in memory 2862 * @start: starting user address 2863 * @nr_pages: number of pages from start to pin 2864 * @gup_flags: flags modifying pin behaviour 2865 * @pages: array that receives pointers to the pages pinned. 2866 * Should be at least nr_pages long. 2867 * 2868 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2869 * If not successful, it will fall back to taking the lock and 2870 * calling get_user_pages(). 2871 * 2872 * Returns number of pages pinned. This may be fewer than the number requested. 2873 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2874 * -errno. 2875 */ 2876 int get_user_pages_fast(unsigned long start, int nr_pages, 2877 unsigned int gup_flags, struct page **pages) 2878 { 2879 /* 2880 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2881 * never directly by the caller, so enforce that: 2882 */ 2883 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2884 return -EINVAL; 2885 2886 /* 2887 * The caller may or may not have explicitly set FOLL_GET; either way is 2888 * OK. However, internally (within mm/gup.c), gup fast variants must set 2889 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2890 * request. 2891 */ 2892 gup_flags |= FOLL_GET; 2893 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2894 } 2895 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2896 2897 /** 2898 * pin_user_pages_fast() - pin user pages in memory without taking locks 2899 * 2900 * @start: starting user address 2901 * @nr_pages: number of pages from start to pin 2902 * @gup_flags: flags modifying pin behaviour 2903 * @pages: array that receives pointers to the pages pinned. 2904 * Should be at least nr_pages long. 2905 * 2906 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2907 * get_user_pages_fast() for documentation on the function arguments, because 2908 * the arguments here are identical. 2909 * 2910 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2911 * see Documentation/core-api/pin_user_pages.rst for further details. 2912 * 2913 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2914 * is NOT intended for Case 2 (RDMA: long-term pins). 2915 */ 2916 int pin_user_pages_fast(unsigned long start, int nr_pages, 2917 unsigned int gup_flags, struct page **pages) 2918 { 2919 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2920 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2921 return -EINVAL; 2922 2923 gup_flags |= FOLL_PIN; 2924 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2925 } 2926 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2927 2928 /* 2929 * This is the FOLL_PIN equivalent of __get_user_pages_fast(). Behavior is the 2930 * same, except that this one sets FOLL_PIN instead of FOLL_GET. 2931 * 2932 * The API rules are the same, too: no negative values may be returned. 2933 */ 2934 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2935 unsigned int gup_flags, struct page **pages) 2936 { 2937 int nr_pinned; 2938 2939 /* 2940 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2941 * rules require returning 0, rather than -errno: 2942 */ 2943 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2944 return 0; 2945 /* 2946 * FOLL_FAST_ONLY is required in order to match the API description of 2947 * this routine: no fall back to regular ("slow") GUP. 2948 */ 2949 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2950 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2951 pages); 2952 /* 2953 * This routine is not allowed to return negative values. However, 2954 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2955 * correct for that here: 2956 */ 2957 if (nr_pinned < 0) 2958 nr_pinned = 0; 2959 2960 return nr_pinned; 2961 } 2962 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2963 2964 /** 2965 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2966 * 2967 * @tsk: the task_struct to use for page fault accounting, or 2968 * NULL if faults are not to be recorded. 2969 * @mm: mm_struct of target mm 2970 * @start: starting user address 2971 * @nr_pages: number of pages from start to pin 2972 * @gup_flags: flags modifying lookup behaviour 2973 * @pages: array that receives pointers to the pages pinned. 2974 * Should be at least nr_pages long. Or NULL, if caller 2975 * only intends to ensure the pages are faulted in. 2976 * @vmas: array of pointers to vmas corresponding to each page. 2977 * Or NULL if the caller does not require them. 2978 * @locked: pointer to lock flag indicating whether lock is held and 2979 * subsequently whether VM_FAULT_RETRY functionality can be 2980 * utilised. Lock must initially be held. 2981 * 2982 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2983 * get_user_pages_remote() for documentation on the function arguments, because 2984 * the arguments here are identical. 2985 * 2986 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2987 * see Documentation/core-api/pin_user_pages.rst for details. 2988 * 2989 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2990 * is NOT intended for Case 2 (RDMA: long-term pins). 2991 */ 2992 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2993 unsigned long start, unsigned long nr_pages, 2994 unsigned int gup_flags, struct page **pages, 2995 struct vm_area_struct **vmas, int *locked) 2996 { 2997 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2998 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2999 return -EINVAL; 3000 3001 gup_flags |= FOLL_PIN; 3002 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 3003 pages, vmas, locked); 3004 } 3005 EXPORT_SYMBOL(pin_user_pages_remote); 3006 3007 /** 3008 * pin_user_pages() - pin user pages in memory for use by other devices 3009 * 3010 * @start: starting user address 3011 * @nr_pages: number of pages from start to pin 3012 * @gup_flags: flags modifying lookup behaviour 3013 * @pages: array that receives pointers to the pages pinned. 3014 * Should be at least nr_pages long. Or NULL, if caller 3015 * only intends to ensure the pages are faulted in. 3016 * @vmas: array of pointers to vmas corresponding to each page. 3017 * Or NULL if the caller does not require them. 3018 * 3019 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3020 * FOLL_PIN is set. 3021 * 3022 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3023 * see Documentation/core-api/pin_user_pages.rst for details. 3024 * 3025 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 3026 * is NOT intended for Case 2 (RDMA: long-term pins). 3027 */ 3028 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3029 unsigned int gup_flags, struct page **pages, 3030 struct vm_area_struct **vmas) 3031 { 3032 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3033 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3034 return -EINVAL; 3035 3036 gup_flags |= FOLL_PIN; 3037 return __gup_longterm_locked(current, current->mm, start, nr_pages, 3038 pages, vmas, gup_flags); 3039 } 3040 EXPORT_SYMBOL(pin_user_pages); 3041 3042 /* 3043 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3044 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3045 * FOLL_PIN and rejects FOLL_GET. 3046 */ 3047 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3048 struct page **pages, unsigned int gup_flags) 3049 { 3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3052 return -EINVAL; 3053 3054 gup_flags |= FOLL_PIN; 3055 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3056 } 3057 EXPORT_SYMBOL(pin_user_pages_unlocked); 3058