xref: /openbmc/linux/mm/gup.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /*
49  * Return the compound head page with ref appropriately incremented,
50  * or NULL if that failed.
51  */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 	struct page *head = compound_head(page);
55 
56 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 		return NULL;
58 	if (unlikely(!page_cache_add_speculative(head, refs)))
59 		return NULL;
60 	return head;
61 }
62 
63 /*
64  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65  * flags-dependent amount.
66  *
67  * "grab" names in this file mean, "look at flags to decide whether to use
68  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69  *
70  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71  * same time. (That's true throughout the get_user_pages*() and
72  * pin_user_pages*() APIs.) Cases:
73  *
74  *    FOLL_GET: page's refcount will be incremented by 1.
75  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76  *
77  * Return: head page (with refcount appropriately incremented) for success, or
78  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79  * considered failure, and furthermore, a likely bug in the caller, so a warning
80  * is also emitted.
81  */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 							  int refs,
84 							  unsigned int flags)
85 {
86 	if (flags & FOLL_GET)
87 		return try_get_compound_head(page, refs);
88 	else if (flags & FOLL_PIN) {
89 		int orig_refs = refs;
90 
91 		/*
92 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 		 * path, so fail and let the caller fall back to the slow path.
94 		 */
95 		if (unlikely(flags & FOLL_LONGTERM) &&
96 				is_migrate_cma_page(page))
97 			return NULL;
98 
99 		/*
100 		 * When pinning a compound page of order > 1 (which is what
101 		 * hpage_pincount_available() checks for), use an exact count to
102 		 * track it, via hpage_pincount_add/_sub().
103 		 *
104 		 * However, be sure to *also* increment the normal page refcount
105 		 * field at least once, so that the page really is pinned.
106 		 */
107 		if (!hpage_pincount_available(page))
108 			refs *= GUP_PIN_COUNTING_BIAS;
109 
110 		page = try_get_compound_head(page, refs);
111 		if (!page)
112 			return NULL;
113 
114 		if (hpage_pincount_available(page))
115 			hpage_pincount_add(page, refs);
116 
117 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 				    orig_refs);
119 
120 		return page;
121 	}
122 
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 /**
128  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129  *
130  * This might not do anything at all, depending on the flags argument.
131  *
132  * "grab" names in this file mean, "look at flags to decide whether to use
133  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134  *
135  * @page:    pointer to page to be grabbed
136  * @flags:   gup flags: these are the FOLL_* flag values.
137  *
138  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139  * time. Cases:
140  *
141  *    FOLL_GET: page's refcount will be incremented by 1.
142  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143  *
144  * Return: true for success, or if no action was required (if neither FOLL_PIN
145  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146  * FOLL_PIN was set, but the page could not be grabbed.
147  */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 
152 	if (flags & FOLL_GET)
153 		return try_get_page(page);
154 	else if (flags & FOLL_PIN) {
155 		int refs = 1;
156 
157 		page = compound_head(page);
158 
159 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 			return false;
161 
162 		if (hpage_pincount_available(page))
163 			hpage_pincount_add(page, 1);
164 		else
165 			refs = GUP_PIN_COUNTING_BIAS;
166 
167 		/*
168 		 * Similar to try_grab_compound_head(): even if using the
169 		 * hpage_pincount_add/_sub() routines, be sure to
170 		 * *also* increment the normal page refcount field at least
171 		 * once, so that the page really is pinned.
172 		 */
173 		page_ref_add(page, refs);
174 
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 	}
177 
178 	return true;
179 }
180 
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 	int count, refs = 1;
185 
186 	if (!page_is_devmap_managed(page))
187 		return false;
188 
189 	if (hpage_pincount_available(page))
190 		hpage_pincount_sub(page, 1);
191 	else
192 		refs = GUP_PIN_COUNTING_BIAS;
193 
194 	count = page_ref_sub_return(page, refs);
195 
196 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 	/*
198 	 * devmap page refcounts are 1-based, rather than 0-based: if
199 	 * refcount is 1, then the page is free and the refcount is
200 	 * stable because nobody holds a reference on the page.
201 	 */
202 	if (count == 1)
203 		free_devmap_managed_page(page);
204 	else if (!count)
205 		__put_page(page);
206 
207 	return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 	return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215 
216 /**
217  * unpin_user_page() - release a dma-pinned page
218  * @page:            pointer to page to be released
219  *
220  * Pages that were pinned via pin_user_pages*() must be released via either
221  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222  * that such pages can be separately tracked and uniquely handled. In
223  * particular, interactions with RDMA and filesystems need special handling.
224  */
225 void unpin_user_page(struct page *page)
226 {
227 	int refs = 1;
228 
229 	page = compound_head(page);
230 
231 	/*
232 	 * For devmap managed pages we need to catch refcount transition from
233 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 	 * page is free and we need to inform the device driver through
235 	 * callback. See include/linux/memremap.h and HMM for details.
236 	 */
237 	if (__unpin_devmap_managed_user_page(page))
238 		return;
239 
240 	if (hpage_pincount_available(page))
241 		hpage_pincount_sub(page, 1);
242 	else
243 		refs = GUP_PIN_COUNTING_BIAS;
244 
245 	if (page_ref_sub_and_test(page, refs))
246 		__put_page(page);
247 
248 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251 
252 /**
253  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254  * @pages:  array of pages to be maybe marked dirty, and definitely released.
255  * @npages: number of pages in the @pages array.
256  * @make_dirty: whether to mark the pages dirty
257  *
258  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259  * variants called on that page.
260  *
261  * For each page in the @pages array, make that page (or its head page, if a
262  * compound page) dirty, if @make_dirty is true, and if the page was previously
263  * listed as clean. In any case, releases all pages using unpin_user_page(),
264  * possibly via unpin_user_pages(), for the non-dirty case.
265  *
266  * Please see the unpin_user_page() documentation for details.
267  *
268  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269  * required, then the caller should a) verify that this is really correct,
270  * because _lock() is usually required, and b) hand code it:
271  * set_page_dirty_lock(), unpin_user_page().
272  *
273  */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 				 bool make_dirty)
276 {
277 	unsigned long index;
278 
279 	/*
280 	 * TODO: this can be optimized for huge pages: if a series of pages is
281 	 * physically contiguous and part of the same compound page, then a
282 	 * single operation to the head page should suffice.
283 	 */
284 
285 	if (!make_dirty) {
286 		unpin_user_pages(pages, npages);
287 		return;
288 	}
289 
290 	for (index = 0; index < npages; index++) {
291 		struct page *page = compound_head(pages[index]);
292 		/*
293 		 * Checking PageDirty at this point may race with
294 		 * clear_page_dirty_for_io(), but that's OK. Two key
295 		 * cases:
296 		 *
297 		 * 1) This code sees the page as already dirty, so it
298 		 * skips the call to set_page_dirty(). That could happen
299 		 * because clear_page_dirty_for_io() called
300 		 * page_mkclean(), followed by set_page_dirty().
301 		 * However, now the page is going to get written back,
302 		 * which meets the original intention of setting it
303 		 * dirty, so all is well: clear_page_dirty_for_io() goes
304 		 * on to call TestClearPageDirty(), and write the page
305 		 * back.
306 		 *
307 		 * 2) This code sees the page as clean, so it calls
308 		 * set_page_dirty(). The page stays dirty, despite being
309 		 * written back, so it gets written back again in the
310 		 * next writeback cycle. This is harmless.
311 		 */
312 		if (!PageDirty(page))
313 			set_page_dirty_lock(page);
314 		unpin_user_page(page);
315 	}
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 
319 /**
320  * unpin_user_pages() - release an array of gup-pinned pages.
321  * @pages:  array of pages to be marked dirty and released.
322  * @npages: number of pages in the @pages array.
323  *
324  * For each page in the @pages array, release the page using unpin_user_page().
325  *
326  * Please see the unpin_user_page() documentation for details.
327  */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 	unsigned long index;
331 
332 	/*
333 	 * TODO: this can be optimized for huge pages: if a series of pages is
334 	 * physically contiguous and part of the same compound page, then a
335 	 * single operation to the head page should suffice.
336 	 */
337 	for (index = 0; index < npages; index++)
338 		unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341 
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 		unsigned int flags)
345 {
346 	/*
347 	 * When core dumping an enormous anonymous area that nobody
348 	 * has touched so far, we don't want to allocate unnecessary pages or
349 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
350 	 * then get_dump_page() will return NULL to leave a hole in the dump.
351 	 * But we can only make this optimization where a hole would surely
352 	 * be zero-filled if handle_mm_fault() actually did handle it.
353 	 */
354 	if ((flags & FOLL_DUMP) &&
355 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 		return ERR_PTR(-EFAULT);
357 	return NULL;
358 }
359 
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 		pte_t *pte, unsigned int flags)
362 {
363 	/* No page to get reference */
364 	if (flags & FOLL_GET)
365 		return -EFAULT;
366 
367 	if (flags & FOLL_TOUCH) {
368 		pte_t entry = *pte;
369 
370 		if (flags & FOLL_WRITE)
371 			entry = pte_mkdirty(entry);
372 		entry = pte_mkyoung(entry);
373 
374 		if (!pte_same(*pte, entry)) {
375 			set_pte_at(vma->vm_mm, address, pte, entry);
376 			update_mmu_cache(vma, address, pte);
377 		}
378 	}
379 
380 	/* Proper page table entry exists, but no corresponding struct page */
381 	return -EEXIST;
382 }
383 
384 /*
385  * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
386  * but only after we've gone through a COW cycle and they are dirty.
387  */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
391 }
392 
393 /*
394  * A (separate) COW fault might break the page the other way and
395  * get_user_pages() would return the page from what is now the wrong
396  * VM. So we need to force a COW break at GUP time even for reads.
397  */
398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
399 {
400 	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
401 }
402 
403 static struct page *follow_page_pte(struct vm_area_struct *vma,
404 		unsigned long address, pmd_t *pmd, unsigned int flags,
405 		struct dev_pagemap **pgmap)
406 {
407 	struct mm_struct *mm = vma->vm_mm;
408 	struct page *page;
409 	spinlock_t *ptl;
410 	pte_t *ptep, pte;
411 	int ret;
412 
413 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
414 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
415 			 (FOLL_PIN | FOLL_GET)))
416 		return ERR_PTR(-EINVAL);
417 retry:
418 	if (unlikely(pmd_bad(*pmd)))
419 		return no_page_table(vma, flags);
420 
421 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
422 	pte = *ptep;
423 	if (!pte_present(pte)) {
424 		swp_entry_t entry;
425 		/*
426 		 * KSM's break_ksm() relies upon recognizing a ksm page
427 		 * even while it is being migrated, so for that case we
428 		 * need migration_entry_wait().
429 		 */
430 		if (likely(!(flags & FOLL_MIGRATION)))
431 			goto no_page;
432 		if (pte_none(pte))
433 			goto no_page;
434 		entry = pte_to_swp_entry(pte);
435 		if (!is_migration_entry(entry))
436 			goto no_page;
437 		pte_unmap_unlock(ptep, ptl);
438 		migration_entry_wait(mm, pmd, address);
439 		goto retry;
440 	}
441 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
442 		goto no_page;
443 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
444 		pte_unmap_unlock(ptep, ptl);
445 		return NULL;
446 	}
447 
448 	page = vm_normal_page(vma, address, pte);
449 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
450 		/*
451 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
452 		 * case since they are only valid while holding the pgmap
453 		 * reference.
454 		 */
455 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
456 		if (*pgmap)
457 			page = pte_page(pte);
458 		else
459 			goto no_page;
460 	} else if (unlikely(!page)) {
461 		if (flags & FOLL_DUMP) {
462 			/* Avoid special (like zero) pages in core dumps */
463 			page = ERR_PTR(-EFAULT);
464 			goto out;
465 		}
466 
467 		if (is_zero_pfn(pte_pfn(pte))) {
468 			page = pte_page(pte);
469 		} else {
470 			ret = follow_pfn_pte(vma, address, ptep, flags);
471 			page = ERR_PTR(ret);
472 			goto out;
473 		}
474 	}
475 
476 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
477 		get_page(page);
478 		pte_unmap_unlock(ptep, ptl);
479 		lock_page(page);
480 		ret = split_huge_page(page);
481 		unlock_page(page);
482 		put_page(page);
483 		if (ret)
484 			return ERR_PTR(ret);
485 		goto retry;
486 	}
487 
488 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
489 	if (unlikely(!try_grab_page(page, flags))) {
490 		page = ERR_PTR(-ENOMEM);
491 		goto out;
492 	}
493 	/*
494 	 * We need to make the page accessible if and only if we are going
495 	 * to access its content (the FOLL_PIN case).  Please see
496 	 * Documentation/core-api/pin_user_pages.rst for details.
497 	 */
498 	if (flags & FOLL_PIN) {
499 		ret = arch_make_page_accessible(page);
500 		if (ret) {
501 			unpin_user_page(page);
502 			page = ERR_PTR(ret);
503 			goto out;
504 		}
505 	}
506 	if (flags & FOLL_TOUCH) {
507 		if ((flags & FOLL_WRITE) &&
508 		    !pte_dirty(pte) && !PageDirty(page))
509 			set_page_dirty(page);
510 		/*
511 		 * pte_mkyoung() would be more correct here, but atomic care
512 		 * is needed to avoid losing the dirty bit: it is easier to use
513 		 * mark_page_accessed().
514 		 */
515 		mark_page_accessed(page);
516 	}
517 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
518 		/* Do not mlock pte-mapped THP */
519 		if (PageTransCompound(page))
520 			goto out;
521 
522 		/*
523 		 * The preliminary mapping check is mainly to avoid the
524 		 * pointless overhead of lock_page on the ZERO_PAGE
525 		 * which might bounce very badly if there is contention.
526 		 *
527 		 * If the page is already locked, we don't need to
528 		 * handle it now - vmscan will handle it later if and
529 		 * when it attempts to reclaim the page.
530 		 */
531 		if (page->mapping && trylock_page(page)) {
532 			lru_add_drain();  /* push cached pages to LRU */
533 			/*
534 			 * Because we lock page here, and migration is
535 			 * blocked by the pte's page reference, and we
536 			 * know the page is still mapped, we don't even
537 			 * need to check for file-cache page truncation.
538 			 */
539 			mlock_vma_page(page);
540 			unlock_page(page);
541 		}
542 	}
543 out:
544 	pte_unmap_unlock(ptep, ptl);
545 	return page;
546 no_page:
547 	pte_unmap_unlock(ptep, ptl);
548 	if (!pte_none(pte))
549 		return NULL;
550 	return no_page_table(vma, flags);
551 }
552 
553 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
554 				    unsigned long address, pud_t *pudp,
555 				    unsigned int flags,
556 				    struct follow_page_context *ctx)
557 {
558 	pmd_t *pmd, pmdval;
559 	spinlock_t *ptl;
560 	struct page *page;
561 	struct mm_struct *mm = vma->vm_mm;
562 
563 	pmd = pmd_offset(pudp, address);
564 	/*
565 	 * The READ_ONCE() will stabilize the pmdval in a register or
566 	 * on the stack so that it will stop changing under the code.
567 	 */
568 	pmdval = READ_ONCE(*pmd);
569 	if (pmd_none(pmdval))
570 		return no_page_table(vma, flags);
571 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
572 		page = follow_huge_pmd(mm, address, pmd, flags);
573 		if (page)
574 			return page;
575 		return no_page_table(vma, flags);
576 	}
577 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
578 		page = follow_huge_pd(vma, address,
579 				      __hugepd(pmd_val(pmdval)), flags,
580 				      PMD_SHIFT);
581 		if (page)
582 			return page;
583 		return no_page_table(vma, flags);
584 	}
585 retry:
586 	if (!pmd_present(pmdval)) {
587 		if (likely(!(flags & FOLL_MIGRATION)))
588 			return no_page_table(vma, flags);
589 		VM_BUG_ON(thp_migration_supported() &&
590 				  !is_pmd_migration_entry(pmdval));
591 		if (is_pmd_migration_entry(pmdval))
592 			pmd_migration_entry_wait(mm, pmd);
593 		pmdval = READ_ONCE(*pmd);
594 		/*
595 		 * MADV_DONTNEED may convert the pmd to null because
596 		 * mmap_sem is held in read mode
597 		 */
598 		if (pmd_none(pmdval))
599 			return no_page_table(vma, flags);
600 		goto retry;
601 	}
602 	if (pmd_devmap(pmdval)) {
603 		ptl = pmd_lock(mm, pmd);
604 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 		spin_unlock(ptl);
606 		if (page)
607 			return page;
608 	}
609 	if (likely(!pmd_trans_huge(pmdval)))
610 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611 
612 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 		return no_page_table(vma, flags);
614 
615 retry_locked:
616 	ptl = pmd_lock(mm, pmd);
617 	if (unlikely(pmd_none(*pmd))) {
618 		spin_unlock(ptl);
619 		return no_page_table(vma, flags);
620 	}
621 	if (unlikely(!pmd_present(*pmd))) {
622 		spin_unlock(ptl);
623 		if (likely(!(flags & FOLL_MIGRATION)))
624 			return no_page_table(vma, flags);
625 		pmd_migration_entry_wait(mm, pmd);
626 		goto retry_locked;
627 	}
628 	if (unlikely(!pmd_trans_huge(*pmd))) {
629 		spin_unlock(ptl);
630 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631 	}
632 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
633 		int ret;
634 		page = pmd_page(*pmd);
635 		if (is_huge_zero_page(page)) {
636 			spin_unlock(ptl);
637 			ret = 0;
638 			split_huge_pmd(vma, pmd, address);
639 			if (pmd_trans_unstable(pmd))
640 				ret = -EBUSY;
641 		} else if (flags & FOLL_SPLIT) {
642 			if (unlikely(!try_get_page(page))) {
643 				spin_unlock(ptl);
644 				return ERR_PTR(-ENOMEM);
645 			}
646 			spin_unlock(ptl);
647 			lock_page(page);
648 			ret = split_huge_page(page);
649 			unlock_page(page);
650 			put_page(page);
651 			if (pmd_none(*pmd))
652 				return no_page_table(vma, flags);
653 		} else {  /* flags & FOLL_SPLIT_PMD */
654 			spin_unlock(ptl);
655 			split_huge_pmd(vma, pmd, address);
656 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
657 		}
658 
659 		return ret ? ERR_PTR(ret) :
660 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
661 	}
662 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
663 	spin_unlock(ptl);
664 	ctx->page_mask = HPAGE_PMD_NR - 1;
665 	return page;
666 }
667 
668 static struct page *follow_pud_mask(struct vm_area_struct *vma,
669 				    unsigned long address, p4d_t *p4dp,
670 				    unsigned int flags,
671 				    struct follow_page_context *ctx)
672 {
673 	pud_t *pud;
674 	spinlock_t *ptl;
675 	struct page *page;
676 	struct mm_struct *mm = vma->vm_mm;
677 
678 	pud = pud_offset(p4dp, address);
679 	if (pud_none(*pud))
680 		return no_page_table(vma, flags);
681 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
682 		page = follow_huge_pud(mm, address, pud, flags);
683 		if (page)
684 			return page;
685 		return no_page_table(vma, flags);
686 	}
687 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
688 		page = follow_huge_pd(vma, address,
689 				      __hugepd(pud_val(*pud)), flags,
690 				      PUD_SHIFT);
691 		if (page)
692 			return page;
693 		return no_page_table(vma, flags);
694 	}
695 	if (pud_devmap(*pud)) {
696 		ptl = pud_lock(mm, pud);
697 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
698 		spin_unlock(ptl);
699 		if (page)
700 			return page;
701 	}
702 	if (unlikely(pud_bad(*pud)))
703 		return no_page_table(vma, flags);
704 
705 	return follow_pmd_mask(vma, address, pud, flags, ctx);
706 }
707 
708 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
709 				    unsigned long address, pgd_t *pgdp,
710 				    unsigned int flags,
711 				    struct follow_page_context *ctx)
712 {
713 	p4d_t *p4d;
714 	struct page *page;
715 
716 	p4d = p4d_offset(pgdp, address);
717 	if (p4d_none(*p4d))
718 		return no_page_table(vma, flags);
719 	BUILD_BUG_ON(p4d_huge(*p4d));
720 	if (unlikely(p4d_bad(*p4d)))
721 		return no_page_table(vma, flags);
722 
723 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
724 		page = follow_huge_pd(vma, address,
725 				      __hugepd(p4d_val(*p4d)), flags,
726 				      P4D_SHIFT);
727 		if (page)
728 			return page;
729 		return no_page_table(vma, flags);
730 	}
731 	return follow_pud_mask(vma, address, p4d, flags, ctx);
732 }
733 
734 /**
735  * follow_page_mask - look up a page descriptor from a user-virtual address
736  * @vma: vm_area_struct mapping @address
737  * @address: virtual address to look up
738  * @flags: flags modifying lookup behaviour
739  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
740  *       pointer to output page_mask
741  *
742  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743  *
744  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
745  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746  *
747  * On output, the @ctx->page_mask is set according to the size of the page.
748  *
749  * Return: the mapped (struct page *), %NULL if no mapping exists, or
750  * an error pointer if there is a mapping to something not represented
751  * by a page descriptor (see also vm_normal_page()).
752  */
753 static struct page *follow_page_mask(struct vm_area_struct *vma,
754 			      unsigned long address, unsigned int flags,
755 			      struct follow_page_context *ctx)
756 {
757 	pgd_t *pgd;
758 	struct page *page;
759 	struct mm_struct *mm = vma->vm_mm;
760 
761 	ctx->page_mask = 0;
762 
763 	/* make this handle hugepd */
764 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
765 	if (!IS_ERR(page)) {
766 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 		return page;
768 	}
769 
770 	pgd = pgd_offset(mm, address);
771 
772 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
773 		return no_page_table(vma, flags);
774 
775 	if (pgd_huge(*pgd)) {
776 		page = follow_huge_pgd(mm, address, pgd, flags);
777 		if (page)
778 			return page;
779 		return no_page_table(vma, flags);
780 	}
781 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
782 		page = follow_huge_pd(vma, address,
783 				      __hugepd(pgd_val(*pgd)), flags,
784 				      PGDIR_SHIFT);
785 		if (page)
786 			return page;
787 		return no_page_table(vma, flags);
788 	}
789 
790 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
791 }
792 
793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
794 			 unsigned int foll_flags)
795 {
796 	struct follow_page_context ctx = { NULL };
797 	struct page *page;
798 
799 	page = follow_page_mask(vma, address, foll_flags, &ctx);
800 	if (ctx.pgmap)
801 		put_dev_pagemap(ctx.pgmap);
802 	return page;
803 }
804 
805 static int get_gate_page(struct mm_struct *mm, unsigned long address,
806 		unsigned int gup_flags, struct vm_area_struct **vma,
807 		struct page **page)
808 {
809 	pgd_t *pgd;
810 	p4d_t *p4d;
811 	pud_t *pud;
812 	pmd_t *pmd;
813 	pte_t *pte;
814 	int ret = -EFAULT;
815 
816 	/* user gate pages are read-only */
817 	if (gup_flags & FOLL_WRITE)
818 		return -EFAULT;
819 	if (address > TASK_SIZE)
820 		pgd = pgd_offset_k(address);
821 	else
822 		pgd = pgd_offset_gate(mm, address);
823 	if (pgd_none(*pgd))
824 		return -EFAULT;
825 	p4d = p4d_offset(pgd, address);
826 	if (p4d_none(*p4d))
827 		return -EFAULT;
828 	pud = pud_offset(p4d, address);
829 	if (pud_none(*pud))
830 		return -EFAULT;
831 	pmd = pmd_offset(pud, address);
832 	if (!pmd_present(*pmd))
833 		return -EFAULT;
834 	VM_BUG_ON(pmd_trans_huge(*pmd));
835 	pte = pte_offset_map(pmd, address);
836 	if (pte_none(*pte))
837 		goto unmap;
838 	*vma = get_gate_vma(mm);
839 	if (!page)
840 		goto out;
841 	*page = vm_normal_page(*vma, address, *pte);
842 	if (!*page) {
843 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
844 			goto unmap;
845 		*page = pte_page(*pte);
846 	}
847 	if (unlikely(!try_get_page(*page))) {
848 		ret = -ENOMEM;
849 		goto unmap;
850 	}
851 out:
852 	ret = 0;
853 unmap:
854 	pte_unmap(pte);
855 	return ret;
856 }
857 
858 /*
859  * mmap_sem must be held on entry.  If @locked != NULL and *@flags
860  * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
861  * is, *@locked will be set to 0 and -EBUSY returned.
862  */
863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
864 		unsigned long address, unsigned int *flags, int *locked)
865 {
866 	unsigned int fault_flags = 0;
867 	vm_fault_t ret;
868 
869 	/* mlock all present pages, but do not fault in new pages */
870 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
871 		return -ENOENT;
872 	if (*flags & FOLL_WRITE)
873 		fault_flags |= FAULT_FLAG_WRITE;
874 	if (*flags & FOLL_REMOTE)
875 		fault_flags |= FAULT_FLAG_REMOTE;
876 	if (locked)
877 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
878 	if (*flags & FOLL_NOWAIT)
879 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
880 	if (*flags & FOLL_TRIED) {
881 		/*
882 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
883 		 * can co-exist
884 		 */
885 		fault_flags |= FAULT_FLAG_TRIED;
886 	}
887 
888 	ret = handle_mm_fault(vma, address, fault_flags);
889 	if (ret & VM_FAULT_ERROR) {
890 		int err = vm_fault_to_errno(ret, *flags);
891 
892 		if (err)
893 			return err;
894 		BUG();
895 	}
896 
897 	if (tsk) {
898 		if (ret & VM_FAULT_MAJOR)
899 			tsk->maj_flt++;
900 		else
901 			tsk->min_flt++;
902 	}
903 
904 	if (ret & VM_FAULT_RETRY) {
905 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
906 			*locked = 0;
907 		return -EBUSY;
908 	}
909 
910 	/*
911 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
912 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
913 	 * can thus safely do subsequent page lookups as if they were reads.
914 	 * But only do so when looping for pte_write is futile: in some cases
915 	 * userspace may also be wanting to write to the gotten user page,
916 	 * which a read fault here might prevent (a readonly page might get
917 	 * reCOWed by userspace write).
918 	 */
919 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
920 		*flags |= FOLL_COW;
921 	return 0;
922 }
923 
924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
925 {
926 	vm_flags_t vm_flags = vma->vm_flags;
927 	int write = (gup_flags & FOLL_WRITE);
928 	int foreign = (gup_flags & FOLL_REMOTE);
929 
930 	if (vm_flags & (VM_IO | VM_PFNMAP))
931 		return -EFAULT;
932 
933 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
934 		return -EFAULT;
935 
936 	if (write) {
937 		if (!(vm_flags & VM_WRITE)) {
938 			if (!(gup_flags & FOLL_FORCE))
939 				return -EFAULT;
940 			/*
941 			 * We used to let the write,force case do COW in a
942 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
943 			 * set a breakpoint in a read-only mapping of an
944 			 * executable, without corrupting the file (yet only
945 			 * when that file had been opened for writing!).
946 			 * Anon pages in shared mappings are surprising: now
947 			 * just reject it.
948 			 */
949 			if (!is_cow_mapping(vm_flags))
950 				return -EFAULT;
951 		}
952 	} else if (!(vm_flags & VM_READ)) {
953 		if (!(gup_flags & FOLL_FORCE))
954 			return -EFAULT;
955 		/*
956 		 * Is there actually any vma we can reach here which does not
957 		 * have VM_MAYREAD set?
958 		 */
959 		if (!(vm_flags & VM_MAYREAD))
960 			return -EFAULT;
961 	}
962 	/*
963 	 * gups are always data accesses, not instruction
964 	 * fetches, so execute=false here
965 	 */
966 	if (!arch_vma_access_permitted(vma, write, false, foreign))
967 		return -EFAULT;
968 	return 0;
969 }
970 
971 /**
972  * __get_user_pages() - pin user pages in memory
973  * @tsk:	task_struct of target task
974  * @mm:		mm_struct of target mm
975  * @start:	starting user address
976  * @nr_pages:	number of pages from start to pin
977  * @gup_flags:	flags modifying pin behaviour
978  * @pages:	array that receives pointers to the pages pinned.
979  *		Should be at least nr_pages long. Or NULL, if caller
980  *		only intends to ensure the pages are faulted in.
981  * @vmas:	array of pointers to vmas corresponding to each page.
982  *		Or NULL if the caller does not require them.
983  * @locked:     whether we're still with the mmap_sem held
984  *
985  * Returns either number of pages pinned (which may be less than the
986  * number requested), or an error. Details about the return value:
987  *
988  * -- If nr_pages is 0, returns 0.
989  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
990  * -- If nr_pages is >0, and some pages were pinned, returns the number of
991  *    pages pinned. Again, this may be less than nr_pages.
992  * -- 0 return value is possible when the fault would need to be retried.
993  *
994  * The caller is responsible for releasing returned @pages, via put_page().
995  *
996  * @vmas are valid only as long as mmap_sem is held.
997  *
998  * Must be called with mmap_sem held.  It may be released.  See below.
999  *
1000  * __get_user_pages walks a process's page tables and takes a reference to
1001  * each struct page that each user address corresponds to at a given
1002  * instant. That is, it takes the page that would be accessed if a user
1003  * thread accesses the given user virtual address at that instant.
1004  *
1005  * This does not guarantee that the page exists in the user mappings when
1006  * __get_user_pages returns, and there may even be a completely different
1007  * page there in some cases (eg. if mmapped pagecache has been invalidated
1008  * and subsequently re faulted). However it does guarantee that the page
1009  * won't be freed completely. And mostly callers simply care that the page
1010  * contains data that was valid *at some point in time*. Typically, an IO
1011  * or similar operation cannot guarantee anything stronger anyway because
1012  * locks can't be held over the syscall boundary.
1013  *
1014  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1015  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1016  * appropriate) must be called after the page is finished with, and
1017  * before put_page is called.
1018  *
1019  * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1020  * released by an up_read().  That can happen if @gup_flags does not
1021  * have FOLL_NOWAIT.
1022  *
1023  * A caller using such a combination of @locked and @gup_flags
1024  * must therefore hold the mmap_sem for reading only, and recognize
1025  * when it's been released.  Otherwise, it must be held for either
1026  * reading or writing and will not be released.
1027  *
1028  * In most cases, get_user_pages or get_user_pages_fast should be used
1029  * instead of __get_user_pages. __get_user_pages should be used only if
1030  * you need some special @gup_flags.
1031  */
1032 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1033 		unsigned long start, unsigned long nr_pages,
1034 		unsigned int gup_flags, struct page **pages,
1035 		struct vm_area_struct **vmas, int *locked)
1036 {
1037 	long ret = 0, i = 0;
1038 	struct vm_area_struct *vma = NULL;
1039 	struct follow_page_context ctx = { NULL };
1040 
1041 	if (!nr_pages)
1042 		return 0;
1043 
1044 	start = untagged_addr(start);
1045 
1046 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1047 
1048 	/*
1049 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1050 	 * fault information is unrelated to the reference behaviour of a task
1051 	 * using the address space
1052 	 */
1053 	if (!(gup_flags & FOLL_FORCE))
1054 		gup_flags |= FOLL_NUMA;
1055 
1056 	do {
1057 		struct page *page;
1058 		unsigned int foll_flags = gup_flags;
1059 		unsigned int page_increm;
1060 
1061 		/* first iteration or cross vma bound */
1062 		if (!vma || start >= vma->vm_end) {
1063 			vma = find_extend_vma(mm, start);
1064 			if (!vma && in_gate_area(mm, start)) {
1065 				ret = get_gate_page(mm, start & PAGE_MASK,
1066 						gup_flags, &vma,
1067 						pages ? &pages[i] : NULL);
1068 				if (ret)
1069 					goto out;
1070 				ctx.page_mask = 0;
1071 				goto next_page;
1072 			}
1073 
1074 			if (!vma || check_vma_flags(vma, gup_flags)) {
1075 				ret = -EFAULT;
1076 				goto out;
1077 			}
1078 			if (is_vm_hugetlb_page(vma)) {
1079 				if (should_force_cow_break(vma, foll_flags))
1080 					foll_flags |= FOLL_WRITE;
1081 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1082 						&start, &nr_pages, i,
1083 						foll_flags, locked);
1084 				if (locked && *locked == 0) {
1085 					/*
1086 					 * We've got a VM_FAULT_RETRY
1087 					 * and we've lost mmap_sem.
1088 					 * We must stop here.
1089 					 */
1090 					BUG_ON(gup_flags & FOLL_NOWAIT);
1091 					BUG_ON(ret != 0);
1092 					goto out;
1093 				}
1094 				continue;
1095 			}
1096 		}
1097 
1098 		if (should_force_cow_break(vma, foll_flags))
1099 			foll_flags |= FOLL_WRITE;
1100 
1101 retry:
1102 		/*
1103 		 * If we have a pending SIGKILL, don't keep faulting pages and
1104 		 * potentially allocating memory.
1105 		 */
1106 		if (fatal_signal_pending(current)) {
1107 			ret = -EINTR;
1108 			goto out;
1109 		}
1110 		cond_resched();
1111 
1112 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1113 		if (!page) {
1114 			ret = faultin_page(tsk, vma, start, &foll_flags,
1115 					   locked);
1116 			switch (ret) {
1117 			case 0:
1118 				goto retry;
1119 			case -EBUSY:
1120 				ret = 0;
1121 				fallthrough;
1122 			case -EFAULT:
1123 			case -ENOMEM:
1124 			case -EHWPOISON:
1125 				goto out;
1126 			case -ENOENT:
1127 				goto next_page;
1128 			}
1129 			BUG();
1130 		} else if (PTR_ERR(page) == -EEXIST) {
1131 			/*
1132 			 * Proper page table entry exists, but no corresponding
1133 			 * struct page.
1134 			 */
1135 			goto next_page;
1136 		} else if (IS_ERR(page)) {
1137 			ret = PTR_ERR(page);
1138 			goto out;
1139 		}
1140 		if (pages) {
1141 			pages[i] = page;
1142 			flush_anon_page(vma, page, start);
1143 			flush_dcache_page(page);
1144 			ctx.page_mask = 0;
1145 		}
1146 next_page:
1147 		if (vmas) {
1148 			vmas[i] = vma;
1149 			ctx.page_mask = 0;
1150 		}
1151 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1152 		if (page_increm > nr_pages)
1153 			page_increm = nr_pages;
1154 		i += page_increm;
1155 		start += page_increm * PAGE_SIZE;
1156 		nr_pages -= page_increm;
1157 	} while (nr_pages);
1158 out:
1159 	if (ctx.pgmap)
1160 		put_dev_pagemap(ctx.pgmap);
1161 	return i ? i : ret;
1162 }
1163 
1164 static bool vma_permits_fault(struct vm_area_struct *vma,
1165 			      unsigned int fault_flags)
1166 {
1167 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1168 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1169 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1170 
1171 	if (!(vm_flags & vma->vm_flags))
1172 		return false;
1173 
1174 	/*
1175 	 * The architecture might have a hardware protection
1176 	 * mechanism other than read/write that can deny access.
1177 	 *
1178 	 * gup always represents data access, not instruction
1179 	 * fetches, so execute=false here:
1180 	 */
1181 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1182 		return false;
1183 
1184 	return true;
1185 }
1186 
1187 /**
1188  * fixup_user_fault() - manually resolve a user page fault
1189  * @tsk:	the task_struct to use for page fault accounting, or
1190  *		NULL if faults are not to be recorded.
1191  * @mm:		mm_struct of target mm
1192  * @address:	user address
1193  * @fault_flags:flags to pass down to handle_mm_fault()
1194  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1195  *		does not allow retry. If NULL, the caller must guarantee
1196  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1197  *
1198  * This is meant to be called in the specific scenario where for locking reasons
1199  * we try to access user memory in atomic context (within a pagefault_disable()
1200  * section), this returns -EFAULT, and we want to resolve the user fault before
1201  * trying again.
1202  *
1203  * Typically this is meant to be used by the futex code.
1204  *
1205  * The main difference with get_user_pages() is that this function will
1206  * unconditionally call handle_mm_fault() which will in turn perform all the
1207  * necessary SW fixup of the dirty and young bits in the PTE, while
1208  * get_user_pages() only guarantees to update these in the struct page.
1209  *
1210  * This is important for some architectures where those bits also gate the
1211  * access permission to the page because they are maintained in software.  On
1212  * such architectures, gup() will not be enough to make a subsequent access
1213  * succeed.
1214  *
1215  * This function will not return with an unlocked mmap_sem. So it has not the
1216  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1217  */
1218 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1219 		     unsigned long address, unsigned int fault_flags,
1220 		     bool *unlocked)
1221 {
1222 	struct vm_area_struct *vma;
1223 	vm_fault_t ret, major = 0;
1224 
1225 	address = untagged_addr(address);
1226 
1227 	if (unlocked)
1228 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1229 
1230 retry:
1231 	vma = find_extend_vma(mm, address);
1232 	if (!vma || address < vma->vm_start)
1233 		return -EFAULT;
1234 
1235 	if (!vma_permits_fault(vma, fault_flags))
1236 		return -EFAULT;
1237 
1238 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1239 	    fatal_signal_pending(current))
1240 		return -EINTR;
1241 
1242 	ret = handle_mm_fault(vma, address, fault_flags);
1243 	major |= ret & VM_FAULT_MAJOR;
1244 	if (ret & VM_FAULT_ERROR) {
1245 		int err = vm_fault_to_errno(ret, 0);
1246 
1247 		if (err)
1248 			return err;
1249 		BUG();
1250 	}
1251 
1252 	if (ret & VM_FAULT_RETRY) {
1253 		down_read(&mm->mmap_sem);
1254 		*unlocked = true;
1255 		fault_flags |= FAULT_FLAG_TRIED;
1256 		goto retry;
1257 	}
1258 
1259 	if (tsk) {
1260 		if (major)
1261 			tsk->maj_flt++;
1262 		else
1263 			tsk->min_flt++;
1264 	}
1265 	return 0;
1266 }
1267 EXPORT_SYMBOL_GPL(fixup_user_fault);
1268 
1269 /*
1270  * Please note that this function, unlike __get_user_pages will not
1271  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1272  */
1273 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1274 						struct mm_struct *mm,
1275 						unsigned long start,
1276 						unsigned long nr_pages,
1277 						struct page **pages,
1278 						struct vm_area_struct **vmas,
1279 						int *locked,
1280 						unsigned int flags)
1281 {
1282 	long ret, pages_done;
1283 	bool lock_dropped;
1284 
1285 	if (locked) {
1286 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1287 		BUG_ON(vmas);
1288 		/* check caller initialized locked */
1289 		BUG_ON(*locked != 1);
1290 	}
1291 
1292 	/*
1293 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1294 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1295 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1296 	 * for FOLL_GET, not for the newer FOLL_PIN.
1297 	 *
1298 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1299 	 * that here, as any failures will be obvious enough.
1300 	 */
1301 	if (pages && !(flags & FOLL_PIN))
1302 		flags |= FOLL_GET;
1303 
1304 	pages_done = 0;
1305 	lock_dropped = false;
1306 	for (;;) {
1307 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1308 				       vmas, locked);
1309 		if (!locked)
1310 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1311 			return ret;
1312 
1313 		/* VM_FAULT_RETRY cannot return errors */
1314 		if (!*locked) {
1315 			BUG_ON(ret < 0);
1316 			BUG_ON(ret >= nr_pages);
1317 		}
1318 
1319 		if (ret > 0) {
1320 			nr_pages -= ret;
1321 			pages_done += ret;
1322 			if (!nr_pages)
1323 				break;
1324 		}
1325 		if (*locked) {
1326 			/*
1327 			 * VM_FAULT_RETRY didn't trigger or it was a
1328 			 * FOLL_NOWAIT.
1329 			 */
1330 			if (!pages_done)
1331 				pages_done = ret;
1332 			break;
1333 		}
1334 		/*
1335 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1336 		 * For the prefault case (!pages) we only update counts.
1337 		 */
1338 		if (likely(pages))
1339 			pages += ret;
1340 		start += ret << PAGE_SHIFT;
1341 		lock_dropped = true;
1342 
1343 retry:
1344 		/*
1345 		 * Repeat on the address that fired VM_FAULT_RETRY
1346 		 * with both FAULT_FLAG_ALLOW_RETRY and
1347 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1348 		 * by fatal signals, so we need to check it before we
1349 		 * start trying again otherwise it can loop forever.
1350 		 */
1351 
1352 		if (fatal_signal_pending(current)) {
1353 			if (!pages_done)
1354 				pages_done = -EINTR;
1355 			break;
1356 		}
1357 
1358 		ret = down_read_killable(&mm->mmap_sem);
1359 		if (ret) {
1360 			BUG_ON(ret > 0);
1361 			if (!pages_done)
1362 				pages_done = ret;
1363 			break;
1364 		}
1365 
1366 		*locked = 1;
1367 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1368 				       pages, NULL, locked);
1369 		if (!*locked) {
1370 			/* Continue to retry until we succeeded */
1371 			BUG_ON(ret != 0);
1372 			goto retry;
1373 		}
1374 		if (ret != 1) {
1375 			BUG_ON(ret > 1);
1376 			if (!pages_done)
1377 				pages_done = ret;
1378 			break;
1379 		}
1380 		nr_pages--;
1381 		pages_done++;
1382 		if (!nr_pages)
1383 			break;
1384 		if (likely(pages))
1385 			pages++;
1386 		start += PAGE_SIZE;
1387 	}
1388 	if (lock_dropped && *locked) {
1389 		/*
1390 		 * We must let the caller know we temporarily dropped the lock
1391 		 * and so the critical section protected by it was lost.
1392 		 */
1393 		up_read(&mm->mmap_sem);
1394 		*locked = 0;
1395 	}
1396 	return pages_done;
1397 }
1398 
1399 /**
1400  * populate_vma_page_range() -  populate a range of pages in the vma.
1401  * @vma:   target vma
1402  * @start: start address
1403  * @end:   end address
1404  * @locked: whether the mmap_sem is still held
1405  *
1406  * This takes care of mlocking the pages too if VM_LOCKED is set.
1407  *
1408  * return 0 on success, negative error code on error.
1409  *
1410  * vma->vm_mm->mmap_sem must be held.
1411  *
1412  * If @locked is NULL, it may be held for read or write and will
1413  * be unperturbed.
1414  *
1415  * If @locked is non-NULL, it must held for read only and may be
1416  * released.  If it's released, *@locked will be set to 0.
1417  */
1418 long populate_vma_page_range(struct vm_area_struct *vma,
1419 		unsigned long start, unsigned long end, int *locked)
1420 {
1421 	struct mm_struct *mm = vma->vm_mm;
1422 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1423 	int gup_flags;
1424 
1425 	VM_BUG_ON(start & ~PAGE_MASK);
1426 	VM_BUG_ON(end   & ~PAGE_MASK);
1427 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1428 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1429 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1430 
1431 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1432 	if (vma->vm_flags & VM_LOCKONFAULT)
1433 		gup_flags &= ~FOLL_POPULATE;
1434 	/*
1435 	 * We want to touch writable mappings with a write fault in order
1436 	 * to break COW, except for shared mappings because these don't COW
1437 	 * and we would not want to dirty them for nothing.
1438 	 */
1439 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1440 		gup_flags |= FOLL_WRITE;
1441 
1442 	/*
1443 	 * We want mlock to succeed for regions that have any permissions
1444 	 * other than PROT_NONE.
1445 	 */
1446 	if (vma_is_accessible(vma))
1447 		gup_flags |= FOLL_FORCE;
1448 
1449 	/*
1450 	 * We made sure addr is within a VMA, so the following will
1451 	 * not result in a stack expansion that recurses back here.
1452 	 */
1453 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1454 				NULL, NULL, locked);
1455 }
1456 
1457 /*
1458  * __mm_populate - populate and/or mlock pages within a range of address space.
1459  *
1460  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1461  * flags. VMAs must be already marked with the desired vm_flags, and
1462  * mmap_sem must not be held.
1463  */
1464 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465 {
1466 	struct mm_struct *mm = current->mm;
1467 	unsigned long end, nstart, nend;
1468 	struct vm_area_struct *vma = NULL;
1469 	int locked = 0;
1470 	long ret = 0;
1471 
1472 	end = start + len;
1473 
1474 	for (nstart = start; nstart < end; nstart = nend) {
1475 		/*
1476 		 * We want to fault in pages for [nstart; end) address range.
1477 		 * Find first corresponding VMA.
1478 		 */
1479 		if (!locked) {
1480 			locked = 1;
1481 			down_read(&mm->mmap_sem);
1482 			vma = find_vma(mm, nstart);
1483 		} else if (nstart >= vma->vm_end)
1484 			vma = vma->vm_next;
1485 		if (!vma || vma->vm_start >= end)
1486 			break;
1487 		/*
1488 		 * Set [nstart; nend) to intersection of desired address
1489 		 * range with the first VMA. Also, skip undesirable VMA types.
1490 		 */
1491 		nend = min(end, vma->vm_end);
1492 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1493 			continue;
1494 		if (nstart < vma->vm_start)
1495 			nstart = vma->vm_start;
1496 		/*
1497 		 * Now fault in a range of pages. populate_vma_page_range()
1498 		 * double checks the vma flags, so that it won't mlock pages
1499 		 * if the vma was already munlocked.
1500 		 */
1501 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1502 		if (ret < 0) {
1503 			if (ignore_errors) {
1504 				ret = 0;
1505 				continue;	/* continue at next VMA */
1506 			}
1507 			break;
1508 		}
1509 		nend = nstart + ret * PAGE_SIZE;
1510 		ret = 0;
1511 	}
1512 	if (locked)
1513 		up_read(&mm->mmap_sem);
1514 	return ret;	/* 0 or negative error code */
1515 }
1516 
1517 /**
1518  * get_dump_page() - pin user page in memory while writing it to core dump
1519  * @addr: user address
1520  *
1521  * Returns struct page pointer of user page pinned for dump,
1522  * to be freed afterwards by put_page().
1523  *
1524  * Returns NULL on any kind of failure - a hole must then be inserted into
1525  * the corefile, to preserve alignment with its headers; and also returns
1526  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1527  * allowing a hole to be left in the corefile to save diskspace.
1528  *
1529  * Called without mmap_sem, but after all other threads have been killed.
1530  */
1531 #ifdef CONFIG_ELF_CORE
1532 struct page *get_dump_page(unsigned long addr)
1533 {
1534 	struct vm_area_struct *vma;
1535 	struct page *page;
1536 
1537 	if (__get_user_pages(current, current->mm, addr, 1,
1538 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1539 			     NULL) < 1)
1540 		return NULL;
1541 	flush_cache_page(vma, addr, page_to_pfn(page));
1542 	return page;
1543 }
1544 #endif /* CONFIG_ELF_CORE */
1545 #else /* CONFIG_MMU */
1546 static long __get_user_pages_locked(struct task_struct *tsk,
1547 		struct mm_struct *mm, unsigned long start,
1548 		unsigned long nr_pages, struct page **pages,
1549 		struct vm_area_struct **vmas, int *locked,
1550 		unsigned int foll_flags)
1551 {
1552 	struct vm_area_struct *vma;
1553 	unsigned long vm_flags;
1554 	int i;
1555 
1556 	/* calculate required read or write permissions.
1557 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 	 */
1559 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1560 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1561 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1562 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563 
1564 	for (i = 0; i < nr_pages; i++) {
1565 		vma = find_vma(mm, start);
1566 		if (!vma)
1567 			goto finish_or_fault;
1568 
1569 		/* protect what we can, including chardevs */
1570 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1571 		    !(vm_flags & vma->vm_flags))
1572 			goto finish_or_fault;
1573 
1574 		if (pages) {
1575 			pages[i] = virt_to_page(start);
1576 			if (pages[i])
1577 				get_page(pages[i]);
1578 		}
1579 		if (vmas)
1580 			vmas[i] = vma;
1581 		start = (start + PAGE_SIZE) & PAGE_MASK;
1582 	}
1583 
1584 	return i;
1585 
1586 finish_or_fault:
1587 	return i ? : -EFAULT;
1588 }
1589 #endif /* !CONFIG_MMU */
1590 
1591 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1592 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1593 {
1594 	long i;
1595 	struct vm_area_struct *vma_prev = NULL;
1596 
1597 	for (i = 0; i < nr_pages; i++) {
1598 		struct vm_area_struct *vma = vmas[i];
1599 
1600 		if (vma == vma_prev)
1601 			continue;
1602 
1603 		vma_prev = vma;
1604 
1605 		if (vma_is_fsdax(vma))
1606 			return true;
1607 	}
1608 	return false;
1609 }
1610 
1611 #ifdef CONFIG_CMA
1612 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1613 {
1614 	/*
1615 	 * We want to make sure we allocate the new page from the same node
1616 	 * as the source page.
1617 	 */
1618 	int nid = page_to_nid(page);
1619 	/*
1620 	 * Trying to allocate a page for migration. Ignore allocation
1621 	 * failure warnings. We don't force __GFP_THISNODE here because
1622 	 * this node here is the node where we have CMA reservation and
1623 	 * in some case these nodes will have really less non movable
1624 	 * allocation memory.
1625 	 */
1626 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1627 
1628 	if (PageHighMem(page))
1629 		gfp_mask |= __GFP_HIGHMEM;
1630 
1631 #ifdef CONFIG_HUGETLB_PAGE
1632 	if (PageHuge(page)) {
1633 		struct hstate *h = page_hstate(page);
1634 		/*
1635 		 * We don't want to dequeue from the pool because pool pages will
1636 		 * mostly be from the CMA region.
1637 		 */
1638 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1639 	}
1640 #endif
1641 	if (PageTransHuge(page)) {
1642 		struct page *thp;
1643 		/*
1644 		 * ignore allocation failure warnings
1645 		 */
1646 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1647 
1648 		/*
1649 		 * Remove the movable mask so that we don't allocate from
1650 		 * CMA area again.
1651 		 */
1652 		thp_gfpmask &= ~__GFP_MOVABLE;
1653 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1654 		if (!thp)
1655 			return NULL;
1656 		prep_transhuge_page(thp);
1657 		return thp;
1658 	}
1659 
1660 	return __alloc_pages_node(nid, gfp_mask, 0);
1661 }
1662 
1663 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1664 					struct mm_struct *mm,
1665 					unsigned long start,
1666 					unsigned long nr_pages,
1667 					struct page **pages,
1668 					struct vm_area_struct **vmas,
1669 					unsigned int gup_flags)
1670 {
1671 	unsigned long i;
1672 	unsigned long step;
1673 	bool drain_allow = true;
1674 	bool migrate_allow = true;
1675 	LIST_HEAD(cma_page_list);
1676 	long ret = nr_pages;
1677 
1678 check_again:
1679 	for (i = 0; i < nr_pages;) {
1680 
1681 		struct page *head = compound_head(pages[i]);
1682 
1683 		/*
1684 		 * gup may start from a tail page. Advance step by the left
1685 		 * part.
1686 		 */
1687 		step = compound_nr(head) - (pages[i] - head);
1688 		/*
1689 		 * If we get a page from the CMA zone, since we are going to
1690 		 * be pinning these entries, we might as well move them out
1691 		 * of the CMA zone if possible.
1692 		 */
1693 		if (is_migrate_cma_page(head)) {
1694 			if (PageHuge(head))
1695 				isolate_huge_page(head, &cma_page_list);
1696 			else {
1697 				if (!PageLRU(head) && drain_allow) {
1698 					lru_add_drain_all();
1699 					drain_allow = false;
1700 				}
1701 
1702 				if (!isolate_lru_page(head)) {
1703 					list_add_tail(&head->lru, &cma_page_list);
1704 					mod_node_page_state(page_pgdat(head),
1705 							    NR_ISOLATED_ANON +
1706 							    page_is_file_lru(head),
1707 							    hpage_nr_pages(head));
1708 				}
1709 			}
1710 		}
1711 
1712 		i += step;
1713 	}
1714 
1715 	if (!list_empty(&cma_page_list)) {
1716 		/*
1717 		 * drop the above get_user_pages reference.
1718 		 */
1719 		for (i = 0; i < nr_pages; i++)
1720 			put_page(pages[i]);
1721 
1722 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1723 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1724 			/*
1725 			 * some of the pages failed migration. Do get_user_pages
1726 			 * without migration.
1727 			 */
1728 			migrate_allow = false;
1729 
1730 			if (!list_empty(&cma_page_list))
1731 				putback_movable_pages(&cma_page_list);
1732 		}
1733 		/*
1734 		 * We did migrate all the pages, Try to get the page references
1735 		 * again migrating any new CMA pages which we failed to isolate
1736 		 * earlier.
1737 		 */
1738 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1739 						   pages, vmas, NULL,
1740 						   gup_flags);
1741 
1742 		if ((ret > 0) && migrate_allow) {
1743 			nr_pages = ret;
1744 			drain_allow = true;
1745 			goto check_again;
1746 		}
1747 	}
1748 
1749 	return ret;
1750 }
1751 #else
1752 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1753 					struct mm_struct *mm,
1754 					unsigned long start,
1755 					unsigned long nr_pages,
1756 					struct page **pages,
1757 					struct vm_area_struct **vmas,
1758 					unsigned int gup_flags)
1759 {
1760 	return nr_pages;
1761 }
1762 #endif /* CONFIG_CMA */
1763 
1764 /*
1765  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1766  * allows us to process the FOLL_LONGTERM flag.
1767  */
1768 static long __gup_longterm_locked(struct task_struct *tsk,
1769 				  struct mm_struct *mm,
1770 				  unsigned long start,
1771 				  unsigned long nr_pages,
1772 				  struct page **pages,
1773 				  struct vm_area_struct **vmas,
1774 				  unsigned int gup_flags)
1775 {
1776 	struct vm_area_struct **vmas_tmp = vmas;
1777 	unsigned long flags = 0;
1778 	long rc, i;
1779 
1780 	if (gup_flags & FOLL_LONGTERM) {
1781 		if (!pages)
1782 			return -EINVAL;
1783 
1784 		if (!vmas_tmp) {
1785 			vmas_tmp = kcalloc(nr_pages,
1786 					   sizeof(struct vm_area_struct *),
1787 					   GFP_KERNEL);
1788 			if (!vmas_tmp)
1789 				return -ENOMEM;
1790 		}
1791 		flags = memalloc_nocma_save();
1792 	}
1793 
1794 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1795 				     vmas_tmp, NULL, gup_flags);
1796 
1797 	if (gup_flags & FOLL_LONGTERM) {
1798 		memalloc_nocma_restore(flags);
1799 		if (rc < 0)
1800 			goto out;
1801 
1802 		if (check_dax_vmas(vmas_tmp, rc)) {
1803 			for (i = 0; i < rc; i++)
1804 				put_page(pages[i]);
1805 			rc = -EOPNOTSUPP;
1806 			goto out;
1807 		}
1808 
1809 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1810 						 vmas_tmp, gup_flags);
1811 	}
1812 
1813 out:
1814 	if (vmas_tmp != vmas)
1815 		kfree(vmas_tmp);
1816 	return rc;
1817 }
1818 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1819 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1820 						  struct mm_struct *mm,
1821 						  unsigned long start,
1822 						  unsigned long nr_pages,
1823 						  struct page **pages,
1824 						  struct vm_area_struct **vmas,
1825 						  unsigned int flags)
1826 {
1827 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1828 				       NULL, flags);
1829 }
1830 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1831 
1832 #ifdef CONFIG_MMU
1833 static long __get_user_pages_remote(struct task_struct *tsk,
1834 				    struct mm_struct *mm,
1835 				    unsigned long start, unsigned long nr_pages,
1836 				    unsigned int gup_flags, struct page **pages,
1837 				    struct vm_area_struct **vmas, int *locked)
1838 {
1839 	/*
1840 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1841 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1842 	 * vmas. However, this only comes up if locked is set, and there are
1843 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1844 	 * allow what we can.
1845 	 */
1846 	if (gup_flags & FOLL_LONGTERM) {
1847 		if (WARN_ON_ONCE(locked))
1848 			return -EINVAL;
1849 		/*
1850 		 * This will check the vmas (even if our vmas arg is NULL)
1851 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 		 */
1853 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1854 					     vmas, gup_flags | FOLL_TOUCH |
1855 					     FOLL_REMOTE);
1856 	}
1857 
1858 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1859 				       locked,
1860 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1861 }
1862 
1863 /**
1864  * get_user_pages_remote() - pin user pages in memory
1865  * @tsk:	the task_struct to use for page fault accounting, or
1866  *		NULL if faults are not to be recorded.
1867  * @mm:		mm_struct of target mm
1868  * @start:	starting user address
1869  * @nr_pages:	number of pages from start to pin
1870  * @gup_flags:	flags modifying lookup behaviour
1871  * @pages:	array that receives pointers to the pages pinned.
1872  *		Should be at least nr_pages long. Or NULL, if caller
1873  *		only intends to ensure the pages are faulted in.
1874  * @vmas:	array of pointers to vmas corresponding to each page.
1875  *		Or NULL if the caller does not require them.
1876  * @locked:	pointer to lock flag indicating whether lock is held and
1877  *		subsequently whether VM_FAULT_RETRY functionality can be
1878  *		utilised. Lock must initially be held.
1879  *
1880  * Returns either number of pages pinned (which may be less than the
1881  * number requested), or an error. Details about the return value:
1882  *
1883  * -- If nr_pages is 0, returns 0.
1884  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1885  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1886  *    pages pinned. Again, this may be less than nr_pages.
1887  *
1888  * The caller is responsible for releasing returned @pages, via put_page().
1889  *
1890  * @vmas are valid only as long as mmap_sem is held.
1891  *
1892  * Must be called with mmap_sem held for read or write.
1893  *
1894  * get_user_pages_remote walks a process's page tables and takes a reference
1895  * to each struct page that each user address corresponds to at a given
1896  * instant. That is, it takes the page that would be accessed if a user
1897  * thread accesses the given user virtual address at that instant.
1898  *
1899  * This does not guarantee that the page exists in the user mappings when
1900  * get_user_pages_remote returns, and there may even be a completely different
1901  * page there in some cases (eg. if mmapped pagecache has been invalidated
1902  * and subsequently re faulted). However it does guarantee that the page
1903  * won't be freed completely. And mostly callers simply care that the page
1904  * contains data that was valid *at some point in time*. Typically, an IO
1905  * or similar operation cannot guarantee anything stronger anyway because
1906  * locks can't be held over the syscall boundary.
1907  *
1908  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1909  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1910  * be called after the page is finished with, and before put_page is called.
1911  *
1912  * get_user_pages_remote is typically used for fewer-copy IO operations,
1913  * to get a handle on the memory by some means other than accesses
1914  * via the user virtual addresses. The pages may be submitted for
1915  * DMA to devices or accessed via their kernel linear mapping (via the
1916  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1917  *
1918  * See also get_user_pages_fast, for performance critical applications.
1919  *
1920  * get_user_pages_remote should be phased out in favor of
1921  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1922  * should use get_user_pages_remote because it cannot pass
1923  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924  */
1925 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1926 		unsigned long start, unsigned long nr_pages,
1927 		unsigned int gup_flags, struct page **pages,
1928 		struct vm_area_struct **vmas, int *locked)
1929 {
1930 	/*
1931 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1932 	 * never directly by the caller, so enforce that with an assertion:
1933 	 */
1934 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1935 		return -EINVAL;
1936 
1937 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1938 				       pages, vmas, locked);
1939 }
1940 EXPORT_SYMBOL(get_user_pages_remote);
1941 
1942 #else /* CONFIG_MMU */
1943 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1944 			   unsigned long start, unsigned long nr_pages,
1945 			   unsigned int gup_flags, struct page **pages,
1946 			   struct vm_area_struct **vmas, int *locked)
1947 {
1948 	return 0;
1949 }
1950 
1951 static long __get_user_pages_remote(struct task_struct *tsk,
1952 				    struct mm_struct *mm,
1953 				    unsigned long start, unsigned long nr_pages,
1954 				    unsigned int gup_flags, struct page **pages,
1955 				    struct vm_area_struct **vmas, int *locked)
1956 {
1957 	return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960 
1961 /**
1962  * get_user_pages() - pin user pages in memory
1963  * @start:      starting user address
1964  * @nr_pages:   number of pages from start to pin
1965  * @gup_flags:  flags modifying lookup behaviour
1966  * @pages:      array that receives pointers to the pages pinned.
1967  *              Should be at least nr_pages long. Or NULL, if caller
1968  *              only intends to ensure the pages are faulted in.
1969  * @vmas:       array of pointers to vmas corresponding to each page.
1970  *              Or NULL if the caller does not require them.
1971  *
1972  * This is the same as get_user_pages_remote(), just with a
1973  * less-flexible calling convention where we assume that the task
1974  * and mm being operated on are the current task's and don't allow
1975  * passing of a locked parameter.  We also obviously don't pass
1976  * FOLL_REMOTE in here.
1977  */
1978 long get_user_pages(unsigned long start, unsigned long nr_pages,
1979 		unsigned int gup_flags, struct page **pages,
1980 		struct vm_area_struct **vmas)
1981 {
1982 	/*
1983 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1984 	 * never directly by the caller, so enforce that with an assertion:
1985 	 */
1986 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1987 		return -EINVAL;
1988 
1989 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1990 				     pages, vmas, gup_flags | FOLL_TOUCH);
1991 }
1992 EXPORT_SYMBOL(get_user_pages);
1993 
1994 /**
1995  * get_user_pages_locked() is suitable to replace the form:
1996  *
1997  *      down_read(&mm->mmap_sem);
1998  *      do_something()
1999  *      get_user_pages(tsk, mm, ..., pages, NULL);
2000  *      up_read(&mm->mmap_sem);
2001  *
2002  *  to:
2003  *
2004  *      int locked = 1;
2005  *      down_read(&mm->mmap_sem);
2006  *      do_something()
2007  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
2008  *      if (locked)
2009  *          up_read(&mm->mmap_sem);
2010  *
2011  * @start:      starting user address
2012  * @nr_pages:   number of pages from start to pin
2013  * @gup_flags:  flags modifying lookup behaviour
2014  * @pages:      array that receives pointers to the pages pinned.
2015  *              Should be at least nr_pages long. Or NULL, if caller
2016  *              only intends to ensure the pages are faulted in.
2017  * @locked:     pointer to lock flag indicating whether lock is held and
2018  *              subsequently whether VM_FAULT_RETRY functionality can be
2019  *              utilised. Lock must initially be held.
2020  *
2021  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022  * paths better by using either get_user_pages_locked() or
2023  * get_user_pages_unlocked().
2024  *
2025  */
2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 			   unsigned int gup_flags, struct page **pages,
2028 			   int *locked)
2029 {
2030 	/*
2031 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 	 * vmas.  As there are no users of this flag in this call we simply
2034 	 * disallow this option for now.
2035 	 */
2036 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2037 		return -EINVAL;
2038 
2039 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
2040 				       pages, NULL, locked,
2041 				       gup_flags | FOLL_TOUCH);
2042 }
2043 EXPORT_SYMBOL(get_user_pages_locked);
2044 
2045 /*
2046  * get_user_pages_unlocked() is suitable to replace the form:
2047  *
2048  *      down_read(&mm->mmap_sem);
2049  *      get_user_pages(tsk, mm, ..., pages, NULL);
2050  *      up_read(&mm->mmap_sem);
2051  *
2052  *  with:
2053  *
2054  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2055  *
2056  * It is functionally equivalent to get_user_pages_fast so
2057  * get_user_pages_fast should be used instead if specific gup_flags
2058  * (e.g. FOLL_FORCE) are not required.
2059  */
2060 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2061 			     struct page **pages, unsigned int gup_flags)
2062 {
2063 	struct mm_struct *mm = current->mm;
2064 	int locked = 1;
2065 	long ret;
2066 
2067 	/*
2068 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2069 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2070 	 * vmas.  As there are no users of this flag in this call we simply
2071 	 * disallow this option for now.
2072 	 */
2073 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2074 		return -EINVAL;
2075 
2076 	down_read(&mm->mmap_sem);
2077 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2078 				      &locked, gup_flags | FOLL_TOUCH);
2079 	if (locked)
2080 		up_read(&mm->mmap_sem);
2081 	return ret;
2082 }
2083 EXPORT_SYMBOL(get_user_pages_unlocked);
2084 
2085 /*
2086  * Fast GUP
2087  *
2088  * get_user_pages_fast attempts to pin user pages by walking the page
2089  * tables directly and avoids taking locks. Thus the walker needs to be
2090  * protected from page table pages being freed from under it, and should
2091  * block any THP splits.
2092  *
2093  * One way to achieve this is to have the walker disable interrupts, and
2094  * rely on IPIs from the TLB flushing code blocking before the page table
2095  * pages are freed. This is unsuitable for architectures that do not need
2096  * to broadcast an IPI when invalidating TLBs.
2097  *
2098  * Another way to achieve this is to batch up page table containing pages
2099  * belonging to more than one mm_user, then rcu_sched a callback to free those
2100  * pages. Disabling interrupts will allow the fast_gup walker to both block
2101  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2102  * (which is a relatively rare event). The code below adopts this strategy.
2103  *
2104  * Before activating this code, please be aware that the following assumptions
2105  * are currently made:
2106  *
2107  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2108  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2109  *
2110  *  *) ptes can be read atomically by the architecture.
2111  *
2112  *  *) access_ok is sufficient to validate userspace address ranges.
2113  *
2114  * The last two assumptions can be relaxed by the addition of helper functions.
2115  *
2116  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2117  */
2118 #ifdef CONFIG_HAVE_FAST_GUP
2119 
2120 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2121 {
2122 	if (flags & FOLL_PIN) {
2123 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2124 				    refs);
2125 
2126 		if (hpage_pincount_available(page))
2127 			hpage_pincount_sub(page, refs);
2128 		else
2129 			refs *= GUP_PIN_COUNTING_BIAS;
2130 	}
2131 
2132 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2133 	/*
2134 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2135 	 * ref needs a put_page().
2136 	 */
2137 	if (refs > 1)
2138 		page_ref_sub(page, refs - 1);
2139 	put_page(page);
2140 }
2141 
2142 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2143 
2144 /*
2145  * WARNING: only to be used in the get_user_pages_fast() implementation.
2146  *
2147  * With get_user_pages_fast(), we walk down the pagetables without taking any
2148  * locks.  For this we would like to load the pointers atomically, but sometimes
2149  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2150  * we do have is the guarantee that a PTE will only either go from not present
2151  * to present, or present to not present or both -- it will not switch to a
2152  * completely different present page without a TLB flush in between; something
2153  * that we are blocking by holding interrupts off.
2154  *
2155  * Setting ptes from not present to present goes:
2156  *
2157  *   ptep->pte_high = h;
2158  *   smp_wmb();
2159  *   ptep->pte_low = l;
2160  *
2161  * And present to not present goes:
2162  *
2163  *   ptep->pte_low = 0;
2164  *   smp_wmb();
2165  *   ptep->pte_high = 0;
2166  *
2167  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2168  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2169  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2170  * picked up a changed pte high. We might have gotten rubbish values from
2171  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2172  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2173  * operates on present ptes we're safe.
2174  */
2175 static inline pte_t gup_get_pte(pte_t *ptep)
2176 {
2177 	pte_t pte;
2178 
2179 	do {
2180 		pte.pte_low = ptep->pte_low;
2181 		smp_rmb();
2182 		pte.pte_high = ptep->pte_high;
2183 		smp_rmb();
2184 	} while (unlikely(pte.pte_low != ptep->pte_low));
2185 
2186 	return pte;
2187 }
2188 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2189 /*
2190  * We require that the PTE can be read atomically.
2191  */
2192 static inline pte_t gup_get_pte(pte_t *ptep)
2193 {
2194 	return READ_ONCE(*ptep);
2195 }
2196 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2197 
2198 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2199 					    unsigned int flags,
2200 					    struct page **pages)
2201 {
2202 	while ((*nr) - nr_start) {
2203 		struct page *page = pages[--(*nr)];
2204 
2205 		ClearPageReferenced(page);
2206 		if (flags & FOLL_PIN)
2207 			unpin_user_page(page);
2208 		else
2209 			put_page(page);
2210 	}
2211 }
2212 
2213 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2214 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2215 			 unsigned int flags, struct page **pages, int *nr)
2216 {
2217 	struct dev_pagemap *pgmap = NULL;
2218 	int nr_start = *nr, ret = 0;
2219 	pte_t *ptep, *ptem;
2220 
2221 	ptem = ptep = pte_offset_map(&pmd, addr);
2222 	do {
2223 		pte_t pte = gup_get_pte(ptep);
2224 		struct page *head, *page;
2225 
2226 		/*
2227 		 * Similar to the PMD case below, NUMA hinting must take slow
2228 		 * path using the pte_protnone check.
2229 		 */
2230 		if (pte_protnone(pte))
2231 			goto pte_unmap;
2232 
2233 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2234 			goto pte_unmap;
2235 
2236 		if (pte_devmap(pte)) {
2237 			if (unlikely(flags & FOLL_LONGTERM))
2238 				goto pte_unmap;
2239 
2240 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2241 			if (unlikely(!pgmap)) {
2242 				undo_dev_pagemap(nr, nr_start, flags, pages);
2243 				goto pte_unmap;
2244 			}
2245 		} else if (pte_special(pte))
2246 			goto pte_unmap;
2247 
2248 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2249 		page = pte_page(pte);
2250 
2251 		head = try_grab_compound_head(page, 1, flags);
2252 		if (!head)
2253 			goto pte_unmap;
2254 
2255 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2256 			put_compound_head(head, 1, flags);
2257 			goto pte_unmap;
2258 		}
2259 
2260 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2261 
2262 		/*
2263 		 * We need to make the page accessible if and only if we are
2264 		 * going to access its content (the FOLL_PIN case).  Please
2265 		 * see Documentation/core-api/pin_user_pages.rst for
2266 		 * details.
2267 		 */
2268 		if (flags & FOLL_PIN) {
2269 			ret = arch_make_page_accessible(page);
2270 			if (ret) {
2271 				unpin_user_page(page);
2272 				goto pte_unmap;
2273 			}
2274 		}
2275 		SetPageReferenced(page);
2276 		pages[*nr] = page;
2277 		(*nr)++;
2278 
2279 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2280 
2281 	ret = 1;
2282 
2283 pte_unmap:
2284 	if (pgmap)
2285 		put_dev_pagemap(pgmap);
2286 	pte_unmap(ptem);
2287 	return ret;
2288 }
2289 #else
2290 
2291 /*
2292  * If we can't determine whether or not a pte is special, then fail immediately
2293  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2294  * to be special.
2295  *
2296  * For a futex to be placed on a THP tail page, get_futex_key requires a
2297  * __get_user_pages_fast implementation that can pin pages. Thus it's still
2298  * useful to have gup_huge_pmd even if we can't operate on ptes.
2299  */
2300 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2301 			 unsigned int flags, struct page **pages, int *nr)
2302 {
2303 	return 0;
2304 }
2305 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2306 
2307 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2308 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2309 			     unsigned long end, unsigned int flags,
2310 			     struct page **pages, int *nr)
2311 {
2312 	int nr_start = *nr;
2313 	struct dev_pagemap *pgmap = NULL;
2314 
2315 	do {
2316 		struct page *page = pfn_to_page(pfn);
2317 
2318 		pgmap = get_dev_pagemap(pfn, pgmap);
2319 		if (unlikely(!pgmap)) {
2320 			undo_dev_pagemap(nr, nr_start, flags, pages);
2321 			return 0;
2322 		}
2323 		SetPageReferenced(page);
2324 		pages[*nr] = page;
2325 		if (unlikely(!try_grab_page(page, flags))) {
2326 			undo_dev_pagemap(nr, nr_start, flags, pages);
2327 			return 0;
2328 		}
2329 		(*nr)++;
2330 		pfn++;
2331 	} while (addr += PAGE_SIZE, addr != end);
2332 
2333 	if (pgmap)
2334 		put_dev_pagemap(pgmap);
2335 	return 1;
2336 }
2337 
2338 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2339 				 unsigned long end, unsigned int flags,
2340 				 struct page **pages, int *nr)
2341 {
2342 	unsigned long fault_pfn;
2343 	int nr_start = *nr;
2344 
2345 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2346 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2347 		return 0;
2348 
2349 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2350 		undo_dev_pagemap(nr, nr_start, flags, pages);
2351 		return 0;
2352 	}
2353 	return 1;
2354 }
2355 
2356 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2357 				 unsigned long end, unsigned int flags,
2358 				 struct page **pages, int *nr)
2359 {
2360 	unsigned long fault_pfn;
2361 	int nr_start = *nr;
2362 
2363 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2364 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2365 		return 0;
2366 
2367 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2368 		undo_dev_pagemap(nr, nr_start, flags, pages);
2369 		return 0;
2370 	}
2371 	return 1;
2372 }
2373 #else
2374 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2375 				 unsigned long end, unsigned int flags,
2376 				 struct page **pages, int *nr)
2377 {
2378 	BUILD_BUG();
2379 	return 0;
2380 }
2381 
2382 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2383 				 unsigned long end, unsigned int flags,
2384 				 struct page **pages, int *nr)
2385 {
2386 	BUILD_BUG();
2387 	return 0;
2388 }
2389 #endif
2390 
2391 static int record_subpages(struct page *page, unsigned long addr,
2392 			   unsigned long end, struct page **pages)
2393 {
2394 	int nr;
2395 
2396 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2397 		pages[nr++] = page++;
2398 
2399 	return nr;
2400 }
2401 
2402 #ifdef CONFIG_ARCH_HAS_HUGEPD
2403 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2404 				      unsigned long sz)
2405 {
2406 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2407 	return (__boundary - 1 < end - 1) ? __boundary : end;
2408 }
2409 
2410 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2411 		       unsigned long end, unsigned int flags,
2412 		       struct page **pages, int *nr)
2413 {
2414 	unsigned long pte_end;
2415 	struct page *head, *page;
2416 	pte_t pte;
2417 	int refs;
2418 
2419 	pte_end = (addr + sz) & ~(sz-1);
2420 	if (pte_end < end)
2421 		end = pte_end;
2422 
2423 	pte = READ_ONCE(*ptep);
2424 
2425 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2426 		return 0;
2427 
2428 	/* hugepages are never "special" */
2429 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2430 
2431 	head = pte_page(pte);
2432 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2433 	refs = record_subpages(page, addr, end, pages + *nr);
2434 
2435 	head = try_grab_compound_head(head, refs, flags);
2436 	if (!head)
2437 		return 0;
2438 
2439 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2440 		put_compound_head(head, refs, flags);
2441 		return 0;
2442 	}
2443 
2444 	*nr += refs;
2445 	SetPageReferenced(head);
2446 	return 1;
2447 }
2448 
2449 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2450 		unsigned int pdshift, unsigned long end, unsigned int flags,
2451 		struct page **pages, int *nr)
2452 {
2453 	pte_t *ptep;
2454 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2455 	unsigned long next;
2456 
2457 	ptep = hugepte_offset(hugepd, addr, pdshift);
2458 	do {
2459 		next = hugepte_addr_end(addr, end, sz);
2460 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2461 			return 0;
2462 	} while (ptep++, addr = next, addr != end);
2463 
2464 	return 1;
2465 }
2466 #else
2467 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2468 		unsigned int pdshift, unsigned long end, unsigned int flags,
2469 		struct page **pages, int *nr)
2470 {
2471 	return 0;
2472 }
2473 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2474 
2475 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2476 			unsigned long end, unsigned int flags,
2477 			struct page **pages, int *nr)
2478 {
2479 	struct page *head, *page;
2480 	int refs;
2481 
2482 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2483 		return 0;
2484 
2485 	if (pmd_devmap(orig)) {
2486 		if (unlikely(flags & FOLL_LONGTERM))
2487 			return 0;
2488 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2489 					     pages, nr);
2490 	}
2491 
2492 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2493 	refs = record_subpages(page, addr, end, pages + *nr);
2494 
2495 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2496 	if (!head)
2497 		return 0;
2498 
2499 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2500 		put_compound_head(head, refs, flags);
2501 		return 0;
2502 	}
2503 
2504 	*nr += refs;
2505 	SetPageReferenced(head);
2506 	return 1;
2507 }
2508 
2509 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2510 			unsigned long end, unsigned int flags,
2511 			struct page **pages, int *nr)
2512 {
2513 	struct page *head, *page;
2514 	int refs;
2515 
2516 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2517 		return 0;
2518 
2519 	if (pud_devmap(orig)) {
2520 		if (unlikely(flags & FOLL_LONGTERM))
2521 			return 0;
2522 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2523 					     pages, nr);
2524 	}
2525 
2526 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2527 	refs = record_subpages(page, addr, end, pages + *nr);
2528 
2529 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2530 	if (!head)
2531 		return 0;
2532 
2533 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2534 		put_compound_head(head, refs, flags);
2535 		return 0;
2536 	}
2537 
2538 	*nr += refs;
2539 	SetPageReferenced(head);
2540 	return 1;
2541 }
2542 
2543 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2544 			unsigned long end, unsigned int flags,
2545 			struct page **pages, int *nr)
2546 {
2547 	int refs;
2548 	struct page *head, *page;
2549 
2550 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2551 		return 0;
2552 
2553 	BUILD_BUG_ON(pgd_devmap(orig));
2554 
2555 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2556 	refs = record_subpages(page, addr, end, pages + *nr);
2557 
2558 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2559 	if (!head)
2560 		return 0;
2561 
2562 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2563 		put_compound_head(head, refs, flags);
2564 		return 0;
2565 	}
2566 
2567 	*nr += refs;
2568 	SetPageReferenced(head);
2569 	return 1;
2570 }
2571 
2572 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2573 		unsigned int flags, struct page **pages, int *nr)
2574 {
2575 	unsigned long next;
2576 	pmd_t *pmdp;
2577 
2578 	pmdp = pmd_offset(&pud, addr);
2579 	do {
2580 		pmd_t pmd = READ_ONCE(*pmdp);
2581 
2582 		next = pmd_addr_end(addr, end);
2583 		if (!pmd_present(pmd))
2584 			return 0;
2585 
2586 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2587 			     pmd_devmap(pmd))) {
2588 			/*
2589 			 * NUMA hinting faults need to be handled in the GUP
2590 			 * slowpath for accounting purposes and so that they
2591 			 * can be serialised against THP migration.
2592 			 */
2593 			if (pmd_protnone(pmd))
2594 				return 0;
2595 
2596 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2597 				pages, nr))
2598 				return 0;
2599 
2600 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2601 			/*
2602 			 * architecture have different format for hugetlbfs
2603 			 * pmd format and THP pmd format
2604 			 */
2605 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2606 					 PMD_SHIFT, next, flags, pages, nr))
2607 				return 0;
2608 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2609 			return 0;
2610 	} while (pmdp++, addr = next, addr != end);
2611 
2612 	return 1;
2613 }
2614 
2615 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2616 			 unsigned int flags, struct page **pages, int *nr)
2617 {
2618 	unsigned long next;
2619 	pud_t *pudp;
2620 
2621 	pudp = pud_offset(&p4d, addr);
2622 	do {
2623 		pud_t pud = READ_ONCE(*pudp);
2624 
2625 		next = pud_addr_end(addr, end);
2626 		if (unlikely(!pud_present(pud)))
2627 			return 0;
2628 		if (unlikely(pud_huge(pud))) {
2629 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2630 					  pages, nr))
2631 				return 0;
2632 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2633 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2634 					 PUD_SHIFT, next, flags, pages, nr))
2635 				return 0;
2636 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2637 			return 0;
2638 	} while (pudp++, addr = next, addr != end);
2639 
2640 	return 1;
2641 }
2642 
2643 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2644 			 unsigned int flags, struct page **pages, int *nr)
2645 {
2646 	unsigned long next;
2647 	p4d_t *p4dp;
2648 
2649 	p4dp = p4d_offset(&pgd, addr);
2650 	do {
2651 		p4d_t p4d = READ_ONCE(*p4dp);
2652 
2653 		next = p4d_addr_end(addr, end);
2654 		if (p4d_none(p4d))
2655 			return 0;
2656 		BUILD_BUG_ON(p4d_huge(p4d));
2657 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2658 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2659 					 P4D_SHIFT, next, flags, pages, nr))
2660 				return 0;
2661 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2662 			return 0;
2663 	} while (p4dp++, addr = next, addr != end);
2664 
2665 	return 1;
2666 }
2667 
2668 static void gup_pgd_range(unsigned long addr, unsigned long end,
2669 		unsigned int flags, struct page **pages, int *nr)
2670 {
2671 	unsigned long next;
2672 	pgd_t *pgdp;
2673 
2674 	pgdp = pgd_offset(current->mm, addr);
2675 	do {
2676 		pgd_t pgd = READ_ONCE(*pgdp);
2677 
2678 		next = pgd_addr_end(addr, end);
2679 		if (pgd_none(pgd))
2680 			return;
2681 		if (unlikely(pgd_huge(pgd))) {
2682 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2683 					  pages, nr))
2684 				return;
2685 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2686 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2687 					 PGDIR_SHIFT, next, flags, pages, nr))
2688 				return;
2689 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2690 			return;
2691 	} while (pgdp++, addr = next, addr != end);
2692 }
2693 #else
2694 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2695 		unsigned int flags, struct page **pages, int *nr)
2696 {
2697 }
2698 #endif /* CONFIG_HAVE_FAST_GUP */
2699 
2700 #ifndef gup_fast_permitted
2701 /*
2702  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2703  * we need to fall back to the slow version:
2704  */
2705 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2706 {
2707 	return true;
2708 }
2709 #endif
2710 
2711 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2712 				   unsigned int gup_flags, struct page **pages)
2713 {
2714 	int ret;
2715 
2716 	/*
2717 	 * FIXME: FOLL_LONGTERM does not work with
2718 	 * get_user_pages_unlocked() (see comments in that function)
2719 	 */
2720 	if (gup_flags & FOLL_LONGTERM) {
2721 		down_read(&current->mm->mmap_sem);
2722 		ret = __gup_longterm_locked(current, current->mm,
2723 					    start, nr_pages,
2724 					    pages, NULL, gup_flags);
2725 		up_read(&current->mm->mmap_sem);
2726 	} else {
2727 		ret = get_user_pages_unlocked(start, nr_pages,
2728 					      pages, gup_flags);
2729 	}
2730 
2731 	return ret;
2732 }
2733 
2734 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2735 					unsigned int gup_flags,
2736 					struct page **pages)
2737 {
2738 	unsigned long addr, len, end;
2739 	unsigned long flags;
2740 	int nr_pinned = 0, ret = 0;
2741 
2742 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2743 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2744 				       FOLL_FAST_ONLY)))
2745 		return -EINVAL;
2746 
2747 	if (!(gup_flags & FOLL_FAST_ONLY))
2748 		might_lock_read(&current->mm->mmap_sem);
2749 
2750 	start = untagged_addr(start) & PAGE_MASK;
2751 	addr = start;
2752 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2753 	end = start + len;
2754 
2755 	if (end <= start)
2756 		return 0;
2757 	if (unlikely(!access_ok((void __user *)start, len)))
2758 		return -EFAULT;
2759 
2760 	/*
2761 	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2762 	 * because get_user_pages() may need to cause an early COW in
2763 	 * order to avoid confusing the normal COW routines. So only
2764 	 * targets that are already writable are safe to do by just
2765 	 * looking at the page tables.
2766 	 *
2767 	 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2768 	 * because there is no slow path to fall back on. But you'd
2769 	 * better be careful about possible COW pages - you'll get _a_
2770 	 * COW page, but not necessarily the one you intended to get
2771 	 * depending on what COW event happens after this. COW may break
2772 	 * the page copy in a random direction.
2773 	 *
2774 	 * Disable interrupts. The nested form is used, in order to allow
2775 	 * full, general purpose use of this routine.
2776 	 *
2777 	 * With interrupts disabled, we block page table pages from being
2778 	 * freed from under us. See struct mmu_table_batch comments in
2779 	 * include/asm-generic/tlb.h for more details.
2780 	 *
2781 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2782 	 * block IPIs that come from THPs splitting.
2783 	 */
2784 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2785 		unsigned long fast_flags = gup_flags;
2786 		if (!(gup_flags & FOLL_FAST_ONLY))
2787 			fast_flags |= FOLL_WRITE;
2788 
2789 		local_irq_save(flags);
2790 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2791 		local_irq_restore(flags);
2792 		ret = nr_pinned;
2793 	}
2794 
2795 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2796 		/* Try to get the remaining pages with get_user_pages */
2797 		start += nr_pinned << PAGE_SHIFT;
2798 		pages += nr_pinned;
2799 
2800 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2801 					      gup_flags, pages);
2802 
2803 		/* Have to be a bit careful with return values */
2804 		if (nr_pinned > 0) {
2805 			if (ret < 0)
2806 				ret = nr_pinned;
2807 			else
2808 				ret += nr_pinned;
2809 		}
2810 	}
2811 
2812 	return ret;
2813 }
2814 
2815 /*
2816  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2817  * the regular GUP.
2818  * Note a difference with get_user_pages_fast: this always returns the
2819  * number of pages pinned, 0 if no pages were pinned.
2820  *
2821  * If the architecture does not support this function, simply return with no
2822  * pages pinned.
2823  *
2824  * Careful, careful! COW breaking can go either way, so a non-write
2825  * access can get ambiguous page results. If you call this function without
2826  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2827  */
2828 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2829 			  struct page **pages)
2830 {
2831 	int nr_pinned;
2832 	/*
2833 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2834 	 * because gup fast is always a "pin with a +1 page refcount" request.
2835 	 *
2836 	 * FOLL_FAST_ONLY is required in order to match the API description of
2837 	 * this routine: no fall back to regular ("slow") GUP.
2838 	 */
2839 	unsigned int gup_flags = FOLL_GET | FOLL_FAST_ONLY;
2840 
2841 	if (write)
2842 		gup_flags |= FOLL_WRITE;
2843 
2844 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2845 						 pages);
2846 
2847 	/*
2848 	 * As specified in the API description above, this routine is not
2849 	 * allowed to return negative values. However, the common core
2850 	 * routine internal_get_user_pages_fast() *can* return -errno.
2851 	 * Therefore, correct for that here:
2852 	 */
2853 	if (nr_pinned < 0)
2854 		nr_pinned = 0;
2855 
2856 	return nr_pinned;
2857 }
2858 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2859 
2860 /**
2861  * get_user_pages_fast() - pin user pages in memory
2862  * @start:      starting user address
2863  * @nr_pages:   number of pages from start to pin
2864  * @gup_flags:  flags modifying pin behaviour
2865  * @pages:      array that receives pointers to the pages pinned.
2866  *              Should be at least nr_pages long.
2867  *
2868  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2869  * If not successful, it will fall back to taking the lock and
2870  * calling get_user_pages().
2871  *
2872  * Returns number of pages pinned. This may be fewer than the number requested.
2873  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2874  * -errno.
2875  */
2876 int get_user_pages_fast(unsigned long start, int nr_pages,
2877 			unsigned int gup_flags, struct page **pages)
2878 {
2879 	/*
2880 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2881 	 * never directly by the caller, so enforce that:
2882 	 */
2883 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2884 		return -EINVAL;
2885 
2886 	/*
2887 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2888 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2889 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2890 	 * request.
2891 	 */
2892 	gup_flags |= FOLL_GET;
2893 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2894 }
2895 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2896 
2897 /**
2898  * pin_user_pages_fast() - pin user pages in memory without taking locks
2899  *
2900  * @start:      starting user address
2901  * @nr_pages:   number of pages from start to pin
2902  * @gup_flags:  flags modifying pin behaviour
2903  * @pages:      array that receives pointers to the pages pinned.
2904  *              Should be at least nr_pages long.
2905  *
2906  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2907  * get_user_pages_fast() for documentation on the function arguments, because
2908  * the arguments here are identical.
2909  *
2910  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2911  * see Documentation/core-api/pin_user_pages.rst for further details.
2912  *
2913  * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2914  * is NOT intended for Case 2 (RDMA: long-term pins).
2915  */
2916 int pin_user_pages_fast(unsigned long start, int nr_pages,
2917 			unsigned int gup_flags, struct page **pages)
2918 {
2919 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2920 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2921 		return -EINVAL;
2922 
2923 	gup_flags |= FOLL_PIN;
2924 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2925 }
2926 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2927 
2928 /*
2929  * This is the FOLL_PIN equivalent of __get_user_pages_fast(). Behavior is the
2930  * same, except that this one sets FOLL_PIN instead of FOLL_GET.
2931  *
2932  * The API rules are the same, too: no negative values may be returned.
2933  */
2934 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2935 			     unsigned int gup_flags, struct page **pages)
2936 {
2937 	int nr_pinned;
2938 
2939 	/*
2940 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2941 	 * rules require returning 0, rather than -errno:
2942 	 */
2943 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2944 		return 0;
2945 	/*
2946 	 * FOLL_FAST_ONLY is required in order to match the API description of
2947 	 * this routine: no fall back to regular ("slow") GUP.
2948 	 */
2949 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2950 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2951 						 pages);
2952 	/*
2953 	 * This routine is not allowed to return negative values. However,
2954 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2955 	 * correct for that here:
2956 	 */
2957 	if (nr_pinned < 0)
2958 		nr_pinned = 0;
2959 
2960 	return nr_pinned;
2961 }
2962 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2963 
2964 /**
2965  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2966  *
2967  * @tsk:	the task_struct to use for page fault accounting, or
2968  *		NULL if faults are not to be recorded.
2969  * @mm:		mm_struct of target mm
2970  * @start:	starting user address
2971  * @nr_pages:	number of pages from start to pin
2972  * @gup_flags:	flags modifying lookup behaviour
2973  * @pages:	array that receives pointers to the pages pinned.
2974  *		Should be at least nr_pages long. Or NULL, if caller
2975  *		only intends to ensure the pages are faulted in.
2976  * @vmas:	array of pointers to vmas corresponding to each page.
2977  *		Or NULL if the caller does not require them.
2978  * @locked:	pointer to lock flag indicating whether lock is held and
2979  *		subsequently whether VM_FAULT_RETRY functionality can be
2980  *		utilised. Lock must initially be held.
2981  *
2982  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2983  * get_user_pages_remote() for documentation on the function arguments, because
2984  * the arguments here are identical.
2985  *
2986  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2987  * see Documentation/core-api/pin_user_pages.rst for details.
2988  *
2989  * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2990  * is NOT intended for Case 2 (RDMA: long-term pins).
2991  */
2992 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2993 			   unsigned long start, unsigned long nr_pages,
2994 			   unsigned int gup_flags, struct page **pages,
2995 			   struct vm_area_struct **vmas, int *locked)
2996 {
2997 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2998 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2999 		return -EINVAL;
3000 
3001 	gup_flags |= FOLL_PIN;
3002 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3003 				       pages, vmas, locked);
3004 }
3005 EXPORT_SYMBOL(pin_user_pages_remote);
3006 
3007 /**
3008  * pin_user_pages() - pin user pages in memory for use by other devices
3009  *
3010  * @start:	starting user address
3011  * @nr_pages:	number of pages from start to pin
3012  * @gup_flags:	flags modifying lookup behaviour
3013  * @pages:	array that receives pointers to the pages pinned.
3014  *		Should be at least nr_pages long. Or NULL, if caller
3015  *		only intends to ensure the pages are faulted in.
3016  * @vmas:	array of pointers to vmas corresponding to each page.
3017  *		Or NULL if the caller does not require them.
3018  *
3019  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3020  * FOLL_PIN is set.
3021  *
3022  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3023  * see Documentation/core-api/pin_user_pages.rst for details.
3024  *
3025  * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
3026  * is NOT intended for Case 2 (RDMA: long-term pins).
3027  */
3028 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3029 		    unsigned int gup_flags, struct page **pages,
3030 		    struct vm_area_struct **vmas)
3031 {
3032 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3033 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3034 		return -EINVAL;
3035 
3036 	gup_flags |= FOLL_PIN;
3037 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
3038 				     pages, vmas, gup_flags);
3039 }
3040 EXPORT_SYMBOL(pin_user_pages);
3041 
3042 /*
3043  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3044  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3045  * FOLL_PIN and rejects FOLL_GET.
3046  */
3047 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3048 			     struct page **pages, unsigned int gup_flags)
3049 {
3050 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 		return -EINVAL;
3053 
3054 	gup_flags |= FOLL_PIN;
3055 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3056 }
3057 EXPORT_SYMBOL(pin_user_pages_unlocked);
3058