1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * TODO: this can be optimized for huge pages: if a series of pages is 333 * physically contiguous and part of the same compound page, then a 334 * single operation to the head page should suffice. 335 */ 336 for (index = 0; index < npages; index++) 337 unpin_user_page(pages[index]); 338 } 339 EXPORT_SYMBOL(unpin_user_pages); 340 341 #ifdef CONFIG_MMU 342 static struct page *no_page_table(struct vm_area_struct *vma, 343 unsigned int flags) 344 { 345 /* 346 * When core dumping an enormous anonymous area that nobody 347 * has touched so far, we don't want to allocate unnecessary pages or 348 * page tables. Return error instead of NULL to skip handle_mm_fault, 349 * then get_dump_page() will return NULL to leave a hole in the dump. 350 * But we can only make this optimization where a hole would surely 351 * be zero-filled if handle_mm_fault() actually did handle it. 352 */ 353 if ((flags & FOLL_DUMP) && 354 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 355 return ERR_PTR(-EFAULT); 356 return NULL; 357 } 358 359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 360 pte_t *pte, unsigned int flags) 361 { 362 /* No page to get reference */ 363 if (flags & FOLL_GET) 364 return -EFAULT; 365 366 if (flags & FOLL_TOUCH) { 367 pte_t entry = *pte; 368 369 if (flags & FOLL_WRITE) 370 entry = pte_mkdirty(entry); 371 entry = pte_mkyoung(entry); 372 373 if (!pte_same(*pte, entry)) { 374 set_pte_at(vma->vm_mm, address, pte, entry); 375 update_mmu_cache(vma, address, pte); 376 } 377 } 378 379 /* Proper page table entry exists, but no corresponding struct page */ 380 return -EEXIST; 381 } 382 383 /* 384 * FOLL_FORCE or a forced COW break can write even to unwritable pte's, 385 * but only after we've gone through a COW cycle and they are dirty. 386 */ 387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 388 { 389 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte)); 390 } 391 392 /* 393 * A (separate) COW fault might break the page the other way and 394 * get_user_pages() would return the page from what is now the wrong 395 * VM. So we need to force a COW break at GUP time even for reads. 396 */ 397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags) 398 { 399 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN)); 400 } 401 402 static struct page *follow_page_pte(struct vm_area_struct *vma, 403 unsigned long address, pmd_t *pmd, unsigned int flags, 404 struct dev_pagemap **pgmap) 405 { 406 struct mm_struct *mm = vma->vm_mm; 407 struct page *page; 408 spinlock_t *ptl; 409 pte_t *ptep, pte; 410 int ret; 411 412 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 413 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 414 (FOLL_PIN | FOLL_GET))) 415 return ERR_PTR(-EINVAL); 416 retry: 417 if (unlikely(pmd_bad(*pmd))) 418 return no_page_table(vma, flags); 419 420 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 421 pte = *ptep; 422 if (!pte_present(pte)) { 423 swp_entry_t entry; 424 /* 425 * KSM's break_ksm() relies upon recognizing a ksm page 426 * even while it is being migrated, so for that case we 427 * need migration_entry_wait(). 428 */ 429 if (likely(!(flags & FOLL_MIGRATION))) 430 goto no_page; 431 if (pte_none(pte)) 432 goto no_page; 433 entry = pte_to_swp_entry(pte); 434 if (!is_migration_entry(entry)) 435 goto no_page; 436 pte_unmap_unlock(ptep, ptl); 437 migration_entry_wait(mm, pmd, address); 438 goto retry; 439 } 440 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 441 goto no_page; 442 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 443 pte_unmap_unlock(ptep, ptl); 444 return NULL; 445 } 446 447 page = vm_normal_page(vma, address, pte); 448 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 449 /* 450 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 451 * case since they are only valid while holding the pgmap 452 * reference. 453 */ 454 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 455 if (*pgmap) 456 page = pte_page(pte); 457 else 458 goto no_page; 459 } else if (unlikely(!page)) { 460 if (flags & FOLL_DUMP) { 461 /* Avoid special (like zero) pages in core dumps */ 462 page = ERR_PTR(-EFAULT); 463 goto out; 464 } 465 466 if (is_zero_pfn(pte_pfn(pte))) { 467 page = pte_page(pte); 468 } else { 469 ret = follow_pfn_pte(vma, address, ptep, flags); 470 page = ERR_PTR(ret); 471 goto out; 472 } 473 } 474 475 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 476 get_page(page); 477 pte_unmap_unlock(ptep, ptl); 478 lock_page(page); 479 ret = split_huge_page(page); 480 unlock_page(page); 481 put_page(page); 482 if (ret) 483 return ERR_PTR(ret); 484 goto retry; 485 } 486 487 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 488 if (unlikely(!try_grab_page(page, flags))) { 489 page = ERR_PTR(-ENOMEM); 490 goto out; 491 } 492 /* 493 * We need to make the page accessible if and only if we are going 494 * to access its content (the FOLL_PIN case). Please see 495 * Documentation/core-api/pin_user_pages.rst for details. 496 */ 497 if (flags & FOLL_PIN) { 498 ret = arch_make_page_accessible(page); 499 if (ret) { 500 unpin_user_page(page); 501 page = ERR_PTR(ret); 502 goto out; 503 } 504 } 505 if (flags & FOLL_TOUCH) { 506 if ((flags & FOLL_WRITE) && 507 !pte_dirty(pte) && !PageDirty(page)) 508 set_page_dirty(page); 509 /* 510 * pte_mkyoung() would be more correct here, but atomic care 511 * is needed to avoid losing the dirty bit: it is easier to use 512 * mark_page_accessed(). 513 */ 514 mark_page_accessed(page); 515 } 516 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 517 /* Do not mlock pte-mapped THP */ 518 if (PageTransCompound(page)) 519 goto out; 520 521 /* 522 * The preliminary mapping check is mainly to avoid the 523 * pointless overhead of lock_page on the ZERO_PAGE 524 * which might bounce very badly if there is contention. 525 * 526 * If the page is already locked, we don't need to 527 * handle it now - vmscan will handle it later if and 528 * when it attempts to reclaim the page. 529 */ 530 if (page->mapping && trylock_page(page)) { 531 lru_add_drain(); /* push cached pages to LRU */ 532 /* 533 * Because we lock page here, and migration is 534 * blocked by the pte's page reference, and we 535 * know the page is still mapped, we don't even 536 * need to check for file-cache page truncation. 537 */ 538 mlock_vma_page(page); 539 unlock_page(page); 540 } 541 } 542 out: 543 pte_unmap_unlock(ptep, ptl); 544 return page; 545 no_page: 546 pte_unmap_unlock(ptep, ptl); 547 if (!pte_none(pte)) 548 return NULL; 549 return no_page_table(vma, flags); 550 } 551 552 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 553 unsigned long address, pud_t *pudp, 554 unsigned int flags, 555 struct follow_page_context *ctx) 556 { 557 pmd_t *pmd, pmdval; 558 spinlock_t *ptl; 559 struct page *page; 560 struct mm_struct *mm = vma->vm_mm; 561 562 pmd = pmd_offset(pudp, address); 563 /* 564 * The READ_ONCE() will stabilize the pmdval in a register or 565 * on the stack so that it will stop changing under the code. 566 */ 567 pmdval = READ_ONCE(*pmd); 568 if (pmd_none(pmdval)) 569 return no_page_table(vma, flags); 570 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 571 page = follow_huge_pmd(mm, address, pmd, flags); 572 if (page) 573 return page; 574 return no_page_table(vma, flags); 575 } 576 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 577 page = follow_huge_pd(vma, address, 578 __hugepd(pmd_val(pmdval)), flags, 579 PMD_SHIFT); 580 if (page) 581 return page; 582 return no_page_table(vma, flags); 583 } 584 retry: 585 if (!pmd_present(pmdval)) { 586 if (likely(!(flags & FOLL_MIGRATION))) 587 return no_page_table(vma, flags); 588 VM_BUG_ON(thp_migration_supported() && 589 !is_pmd_migration_entry(pmdval)); 590 if (is_pmd_migration_entry(pmdval)) 591 pmd_migration_entry_wait(mm, pmd); 592 pmdval = READ_ONCE(*pmd); 593 /* 594 * MADV_DONTNEED may convert the pmd to null because 595 * mmap_lock is held in read mode 596 */ 597 if (pmd_none(pmdval)) 598 return no_page_table(vma, flags); 599 goto retry; 600 } 601 if (pmd_devmap(pmdval)) { 602 ptl = pmd_lock(mm, pmd); 603 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 604 spin_unlock(ptl); 605 if (page) 606 return page; 607 } 608 if (likely(!pmd_trans_huge(pmdval))) 609 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 610 611 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 612 return no_page_table(vma, flags); 613 614 retry_locked: 615 ptl = pmd_lock(mm, pmd); 616 if (unlikely(pmd_none(*pmd))) { 617 spin_unlock(ptl); 618 return no_page_table(vma, flags); 619 } 620 if (unlikely(!pmd_present(*pmd))) { 621 spin_unlock(ptl); 622 if (likely(!(flags & FOLL_MIGRATION))) 623 return no_page_table(vma, flags); 624 pmd_migration_entry_wait(mm, pmd); 625 goto retry_locked; 626 } 627 if (unlikely(!pmd_trans_huge(*pmd))) { 628 spin_unlock(ptl); 629 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 630 } 631 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 632 int ret; 633 page = pmd_page(*pmd); 634 if (is_huge_zero_page(page)) { 635 spin_unlock(ptl); 636 ret = 0; 637 split_huge_pmd(vma, pmd, address); 638 if (pmd_trans_unstable(pmd)) 639 ret = -EBUSY; 640 } else if (flags & FOLL_SPLIT) { 641 if (unlikely(!try_get_page(page))) { 642 spin_unlock(ptl); 643 return ERR_PTR(-ENOMEM); 644 } 645 spin_unlock(ptl); 646 lock_page(page); 647 ret = split_huge_page(page); 648 unlock_page(page); 649 put_page(page); 650 if (pmd_none(*pmd)) 651 return no_page_table(vma, flags); 652 } else { /* flags & FOLL_SPLIT_PMD */ 653 spin_unlock(ptl); 654 split_huge_pmd(vma, pmd, address); 655 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 656 } 657 658 return ret ? ERR_PTR(ret) : 659 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 660 } 661 page = follow_trans_huge_pmd(vma, address, pmd, flags); 662 spin_unlock(ptl); 663 ctx->page_mask = HPAGE_PMD_NR - 1; 664 return page; 665 } 666 667 static struct page *follow_pud_mask(struct vm_area_struct *vma, 668 unsigned long address, p4d_t *p4dp, 669 unsigned int flags, 670 struct follow_page_context *ctx) 671 { 672 pud_t *pud; 673 spinlock_t *ptl; 674 struct page *page; 675 struct mm_struct *mm = vma->vm_mm; 676 677 pud = pud_offset(p4dp, address); 678 if (pud_none(*pud)) 679 return no_page_table(vma, flags); 680 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 681 page = follow_huge_pud(mm, address, pud, flags); 682 if (page) 683 return page; 684 return no_page_table(vma, flags); 685 } 686 if (is_hugepd(__hugepd(pud_val(*pud)))) { 687 page = follow_huge_pd(vma, address, 688 __hugepd(pud_val(*pud)), flags, 689 PUD_SHIFT); 690 if (page) 691 return page; 692 return no_page_table(vma, flags); 693 } 694 if (pud_devmap(*pud)) { 695 ptl = pud_lock(mm, pud); 696 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 697 spin_unlock(ptl); 698 if (page) 699 return page; 700 } 701 if (unlikely(pud_bad(*pud))) 702 return no_page_table(vma, flags); 703 704 return follow_pmd_mask(vma, address, pud, flags, ctx); 705 } 706 707 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 708 unsigned long address, pgd_t *pgdp, 709 unsigned int flags, 710 struct follow_page_context *ctx) 711 { 712 p4d_t *p4d; 713 struct page *page; 714 715 p4d = p4d_offset(pgdp, address); 716 if (p4d_none(*p4d)) 717 return no_page_table(vma, flags); 718 BUILD_BUG_ON(p4d_huge(*p4d)); 719 if (unlikely(p4d_bad(*p4d))) 720 return no_page_table(vma, flags); 721 722 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 723 page = follow_huge_pd(vma, address, 724 __hugepd(p4d_val(*p4d)), flags, 725 P4D_SHIFT); 726 if (page) 727 return page; 728 return no_page_table(vma, flags); 729 } 730 return follow_pud_mask(vma, address, p4d, flags, ctx); 731 } 732 733 /** 734 * follow_page_mask - look up a page descriptor from a user-virtual address 735 * @vma: vm_area_struct mapping @address 736 * @address: virtual address to look up 737 * @flags: flags modifying lookup behaviour 738 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 739 * pointer to output page_mask 740 * 741 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 742 * 743 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 744 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 745 * 746 * On output, the @ctx->page_mask is set according to the size of the page. 747 * 748 * Return: the mapped (struct page *), %NULL if no mapping exists, or 749 * an error pointer if there is a mapping to something not represented 750 * by a page descriptor (see also vm_normal_page()). 751 */ 752 static struct page *follow_page_mask(struct vm_area_struct *vma, 753 unsigned long address, unsigned int flags, 754 struct follow_page_context *ctx) 755 { 756 pgd_t *pgd; 757 struct page *page; 758 struct mm_struct *mm = vma->vm_mm; 759 760 ctx->page_mask = 0; 761 762 /* make this handle hugepd */ 763 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 764 if (!IS_ERR(page)) { 765 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 766 return page; 767 } 768 769 pgd = pgd_offset(mm, address); 770 771 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 772 return no_page_table(vma, flags); 773 774 if (pgd_huge(*pgd)) { 775 page = follow_huge_pgd(mm, address, pgd, flags); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 781 page = follow_huge_pd(vma, address, 782 __hugepd(pgd_val(*pgd)), flags, 783 PGDIR_SHIFT); 784 if (page) 785 return page; 786 return no_page_table(vma, flags); 787 } 788 789 return follow_p4d_mask(vma, address, pgd, flags, ctx); 790 } 791 792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 793 unsigned int foll_flags) 794 { 795 struct follow_page_context ctx = { NULL }; 796 struct page *page; 797 798 page = follow_page_mask(vma, address, foll_flags, &ctx); 799 if (ctx.pgmap) 800 put_dev_pagemap(ctx.pgmap); 801 return page; 802 } 803 804 static int get_gate_page(struct mm_struct *mm, unsigned long address, 805 unsigned int gup_flags, struct vm_area_struct **vma, 806 struct page **page) 807 { 808 pgd_t *pgd; 809 p4d_t *p4d; 810 pud_t *pud; 811 pmd_t *pmd; 812 pte_t *pte; 813 int ret = -EFAULT; 814 815 /* user gate pages are read-only */ 816 if (gup_flags & FOLL_WRITE) 817 return -EFAULT; 818 if (address > TASK_SIZE) 819 pgd = pgd_offset_k(address); 820 else 821 pgd = pgd_offset_gate(mm, address); 822 if (pgd_none(*pgd)) 823 return -EFAULT; 824 p4d = p4d_offset(pgd, address); 825 if (p4d_none(*p4d)) 826 return -EFAULT; 827 pud = pud_offset(p4d, address); 828 if (pud_none(*pud)) 829 return -EFAULT; 830 pmd = pmd_offset(pud, address); 831 if (!pmd_present(*pmd)) 832 return -EFAULT; 833 VM_BUG_ON(pmd_trans_huge(*pmd)); 834 pte = pte_offset_map(pmd, address); 835 if (pte_none(*pte)) 836 goto unmap; 837 *vma = get_gate_vma(mm); 838 if (!page) 839 goto out; 840 *page = vm_normal_page(*vma, address, *pte); 841 if (!*page) { 842 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 843 goto unmap; 844 *page = pte_page(*pte); 845 } 846 if (unlikely(!try_get_page(*page))) { 847 ret = -ENOMEM; 848 goto unmap; 849 } 850 out: 851 ret = 0; 852 unmap: 853 pte_unmap(pte); 854 return ret; 855 } 856 857 /* 858 * mmap_lock must be held on entry. If @locked != NULL and *@flags 859 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 860 * is, *@locked will be set to 0 and -EBUSY returned. 861 */ 862 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 863 unsigned long address, unsigned int *flags, int *locked) 864 { 865 unsigned int fault_flags = 0; 866 vm_fault_t ret; 867 868 /* mlock all present pages, but do not fault in new pages */ 869 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 870 return -ENOENT; 871 if (*flags & FOLL_WRITE) 872 fault_flags |= FAULT_FLAG_WRITE; 873 if (*flags & FOLL_REMOTE) 874 fault_flags |= FAULT_FLAG_REMOTE; 875 if (locked) 876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 877 if (*flags & FOLL_NOWAIT) 878 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 879 if (*flags & FOLL_TRIED) { 880 /* 881 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 882 * can co-exist 883 */ 884 fault_flags |= FAULT_FLAG_TRIED; 885 } 886 887 ret = handle_mm_fault(vma, address, fault_flags); 888 if (ret & VM_FAULT_ERROR) { 889 int err = vm_fault_to_errno(ret, *flags); 890 891 if (err) 892 return err; 893 BUG(); 894 } 895 896 if (tsk) { 897 if (ret & VM_FAULT_MAJOR) 898 tsk->maj_flt++; 899 else 900 tsk->min_flt++; 901 } 902 903 if (ret & VM_FAULT_RETRY) { 904 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 905 *locked = 0; 906 return -EBUSY; 907 } 908 909 /* 910 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 911 * necessary, even if maybe_mkwrite decided not to set pte_write. We 912 * can thus safely do subsequent page lookups as if they were reads. 913 * But only do so when looping for pte_write is futile: in some cases 914 * userspace may also be wanting to write to the gotten user page, 915 * which a read fault here might prevent (a readonly page might get 916 * reCOWed by userspace write). 917 */ 918 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 919 *flags |= FOLL_COW; 920 return 0; 921 } 922 923 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 924 { 925 vm_flags_t vm_flags = vma->vm_flags; 926 int write = (gup_flags & FOLL_WRITE); 927 int foreign = (gup_flags & FOLL_REMOTE); 928 929 if (vm_flags & (VM_IO | VM_PFNMAP)) 930 return -EFAULT; 931 932 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 933 return -EFAULT; 934 935 if (write) { 936 if (!(vm_flags & VM_WRITE)) { 937 if (!(gup_flags & FOLL_FORCE)) 938 return -EFAULT; 939 /* 940 * We used to let the write,force case do COW in a 941 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 942 * set a breakpoint in a read-only mapping of an 943 * executable, without corrupting the file (yet only 944 * when that file had been opened for writing!). 945 * Anon pages in shared mappings are surprising: now 946 * just reject it. 947 */ 948 if (!is_cow_mapping(vm_flags)) 949 return -EFAULT; 950 } 951 } else if (!(vm_flags & VM_READ)) { 952 if (!(gup_flags & FOLL_FORCE)) 953 return -EFAULT; 954 /* 955 * Is there actually any vma we can reach here which does not 956 * have VM_MAYREAD set? 957 */ 958 if (!(vm_flags & VM_MAYREAD)) 959 return -EFAULT; 960 } 961 /* 962 * gups are always data accesses, not instruction 963 * fetches, so execute=false here 964 */ 965 if (!arch_vma_access_permitted(vma, write, false, foreign)) 966 return -EFAULT; 967 return 0; 968 } 969 970 /** 971 * __get_user_pages() - pin user pages in memory 972 * @tsk: task_struct of target task 973 * @mm: mm_struct of target mm 974 * @start: starting user address 975 * @nr_pages: number of pages from start to pin 976 * @gup_flags: flags modifying pin behaviour 977 * @pages: array that receives pointers to the pages pinned. 978 * Should be at least nr_pages long. Or NULL, if caller 979 * only intends to ensure the pages are faulted in. 980 * @vmas: array of pointers to vmas corresponding to each page. 981 * Or NULL if the caller does not require them. 982 * @locked: whether we're still with the mmap_lock held 983 * 984 * Returns either number of pages pinned (which may be less than the 985 * number requested), or an error. Details about the return value: 986 * 987 * -- If nr_pages is 0, returns 0. 988 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 989 * -- If nr_pages is >0, and some pages were pinned, returns the number of 990 * pages pinned. Again, this may be less than nr_pages. 991 * -- 0 return value is possible when the fault would need to be retried. 992 * 993 * The caller is responsible for releasing returned @pages, via put_page(). 994 * 995 * @vmas are valid only as long as mmap_lock is held. 996 * 997 * Must be called with mmap_lock held. It may be released. See below. 998 * 999 * __get_user_pages walks a process's page tables and takes a reference to 1000 * each struct page that each user address corresponds to at a given 1001 * instant. That is, it takes the page that would be accessed if a user 1002 * thread accesses the given user virtual address at that instant. 1003 * 1004 * This does not guarantee that the page exists in the user mappings when 1005 * __get_user_pages returns, and there may even be a completely different 1006 * page there in some cases (eg. if mmapped pagecache has been invalidated 1007 * and subsequently re faulted). However it does guarantee that the page 1008 * won't be freed completely. And mostly callers simply care that the page 1009 * contains data that was valid *at some point in time*. Typically, an IO 1010 * or similar operation cannot guarantee anything stronger anyway because 1011 * locks can't be held over the syscall boundary. 1012 * 1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1015 * appropriate) must be called after the page is finished with, and 1016 * before put_page is called. 1017 * 1018 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1019 * released by an up_read(). That can happen if @gup_flags does not 1020 * have FOLL_NOWAIT. 1021 * 1022 * A caller using such a combination of @locked and @gup_flags 1023 * must therefore hold the mmap_lock for reading only, and recognize 1024 * when it's been released. Otherwise, it must be held for either 1025 * reading or writing and will not be released. 1026 * 1027 * In most cases, get_user_pages or get_user_pages_fast should be used 1028 * instead of __get_user_pages. __get_user_pages should be used only if 1029 * you need some special @gup_flags. 1030 */ 1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1032 unsigned long start, unsigned long nr_pages, 1033 unsigned int gup_flags, struct page **pages, 1034 struct vm_area_struct **vmas, int *locked) 1035 { 1036 long ret = 0, i = 0; 1037 struct vm_area_struct *vma = NULL; 1038 struct follow_page_context ctx = { NULL }; 1039 1040 if (!nr_pages) 1041 return 0; 1042 1043 start = untagged_addr(start); 1044 1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1046 1047 /* 1048 * If FOLL_FORCE is set then do not force a full fault as the hinting 1049 * fault information is unrelated to the reference behaviour of a task 1050 * using the address space 1051 */ 1052 if (!(gup_flags & FOLL_FORCE)) 1053 gup_flags |= FOLL_NUMA; 1054 1055 do { 1056 struct page *page; 1057 unsigned int foll_flags = gup_flags; 1058 unsigned int page_increm; 1059 1060 /* first iteration or cross vma bound */ 1061 if (!vma || start >= vma->vm_end) { 1062 vma = find_extend_vma(mm, start); 1063 if (!vma && in_gate_area(mm, start)) { 1064 ret = get_gate_page(mm, start & PAGE_MASK, 1065 gup_flags, &vma, 1066 pages ? &pages[i] : NULL); 1067 if (ret) 1068 goto out; 1069 ctx.page_mask = 0; 1070 goto next_page; 1071 } 1072 1073 if (!vma || check_vma_flags(vma, gup_flags)) { 1074 ret = -EFAULT; 1075 goto out; 1076 } 1077 if (is_vm_hugetlb_page(vma)) { 1078 if (should_force_cow_break(vma, foll_flags)) 1079 foll_flags |= FOLL_WRITE; 1080 i = follow_hugetlb_page(mm, vma, pages, vmas, 1081 &start, &nr_pages, i, 1082 foll_flags, locked); 1083 if (locked && *locked == 0) { 1084 /* 1085 * We've got a VM_FAULT_RETRY 1086 * and we've lost mmap_lock. 1087 * We must stop here. 1088 */ 1089 BUG_ON(gup_flags & FOLL_NOWAIT); 1090 BUG_ON(ret != 0); 1091 goto out; 1092 } 1093 continue; 1094 } 1095 } 1096 1097 if (should_force_cow_break(vma, foll_flags)) 1098 foll_flags |= FOLL_WRITE; 1099 1100 retry: 1101 /* 1102 * If we have a pending SIGKILL, don't keep faulting pages and 1103 * potentially allocating memory. 1104 */ 1105 if (fatal_signal_pending(current)) { 1106 ret = -EINTR; 1107 goto out; 1108 } 1109 cond_resched(); 1110 1111 page = follow_page_mask(vma, start, foll_flags, &ctx); 1112 if (!page) { 1113 ret = faultin_page(tsk, vma, start, &foll_flags, 1114 locked); 1115 switch (ret) { 1116 case 0: 1117 goto retry; 1118 case -EBUSY: 1119 ret = 0; 1120 fallthrough; 1121 case -EFAULT: 1122 case -ENOMEM: 1123 case -EHWPOISON: 1124 goto out; 1125 case -ENOENT: 1126 goto next_page; 1127 } 1128 BUG(); 1129 } else if (PTR_ERR(page) == -EEXIST) { 1130 /* 1131 * Proper page table entry exists, but no corresponding 1132 * struct page. 1133 */ 1134 goto next_page; 1135 } else if (IS_ERR(page)) { 1136 ret = PTR_ERR(page); 1137 goto out; 1138 } 1139 if (pages) { 1140 pages[i] = page; 1141 flush_anon_page(vma, page, start); 1142 flush_dcache_page(page); 1143 ctx.page_mask = 0; 1144 } 1145 next_page: 1146 if (vmas) { 1147 vmas[i] = vma; 1148 ctx.page_mask = 0; 1149 } 1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1151 if (page_increm > nr_pages) 1152 page_increm = nr_pages; 1153 i += page_increm; 1154 start += page_increm * PAGE_SIZE; 1155 nr_pages -= page_increm; 1156 } while (nr_pages); 1157 out: 1158 if (ctx.pgmap) 1159 put_dev_pagemap(ctx.pgmap); 1160 return i ? i : ret; 1161 } 1162 1163 static bool vma_permits_fault(struct vm_area_struct *vma, 1164 unsigned int fault_flags) 1165 { 1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1169 1170 if (!(vm_flags & vma->vm_flags)) 1171 return false; 1172 1173 /* 1174 * The architecture might have a hardware protection 1175 * mechanism other than read/write that can deny access. 1176 * 1177 * gup always represents data access, not instruction 1178 * fetches, so execute=false here: 1179 */ 1180 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1181 return false; 1182 1183 return true; 1184 } 1185 1186 /** 1187 * fixup_user_fault() - manually resolve a user page fault 1188 * @tsk: the task_struct to use for page fault accounting, or 1189 * NULL if faults are not to be recorded. 1190 * @mm: mm_struct of target mm 1191 * @address: user address 1192 * @fault_flags:flags to pass down to handle_mm_fault() 1193 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1194 * does not allow retry. If NULL, the caller must guarantee 1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1196 * 1197 * This is meant to be called in the specific scenario where for locking reasons 1198 * we try to access user memory in atomic context (within a pagefault_disable() 1199 * section), this returns -EFAULT, and we want to resolve the user fault before 1200 * trying again. 1201 * 1202 * Typically this is meant to be used by the futex code. 1203 * 1204 * The main difference with get_user_pages() is that this function will 1205 * unconditionally call handle_mm_fault() which will in turn perform all the 1206 * necessary SW fixup of the dirty and young bits in the PTE, while 1207 * get_user_pages() only guarantees to update these in the struct page. 1208 * 1209 * This is important for some architectures where those bits also gate the 1210 * access permission to the page because they are maintained in software. On 1211 * such architectures, gup() will not be enough to make a subsequent access 1212 * succeed. 1213 * 1214 * This function will not return with an unlocked mmap_lock. So it has not the 1215 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1216 */ 1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1218 unsigned long address, unsigned int fault_flags, 1219 bool *unlocked) 1220 { 1221 struct vm_area_struct *vma; 1222 vm_fault_t ret, major = 0; 1223 1224 address = untagged_addr(address); 1225 1226 if (unlocked) 1227 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1228 1229 retry: 1230 vma = find_extend_vma(mm, address); 1231 if (!vma || address < vma->vm_start) 1232 return -EFAULT; 1233 1234 if (!vma_permits_fault(vma, fault_flags)) 1235 return -EFAULT; 1236 1237 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1238 fatal_signal_pending(current)) 1239 return -EINTR; 1240 1241 ret = handle_mm_fault(vma, address, fault_flags); 1242 major |= ret & VM_FAULT_MAJOR; 1243 if (ret & VM_FAULT_ERROR) { 1244 int err = vm_fault_to_errno(ret, 0); 1245 1246 if (err) 1247 return err; 1248 BUG(); 1249 } 1250 1251 if (ret & VM_FAULT_RETRY) { 1252 mmap_read_lock(mm); 1253 *unlocked = true; 1254 fault_flags |= FAULT_FLAG_TRIED; 1255 goto retry; 1256 } 1257 1258 if (tsk) { 1259 if (major) 1260 tsk->maj_flt++; 1261 else 1262 tsk->min_flt++; 1263 } 1264 return 0; 1265 } 1266 EXPORT_SYMBOL_GPL(fixup_user_fault); 1267 1268 /* 1269 * Please note that this function, unlike __get_user_pages will not 1270 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1271 */ 1272 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1273 struct mm_struct *mm, 1274 unsigned long start, 1275 unsigned long nr_pages, 1276 struct page **pages, 1277 struct vm_area_struct **vmas, 1278 int *locked, 1279 unsigned int flags) 1280 { 1281 long ret, pages_done; 1282 bool lock_dropped; 1283 1284 if (locked) { 1285 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1286 BUG_ON(vmas); 1287 /* check caller initialized locked */ 1288 BUG_ON(*locked != 1); 1289 } 1290 1291 /* 1292 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1293 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1294 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1295 * for FOLL_GET, not for the newer FOLL_PIN. 1296 * 1297 * FOLL_PIN always expects pages to be non-null, but no need to assert 1298 * that here, as any failures will be obvious enough. 1299 */ 1300 if (pages && !(flags & FOLL_PIN)) 1301 flags |= FOLL_GET; 1302 1303 pages_done = 0; 1304 lock_dropped = false; 1305 for (;;) { 1306 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1307 vmas, locked); 1308 if (!locked) 1309 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1310 return ret; 1311 1312 /* VM_FAULT_RETRY cannot return errors */ 1313 if (!*locked) { 1314 BUG_ON(ret < 0); 1315 BUG_ON(ret >= nr_pages); 1316 } 1317 1318 if (ret > 0) { 1319 nr_pages -= ret; 1320 pages_done += ret; 1321 if (!nr_pages) 1322 break; 1323 } 1324 if (*locked) { 1325 /* 1326 * VM_FAULT_RETRY didn't trigger or it was a 1327 * FOLL_NOWAIT. 1328 */ 1329 if (!pages_done) 1330 pages_done = ret; 1331 break; 1332 } 1333 /* 1334 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1335 * For the prefault case (!pages) we only update counts. 1336 */ 1337 if (likely(pages)) 1338 pages += ret; 1339 start += ret << PAGE_SHIFT; 1340 lock_dropped = true; 1341 1342 retry: 1343 /* 1344 * Repeat on the address that fired VM_FAULT_RETRY 1345 * with both FAULT_FLAG_ALLOW_RETRY and 1346 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1347 * by fatal signals, so we need to check it before we 1348 * start trying again otherwise it can loop forever. 1349 */ 1350 1351 if (fatal_signal_pending(current)) { 1352 if (!pages_done) 1353 pages_done = -EINTR; 1354 break; 1355 } 1356 1357 ret = mmap_read_lock_killable(mm); 1358 if (ret) { 1359 BUG_ON(ret > 0); 1360 if (!pages_done) 1361 pages_done = ret; 1362 break; 1363 } 1364 1365 *locked = 1; 1366 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1367 pages, NULL, locked); 1368 if (!*locked) { 1369 /* Continue to retry until we succeeded */ 1370 BUG_ON(ret != 0); 1371 goto retry; 1372 } 1373 if (ret != 1) { 1374 BUG_ON(ret > 1); 1375 if (!pages_done) 1376 pages_done = ret; 1377 break; 1378 } 1379 nr_pages--; 1380 pages_done++; 1381 if (!nr_pages) 1382 break; 1383 if (likely(pages)) 1384 pages++; 1385 start += PAGE_SIZE; 1386 } 1387 if (lock_dropped && *locked) { 1388 /* 1389 * We must let the caller know we temporarily dropped the lock 1390 * and so the critical section protected by it was lost. 1391 */ 1392 mmap_read_unlock(mm); 1393 *locked = 0; 1394 } 1395 return pages_done; 1396 } 1397 1398 /** 1399 * populate_vma_page_range() - populate a range of pages in the vma. 1400 * @vma: target vma 1401 * @start: start address 1402 * @end: end address 1403 * @locked: whether the mmap_lock is still held 1404 * 1405 * This takes care of mlocking the pages too if VM_LOCKED is set. 1406 * 1407 * Return either number of pages pinned in the vma, or a negative error 1408 * code on error. 1409 * 1410 * vma->vm_mm->mmap_lock must be held. 1411 * 1412 * If @locked is NULL, it may be held for read or write and will 1413 * be unperturbed. 1414 * 1415 * If @locked is non-NULL, it must held for read only and may be 1416 * released. If it's released, *@locked will be set to 0. 1417 */ 1418 long populate_vma_page_range(struct vm_area_struct *vma, 1419 unsigned long start, unsigned long end, int *locked) 1420 { 1421 struct mm_struct *mm = vma->vm_mm; 1422 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1423 int gup_flags; 1424 1425 VM_BUG_ON(start & ~PAGE_MASK); 1426 VM_BUG_ON(end & ~PAGE_MASK); 1427 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1428 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1429 mmap_assert_locked(mm); 1430 1431 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1432 if (vma->vm_flags & VM_LOCKONFAULT) 1433 gup_flags &= ~FOLL_POPULATE; 1434 /* 1435 * We want to touch writable mappings with a write fault in order 1436 * to break COW, except for shared mappings because these don't COW 1437 * and we would not want to dirty them for nothing. 1438 */ 1439 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1440 gup_flags |= FOLL_WRITE; 1441 1442 /* 1443 * We want mlock to succeed for regions that have any permissions 1444 * other than PROT_NONE. 1445 */ 1446 if (vma_is_accessible(vma)) 1447 gup_flags |= FOLL_FORCE; 1448 1449 /* 1450 * We made sure addr is within a VMA, so the following will 1451 * not result in a stack expansion that recurses back here. 1452 */ 1453 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1454 NULL, NULL, locked); 1455 } 1456 1457 /* 1458 * __mm_populate - populate and/or mlock pages within a range of address space. 1459 * 1460 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1461 * flags. VMAs must be already marked with the desired vm_flags, and 1462 * mmap_lock must not be held. 1463 */ 1464 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1465 { 1466 struct mm_struct *mm = current->mm; 1467 unsigned long end, nstart, nend; 1468 struct vm_area_struct *vma = NULL; 1469 int locked = 0; 1470 long ret = 0; 1471 1472 end = start + len; 1473 1474 for (nstart = start; nstart < end; nstart = nend) { 1475 /* 1476 * We want to fault in pages for [nstart; end) address range. 1477 * Find first corresponding VMA. 1478 */ 1479 if (!locked) { 1480 locked = 1; 1481 mmap_read_lock(mm); 1482 vma = find_vma(mm, nstart); 1483 } else if (nstart >= vma->vm_end) 1484 vma = vma->vm_next; 1485 if (!vma || vma->vm_start >= end) 1486 break; 1487 /* 1488 * Set [nstart; nend) to intersection of desired address 1489 * range with the first VMA. Also, skip undesirable VMA types. 1490 */ 1491 nend = min(end, vma->vm_end); 1492 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1493 continue; 1494 if (nstart < vma->vm_start) 1495 nstart = vma->vm_start; 1496 /* 1497 * Now fault in a range of pages. populate_vma_page_range() 1498 * double checks the vma flags, so that it won't mlock pages 1499 * if the vma was already munlocked. 1500 */ 1501 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1502 if (ret < 0) { 1503 if (ignore_errors) { 1504 ret = 0; 1505 continue; /* continue at next VMA */ 1506 } 1507 break; 1508 } 1509 nend = nstart + ret * PAGE_SIZE; 1510 ret = 0; 1511 } 1512 if (locked) 1513 mmap_read_unlock(mm); 1514 return ret; /* 0 or negative error code */ 1515 } 1516 1517 /** 1518 * get_dump_page() - pin user page in memory while writing it to core dump 1519 * @addr: user address 1520 * 1521 * Returns struct page pointer of user page pinned for dump, 1522 * to be freed afterwards by put_page(). 1523 * 1524 * Returns NULL on any kind of failure - a hole must then be inserted into 1525 * the corefile, to preserve alignment with its headers; and also returns 1526 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1527 * allowing a hole to be left in the corefile to save diskspace. 1528 * 1529 * Called without mmap_lock, but after all other threads have been killed. 1530 */ 1531 #ifdef CONFIG_ELF_CORE 1532 struct page *get_dump_page(unsigned long addr) 1533 { 1534 struct vm_area_struct *vma; 1535 struct page *page; 1536 1537 if (__get_user_pages(current, current->mm, addr, 1, 1538 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1539 NULL) < 1) 1540 return NULL; 1541 flush_cache_page(vma, addr, page_to_pfn(page)); 1542 return page; 1543 } 1544 #endif /* CONFIG_ELF_CORE */ 1545 #else /* CONFIG_MMU */ 1546 static long __get_user_pages_locked(struct task_struct *tsk, 1547 struct mm_struct *mm, unsigned long start, 1548 unsigned long nr_pages, struct page **pages, 1549 struct vm_area_struct **vmas, int *locked, 1550 unsigned int foll_flags) 1551 { 1552 struct vm_area_struct *vma; 1553 unsigned long vm_flags; 1554 int i; 1555 1556 /* calculate required read or write permissions. 1557 * If FOLL_FORCE is set, we only require the "MAY" flags. 1558 */ 1559 vm_flags = (foll_flags & FOLL_WRITE) ? 1560 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1561 vm_flags &= (foll_flags & FOLL_FORCE) ? 1562 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1563 1564 for (i = 0; i < nr_pages; i++) { 1565 vma = find_vma(mm, start); 1566 if (!vma) 1567 goto finish_or_fault; 1568 1569 /* protect what we can, including chardevs */ 1570 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1571 !(vm_flags & vma->vm_flags)) 1572 goto finish_or_fault; 1573 1574 if (pages) { 1575 pages[i] = virt_to_page(start); 1576 if (pages[i]) 1577 get_page(pages[i]); 1578 } 1579 if (vmas) 1580 vmas[i] = vma; 1581 start = (start + PAGE_SIZE) & PAGE_MASK; 1582 } 1583 1584 return i; 1585 1586 finish_or_fault: 1587 return i ? : -EFAULT; 1588 } 1589 #endif /* !CONFIG_MMU */ 1590 1591 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1592 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1593 { 1594 long i; 1595 struct vm_area_struct *vma_prev = NULL; 1596 1597 for (i = 0; i < nr_pages; i++) { 1598 struct vm_area_struct *vma = vmas[i]; 1599 1600 if (vma == vma_prev) 1601 continue; 1602 1603 vma_prev = vma; 1604 1605 if (vma_is_fsdax(vma)) 1606 return true; 1607 } 1608 return false; 1609 } 1610 1611 #ifdef CONFIG_CMA 1612 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1613 { 1614 /* 1615 * We want to make sure we allocate the new page from the same node 1616 * as the source page. 1617 */ 1618 int nid = page_to_nid(page); 1619 /* 1620 * Trying to allocate a page for migration. Ignore allocation 1621 * failure warnings. We don't force __GFP_THISNODE here because 1622 * this node here is the node where we have CMA reservation and 1623 * in some case these nodes will have really less non movable 1624 * allocation memory. 1625 */ 1626 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1627 1628 if (PageHighMem(page)) 1629 gfp_mask |= __GFP_HIGHMEM; 1630 1631 #ifdef CONFIG_HUGETLB_PAGE 1632 if (PageHuge(page)) { 1633 struct hstate *h = page_hstate(page); 1634 /* 1635 * We don't want to dequeue from the pool because pool pages will 1636 * mostly be from the CMA region. 1637 */ 1638 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1639 } 1640 #endif 1641 if (PageTransHuge(page)) { 1642 struct page *thp; 1643 /* 1644 * ignore allocation failure warnings 1645 */ 1646 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1647 1648 /* 1649 * Remove the movable mask so that we don't allocate from 1650 * CMA area again. 1651 */ 1652 thp_gfpmask &= ~__GFP_MOVABLE; 1653 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1654 if (!thp) 1655 return NULL; 1656 prep_transhuge_page(thp); 1657 return thp; 1658 } 1659 1660 return __alloc_pages_node(nid, gfp_mask, 0); 1661 } 1662 1663 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1664 struct mm_struct *mm, 1665 unsigned long start, 1666 unsigned long nr_pages, 1667 struct page **pages, 1668 struct vm_area_struct **vmas, 1669 unsigned int gup_flags) 1670 { 1671 unsigned long i; 1672 unsigned long step; 1673 bool drain_allow = true; 1674 bool migrate_allow = true; 1675 LIST_HEAD(cma_page_list); 1676 long ret = nr_pages; 1677 1678 check_again: 1679 for (i = 0; i < nr_pages;) { 1680 1681 struct page *head = compound_head(pages[i]); 1682 1683 /* 1684 * gup may start from a tail page. Advance step by the left 1685 * part. 1686 */ 1687 step = compound_nr(head) - (pages[i] - head); 1688 /* 1689 * If we get a page from the CMA zone, since we are going to 1690 * be pinning these entries, we might as well move them out 1691 * of the CMA zone if possible. 1692 */ 1693 if (is_migrate_cma_page(head)) { 1694 if (PageHuge(head)) 1695 isolate_huge_page(head, &cma_page_list); 1696 else { 1697 if (!PageLRU(head) && drain_allow) { 1698 lru_add_drain_all(); 1699 drain_allow = false; 1700 } 1701 1702 if (!isolate_lru_page(head)) { 1703 list_add_tail(&head->lru, &cma_page_list); 1704 mod_node_page_state(page_pgdat(head), 1705 NR_ISOLATED_ANON + 1706 page_is_file_lru(head), 1707 hpage_nr_pages(head)); 1708 } 1709 } 1710 } 1711 1712 i += step; 1713 } 1714 1715 if (!list_empty(&cma_page_list)) { 1716 /* 1717 * drop the above get_user_pages reference. 1718 */ 1719 for (i = 0; i < nr_pages; i++) 1720 put_page(pages[i]); 1721 1722 if (migrate_pages(&cma_page_list, new_non_cma_page, 1723 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1724 /* 1725 * some of the pages failed migration. Do get_user_pages 1726 * without migration. 1727 */ 1728 migrate_allow = false; 1729 1730 if (!list_empty(&cma_page_list)) 1731 putback_movable_pages(&cma_page_list); 1732 } 1733 /* 1734 * We did migrate all the pages, Try to get the page references 1735 * again migrating any new CMA pages which we failed to isolate 1736 * earlier. 1737 */ 1738 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1739 pages, vmas, NULL, 1740 gup_flags); 1741 1742 if ((ret > 0) && migrate_allow) { 1743 nr_pages = ret; 1744 drain_allow = true; 1745 goto check_again; 1746 } 1747 } 1748 1749 return ret; 1750 } 1751 #else 1752 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1753 struct mm_struct *mm, 1754 unsigned long start, 1755 unsigned long nr_pages, 1756 struct page **pages, 1757 struct vm_area_struct **vmas, 1758 unsigned int gup_flags) 1759 { 1760 return nr_pages; 1761 } 1762 #endif /* CONFIG_CMA */ 1763 1764 /* 1765 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1766 * allows us to process the FOLL_LONGTERM flag. 1767 */ 1768 static long __gup_longterm_locked(struct task_struct *tsk, 1769 struct mm_struct *mm, 1770 unsigned long start, 1771 unsigned long nr_pages, 1772 struct page **pages, 1773 struct vm_area_struct **vmas, 1774 unsigned int gup_flags) 1775 { 1776 struct vm_area_struct **vmas_tmp = vmas; 1777 unsigned long flags = 0; 1778 long rc, i; 1779 1780 if (gup_flags & FOLL_LONGTERM) { 1781 if (!pages) 1782 return -EINVAL; 1783 1784 if (!vmas_tmp) { 1785 vmas_tmp = kcalloc(nr_pages, 1786 sizeof(struct vm_area_struct *), 1787 GFP_KERNEL); 1788 if (!vmas_tmp) 1789 return -ENOMEM; 1790 } 1791 flags = memalloc_nocma_save(); 1792 } 1793 1794 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1795 vmas_tmp, NULL, gup_flags); 1796 1797 if (gup_flags & FOLL_LONGTERM) { 1798 memalloc_nocma_restore(flags); 1799 if (rc < 0) 1800 goto out; 1801 1802 if (check_dax_vmas(vmas_tmp, rc)) { 1803 for (i = 0; i < rc; i++) 1804 put_page(pages[i]); 1805 rc = -EOPNOTSUPP; 1806 goto out; 1807 } 1808 1809 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1810 vmas_tmp, gup_flags); 1811 } 1812 1813 out: 1814 if (vmas_tmp != vmas) 1815 kfree(vmas_tmp); 1816 return rc; 1817 } 1818 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1819 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1820 struct mm_struct *mm, 1821 unsigned long start, 1822 unsigned long nr_pages, 1823 struct page **pages, 1824 struct vm_area_struct **vmas, 1825 unsigned int flags) 1826 { 1827 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1828 NULL, flags); 1829 } 1830 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1831 1832 #ifdef CONFIG_MMU 1833 static long __get_user_pages_remote(struct task_struct *tsk, 1834 struct mm_struct *mm, 1835 unsigned long start, unsigned long nr_pages, 1836 unsigned int gup_flags, struct page **pages, 1837 struct vm_area_struct **vmas, int *locked) 1838 { 1839 /* 1840 * Parts of FOLL_LONGTERM behavior are incompatible with 1841 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1842 * vmas. However, this only comes up if locked is set, and there are 1843 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1844 * allow what we can. 1845 */ 1846 if (gup_flags & FOLL_LONGTERM) { 1847 if (WARN_ON_ONCE(locked)) 1848 return -EINVAL; 1849 /* 1850 * This will check the vmas (even if our vmas arg is NULL) 1851 * and return -ENOTSUPP if DAX isn't allowed in this case: 1852 */ 1853 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1854 vmas, gup_flags | FOLL_TOUCH | 1855 FOLL_REMOTE); 1856 } 1857 1858 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1859 locked, 1860 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1861 } 1862 1863 /** 1864 * get_user_pages_remote() - pin user pages in memory 1865 * @tsk: the task_struct to use for page fault accounting, or 1866 * NULL if faults are not to be recorded. 1867 * @mm: mm_struct of target mm 1868 * @start: starting user address 1869 * @nr_pages: number of pages from start to pin 1870 * @gup_flags: flags modifying lookup behaviour 1871 * @pages: array that receives pointers to the pages pinned. 1872 * Should be at least nr_pages long. Or NULL, if caller 1873 * only intends to ensure the pages are faulted in. 1874 * @vmas: array of pointers to vmas corresponding to each page. 1875 * Or NULL if the caller does not require them. 1876 * @locked: pointer to lock flag indicating whether lock is held and 1877 * subsequently whether VM_FAULT_RETRY functionality can be 1878 * utilised. Lock must initially be held. 1879 * 1880 * Returns either number of pages pinned (which may be less than the 1881 * number requested), or an error. Details about the return value: 1882 * 1883 * -- If nr_pages is 0, returns 0. 1884 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1885 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1886 * pages pinned. Again, this may be less than nr_pages. 1887 * 1888 * The caller is responsible for releasing returned @pages, via put_page(). 1889 * 1890 * @vmas are valid only as long as mmap_lock is held. 1891 * 1892 * Must be called with mmap_lock held for read or write. 1893 * 1894 * get_user_pages_remote walks a process's page tables and takes a reference 1895 * to each struct page that each user address corresponds to at a given 1896 * instant. That is, it takes the page that would be accessed if a user 1897 * thread accesses the given user virtual address at that instant. 1898 * 1899 * This does not guarantee that the page exists in the user mappings when 1900 * get_user_pages_remote returns, and there may even be a completely different 1901 * page there in some cases (eg. if mmapped pagecache has been invalidated 1902 * and subsequently re faulted). However it does guarantee that the page 1903 * won't be freed completely. And mostly callers simply care that the page 1904 * contains data that was valid *at some point in time*. Typically, an IO 1905 * or similar operation cannot guarantee anything stronger anyway because 1906 * locks can't be held over the syscall boundary. 1907 * 1908 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1909 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1910 * be called after the page is finished with, and before put_page is called. 1911 * 1912 * get_user_pages_remote is typically used for fewer-copy IO operations, 1913 * to get a handle on the memory by some means other than accesses 1914 * via the user virtual addresses. The pages may be submitted for 1915 * DMA to devices or accessed via their kernel linear mapping (via the 1916 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1917 * 1918 * See also get_user_pages_fast, for performance critical applications. 1919 * 1920 * get_user_pages_remote should be phased out in favor of 1921 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1922 * should use get_user_pages_remote because it cannot pass 1923 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1924 */ 1925 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1926 unsigned long start, unsigned long nr_pages, 1927 unsigned int gup_flags, struct page **pages, 1928 struct vm_area_struct **vmas, int *locked) 1929 { 1930 /* 1931 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1932 * never directly by the caller, so enforce that with an assertion: 1933 */ 1934 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1935 return -EINVAL; 1936 1937 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1938 pages, vmas, locked); 1939 } 1940 EXPORT_SYMBOL(get_user_pages_remote); 1941 1942 #else /* CONFIG_MMU */ 1943 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1944 unsigned long start, unsigned long nr_pages, 1945 unsigned int gup_flags, struct page **pages, 1946 struct vm_area_struct **vmas, int *locked) 1947 { 1948 return 0; 1949 } 1950 1951 static long __get_user_pages_remote(struct task_struct *tsk, 1952 struct mm_struct *mm, 1953 unsigned long start, unsigned long nr_pages, 1954 unsigned int gup_flags, struct page **pages, 1955 struct vm_area_struct **vmas, int *locked) 1956 { 1957 return 0; 1958 } 1959 #endif /* !CONFIG_MMU */ 1960 1961 /** 1962 * get_user_pages() - pin user pages in memory 1963 * @start: starting user address 1964 * @nr_pages: number of pages from start to pin 1965 * @gup_flags: flags modifying lookup behaviour 1966 * @pages: array that receives pointers to the pages pinned. 1967 * Should be at least nr_pages long. Or NULL, if caller 1968 * only intends to ensure the pages are faulted in. 1969 * @vmas: array of pointers to vmas corresponding to each page. 1970 * Or NULL if the caller does not require them. 1971 * 1972 * This is the same as get_user_pages_remote(), just with a 1973 * less-flexible calling convention where we assume that the task 1974 * and mm being operated on are the current task's and don't allow 1975 * passing of a locked parameter. We also obviously don't pass 1976 * FOLL_REMOTE in here. 1977 */ 1978 long get_user_pages(unsigned long start, unsigned long nr_pages, 1979 unsigned int gup_flags, struct page **pages, 1980 struct vm_area_struct **vmas) 1981 { 1982 /* 1983 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1984 * never directly by the caller, so enforce that with an assertion: 1985 */ 1986 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1987 return -EINVAL; 1988 1989 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1990 pages, vmas, gup_flags | FOLL_TOUCH); 1991 } 1992 EXPORT_SYMBOL(get_user_pages); 1993 1994 /** 1995 * get_user_pages_locked() is suitable to replace the form: 1996 * 1997 * mmap_read_lock(mm); 1998 * do_something() 1999 * get_user_pages(tsk, mm, ..., pages, NULL); 2000 * mmap_read_unlock(mm); 2001 * 2002 * to: 2003 * 2004 * int locked = 1; 2005 * mmap_read_lock(mm); 2006 * do_something() 2007 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 2008 * if (locked) 2009 * mmap_read_unlock(mm); 2010 * 2011 * @start: starting user address 2012 * @nr_pages: number of pages from start to pin 2013 * @gup_flags: flags modifying lookup behaviour 2014 * @pages: array that receives pointers to the pages pinned. 2015 * Should be at least nr_pages long. Or NULL, if caller 2016 * only intends to ensure the pages are faulted in. 2017 * @locked: pointer to lock flag indicating whether lock is held and 2018 * subsequently whether VM_FAULT_RETRY functionality can be 2019 * utilised. Lock must initially be held. 2020 * 2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2022 * paths better by using either get_user_pages_locked() or 2023 * get_user_pages_unlocked(). 2024 * 2025 */ 2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2027 unsigned int gup_flags, struct page **pages, 2028 int *locked) 2029 { 2030 /* 2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2033 * vmas. As there are no users of this flag in this call we simply 2034 * disallow this option for now. 2035 */ 2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2037 return -EINVAL; 2038 /* 2039 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2040 * never directly by the caller, so enforce that: 2041 */ 2042 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2043 return -EINVAL; 2044 2045 return __get_user_pages_locked(current, current->mm, start, nr_pages, 2046 pages, NULL, locked, 2047 gup_flags | FOLL_TOUCH); 2048 } 2049 EXPORT_SYMBOL(get_user_pages_locked); 2050 2051 /* 2052 * get_user_pages_unlocked() is suitable to replace the form: 2053 * 2054 * mmap_read_lock(mm); 2055 * get_user_pages(tsk, mm, ..., pages, NULL); 2056 * mmap_read_unlock(mm); 2057 * 2058 * with: 2059 * 2060 * get_user_pages_unlocked(tsk, mm, ..., pages); 2061 * 2062 * It is functionally equivalent to get_user_pages_fast so 2063 * get_user_pages_fast should be used instead if specific gup_flags 2064 * (e.g. FOLL_FORCE) are not required. 2065 */ 2066 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2067 struct page **pages, unsigned int gup_flags) 2068 { 2069 struct mm_struct *mm = current->mm; 2070 int locked = 1; 2071 long ret; 2072 2073 /* 2074 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2075 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2076 * vmas. As there are no users of this flag in this call we simply 2077 * disallow this option for now. 2078 */ 2079 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2080 return -EINVAL; 2081 2082 mmap_read_lock(mm); 2083 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2084 &locked, gup_flags | FOLL_TOUCH); 2085 if (locked) 2086 mmap_read_unlock(mm); 2087 return ret; 2088 } 2089 EXPORT_SYMBOL(get_user_pages_unlocked); 2090 2091 /* 2092 * Fast GUP 2093 * 2094 * get_user_pages_fast attempts to pin user pages by walking the page 2095 * tables directly and avoids taking locks. Thus the walker needs to be 2096 * protected from page table pages being freed from under it, and should 2097 * block any THP splits. 2098 * 2099 * One way to achieve this is to have the walker disable interrupts, and 2100 * rely on IPIs from the TLB flushing code blocking before the page table 2101 * pages are freed. This is unsuitable for architectures that do not need 2102 * to broadcast an IPI when invalidating TLBs. 2103 * 2104 * Another way to achieve this is to batch up page table containing pages 2105 * belonging to more than one mm_user, then rcu_sched a callback to free those 2106 * pages. Disabling interrupts will allow the fast_gup walker to both block 2107 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2108 * (which is a relatively rare event). The code below adopts this strategy. 2109 * 2110 * Before activating this code, please be aware that the following assumptions 2111 * are currently made: 2112 * 2113 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2114 * free pages containing page tables or TLB flushing requires IPI broadcast. 2115 * 2116 * *) ptes can be read atomically by the architecture. 2117 * 2118 * *) access_ok is sufficient to validate userspace address ranges. 2119 * 2120 * The last two assumptions can be relaxed by the addition of helper functions. 2121 * 2122 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2123 */ 2124 #ifdef CONFIG_HAVE_FAST_GUP 2125 2126 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2127 { 2128 if (flags & FOLL_PIN) { 2129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2130 refs); 2131 2132 if (hpage_pincount_available(page)) 2133 hpage_pincount_sub(page, refs); 2134 else 2135 refs *= GUP_PIN_COUNTING_BIAS; 2136 } 2137 2138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2139 /* 2140 * Calling put_page() for each ref is unnecessarily slow. Only the last 2141 * ref needs a put_page(). 2142 */ 2143 if (refs > 1) 2144 page_ref_sub(page, refs - 1); 2145 put_page(page); 2146 } 2147 2148 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2149 2150 /* 2151 * WARNING: only to be used in the get_user_pages_fast() implementation. 2152 * 2153 * With get_user_pages_fast(), we walk down the pagetables without taking any 2154 * locks. For this we would like to load the pointers atomically, but sometimes 2155 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2156 * we do have is the guarantee that a PTE will only either go from not present 2157 * to present, or present to not present or both -- it will not switch to a 2158 * completely different present page without a TLB flush in between; something 2159 * that we are blocking by holding interrupts off. 2160 * 2161 * Setting ptes from not present to present goes: 2162 * 2163 * ptep->pte_high = h; 2164 * smp_wmb(); 2165 * ptep->pte_low = l; 2166 * 2167 * And present to not present goes: 2168 * 2169 * ptep->pte_low = 0; 2170 * smp_wmb(); 2171 * ptep->pte_high = 0; 2172 * 2173 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2174 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2175 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2176 * picked up a changed pte high. We might have gotten rubbish values from 2177 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2178 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2179 * operates on present ptes we're safe. 2180 */ 2181 static inline pte_t gup_get_pte(pte_t *ptep) 2182 { 2183 pte_t pte; 2184 2185 do { 2186 pte.pte_low = ptep->pte_low; 2187 smp_rmb(); 2188 pte.pte_high = ptep->pte_high; 2189 smp_rmb(); 2190 } while (unlikely(pte.pte_low != ptep->pte_low)); 2191 2192 return pte; 2193 } 2194 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2195 /* 2196 * We require that the PTE can be read atomically. 2197 */ 2198 static inline pte_t gup_get_pte(pte_t *ptep) 2199 { 2200 return ptep_get(ptep); 2201 } 2202 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2203 2204 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2205 unsigned int flags, 2206 struct page **pages) 2207 { 2208 while ((*nr) - nr_start) { 2209 struct page *page = pages[--(*nr)]; 2210 2211 ClearPageReferenced(page); 2212 if (flags & FOLL_PIN) 2213 unpin_user_page(page); 2214 else 2215 put_page(page); 2216 } 2217 } 2218 2219 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2220 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2221 unsigned int flags, struct page **pages, int *nr) 2222 { 2223 struct dev_pagemap *pgmap = NULL; 2224 int nr_start = *nr, ret = 0; 2225 pte_t *ptep, *ptem; 2226 2227 ptem = ptep = pte_offset_map(&pmd, addr); 2228 do { 2229 pte_t pte = gup_get_pte(ptep); 2230 struct page *head, *page; 2231 2232 /* 2233 * Similar to the PMD case below, NUMA hinting must take slow 2234 * path using the pte_protnone check. 2235 */ 2236 if (pte_protnone(pte)) 2237 goto pte_unmap; 2238 2239 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2240 goto pte_unmap; 2241 2242 if (pte_devmap(pte)) { 2243 if (unlikely(flags & FOLL_LONGTERM)) 2244 goto pte_unmap; 2245 2246 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2247 if (unlikely(!pgmap)) { 2248 undo_dev_pagemap(nr, nr_start, flags, pages); 2249 goto pte_unmap; 2250 } 2251 } else if (pte_special(pte)) 2252 goto pte_unmap; 2253 2254 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2255 page = pte_page(pte); 2256 2257 head = try_grab_compound_head(page, 1, flags); 2258 if (!head) 2259 goto pte_unmap; 2260 2261 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2262 put_compound_head(head, 1, flags); 2263 goto pte_unmap; 2264 } 2265 2266 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2267 2268 /* 2269 * We need to make the page accessible if and only if we are 2270 * going to access its content (the FOLL_PIN case). Please 2271 * see Documentation/core-api/pin_user_pages.rst for 2272 * details. 2273 */ 2274 if (flags & FOLL_PIN) { 2275 ret = arch_make_page_accessible(page); 2276 if (ret) { 2277 unpin_user_page(page); 2278 goto pte_unmap; 2279 } 2280 } 2281 SetPageReferenced(page); 2282 pages[*nr] = page; 2283 (*nr)++; 2284 2285 } while (ptep++, addr += PAGE_SIZE, addr != end); 2286 2287 ret = 1; 2288 2289 pte_unmap: 2290 if (pgmap) 2291 put_dev_pagemap(pgmap); 2292 pte_unmap(ptem); 2293 return ret; 2294 } 2295 #else 2296 2297 /* 2298 * If we can't determine whether or not a pte is special, then fail immediately 2299 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2300 * to be special. 2301 * 2302 * For a futex to be placed on a THP tail page, get_futex_key requires a 2303 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2304 * useful to have gup_huge_pmd even if we can't operate on ptes. 2305 */ 2306 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2307 unsigned int flags, struct page **pages, int *nr) 2308 { 2309 return 0; 2310 } 2311 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2312 2313 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2314 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2315 unsigned long end, unsigned int flags, 2316 struct page **pages, int *nr) 2317 { 2318 int nr_start = *nr; 2319 struct dev_pagemap *pgmap = NULL; 2320 2321 do { 2322 struct page *page = pfn_to_page(pfn); 2323 2324 pgmap = get_dev_pagemap(pfn, pgmap); 2325 if (unlikely(!pgmap)) { 2326 undo_dev_pagemap(nr, nr_start, flags, pages); 2327 return 0; 2328 } 2329 SetPageReferenced(page); 2330 pages[*nr] = page; 2331 if (unlikely(!try_grab_page(page, flags))) { 2332 undo_dev_pagemap(nr, nr_start, flags, pages); 2333 return 0; 2334 } 2335 (*nr)++; 2336 pfn++; 2337 } while (addr += PAGE_SIZE, addr != end); 2338 2339 if (pgmap) 2340 put_dev_pagemap(pgmap); 2341 return 1; 2342 } 2343 2344 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2345 unsigned long end, unsigned int flags, 2346 struct page **pages, int *nr) 2347 { 2348 unsigned long fault_pfn; 2349 int nr_start = *nr; 2350 2351 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2352 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2353 return 0; 2354 2355 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2356 undo_dev_pagemap(nr, nr_start, flags, pages); 2357 return 0; 2358 } 2359 return 1; 2360 } 2361 2362 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2363 unsigned long end, unsigned int flags, 2364 struct page **pages, int *nr) 2365 { 2366 unsigned long fault_pfn; 2367 int nr_start = *nr; 2368 2369 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2370 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2371 return 0; 2372 2373 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2374 undo_dev_pagemap(nr, nr_start, flags, pages); 2375 return 0; 2376 } 2377 return 1; 2378 } 2379 #else 2380 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2381 unsigned long end, unsigned int flags, 2382 struct page **pages, int *nr) 2383 { 2384 BUILD_BUG(); 2385 return 0; 2386 } 2387 2388 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2389 unsigned long end, unsigned int flags, 2390 struct page **pages, int *nr) 2391 { 2392 BUILD_BUG(); 2393 return 0; 2394 } 2395 #endif 2396 2397 static int record_subpages(struct page *page, unsigned long addr, 2398 unsigned long end, struct page **pages) 2399 { 2400 int nr; 2401 2402 for (nr = 0; addr != end; addr += PAGE_SIZE) 2403 pages[nr++] = page++; 2404 2405 return nr; 2406 } 2407 2408 #ifdef CONFIG_ARCH_HAS_HUGEPD 2409 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2410 unsigned long sz) 2411 { 2412 unsigned long __boundary = (addr + sz) & ~(sz-1); 2413 return (__boundary - 1 < end - 1) ? __boundary : end; 2414 } 2415 2416 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2417 unsigned long end, unsigned int flags, 2418 struct page **pages, int *nr) 2419 { 2420 unsigned long pte_end; 2421 struct page *head, *page; 2422 pte_t pte; 2423 int refs; 2424 2425 pte_end = (addr + sz) & ~(sz-1); 2426 if (pte_end < end) 2427 end = pte_end; 2428 2429 pte = huge_ptep_get(ptep); 2430 2431 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2432 return 0; 2433 2434 /* hugepages are never "special" */ 2435 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2436 2437 head = pte_page(pte); 2438 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2439 refs = record_subpages(page, addr, end, pages + *nr); 2440 2441 head = try_grab_compound_head(head, refs, flags); 2442 if (!head) 2443 return 0; 2444 2445 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2446 put_compound_head(head, refs, flags); 2447 return 0; 2448 } 2449 2450 *nr += refs; 2451 SetPageReferenced(head); 2452 return 1; 2453 } 2454 2455 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2456 unsigned int pdshift, unsigned long end, unsigned int flags, 2457 struct page **pages, int *nr) 2458 { 2459 pte_t *ptep; 2460 unsigned long sz = 1UL << hugepd_shift(hugepd); 2461 unsigned long next; 2462 2463 ptep = hugepte_offset(hugepd, addr, pdshift); 2464 do { 2465 next = hugepte_addr_end(addr, end, sz); 2466 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2467 return 0; 2468 } while (ptep++, addr = next, addr != end); 2469 2470 return 1; 2471 } 2472 #else 2473 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2474 unsigned int pdshift, unsigned long end, unsigned int flags, 2475 struct page **pages, int *nr) 2476 { 2477 return 0; 2478 } 2479 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2480 2481 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2482 unsigned long end, unsigned int flags, 2483 struct page **pages, int *nr) 2484 { 2485 struct page *head, *page; 2486 int refs; 2487 2488 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2489 return 0; 2490 2491 if (pmd_devmap(orig)) { 2492 if (unlikely(flags & FOLL_LONGTERM)) 2493 return 0; 2494 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2495 pages, nr); 2496 } 2497 2498 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2499 refs = record_subpages(page, addr, end, pages + *nr); 2500 2501 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2502 if (!head) 2503 return 0; 2504 2505 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2506 put_compound_head(head, refs, flags); 2507 return 0; 2508 } 2509 2510 *nr += refs; 2511 SetPageReferenced(head); 2512 return 1; 2513 } 2514 2515 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2516 unsigned long end, unsigned int flags, 2517 struct page **pages, int *nr) 2518 { 2519 struct page *head, *page; 2520 int refs; 2521 2522 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2523 return 0; 2524 2525 if (pud_devmap(orig)) { 2526 if (unlikely(flags & FOLL_LONGTERM)) 2527 return 0; 2528 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2529 pages, nr); 2530 } 2531 2532 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2533 refs = record_subpages(page, addr, end, pages + *nr); 2534 2535 head = try_grab_compound_head(pud_page(orig), refs, flags); 2536 if (!head) 2537 return 0; 2538 2539 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2540 put_compound_head(head, refs, flags); 2541 return 0; 2542 } 2543 2544 *nr += refs; 2545 SetPageReferenced(head); 2546 return 1; 2547 } 2548 2549 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2550 unsigned long end, unsigned int flags, 2551 struct page **pages, int *nr) 2552 { 2553 int refs; 2554 struct page *head, *page; 2555 2556 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2557 return 0; 2558 2559 BUILD_BUG_ON(pgd_devmap(orig)); 2560 2561 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2562 refs = record_subpages(page, addr, end, pages + *nr); 2563 2564 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2565 if (!head) 2566 return 0; 2567 2568 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2569 put_compound_head(head, refs, flags); 2570 return 0; 2571 } 2572 2573 *nr += refs; 2574 SetPageReferenced(head); 2575 return 1; 2576 } 2577 2578 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2579 unsigned int flags, struct page **pages, int *nr) 2580 { 2581 unsigned long next; 2582 pmd_t *pmdp; 2583 2584 pmdp = pmd_offset(&pud, addr); 2585 do { 2586 pmd_t pmd = READ_ONCE(*pmdp); 2587 2588 next = pmd_addr_end(addr, end); 2589 if (!pmd_present(pmd)) 2590 return 0; 2591 2592 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2593 pmd_devmap(pmd))) { 2594 /* 2595 * NUMA hinting faults need to be handled in the GUP 2596 * slowpath for accounting purposes and so that they 2597 * can be serialised against THP migration. 2598 */ 2599 if (pmd_protnone(pmd)) 2600 return 0; 2601 2602 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2603 pages, nr)) 2604 return 0; 2605 2606 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2607 /* 2608 * architecture have different format for hugetlbfs 2609 * pmd format and THP pmd format 2610 */ 2611 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2612 PMD_SHIFT, next, flags, pages, nr)) 2613 return 0; 2614 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2615 return 0; 2616 } while (pmdp++, addr = next, addr != end); 2617 2618 return 1; 2619 } 2620 2621 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2622 unsigned int flags, struct page **pages, int *nr) 2623 { 2624 unsigned long next; 2625 pud_t *pudp; 2626 2627 pudp = pud_offset(&p4d, addr); 2628 do { 2629 pud_t pud = READ_ONCE(*pudp); 2630 2631 next = pud_addr_end(addr, end); 2632 if (unlikely(!pud_present(pud))) 2633 return 0; 2634 if (unlikely(pud_huge(pud))) { 2635 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2636 pages, nr)) 2637 return 0; 2638 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2639 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2640 PUD_SHIFT, next, flags, pages, nr)) 2641 return 0; 2642 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2643 return 0; 2644 } while (pudp++, addr = next, addr != end); 2645 2646 return 1; 2647 } 2648 2649 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2650 unsigned int flags, struct page **pages, int *nr) 2651 { 2652 unsigned long next; 2653 p4d_t *p4dp; 2654 2655 p4dp = p4d_offset(&pgd, addr); 2656 do { 2657 p4d_t p4d = READ_ONCE(*p4dp); 2658 2659 next = p4d_addr_end(addr, end); 2660 if (p4d_none(p4d)) 2661 return 0; 2662 BUILD_BUG_ON(p4d_huge(p4d)); 2663 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2664 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2665 P4D_SHIFT, next, flags, pages, nr)) 2666 return 0; 2667 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2668 return 0; 2669 } while (p4dp++, addr = next, addr != end); 2670 2671 return 1; 2672 } 2673 2674 static void gup_pgd_range(unsigned long addr, unsigned long end, 2675 unsigned int flags, struct page **pages, int *nr) 2676 { 2677 unsigned long next; 2678 pgd_t *pgdp; 2679 2680 pgdp = pgd_offset(current->mm, addr); 2681 do { 2682 pgd_t pgd = READ_ONCE(*pgdp); 2683 2684 next = pgd_addr_end(addr, end); 2685 if (pgd_none(pgd)) 2686 return; 2687 if (unlikely(pgd_huge(pgd))) { 2688 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2689 pages, nr)) 2690 return; 2691 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2692 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2693 PGDIR_SHIFT, next, flags, pages, nr)) 2694 return; 2695 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2696 return; 2697 } while (pgdp++, addr = next, addr != end); 2698 } 2699 #else 2700 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2701 unsigned int flags, struct page **pages, int *nr) 2702 { 2703 } 2704 #endif /* CONFIG_HAVE_FAST_GUP */ 2705 2706 #ifndef gup_fast_permitted 2707 /* 2708 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2709 * we need to fall back to the slow version: 2710 */ 2711 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2712 { 2713 return true; 2714 } 2715 #endif 2716 2717 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2718 unsigned int gup_flags, struct page **pages) 2719 { 2720 int ret; 2721 2722 /* 2723 * FIXME: FOLL_LONGTERM does not work with 2724 * get_user_pages_unlocked() (see comments in that function) 2725 */ 2726 if (gup_flags & FOLL_LONGTERM) { 2727 mmap_read_lock(current->mm); 2728 ret = __gup_longterm_locked(current, current->mm, 2729 start, nr_pages, 2730 pages, NULL, gup_flags); 2731 mmap_read_unlock(current->mm); 2732 } else { 2733 ret = get_user_pages_unlocked(start, nr_pages, 2734 pages, gup_flags); 2735 } 2736 2737 return ret; 2738 } 2739 2740 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2741 unsigned int gup_flags, 2742 struct page **pages) 2743 { 2744 unsigned long addr, len, end; 2745 unsigned long flags; 2746 int nr_pinned = 0, ret = 0; 2747 2748 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2749 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2750 FOLL_FAST_ONLY))) 2751 return -EINVAL; 2752 2753 if (!(gup_flags & FOLL_FAST_ONLY)) 2754 might_lock_read(¤t->mm->mmap_lock); 2755 2756 start = untagged_addr(start) & PAGE_MASK; 2757 addr = start; 2758 len = (unsigned long) nr_pages << PAGE_SHIFT; 2759 end = start + len; 2760 2761 if (end <= start) 2762 return 0; 2763 if (unlikely(!access_ok((void __user *)start, len))) 2764 return -EFAULT; 2765 2766 /* 2767 * The FAST_GUP case requires FOLL_WRITE even for pure reads, 2768 * because get_user_pages() may need to cause an early COW in 2769 * order to avoid confusing the normal COW routines. So only 2770 * targets that are already writable are safe to do by just 2771 * looking at the page tables. 2772 * 2773 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here, 2774 * because there is no slow path to fall back on. But you'd 2775 * better be careful about possible COW pages - you'll get _a_ 2776 * COW page, but not necessarily the one you intended to get 2777 * depending on what COW event happens after this. COW may break 2778 * the page copy in a random direction. 2779 * 2780 * Disable interrupts. The nested form is used, in order to allow 2781 * full, general purpose use of this routine. 2782 * 2783 * With interrupts disabled, we block page table pages from being 2784 * freed from under us. See struct mmu_table_batch comments in 2785 * include/asm-generic/tlb.h for more details. 2786 * 2787 * We do not adopt an rcu_read_lock(.) here as we also want to 2788 * block IPIs that come from THPs splitting. 2789 */ 2790 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2791 unsigned long fast_flags = gup_flags; 2792 if (!(gup_flags & FOLL_FAST_ONLY)) 2793 fast_flags |= FOLL_WRITE; 2794 2795 local_irq_save(flags); 2796 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2797 local_irq_restore(flags); 2798 ret = nr_pinned; 2799 } 2800 2801 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2802 /* Try to get the remaining pages with get_user_pages */ 2803 start += nr_pinned << PAGE_SHIFT; 2804 pages += nr_pinned; 2805 2806 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2807 gup_flags, pages); 2808 2809 /* Have to be a bit careful with return values */ 2810 if (nr_pinned > 0) { 2811 if (ret < 0) 2812 ret = nr_pinned; 2813 else 2814 ret += nr_pinned; 2815 } 2816 } 2817 2818 return ret; 2819 } 2820 /** 2821 * get_user_pages_fast_only() - pin user pages in memory 2822 * @start: starting user address 2823 * @nr_pages: number of pages from start to pin 2824 * @gup_flags: flags modifying pin behaviour 2825 * @pages: array that receives pointers to the pages pinned. 2826 * Should be at least nr_pages long. 2827 * 2828 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2829 * the regular GUP. 2830 * Note a difference with get_user_pages_fast: this always returns the 2831 * number of pages pinned, 0 if no pages were pinned. 2832 * 2833 * If the architecture does not support this function, simply return with no 2834 * pages pinned. 2835 * 2836 * Careful, careful! COW breaking can go either way, so a non-write 2837 * access can get ambiguous page results. If you call this function without 2838 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2839 */ 2840 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2841 unsigned int gup_flags, struct page **pages) 2842 { 2843 int nr_pinned; 2844 /* 2845 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2846 * because gup fast is always a "pin with a +1 page refcount" request. 2847 * 2848 * FOLL_FAST_ONLY is required in order to match the API description of 2849 * this routine: no fall back to regular ("slow") GUP. 2850 */ 2851 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2852 2853 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2854 pages); 2855 2856 /* 2857 * As specified in the API description above, this routine is not 2858 * allowed to return negative values. However, the common core 2859 * routine internal_get_user_pages_fast() *can* return -errno. 2860 * Therefore, correct for that here: 2861 */ 2862 if (nr_pinned < 0) 2863 nr_pinned = 0; 2864 2865 return nr_pinned; 2866 } 2867 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2868 2869 /** 2870 * get_user_pages_fast() - pin user pages in memory 2871 * @start: starting user address 2872 * @nr_pages: number of pages from start to pin 2873 * @gup_flags: flags modifying pin behaviour 2874 * @pages: array that receives pointers to the pages pinned. 2875 * Should be at least nr_pages long. 2876 * 2877 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2878 * If not successful, it will fall back to taking the lock and 2879 * calling get_user_pages(). 2880 * 2881 * Returns number of pages pinned. This may be fewer than the number requested. 2882 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2883 * -errno. 2884 */ 2885 int get_user_pages_fast(unsigned long start, int nr_pages, 2886 unsigned int gup_flags, struct page **pages) 2887 { 2888 /* 2889 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2890 * never directly by the caller, so enforce that: 2891 */ 2892 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2893 return -EINVAL; 2894 2895 /* 2896 * The caller may or may not have explicitly set FOLL_GET; either way is 2897 * OK. However, internally (within mm/gup.c), gup fast variants must set 2898 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2899 * request. 2900 */ 2901 gup_flags |= FOLL_GET; 2902 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2903 } 2904 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2905 2906 /** 2907 * pin_user_pages_fast() - pin user pages in memory without taking locks 2908 * 2909 * @start: starting user address 2910 * @nr_pages: number of pages from start to pin 2911 * @gup_flags: flags modifying pin behaviour 2912 * @pages: array that receives pointers to the pages pinned. 2913 * Should be at least nr_pages long. 2914 * 2915 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2916 * get_user_pages_fast() for documentation on the function arguments, because 2917 * the arguments here are identical. 2918 * 2919 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2920 * see Documentation/core-api/pin_user_pages.rst for further details. 2921 */ 2922 int pin_user_pages_fast(unsigned long start, int nr_pages, 2923 unsigned int gup_flags, struct page **pages) 2924 { 2925 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2926 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2927 return -EINVAL; 2928 2929 gup_flags |= FOLL_PIN; 2930 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2931 } 2932 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2933 2934 /* 2935 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2936 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2937 * 2938 * The API rules are the same, too: no negative values may be returned. 2939 */ 2940 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2941 unsigned int gup_flags, struct page **pages) 2942 { 2943 int nr_pinned; 2944 2945 /* 2946 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2947 * rules require returning 0, rather than -errno: 2948 */ 2949 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2950 return 0; 2951 /* 2952 * FOLL_FAST_ONLY is required in order to match the API description of 2953 * this routine: no fall back to regular ("slow") GUP. 2954 */ 2955 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2956 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2957 pages); 2958 /* 2959 * This routine is not allowed to return negative values. However, 2960 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2961 * correct for that here: 2962 */ 2963 if (nr_pinned < 0) 2964 nr_pinned = 0; 2965 2966 return nr_pinned; 2967 } 2968 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2969 2970 /** 2971 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2972 * 2973 * @tsk: the task_struct to use for page fault accounting, or 2974 * NULL if faults are not to be recorded. 2975 * @mm: mm_struct of target mm 2976 * @start: starting user address 2977 * @nr_pages: number of pages from start to pin 2978 * @gup_flags: flags modifying lookup behaviour 2979 * @pages: array that receives pointers to the pages pinned. 2980 * Should be at least nr_pages long. Or NULL, if caller 2981 * only intends to ensure the pages are faulted in. 2982 * @vmas: array of pointers to vmas corresponding to each page. 2983 * Or NULL if the caller does not require them. 2984 * @locked: pointer to lock flag indicating whether lock is held and 2985 * subsequently whether VM_FAULT_RETRY functionality can be 2986 * utilised. Lock must initially be held. 2987 * 2988 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2989 * get_user_pages_remote() for documentation on the function arguments, because 2990 * the arguments here are identical. 2991 * 2992 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2993 * see Documentation/core-api/pin_user_pages.rst for details. 2994 */ 2995 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2996 unsigned long start, unsigned long nr_pages, 2997 unsigned int gup_flags, struct page **pages, 2998 struct vm_area_struct **vmas, int *locked) 2999 { 3000 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3001 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3002 return -EINVAL; 3003 3004 gup_flags |= FOLL_PIN; 3005 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 3006 pages, vmas, locked); 3007 } 3008 EXPORT_SYMBOL(pin_user_pages_remote); 3009 3010 /** 3011 * pin_user_pages() - pin user pages in memory for use by other devices 3012 * 3013 * @start: starting user address 3014 * @nr_pages: number of pages from start to pin 3015 * @gup_flags: flags modifying lookup behaviour 3016 * @pages: array that receives pointers to the pages pinned. 3017 * Should be at least nr_pages long. Or NULL, if caller 3018 * only intends to ensure the pages are faulted in. 3019 * @vmas: array of pointers to vmas corresponding to each page. 3020 * Or NULL if the caller does not require them. 3021 * 3022 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3023 * FOLL_PIN is set. 3024 * 3025 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3026 * see Documentation/core-api/pin_user_pages.rst for details. 3027 */ 3028 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3029 unsigned int gup_flags, struct page **pages, 3030 struct vm_area_struct **vmas) 3031 { 3032 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3033 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3034 return -EINVAL; 3035 3036 gup_flags |= FOLL_PIN; 3037 return __gup_longterm_locked(current, current->mm, start, nr_pages, 3038 pages, vmas, gup_flags); 3039 } 3040 EXPORT_SYMBOL(pin_user_pages); 3041 3042 /* 3043 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3044 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3045 * FOLL_PIN and rejects FOLL_GET. 3046 */ 3047 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3048 struct page **pages, unsigned int gup_flags) 3049 { 3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3052 return -EINVAL; 3053 3054 gup_flags |= FOLL_PIN; 3055 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3056 } 3057 EXPORT_SYMBOL(pin_user_pages_unlocked); 3058 3059 /* 3060 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 3061 * Behavior is the same, except that this one sets FOLL_PIN and rejects 3062 * FOLL_GET. 3063 */ 3064 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 3065 unsigned int gup_flags, struct page **pages, 3066 int *locked) 3067 { 3068 /* 3069 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 3070 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 3071 * vmas. As there are no users of this flag in this call we simply 3072 * disallow this option for now. 3073 */ 3074 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 3075 return -EINVAL; 3076 3077 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3078 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3079 return -EINVAL; 3080 3081 gup_flags |= FOLL_PIN; 3082 return __get_user_pages_locked(current, current->mm, start, nr_pages, 3083 pages, NULL, locked, 3084 gup_flags | FOLL_TOUCH); 3085 } 3086 EXPORT_SYMBOL(pin_user_pages_locked); 3087