xref: /openbmc/linux/mm/gup.c (revision ce746d43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * TODO: this can be optimized for huge pages: if a series of pages is
333 	 * physically contiguous and part of the same compound page, then a
334 	 * single operation to the head page should suffice.
335 	 */
336 	for (index = 0; index < npages; index++)
337 		unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340 
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 		unsigned int flags)
344 {
345 	/*
346 	 * When core dumping an enormous anonymous area that nobody
347 	 * has touched so far, we don't want to allocate unnecessary pages or
348 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349 	 * then get_dump_page() will return NULL to leave a hole in the dump.
350 	 * But we can only make this optimization where a hole would surely
351 	 * be zero-filled if handle_mm_fault() actually did handle it.
352 	 */
353 	if ((flags & FOLL_DUMP) &&
354 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385  * but only after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
390 }
391 
392 /*
393  * A (separate) COW fault might break the page the other way and
394  * get_user_pages() would return the page from what is now the wrong
395  * VM. So we need to force a COW break at GUP time even for reads.
396  */
397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
398 {
399 	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
400 }
401 
402 static struct page *follow_page_pte(struct vm_area_struct *vma,
403 		unsigned long address, pmd_t *pmd, unsigned int flags,
404 		struct dev_pagemap **pgmap)
405 {
406 	struct mm_struct *mm = vma->vm_mm;
407 	struct page *page;
408 	spinlock_t *ptl;
409 	pte_t *ptep, pte;
410 	int ret;
411 
412 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414 			 (FOLL_PIN | FOLL_GET)))
415 		return ERR_PTR(-EINVAL);
416 retry:
417 	if (unlikely(pmd_bad(*pmd)))
418 		return no_page_table(vma, flags);
419 
420 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
421 	pte = *ptep;
422 	if (!pte_present(pte)) {
423 		swp_entry_t entry;
424 		/*
425 		 * KSM's break_ksm() relies upon recognizing a ksm page
426 		 * even while it is being migrated, so for that case we
427 		 * need migration_entry_wait().
428 		 */
429 		if (likely(!(flags & FOLL_MIGRATION)))
430 			goto no_page;
431 		if (pte_none(pte))
432 			goto no_page;
433 		entry = pte_to_swp_entry(pte);
434 		if (!is_migration_entry(entry))
435 			goto no_page;
436 		pte_unmap_unlock(ptep, ptl);
437 		migration_entry_wait(mm, pmd, address);
438 		goto retry;
439 	}
440 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
441 		goto no_page;
442 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
443 		pte_unmap_unlock(ptep, ptl);
444 		return NULL;
445 	}
446 
447 	page = vm_normal_page(vma, address, pte);
448 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
449 		/*
450 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 		 * case since they are only valid while holding the pgmap
452 		 * reference.
453 		 */
454 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455 		if (*pgmap)
456 			page = pte_page(pte);
457 		else
458 			goto no_page;
459 	} else if (unlikely(!page)) {
460 		if (flags & FOLL_DUMP) {
461 			/* Avoid special (like zero) pages in core dumps */
462 			page = ERR_PTR(-EFAULT);
463 			goto out;
464 		}
465 
466 		if (is_zero_pfn(pte_pfn(pte))) {
467 			page = pte_page(pte);
468 		} else {
469 			ret = follow_pfn_pte(vma, address, ptep, flags);
470 			page = ERR_PTR(ret);
471 			goto out;
472 		}
473 	}
474 
475 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
476 		get_page(page);
477 		pte_unmap_unlock(ptep, ptl);
478 		lock_page(page);
479 		ret = split_huge_page(page);
480 		unlock_page(page);
481 		put_page(page);
482 		if (ret)
483 			return ERR_PTR(ret);
484 		goto retry;
485 	}
486 
487 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 	if (unlikely(!try_grab_page(page, flags))) {
489 		page = ERR_PTR(-ENOMEM);
490 		goto out;
491 	}
492 	/*
493 	 * We need to make the page accessible if and only if we are going
494 	 * to access its content (the FOLL_PIN case).  Please see
495 	 * Documentation/core-api/pin_user_pages.rst for details.
496 	 */
497 	if (flags & FOLL_PIN) {
498 		ret = arch_make_page_accessible(page);
499 		if (ret) {
500 			unpin_user_page(page);
501 			page = ERR_PTR(ret);
502 			goto out;
503 		}
504 	}
505 	if (flags & FOLL_TOUCH) {
506 		if ((flags & FOLL_WRITE) &&
507 		    !pte_dirty(pte) && !PageDirty(page))
508 			set_page_dirty(page);
509 		/*
510 		 * pte_mkyoung() would be more correct here, but atomic care
511 		 * is needed to avoid losing the dirty bit: it is easier to use
512 		 * mark_page_accessed().
513 		 */
514 		mark_page_accessed(page);
515 	}
516 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
517 		/* Do not mlock pte-mapped THP */
518 		if (PageTransCompound(page))
519 			goto out;
520 
521 		/*
522 		 * The preliminary mapping check is mainly to avoid the
523 		 * pointless overhead of lock_page on the ZERO_PAGE
524 		 * which might bounce very badly if there is contention.
525 		 *
526 		 * If the page is already locked, we don't need to
527 		 * handle it now - vmscan will handle it later if and
528 		 * when it attempts to reclaim the page.
529 		 */
530 		if (page->mapping && trylock_page(page)) {
531 			lru_add_drain();  /* push cached pages to LRU */
532 			/*
533 			 * Because we lock page here, and migration is
534 			 * blocked by the pte's page reference, and we
535 			 * know the page is still mapped, we don't even
536 			 * need to check for file-cache page truncation.
537 			 */
538 			mlock_vma_page(page);
539 			unlock_page(page);
540 		}
541 	}
542 out:
543 	pte_unmap_unlock(ptep, ptl);
544 	return page;
545 no_page:
546 	pte_unmap_unlock(ptep, ptl);
547 	if (!pte_none(pte))
548 		return NULL;
549 	return no_page_table(vma, flags);
550 }
551 
552 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 				    unsigned long address, pud_t *pudp,
554 				    unsigned int flags,
555 				    struct follow_page_context *ctx)
556 {
557 	pmd_t *pmd, pmdval;
558 	spinlock_t *ptl;
559 	struct page *page;
560 	struct mm_struct *mm = vma->vm_mm;
561 
562 	pmd = pmd_offset(pudp, address);
563 	/*
564 	 * The READ_ONCE() will stabilize the pmdval in a register or
565 	 * on the stack so that it will stop changing under the code.
566 	 */
567 	pmdval = READ_ONCE(*pmd);
568 	if (pmd_none(pmdval))
569 		return no_page_table(vma, flags);
570 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571 		page = follow_huge_pmd(mm, address, pmd, flags);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577 		page = follow_huge_pd(vma, address,
578 				      __hugepd(pmd_val(pmdval)), flags,
579 				      PMD_SHIFT);
580 		if (page)
581 			return page;
582 		return no_page_table(vma, flags);
583 	}
584 retry:
585 	if (!pmd_present(pmdval)) {
586 		if (likely(!(flags & FOLL_MIGRATION)))
587 			return no_page_table(vma, flags);
588 		VM_BUG_ON(thp_migration_supported() &&
589 				  !is_pmd_migration_entry(pmdval));
590 		if (is_pmd_migration_entry(pmdval))
591 			pmd_migration_entry_wait(mm, pmd);
592 		pmdval = READ_ONCE(*pmd);
593 		/*
594 		 * MADV_DONTNEED may convert the pmd to null because
595 		 * mmap_lock is held in read mode
596 		 */
597 		if (pmd_none(pmdval))
598 			return no_page_table(vma, flags);
599 		goto retry;
600 	}
601 	if (pmd_devmap(pmdval)) {
602 		ptl = pmd_lock(mm, pmd);
603 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
604 		spin_unlock(ptl);
605 		if (page)
606 			return page;
607 	}
608 	if (likely(!pmd_trans_huge(pmdval)))
609 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
610 
611 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
612 		return no_page_table(vma, flags);
613 
614 retry_locked:
615 	ptl = pmd_lock(mm, pmd);
616 	if (unlikely(pmd_none(*pmd))) {
617 		spin_unlock(ptl);
618 		return no_page_table(vma, flags);
619 	}
620 	if (unlikely(!pmd_present(*pmd))) {
621 		spin_unlock(ptl);
622 		if (likely(!(flags & FOLL_MIGRATION)))
623 			return no_page_table(vma, flags);
624 		pmd_migration_entry_wait(mm, pmd);
625 		goto retry_locked;
626 	}
627 	if (unlikely(!pmd_trans_huge(*pmd))) {
628 		spin_unlock(ptl);
629 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
630 	}
631 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
632 		int ret;
633 		page = pmd_page(*pmd);
634 		if (is_huge_zero_page(page)) {
635 			spin_unlock(ptl);
636 			ret = 0;
637 			split_huge_pmd(vma, pmd, address);
638 			if (pmd_trans_unstable(pmd))
639 				ret = -EBUSY;
640 		} else if (flags & FOLL_SPLIT) {
641 			if (unlikely(!try_get_page(page))) {
642 				spin_unlock(ptl);
643 				return ERR_PTR(-ENOMEM);
644 			}
645 			spin_unlock(ptl);
646 			lock_page(page);
647 			ret = split_huge_page(page);
648 			unlock_page(page);
649 			put_page(page);
650 			if (pmd_none(*pmd))
651 				return no_page_table(vma, flags);
652 		} else {  /* flags & FOLL_SPLIT_PMD */
653 			spin_unlock(ptl);
654 			split_huge_pmd(vma, pmd, address);
655 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
656 		}
657 
658 		return ret ? ERR_PTR(ret) :
659 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
660 	}
661 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
662 	spin_unlock(ptl);
663 	ctx->page_mask = HPAGE_PMD_NR - 1;
664 	return page;
665 }
666 
667 static struct page *follow_pud_mask(struct vm_area_struct *vma,
668 				    unsigned long address, p4d_t *p4dp,
669 				    unsigned int flags,
670 				    struct follow_page_context *ctx)
671 {
672 	pud_t *pud;
673 	spinlock_t *ptl;
674 	struct page *page;
675 	struct mm_struct *mm = vma->vm_mm;
676 
677 	pud = pud_offset(p4dp, address);
678 	if (pud_none(*pud))
679 		return no_page_table(vma, flags);
680 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
681 		page = follow_huge_pud(mm, address, pud, flags);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
687 		page = follow_huge_pd(vma, address,
688 				      __hugepd(pud_val(*pud)), flags,
689 				      PUD_SHIFT);
690 		if (page)
691 			return page;
692 		return no_page_table(vma, flags);
693 	}
694 	if (pud_devmap(*pud)) {
695 		ptl = pud_lock(mm, pud);
696 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
697 		spin_unlock(ptl);
698 		if (page)
699 			return page;
700 	}
701 	if (unlikely(pud_bad(*pud)))
702 		return no_page_table(vma, flags);
703 
704 	return follow_pmd_mask(vma, address, pud, flags, ctx);
705 }
706 
707 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708 				    unsigned long address, pgd_t *pgdp,
709 				    unsigned int flags,
710 				    struct follow_page_context *ctx)
711 {
712 	p4d_t *p4d;
713 	struct page *page;
714 
715 	p4d = p4d_offset(pgdp, address);
716 	if (p4d_none(*p4d))
717 		return no_page_table(vma, flags);
718 	BUILD_BUG_ON(p4d_huge(*p4d));
719 	if (unlikely(p4d_bad(*p4d)))
720 		return no_page_table(vma, flags);
721 
722 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723 		page = follow_huge_pd(vma, address,
724 				      __hugepd(p4d_val(*p4d)), flags,
725 				      P4D_SHIFT);
726 		if (page)
727 			return page;
728 		return no_page_table(vma, flags);
729 	}
730 	return follow_pud_mask(vma, address, p4d, flags, ctx);
731 }
732 
733 /**
734  * follow_page_mask - look up a page descriptor from a user-virtual address
735  * @vma: vm_area_struct mapping @address
736  * @address: virtual address to look up
737  * @flags: flags modifying lookup behaviour
738  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739  *       pointer to output page_mask
740  *
741  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
742  *
743  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
745  *
746  * On output, the @ctx->page_mask is set according to the size of the page.
747  *
748  * Return: the mapped (struct page *), %NULL if no mapping exists, or
749  * an error pointer if there is a mapping to something not represented
750  * by a page descriptor (see also vm_normal_page()).
751  */
752 static struct page *follow_page_mask(struct vm_area_struct *vma,
753 			      unsigned long address, unsigned int flags,
754 			      struct follow_page_context *ctx)
755 {
756 	pgd_t *pgd;
757 	struct page *page;
758 	struct mm_struct *mm = vma->vm_mm;
759 
760 	ctx->page_mask = 0;
761 
762 	/* make this handle hugepd */
763 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764 	if (!IS_ERR(page)) {
765 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
766 		return page;
767 	}
768 
769 	pgd = pgd_offset(mm, address);
770 
771 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772 		return no_page_table(vma, flags);
773 
774 	if (pgd_huge(*pgd)) {
775 		page = follow_huge_pgd(mm, address, pgd, flags);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781 		page = follow_huge_pd(vma, address,
782 				      __hugepd(pgd_val(*pgd)), flags,
783 				      PGDIR_SHIFT);
784 		if (page)
785 			return page;
786 		return no_page_table(vma, flags);
787 	}
788 
789 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
790 }
791 
792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793 			 unsigned int foll_flags)
794 {
795 	struct follow_page_context ctx = { NULL };
796 	struct page *page;
797 
798 	page = follow_page_mask(vma, address, foll_flags, &ctx);
799 	if (ctx.pgmap)
800 		put_dev_pagemap(ctx.pgmap);
801 	return page;
802 }
803 
804 static int get_gate_page(struct mm_struct *mm, unsigned long address,
805 		unsigned int gup_flags, struct vm_area_struct **vma,
806 		struct page **page)
807 {
808 	pgd_t *pgd;
809 	p4d_t *p4d;
810 	pud_t *pud;
811 	pmd_t *pmd;
812 	pte_t *pte;
813 	int ret = -EFAULT;
814 
815 	/* user gate pages are read-only */
816 	if (gup_flags & FOLL_WRITE)
817 		return -EFAULT;
818 	if (address > TASK_SIZE)
819 		pgd = pgd_offset_k(address);
820 	else
821 		pgd = pgd_offset_gate(mm, address);
822 	if (pgd_none(*pgd))
823 		return -EFAULT;
824 	p4d = p4d_offset(pgd, address);
825 	if (p4d_none(*p4d))
826 		return -EFAULT;
827 	pud = pud_offset(p4d, address);
828 	if (pud_none(*pud))
829 		return -EFAULT;
830 	pmd = pmd_offset(pud, address);
831 	if (!pmd_present(*pmd))
832 		return -EFAULT;
833 	VM_BUG_ON(pmd_trans_huge(*pmd));
834 	pte = pte_offset_map(pmd, address);
835 	if (pte_none(*pte))
836 		goto unmap;
837 	*vma = get_gate_vma(mm);
838 	if (!page)
839 		goto out;
840 	*page = vm_normal_page(*vma, address, *pte);
841 	if (!*page) {
842 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843 			goto unmap;
844 		*page = pte_page(*pte);
845 	}
846 	if (unlikely(!try_get_page(*page))) {
847 		ret = -ENOMEM;
848 		goto unmap;
849 	}
850 out:
851 	ret = 0;
852 unmap:
853 	pte_unmap(pte);
854 	return ret;
855 }
856 
857 /*
858  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
859  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
860  * is, *@locked will be set to 0 and -EBUSY returned.
861  */
862 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
863 		unsigned long address, unsigned int *flags, int *locked)
864 {
865 	unsigned int fault_flags = 0;
866 	vm_fault_t ret;
867 
868 	/* mlock all present pages, but do not fault in new pages */
869 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870 		return -ENOENT;
871 	if (*flags & FOLL_WRITE)
872 		fault_flags |= FAULT_FLAG_WRITE;
873 	if (*flags & FOLL_REMOTE)
874 		fault_flags |= FAULT_FLAG_REMOTE;
875 	if (locked)
876 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
877 	if (*flags & FOLL_NOWAIT)
878 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
879 	if (*flags & FOLL_TRIED) {
880 		/*
881 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882 		 * can co-exist
883 		 */
884 		fault_flags |= FAULT_FLAG_TRIED;
885 	}
886 
887 	ret = handle_mm_fault(vma, address, fault_flags);
888 	if (ret & VM_FAULT_ERROR) {
889 		int err = vm_fault_to_errno(ret, *flags);
890 
891 		if (err)
892 			return err;
893 		BUG();
894 	}
895 
896 	if (tsk) {
897 		if (ret & VM_FAULT_MAJOR)
898 			tsk->maj_flt++;
899 		else
900 			tsk->min_flt++;
901 	}
902 
903 	if (ret & VM_FAULT_RETRY) {
904 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
905 			*locked = 0;
906 		return -EBUSY;
907 	}
908 
909 	/*
910 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
911 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
912 	 * can thus safely do subsequent page lookups as if they were reads.
913 	 * But only do so when looping for pte_write is futile: in some cases
914 	 * userspace may also be wanting to write to the gotten user page,
915 	 * which a read fault here might prevent (a readonly page might get
916 	 * reCOWed by userspace write).
917 	 */
918 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
919 		*flags |= FOLL_COW;
920 	return 0;
921 }
922 
923 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
924 {
925 	vm_flags_t vm_flags = vma->vm_flags;
926 	int write = (gup_flags & FOLL_WRITE);
927 	int foreign = (gup_flags & FOLL_REMOTE);
928 
929 	if (vm_flags & (VM_IO | VM_PFNMAP))
930 		return -EFAULT;
931 
932 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
933 		return -EFAULT;
934 
935 	if (write) {
936 		if (!(vm_flags & VM_WRITE)) {
937 			if (!(gup_flags & FOLL_FORCE))
938 				return -EFAULT;
939 			/*
940 			 * We used to let the write,force case do COW in a
941 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
942 			 * set a breakpoint in a read-only mapping of an
943 			 * executable, without corrupting the file (yet only
944 			 * when that file had been opened for writing!).
945 			 * Anon pages in shared mappings are surprising: now
946 			 * just reject it.
947 			 */
948 			if (!is_cow_mapping(vm_flags))
949 				return -EFAULT;
950 		}
951 	} else if (!(vm_flags & VM_READ)) {
952 		if (!(gup_flags & FOLL_FORCE))
953 			return -EFAULT;
954 		/*
955 		 * Is there actually any vma we can reach here which does not
956 		 * have VM_MAYREAD set?
957 		 */
958 		if (!(vm_flags & VM_MAYREAD))
959 			return -EFAULT;
960 	}
961 	/*
962 	 * gups are always data accesses, not instruction
963 	 * fetches, so execute=false here
964 	 */
965 	if (!arch_vma_access_permitted(vma, write, false, foreign))
966 		return -EFAULT;
967 	return 0;
968 }
969 
970 /**
971  * __get_user_pages() - pin user pages in memory
972  * @tsk:	task_struct of target task
973  * @mm:		mm_struct of target mm
974  * @start:	starting user address
975  * @nr_pages:	number of pages from start to pin
976  * @gup_flags:	flags modifying pin behaviour
977  * @pages:	array that receives pointers to the pages pinned.
978  *		Should be at least nr_pages long. Or NULL, if caller
979  *		only intends to ensure the pages are faulted in.
980  * @vmas:	array of pointers to vmas corresponding to each page.
981  *		Or NULL if the caller does not require them.
982  * @locked:     whether we're still with the mmap_lock held
983  *
984  * Returns either number of pages pinned (which may be less than the
985  * number requested), or an error. Details about the return value:
986  *
987  * -- If nr_pages is 0, returns 0.
988  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
989  * -- If nr_pages is >0, and some pages were pinned, returns the number of
990  *    pages pinned. Again, this may be less than nr_pages.
991  * -- 0 return value is possible when the fault would need to be retried.
992  *
993  * The caller is responsible for releasing returned @pages, via put_page().
994  *
995  * @vmas are valid only as long as mmap_lock is held.
996  *
997  * Must be called with mmap_lock held.  It may be released.  See below.
998  *
999  * __get_user_pages walks a process's page tables and takes a reference to
1000  * each struct page that each user address corresponds to at a given
1001  * instant. That is, it takes the page that would be accessed if a user
1002  * thread accesses the given user virtual address at that instant.
1003  *
1004  * This does not guarantee that the page exists in the user mappings when
1005  * __get_user_pages returns, and there may even be a completely different
1006  * page there in some cases (eg. if mmapped pagecache has been invalidated
1007  * and subsequently re faulted). However it does guarantee that the page
1008  * won't be freed completely. And mostly callers simply care that the page
1009  * contains data that was valid *at some point in time*. Typically, an IO
1010  * or similar operation cannot guarantee anything stronger anyway because
1011  * locks can't be held over the syscall boundary.
1012  *
1013  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015  * appropriate) must be called after the page is finished with, and
1016  * before put_page is called.
1017  *
1018  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1019  * released by an up_read().  That can happen if @gup_flags does not
1020  * have FOLL_NOWAIT.
1021  *
1022  * A caller using such a combination of @locked and @gup_flags
1023  * must therefore hold the mmap_lock for reading only, and recognize
1024  * when it's been released.  Otherwise, it must be held for either
1025  * reading or writing and will not be released.
1026  *
1027  * In most cases, get_user_pages or get_user_pages_fast should be used
1028  * instead of __get_user_pages. __get_user_pages should be used only if
1029  * you need some special @gup_flags.
1030  */
1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 		unsigned long start, unsigned long nr_pages,
1033 		unsigned int gup_flags, struct page **pages,
1034 		struct vm_area_struct **vmas, int *locked)
1035 {
1036 	long ret = 0, i = 0;
1037 	struct vm_area_struct *vma = NULL;
1038 	struct follow_page_context ctx = { NULL };
1039 
1040 	if (!nr_pages)
1041 		return 0;
1042 
1043 	start = untagged_addr(start);
1044 
1045 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1046 
1047 	/*
1048 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 	 * fault information is unrelated to the reference behaviour of a task
1050 	 * using the address space
1051 	 */
1052 	if (!(gup_flags & FOLL_FORCE))
1053 		gup_flags |= FOLL_NUMA;
1054 
1055 	do {
1056 		struct page *page;
1057 		unsigned int foll_flags = gup_flags;
1058 		unsigned int page_increm;
1059 
1060 		/* first iteration or cross vma bound */
1061 		if (!vma || start >= vma->vm_end) {
1062 			vma = find_extend_vma(mm, start);
1063 			if (!vma && in_gate_area(mm, start)) {
1064 				ret = get_gate_page(mm, start & PAGE_MASK,
1065 						gup_flags, &vma,
1066 						pages ? &pages[i] : NULL);
1067 				if (ret)
1068 					goto out;
1069 				ctx.page_mask = 0;
1070 				goto next_page;
1071 			}
1072 
1073 			if (!vma || check_vma_flags(vma, gup_flags)) {
1074 				ret = -EFAULT;
1075 				goto out;
1076 			}
1077 			if (is_vm_hugetlb_page(vma)) {
1078 				if (should_force_cow_break(vma, foll_flags))
1079 					foll_flags |= FOLL_WRITE;
1080 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 						&start, &nr_pages, i,
1082 						foll_flags, locked);
1083 				if (locked && *locked == 0) {
1084 					/*
1085 					 * We've got a VM_FAULT_RETRY
1086 					 * and we've lost mmap_lock.
1087 					 * We must stop here.
1088 					 */
1089 					BUG_ON(gup_flags & FOLL_NOWAIT);
1090 					BUG_ON(ret != 0);
1091 					goto out;
1092 				}
1093 				continue;
1094 			}
1095 		}
1096 
1097 		if (should_force_cow_break(vma, foll_flags))
1098 			foll_flags |= FOLL_WRITE;
1099 
1100 retry:
1101 		/*
1102 		 * If we have a pending SIGKILL, don't keep faulting pages and
1103 		 * potentially allocating memory.
1104 		 */
1105 		if (fatal_signal_pending(current)) {
1106 			ret = -EINTR;
1107 			goto out;
1108 		}
1109 		cond_resched();
1110 
1111 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 		if (!page) {
1113 			ret = faultin_page(tsk, vma, start, &foll_flags,
1114 					   locked);
1115 			switch (ret) {
1116 			case 0:
1117 				goto retry;
1118 			case -EBUSY:
1119 				ret = 0;
1120 				fallthrough;
1121 			case -EFAULT:
1122 			case -ENOMEM:
1123 			case -EHWPOISON:
1124 				goto out;
1125 			case -ENOENT:
1126 				goto next_page;
1127 			}
1128 			BUG();
1129 		} else if (PTR_ERR(page) == -EEXIST) {
1130 			/*
1131 			 * Proper page table entry exists, but no corresponding
1132 			 * struct page.
1133 			 */
1134 			goto next_page;
1135 		} else if (IS_ERR(page)) {
1136 			ret = PTR_ERR(page);
1137 			goto out;
1138 		}
1139 		if (pages) {
1140 			pages[i] = page;
1141 			flush_anon_page(vma, page, start);
1142 			flush_dcache_page(page);
1143 			ctx.page_mask = 0;
1144 		}
1145 next_page:
1146 		if (vmas) {
1147 			vmas[i] = vma;
1148 			ctx.page_mask = 0;
1149 		}
1150 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 		if (page_increm > nr_pages)
1152 			page_increm = nr_pages;
1153 		i += page_increm;
1154 		start += page_increm * PAGE_SIZE;
1155 		nr_pages -= page_increm;
1156 	} while (nr_pages);
1157 out:
1158 	if (ctx.pgmap)
1159 		put_dev_pagemap(ctx.pgmap);
1160 	return i ? i : ret;
1161 }
1162 
1163 static bool vma_permits_fault(struct vm_area_struct *vma,
1164 			      unsigned int fault_flags)
1165 {
1166 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1167 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1169 
1170 	if (!(vm_flags & vma->vm_flags))
1171 		return false;
1172 
1173 	/*
1174 	 * The architecture might have a hardware protection
1175 	 * mechanism other than read/write that can deny access.
1176 	 *
1177 	 * gup always represents data access, not instruction
1178 	 * fetches, so execute=false here:
1179 	 */
1180 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 		return false;
1182 
1183 	return true;
1184 }
1185 
1186 /**
1187  * fixup_user_fault() - manually resolve a user page fault
1188  * @tsk:	the task_struct to use for page fault accounting, or
1189  *		NULL if faults are not to be recorded.
1190  * @mm:		mm_struct of target mm
1191  * @address:	user address
1192  * @fault_flags:flags to pass down to handle_mm_fault()
1193  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1194  *		does not allow retry. If NULL, the caller must guarantee
1195  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1196  *
1197  * This is meant to be called in the specific scenario where for locking reasons
1198  * we try to access user memory in atomic context (within a pagefault_disable()
1199  * section), this returns -EFAULT, and we want to resolve the user fault before
1200  * trying again.
1201  *
1202  * Typically this is meant to be used by the futex code.
1203  *
1204  * The main difference with get_user_pages() is that this function will
1205  * unconditionally call handle_mm_fault() which will in turn perform all the
1206  * necessary SW fixup of the dirty and young bits in the PTE, while
1207  * get_user_pages() only guarantees to update these in the struct page.
1208  *
1209  * This is important for some architectures where those bits also gate the
1210  * access permission to the page because they are maintained in software.  On
1211  * such architectures, gup() will not be enough to make a subsequent access
1212  * succeed.
1213  *
1214  * This function will not return with an unlocked mmap_lock. So it has not the
1215  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1216  */
1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1218 		     unsigned long address, unsigned int fault_flags,
1219 		     bool *unlocked)
1220 {
1221 	struct vm_area_struct *vma;
1222 	vm_fault_t ret, major = 0;
1223 
1224 	address = untagged_addr(address);
1225 
1226 	if (unlocked)
1227 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1228 
1229 retry:
1230 	vma = find_extend_vma(mm, address);
1231 	if (!vma || address < vma->vm_start)
1232 		return -EFAULT;
1233 
1234 	if (!vma_permits_fault(vma, fault_flags))
1235 		return -EFAULT;
1236 
1237 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1238 	    fatal_signal_pending(current))
1239 		return -EINTR;
1240 
1241 	ret = handle_mm_fault(vma, address, fault_flags);
1242 	major |= ret & VM_FAULT_MAJOR;
1243 	if (ret & VM_FAULT_ERROR) {
1244 		int err = vm_fault_to_errno(ret, 0);
1245 
1246 		if (err)
1247 			return err;
1248 		BUG();
1249 	}
1250 
1251 	if (ret & VM_FAULT_RETRY) {
1252 		mmap_read_lock(mm);
1253 		*unlocked = true;
1254 		fault_flags |= FAULT_FLAG_TRIED;
1255 		goto retry;
1256 	}
1257 
1258 	if (tsk) {
1259 		if (major)
1260 			tsk->maj_flt++;
1261 		else
1262 			tsk->min_flt++;
1263 	}
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(fixup_user_fault);
1267 
1268 /*
1269  * Please note that this function, unlike __get_user_pages will not
1270  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1271  */
1272 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1273 						struct mm_struct *mm,
1274 						unsigned long start,
1275 						unsigned long nr_pages,
1276 						struct page **pages,
1277 						struct vm_area_struct **vmas,
1278 						int *locked,
1279 						unsigned int flags)
1280 {
1281 	long ret, pages_done;
1282 	bool lock_dropped;
1283 
1284 	if (locked) {
1285 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1286 		BUG_ON(vmas);
1287 		/* check caller initialized locked */
1288 		BUG_ON(*locked != 1);
1289 	}
1290 
1291 	/*
1292 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1293 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1294 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1295 	 * for FOLL_GET, not for the newer FOLL_PIN.
1296 	 *
1297 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1298 	 * that here, as any failures will be obvious enough.
1299 	 */
1300 	if (pages && !(flags & FOLL_PIN))
1301 		flags |= FOLL_GET;
1302 
1303 	pages_done = 0;
1304 	lock_dropped = false;
1305 	for (;;) {
1306 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1307 				       vmas, locked);
1308 		if (!locked)
1309 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1310 			return ret;
1311 
1312 		/* VM_FAULT_RETRY cannot return errors */
1313 		if (!*locked) {
1314 			BUG_ON(ret < 0);
1315 			BUG_ON(ret >= nr_pages);
1316 		}
1317 
1318 		if (ret > 0) {
1319 			nr_pages -= ret;
1320 			pages_done += ret;
1321 			if (!nr_pages)
1322 				break;
1323 		}
1324 		if (*locked) {
1325 			/*
1326 			 * VM_FAULT_RETRY didn't trigger or it was a
1327 			 * FOLL_NOWAIT.
1328 			 */
1329 			if (!pages_done)
1330 				pages_done = ret;
1331 			break;
1332 		}
1333 		/*
1334 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1335 		 * For the prefault case (!pages) we only update counts.
1336 		 */
1337 		if (likely(pages))
1338 			pages += ret;
1339 		start += ret << PAGE_SHIFT;
1340 		lock_dropped = true;
1341 
1342 retry:
1343 		/*
1344 		 * Repeat on the address that fired VM_FAULT_RETRY
1345 		 * with both FAULT_FLAG_ALLOW_RETRY and
1346 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1347 		 * by fatal signals, so we need to check it before we
1348 		 * start trying again otherwise it can loop forever.
1349 		 */
1350 
1351 		if (fatal_signal_pending(current)) {
1352 			if (!pages_done)
1353 				pages_done = -EINTR;
1354 			break;
1355 		}
1356 
1357 		ret = mmap_read_lock_killable(mm);
1358 		if (ret) {
1359 			BUG_ON(ret > 0);
1360 			if (!pages_done)
1361 				pages_done = ret;
1362 			break;
1363 		}
1364 
1365 		*locked = 1;
1366 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1367 				       pages, NULL, locked);
1368 		if (!*locked) {
1369 			/* Continue to retry until we succeeded */
1370 			BUG_ON(ret != 0);
1371 			goto retry;
1372 		}
1373 		if (ret != 1) {
1374 			BUG_ON(ret > 1);
1375 			if (!pages_done)
1376 				pages_done = ret;
1377 			break;
1378 		}
1379 		nr_pages--;
1380 		pages_done++;
1381 		if (!nr_pages)
1382 			break;
1383 		if (likely(pages))
1384 			pages++;
1385 		start += PAGE_SIZE;
1386 	}
1387 	if (lock_dropped && *locked) {
1388 		/*
1389 		 * We must let the caller know we temporarily dropped the lock
1390 		 * and so the critical section protected by it was lost.
1391 		 */
1392 		mmap_read_unlock(mm);
1393 		*locked = 0;
1394 	}
1395 	return pages_done;
1396 }
1397 
1398 /**
1399  * populate_vma_page_range() -  populate a range of pages in the vma.
1400  * @vma:   target vma
1401  * @start: start address
1402  * @end:   end address
1403  * @locked: whether the mmap_lock is still held
1404  *
1405  * This takes care of mlocking the pages too if VM_LOCKED is set.
1406  *
1407  * Return either number of pages pinned in the vma, or a negative error
1408  * code on error.
1409  *
1410  * vma->vm_mm->mmap_lock must be held.
1411  *
1412  * If @locked is NULL, it may be held for read or write and will
1413  * be unperturbed.
1414  *
1415  * If @locked is non-NULL, it must held for read only and may be
1416  * released.  If it's released, *@locked will be set to 0.
1417  */
1418 long populate_vma_page_range(struct vm_area_struct *vma,
1419 		unsigned long start, unsigned long end, int *locked)
1420 {
1421 	struct mm_struct *mm = vma->vm_mm;
1422 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1423 	int gup_flags;
1424 
1425 	VM_BUG_ON(start & ~PAGE_MASK);
1426 	VM_BUG_ON(end   & ~PAGE_MASK);
1427 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1428 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1429 	mmap_assert_locked(mm);
1430 
1431 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1432 	if (vma->vm_flags & VM_LOCKONFAULT)
1433 		gup_flags &= ~FOLL_POPULATE;
1434 	/*
1435 	 * We want to touch writable mappings with a write fault in order
1436 	 * to break COW, except for shared mappings because these don't COW
1437 	 * and we would not want to dirty them for nothing.
1438 	 */
1439 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1440 		gup_flags |= FOLL_WRITE;
1441 
1442 	/*
1443 	 * We want mlock to succeed for regions that have any permissions
1444 	 * other than PROT_NONE.
1445 	 */
1446 	if (vma_is_accessible(vma))
1447 		gup_flags |= FOLL_FORCE;
1448 
1449 	/*
1450 	 * We made sure addr is within a VMA, so the following will
1451 	 * not result in a stack expansion that recurses back here.
1452 	 */
1453 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1454 				NULL, NULL, locked);
1455 }
1456 
1457 /*
1458  * __mm_populate - populate and/or mlock pages within a range of address space.
1459  *
1460  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1461  * flags. VMAs must be already marked with the desired vm_flags, and
1462  * mmap_lock must not be held.
1463  */
1464 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465 {
1466 	struct mm_struct *mm = current->mm;
1467 	unsigned long end, nstart, nend;
1468 	struct vm_area_struct *vma = NULL;
1469 	int locked = 0;
1470 	long ret = 0;
1471 
1472 	end = start + len;
1473 
1474 	for (nstart = start; nstart < end; nstart = nend) {
1475 		/*
1476 		 * We want to fault in pages for [nstart; end) address range.
1477 		 * Find first corresponding VMA.
1478 		 */
1479 		if (!locked) {
1480 			locked = 1;
1481 			mmap_read_lock(mm);
1482 			vma = find_vma(mm, nstart);
1483 		} else if (nstart >= vma->vm_end)
1484 			vma = vma->vm_next;
1485 		if (!vma || vma->vm_start >= end)
1486 			break;
1487 		/*
1488 		 * Set [nstart; nend) to intersection of desired address
1489 		 * range with the first VMA. Also, skip undesirable VMA types.
1490 		 */
1491 		nend = min(end, vma->vm_end);
1492 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1493 			continue;
1494 		if (nstart < vma->vm_start)
1495 			nstart = vma->vm_start;
1496 		/*
1497 		 * Now fault in a range of pages. populate_vma_page_range()
1498 		 * double checks the vma flags, so that it won't mlock pages
1499 		 * if the vma was already munlocked.
1500 		 */
1501 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1502 		if (ret < 0) {
1503 			if (ignore_errors) {
1504 				ret = 0;
1505 				continue;	/* continue at next VMA */
1506 			}
1507 			break;
1508 		}
1509 		nend = nstart + ret * PAGE_SIZE;
1510 		ret = 0;
1511 	}
1512 	if (locked)
1513 		mmap_read_unlock(mm);
1514 	return ret;	/* 0 or negative error code */
1515 }
1516 
1517 /**
1518  * get_dump_page() - pin user page in memory while writing it to core dump
1519  * @addr: user address
1520  *
1521  * Returns struct page pointer of user page pinned for dump,
1522  * to be freed afterwards by put_page().
1523  *
1524  * Returns NULL on any kind of failure - a hole must then be inserted into
1525  * the corefile, to preserve alignment with its headers; and also returns
1526  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1527  * allowing a hole to be left in the corefile to save diskspace.
1528  *
1529  * Called without mmap_lock, but after all other threads have been killed.
1530  */
1531 #ifdef CONFIG_ELF_CORE
1532 struct page *get_dump_page(unsigned long addr)
1533 {
1534 	struct vm_area_struct *vma;
1535 	struct page *page;
1536 
1537 	if (__get_user_pages(current, current->mm, addr, 1,
1538 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1539 			     NULL) < 1)
1540 		return NULL;
1541 	flush_cache_page(vma, addr, page_to_pfn(page));
1542 	return page;
1543 }
1544 #endif /* CONFIG_ELF_CORE */
1545 #else /* CONFIG_MMU */
1546 static long __get_user_pages_locked(struct task_struct *tsk,
1547 		struct mm_struct *mm, unsigned long start,
1548 		unsigned long nr_pages, struct page **pages,
1549 		struct vm_area_struct **vmas, int *locked,
1550 		unsigned int foll_flags)
1551 {
1552 	struct vm_area_struct *vma;
1553 	unsigned long vm_flags;
1554 	int i;
1555 
1556 	/* calculate required read or write permissions.
1557 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 	 */
1559 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1560 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1561 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1562 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563 
1564 	for (i = 0; i < nr_pages; i++) {
1565 		vma = find_vma(mm, start);
1566 		if (!vma)
1567 			goto finish_or_fault;
1568 
1569 		/* protect what we can, including chardevs */
1570 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1571 		    !(vm_flags & vma->vm_flags))
1572 			goto finish_or_fault;
1573 
1574 		if (pages) {
1575 			pages[i] = virt_to_page(start);
1576 			if (pages[i])
1577 				get_page(pages[i]);
1578 		}
1579 		if (vmas)
1580 			vmas[i] = vma;
1581 		start = (start + PAGE_SIZE) & PAGE_MASK;
1582 	}
1583 
1584 	return i;
1585 
1586 finish_or_fault:
1587 	return i ? : -EFAULT;
1588 }
1589 #endif /* !CONFIG_MMU */
1590 
1591 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1592 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1593 {
1594 	long i;
1595 	struct vm_area_struct *vma_prev = NULL;
1596 
1597 	for (i = 0; i < nr_pages; i++) {
1598 		struct vm_area_struct *vma = vmas[i];
1599 
1600 		if (vma == vma_prev)
1601 			continue;
1602 
1603 		vma_prev = vma;
1604 
1605 		if (vma_is_fsdax(vma))
1606 			return true;
1607 	}
1608 	return false;
1609 }
1610 
1611 #ifdef CONFIG_CMA
1612 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1613 {
1614 	/*
1615 	 * We want to make sure we allocate the new page from the same node
1616 	 * as the source page.
1617 	 */
1618 	int nid = page_to_nid(page);
1619 	/*
1620 	 * Trying to allocate a page for migration. Ignore allocation
1621 	 * failure warnings. We don't force __GFP_THISNODE here because
1622 	 * this node here is the node where we have CMA reservation and
1623 	 * in some case these nodes will have really less non movable
1624 	 * allocation memory.
1625 	 */
1626 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1627 
1628 	if (PageHighMem(page))
1629 		gfp_mask |= __GFP_HIGHMEM;
1630 
1631 #ifdef CONFIG_HUGETLB_PAGE
1632 	if (PageHuge(page)) {
1633 		struct hstate *h = page_hstate(page);
1634 		/*
1635 		 * We don't want to dequeue from the pool because pool pages will
1636 		 * mostly be from the CMA region.
1637 		 */
1638 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1639 	}
1640 #endif
1641 	if (PageTransHuge(page)) {
1642 		struct page *thp;
1643 		/*
1644 		 * ignore allocation failure warnings
1645 		 */
1646 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1647 
1648 		/*
1649 		 * Remove the movable mask so that we don't allocate from
1650 		 * CMA area again.
1651 		 */
1652 		thp_gfpmask &= ~__GFP_MOVABLE;
1653 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1654 		if (!thp)
1655 			return NULL;
1656 		prep_transhuge_page(thp);
1657 		return thp;
1658 	}
1659 
1660 	return __alloc_pages_node(nid, gfp_mask, 0);
1661 }
1662 
1663 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1664 					struct mm_struct *mm,
1665 					unsigned long start,
1666 					unsigned long nr_pages,
1667 					struct page **pages,
1668 					struct vm_area_struct **vmas,
1669 					unsigned int gup_flags)
1670 {
1671 	unsigned long i;
1672 	unsigned long step;
1673 	bool drain_allow = true;
1674 	bool migrate_allow = true;
1675 	LIST_HEAD(cma_page_list);
1676 	long ret = nr_pages;
1677 
1678 check_again:
1679 	for (i = 0; i < nr_pages;) {
1680 
1681 		struct page *head = compound_head(pages[i]);
1682 
1683 		/*
1684 		 * gup may start from a tail page. Advance step by the left
1685 		 * part.
1686 		 */
1687 		step = compound_nr(head) - (pages[i] - head);
1688 		/*
1689 		 * If we get a page from the CMA zone, since we are going to
1690 		 * be pinning these entries, we might as well move them out
1691 		 * of the CMA zone if possible.
1692 		 */
1693 		if (is_migrate_cma_page(head)) {
1694 			if (PageHuge(head))
1695 				isolate_huge_page(head, &cma_page_list);
1696 			else {
1697 				if (!PageLRU(head) && drain_allow) {
1698 					lru_add_drain_all();
1699 					drain_allow = false;
1700 				}
1701 
1702 				if (!isolate_lru_page(head)) {
1703 					list_add_tail(&head->lru, &cma_page_list);
1704 					mod_node_page_state(page_pgdat(head),
1705 							    NR_ISOLATED_ANON +
1706 							    page_is_file_lru(head),
1707 							    hpage_nr_pages(head));
1708 				}
1709 			}
1710 		}
1711 
1712 		i += step;
1713 	}
1714 
1715 	if (!list_empty(&cma_page_list)) {
1716 		/*
1717 		 * drop the above get_user_pages reference.
1718 		 */
1719 		for (i = 0; i < nr_pages; i++)
1720 			put_page(pages[i]);
1721 
1722 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1723 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1724 			/*
1725 			 * some of the pages failed migration. Do get_user_pages
1726 			 * without migration.
1727 			 */
1728 			migrate_allow = false;
1729 
1730 			if (!list_empty(&cma_page_list))
1731 				putback_movable_pages(&cma_page_list);
1732 		}
1733 		/*
1734 		 * We did migrate all the pages, Try to get the page references
1735 		 * again migrating any new CMA pages which we failed to isolate
1736 		 * earlier.
1737 		 */
1738 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1739 						   pages, vmas, NULL,
1740 						   gup_flags);
1741 
1742 		if ((ret > 0) && migrate_allow) {
1743 			nr_pages = ret;
1744 			drain_allow = true;
1745 			goto check_again;
1746 		}
1747 	}
1748 
1749 	return ret;
1750 }
1751 #else
1752 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1753 					struct mm_struct *mm,
1754 					unsigned long start,
1755 					unsigned long nr_pages,
1756 					struct page **pages,
1757 					struct vm_area_struct **vmas,
1758 					unsigned int gup_flags)
1759 {
1760 	return nr_pages;
1761 }
1762 #endif /* CONFIG_CMA */
1763 
1764 /*
1765  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1766  * allows us to process the FOLL_LONGTERM flag.
1767  */
1768 static long __gup_longterm_locked(struct task_struct *tsk,
1769 				  struct mm_struct *mm,
1770 				  unsigned long start,
1771 				  unsigned long nr_pages,
1772 				  struct page **pages,
1773 				  struct vm_area_struct **vmas,
1774 				  unsigned int gup_flags)
1775 {
1776 	struct vm_area_struct **vmas_tmp = vmas;
1777 	unsigned long flags = 0;
1778 	long rc, i;
1779 
1780 	if (gup_flags & FOLL_LONGTERM) {
1781 		if (!pages)
1782 			return -EINVAL;
1783 
1784 		if (!vmas_tmp) {
1785 			vmas_tmp = kcalloc(nr_pages,
1786 					   sizeof(struct vm_area_struct *),
1787 					   GFP_KERNEL);
1788 			if (!vmas_tmp)
1789 				return -ENOMEM;
1790 		}
1791 		flags = memalloc_nocma_save();
1792 	}
1793 
1794 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1795 				     vmas_tmp, NULL, gup_flags);
1796 
1797 	if (gup_flags & FOLL_LONGTERM) {
1798 		memalloc_nocma_restore(flags);
1799 		if (rc < 0)
1800 			goto out;
1801 
1802 		if (check_dax_vmas(vmas_tmp, rc)) {
1803 			for (i = 0; i < rc; i++)
1804 				put_page(pages[i]);
1805 			rc = -EOPNOTSUPP;
1806 			goto out;
1807 		}
1808 
1809 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1810 						 vmas_tmp, gup_flags);
1811 	}
1812 
1813 out:
1814 	if (vmas_tmp != vmas)
1815 		kfree(vmas_tmp);
1816 	return rc;
1817 }
1818 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1819 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1820 						  struct mm_struct *mm,
1821 						  unsigned long start,
1822 						  unsigned long nr_pages,
1823 						  struct page **pages,
1824 						  struct vm_area_struct **vmas,
1825 						  unsigned int flags)
1826 {
1827 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1828 				       NULL, flags);
1829 }
1830 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1831 
1832 #ifdef CONFIG_MMU
1833 static long __get_user_pages_remote(struct task_struct *tsk,
1834 				    struct mm_struct *mm,
1835 				    unsigned long start, unsigned long nr_pages,
1836 				    unsigned int gup_flags, struct page **pages,
1837 				    struct vm_area_struct **vmas, int *locked)
1838 {
1839 	/*
1840 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1841 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1842 	 * vmas. However, this only comes up if locked is set, and there are
1843 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1844 	 * allow what we can.
1845 	 */
1846 	if (gup_flags & FOLL_LONGTERM) {
1847 		if (WARN_ON_ONCE(locked))
1848 			return -EINVAL;
1849 		/*
1850 		 * This will check the vmas (even if our vmas arg is NULL)
1851 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 		 */
1853 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1854 					     vmas, gup_flags | FOLL_TOUCH |
1855 					     FOLL_REMOTE);
1856 	}
1857 
1858 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1859 				       locked,
1860 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1861 }
1862 
1863 /**
1864  * get_user_pages_remote() - pin user pages in memory
1865  * @tsk:	the task_struct to use for page fault accounting, or
1866  *		NULL if faults are not to be recorded.
1867  * @mm:		mm_struct of target mm
1868  * @start:	starting user address
1869  * @nr_pages:	number of pages from start to pin
1870  * @gup_flags:	flags modifying lookup behaviour
1871  * @pages:	array that receives pointers to the pages pinned.
1872  *		Should be at least nr_pages long. Or NULL, if caller
1873  *		only intends to ensure the pages are faulted in.
1874  * @vmas:	array of pointers to vmas corresponding to each page.
1875  *		Or NULL if the caller does not require them.
1876  * @locked:	pointer to lock flag indicating whether lock is held and
1877  *		subsequently whether VM_FAULT_RETRY functionality can be
1878  *		utilised. Lock must initially be held.
1879  *
1880  * Returns either number of pages pinned (which may be less than the
1881  * number requested), or an error. Details about the return value:
1882  *
1883  * -- If nr_pages is 0, returns 0.
1884  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1885  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1886  *    pages pinned. Again, this may be less than nr_pages.
1887  *
1888  * The caller is responsible for releasing returned @pages, via put_page().
1889  *
1890  * @vmas are valid only as long as mmap_lock is held.
1891  *
1892  * Must be called with mmap_lock held for read or write.
1893  *
1894  * get_user_pages_remote walks a process's page tables and takes a reference
1895  * to each struct page that each user address corresponds to at a given
1896  * instant. That is, it takes the page that would be accessed if a user
1897  * thread accesses the given user virtual address at that instant.
1898  *
1899  * This does not guarantee that the page exists in the user mappings when
1900  * get_user_pages_remote returns, and there may even be a completely different
1901  * page there in some cases (eg. if mmapped pagecache has been invalidated
1902  * and subsequently re faulted). However it does guarantee that the page
1903  * won't be freed completely. And mostly callers simply care that the page
1904  * contains data that was valid *at some point in time*. Typically, an IO
1905  * or similar operation cannot guarantee anything stronger anyway because
1906  * locks can't be held over the syscall boundary.
1907  *
1908  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1909  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1910  * be called after the page is finished with, and before put_page is called.
1911  *
1912  * get_user_pages_remote is typically used for fewer-copy IO operations,
1913  * to get a handle on the memory by some means other than accesses
1914  * via the user virtual addresses. The pages may be submitted for
1915  * DMA to devices or accessed via their kernel linear mapping (via the
1916  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1917  *
1918  * See also get_user_pages_fast, for performance critical applications.
1919  *
1920  * get_user_pages_remote should be phased out in favor of
1921  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1922  * should use get_user_pages_remote because it cannot pass
1923  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924  */
1925 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1926 		unsigned long start, unsigned long nr_pages,
1927 		unsigned int gup_flags, struct page **pages,
1928 		struct vm_area_struct **vmas, int *locked)
1929 {
1930 	/*
1931 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1932 	 * never directly by the caller, so enforce that with an assertion:
1933 	 */
1934 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1935 		return -EINVAL;
1936 
1937 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1938 				       pages, vmas, locked);
1939 }
1940 EXPORT_SYMBOL(get_user_pages_remote);
1941 
1942 #else /* CONFIG_MMU */
1943 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1944 			   unsigned long start, unsigned long nr_pages,
1945 			   unsigned int gup_flags, struct page **pages,
1946 			   struct vm_area_struct **vmas, int *locked)
1947 {
1948 	return 0;
1949 }
1950 
1951 static long __get_user_pages_remote(struct task_struct *tsk,
1952 				    struct mm_struct *mm,
1953 				    unsigned long start, unsigned long nr_pages,
1954 				    unsigned int gup_flags, struct page **pages,
1955 				    struct vm_area_struct **vmas, int *locked)
1956 {
1957 	return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960 
1961 /**
1962  * get_user_pages() - pin user pages in memory
1963  * @start:      starting user address
1964  * @nr_pages:   number of pages from start to pin
1965  * @gup_flags:  flags modifying lookup behaviour
1966  * @pages:      array that receives pointers to the pages pinned.
1967  *              Should be at least nr_pages long. Or NULL, if caller
1968  *              only intends to ensure the pages are faulted in.
1969  * @vmas:       array of pointers to vmas corresponding to each page.
1970  *              Or NULL if the caller does not require them.
1971  *
1972  * This is the same as get_user_pages_remote(), just with a
1973  * less-flexible calling convention where we assume that the task
1974  * and mm being operated on are the current task's and don't allow
1975  * passing of a locked parameter.  We also obviously don't pass
1976  * FOLL_REMOTE in here.
1977  */
1978 long get_user_pages(unsigned long start, unsigned long nr_pages,
1979 		unsigned int gup_flags, struct page **pages,
1980 		struct vm_area_struct **vmas)
1981 {
1982 	/*
1983 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1984 	 * never directly by the caller, so enforce that with an assertion:
1985 	 */
1986 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1987 		return -EINVAL;
1988 
1989 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1990 				     pages, vmas, gup_flags | FOLL_TOUCH);
1991 }
1992 EXPORT_SYMBOL(get_user_pages);
1993 
1994 /**
1995  * get_user_pages_locked() is suitable to replace the form:
1996  *
1997  *      mmap_read_lock(mm);
1998  *      do_something()
1999  *      get_user_pages(tsk, mm, ..., pages, NULL);
2000  *      mmap_read_unlock(mm);
2001  *
2002  *  to:
2003  *
2004  *      int locked = 1;
2005  *      mmap_read_lock(mm);
2006  *      do_something()
2007  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
2008  *      if (locked)
2009  *          mmap_read_unlock(mm);
2010  *
2011  * @start:      starting user address
2012  * @nr_pages:   number of pages from start to pin
2013  * @gup_flags:  flags modifying lookup behaviour
2014  * @pages:      array that receives pointers to the pages pinned.
2015  *              Should be at least nr_pages long. Or NULL, if caller
2016  *              only intends to ensure the pages are faulted in.
2017  * @locked:     pointer to lock flag indicating whether lock is held and
2018  *              subsequently whether VM_FAULT_RETRY functionality can be
2019  *              utilised. Lock must initially be held.
2020  *
2021  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022  * paths better by using either get_user_pages_locked() or
2023  * get_user_pages_unlocked().
2024  *
2025  */
2026 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 			   unsigned int gup_flags, struct page **pages,
2028 			   int *locked)
2029 {
2030 	/*
2031 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 	 * vmas.  As there are no users of this flag in this call we simply
2034 	 * disallow this option for now.
2035 	 */
2036 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2037 		return -EINVAL;
2038 	/*
2039 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2040 	 * never directly by the caller, so enforce that:
2041 	 */
2042 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2043 		return -EINVAL;
2044 
2045 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
2046 				       pages, NULL, locked,
2047 				       gup_flags | FOLL_TOUCH);
2048 }
2049 EXPORT_SYMBOL(get_user_pages_locked);
2050 
2051 /*
2052  * get_user_pages_unlocked() is suitable to replace the form:
2053  *
2054  *      mmap_read_lock(mm);
2055  *      get_user_pages(tsk, mm, ..., pages, NULL);
2056  *      mmap_read_unlock(mm);
2057  *
2058  *  with:
2059  *
2060  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2061  *
2062  * It is functionally equivalent to get_user_pages_fast so
2063  * get_user_pages_fast should be used instead if specific gup_flags
2064  * (e.g. FOLL_FORCE) are not required.
2065  */
2066 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2067 			     struct page **pages, unsigned int gup_flags)
2068 {
2069 	struct mm_struct *mm = current->mm;
2070 	int locked = 1;
2071 	long ret;
2072 
2073 	/*
2074 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2075 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2076 	 * vmas.  As there are no users of this flag in this call we simply
2077 	 * disallow this option for now.
2078 	 */
2079 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2080 		return -EINVAL;
2081 
2082 	mmap_read_lock(mm);
2083 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2084 				      &locked, gup_flags | FOLL_TOUCH);
2085 	if (locked)
2086 		mmap_read_unlock(mm);
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL(get_user_pages_unlocked);
2090 
2091 /*
2092  * Fast GUP
2093  *
2094  * get_user_pages_fast attempts to pin user pages by walking the page
2095  * tables directly and avoids taking locks. Thus the walker needs to be
2096  * protected from page table pages being freed from under it, and should
2097  * block any THP splits.
2098  *
2099  * One way to achieve this is to have the walker disable interrupts, and
2100  * rely on IPIs from the TLB flushing code blocking before the page table
2101  * pages are freed. This is unsuitable for architectures that do not need
2102  * to broadcast an IPI when invalidating TLBs.
2103  *
2104  * Another way to achieve this is to batch up page table containing pages
2105  * belonging to more than one mm_user, then rcu_sched a callback to free those
2106  * pages. Disabling interrupts will allow the fast_gup walker to both block
2107  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2108  * (which is a relatively rare event). The code below adopts this strategy.
2109  *
2110  * Before activating this code, please be aware that the following assumptions
2111  * are currently made:
2112  *
2113  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2114  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2115  *
2116  *  *) ptes can be read atomically by the architecture.
2117  *
2118  *  *) access_ok is sufficient to validate userspace address ranges.
2119  *
2120  * The last two assumptions can be relaxed by the addition of helper functions.
2121  *
2122  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2123  */
2124 #ifdef CONFIG_HAVE_FAST_GUP
2125 
2126 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2127 {
2128 	if (flags & FOLL_PIN) {
2129 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2130 				    refs);
2131 
2132 		if (hpage_pincount_available(page))
2133 			hpage_pincount_sub(page, refs);
2134 		else
2135 			refs *= GUP_PIN_COUNTING_BIAS;
2136 	}
2137 
2138 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2139 	/*
2140 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2141 	 * ref needs a put_page().
2142 	 */
2143 	if (refs > 1)
2144 		page_ref_sub(page, refs - 1);
2145 	put_page(page);
2146 }
2147 
2148 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2149 
2150 /*
2151  * WARNING: only to be used in the get_user_pages_fast() implementation.
2152  *
2153  * With get_user_pages_fast(), we walk down the pagetables without taking any
2154  * locks.  For this we would like to load the pointers atomically, but sometimes
2155  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2156  * we do have is the guarantee that a PTE will only either go from not present
2157  * to present, or present to not present or both -- it will not switch to a
2158  * completely different present page without a TLB flush in between; something
2159  * that we are blocking by holding interrupts off.
2160  *
2161  * Setting ptes from not present to present goes:
2162  *
2163  *   ptep->pte_high = h;
2164  *   smp_wmb();
2165  *   ptep->pte_low = l;
2166  *
2167  * And present to not present goes:
2168  *
2169  *   ptep->pte_low = 0;
2170  *   smp_wmb();
2171  *   ptep->pte_high = 0;
2172  *
2173  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2174  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2175  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2176  * picked up a changed pte high. We might have gotten rubbish values from
2177  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2178  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2179  * operates on present ptes we're safe.
2180  */
2181 static inline pte_t gup_get_pte(pte_t *ptep)
2182 {
2183 	pte_t pte;
2184 
2185 	do {
2186 		pte.pte_low = ptep->pte_low;
2187 		smp_rmb();
2188 		pte.pte_high = ptep->pte_high;
2189 		smp_rmb();
2190 	} while (unlikely(pte.pte_low != ptep->pte_low));
2191 
2192 	return pte;
2193 }
2194 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2195 /*
2196  * We require that the PTE can be read atomically.
2197  */
2198 static inline pte_t gup_get_pte(pte_t *ptep)
2199 {
2200 	return ptep_get(ptep);
2201 }
2202 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2203 
2204 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2205 					    unsigned int flags,
2206 					    struct page **pages)
2207 {
2208 	while ((*nr) - nr_start) {
2209 		struct page *page = pages[--(*nr)];
2210 
2211 		ClearPageReferenced(page);
2212 		if (flags & FOLL_PIN)
2213 			unpin_user_page(page);
2214 		else
2215 			put_page(page);
2216 	}
2217 }
2218 
2219 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2220 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2221 			 unsigned int flags, struct page **pages, int *nr)
2222 {
2223 	struct dev_pagemap *pgmap = NULL;
2224 	int nr_start = *nr, ret = 0;
2225 	pte_t *ptep, *ptem;
2226 
2227 	ptem = ptep = pte_offset_map(&pmd, addr);
2228 	do {
2229 		pte_t pte = gup_get_pte(ptep);
2230 		struct page *head, *page;
2231 
2232 		/*
2233 		 * Similar to the PMD case below, NUMA hinting must take slow
2234 		 * path using the pte_protnone check.
2235 		 */
2236 		if (pte_protnone(pte))
2237 			goto pte_unmap;
2238 
2239 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2240 			goto pte_unmap;
2241 
2242 		if (pte_devmap(pte)) {
2243 			if (unlikely(flags & FOLL_LONGTERM))
2244 				goto pte_unmap;
2245 
2246 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2247 			if (unlikely(!pgmap)) {
2248 				undo_dev_pagemap(nr, nr_start, flags, pages);
2249 				goto pte_unmap;
2250 			}
2251 		} else if (pte_special(pte))
2252 			goto pte_unmap;
2253 
2254 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2255 		page = pte_page(pte);
2256 
2257 		head = try_grab_compound_head(page, 1, flags);
2258 		if (!head)
2259 			goto pte_unmap;
2260 
2261 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2262 			put_compound_head(head, 1, flags);
2263 			goto pte_unmap;
2264 		}
2265 
2266 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2267 
2268 		/*
2269 		 * We need to make the page accessible if and only if we are
2270 		 * going to access its content (the FOLL_PIN case).  Please
2271 		 * see Documentation/core-api/pin_user_pages.rst for
2272 		 * details.
2273 		 */
2274 		if (flags & FOLL_PIN) {
2275 			ret = arch_make_page_accessible(page);
2276 			if (ret) {
2277 				unpin_user_page(page);
2278 				goto pte_unmap;
2279 			}
2280 		}
2281 		SetPageReferenced(page);
2282 		pages[*nr] = page;
2283 		(*nr)++;
2284 
2285 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2286 
2287 	ret = 1;
2288 
2289 pte_unmap:
2290 	if (pgmap)
2291 		put_dev_pagemap(pgmap);
2292 	pte_unmap(ptem);
2293 	return ret;
2294 }
2295 #else
2296 
2297 /*
2298  * If we can't determine whether or not a pte is special, then fail immediately
2299  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2300  * to be special.
2301  *
2302  * For a futex to be placed on a THP tail page, get_futex_key requires a
2303  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2304  * useful to have gup_huge_pmd even if we can't operate on ptes.
2305  */
2306 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2307 			 unsigned int flags, struct page **pages, int *nr)
2308 {
2309 	return 0;
2310 }
2311 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2312 
2313 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2314 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2315 			     unsigned long end, unsigned int flags,
2316 			     struct page **pages, int *nr)
2317 {
2318 	int nr_start = *nr;
2319 	struct dev_pagemap *pgmap = NULL;
2320 
2321 	do {
2322 		struct page *page = pfn_to_page(pfn);
2323 
2324 		pgmap = get_dev_pagemap(pfn, pgmap);
2325 		if (unlikely(!pgmap)) {
2326 			undo_dev_pagemap(nr, nr_start, flags, pages);
2327 			return 0;
2328 		}
2329 		SetPageReferenced(page);
2330 		pages[*nr] = page;
2331 		if (unlikely(!try_grab_page(page, flags))) {
2332 			undo_dev_pagemap(nr, nr_start, flags, pages);
2333 			return 0;
2334 		}
2335 		(*nr)++;
2336 		pfn++;
2337 	} while (addr += PAGE_SIZE, addr != end);
2338 
2339 	if (pgmap)
2340 		put_dev_pagemap(pgmap);
2341 	return 1;
2342 }
2343 
2344 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2345 				 unsigned long end, unsigned int flags,
2346 				 struct page **pages, int *nr)
2347 {
2348 	unsigned long fault_pfn;
2349 	int nr_start = *nr;
2350 
2351 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2352 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2353 		return 0;
2354 
2355 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2356 		undo_dev_pagemap(nr, nr_start, flags, pages);
2357 		return 0;
2358 	}
2359 	return 1;
2360 }
2361 
2362 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2363 				 unsigned long end, unsigned int flags,
2364 				 struct page **pages, int *nr)
2365 {
2366 	unsigned long fault_pfn;
2367 	int nr_start = *nr;
2368 
2369 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2370 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2371 		return 0;
2372 
2373 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2374 		undo_dev_pagemap(nr, nr_start, flags, pages);
2375 		return 0;
2376 	}
2377 	return 1;
2378 }
2379 #else
2380 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2381 				 unsigned long end, unsigned int flags,
2382 				 struct page **pages, int *nr)
2383 {
2384 	BUILD_BUG();
2385 	return 0;
2386 }
2387 
2388 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2389 				 unsigned long end, unsigned int flags,
2390 				 struct page **pages, int *nr)
2391 {
2392 	BUILD_BUG();
2393 	return 0;
2394 }
2395 #endif
2396 
2397 static int record_subpages(struct page *page, unsigned long addr,
2398 			   unsigned long end, struct page **pages)
2399 {
2400 	int nr;
2401 
2402 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2403 		pages[nr++] = page++;
2404 
2405 	return nr;
2406 }
2407 
2408 #ifdef CONFIG_ARCH_HAS_HUGEPD
2409 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2410 				      unsigned long sz)
2411 {
2412 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2413 	return (__boundary - 1 < end - 1) ? __boundary : end;
2414 }
2415 
2416 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2417 		       unsigned long end, unsigned int flags,
2418 		       struct page **pages, int *nr)
2419 {
2420 	unsigned long pte_end;
2421 	struct page *head, *page;
2422 	pte_t pte;
2423 	int refs;
2424 
2425 	pte_end = (addr + sz) & ~(sz-1);
2426 	if (pte_end < end)
2427 		end = pte_end;
2428 
2429 	pte = huge_ptep_get(ptep);
2430 
2431 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2432 		return 0;
2433 
2434 	/* hugepages are never "special" */
2435 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2436 
2437 	head = pte_page(pte);
2438 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2439 	refs = record_subpages(page, addr, end, pages + *nr);
2440 
2441 	head = try_grab_compound_head(head, refs, flags);
2442 	if (!head)
2443 		return 0;
2444 
2445 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2446 		put_compound_head(head, refs, flags);
2447 		return 0;
2448 	}
2449 
2450 	*nr += refs;
2451 	SetPageReferenced(head);
2452 	return 1;
2453 }
2454 
2455 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2456 		unsigned int pdshift, unsigned long end, unsigned int flags,
2457 		struct page **pages, int *nr)
2458 {
2459 	pte_t *ptep;
2460 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2461 	unsigned long next;
2462 
2463 	ptep = hugepte_offset(hugepd, addr, pdshift);
2464 	do {
2465 		next = hugepte_addr_end(addr, end, sz);
2466 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2467 			return 0;
2468 	} while (ptep++, addr = next, addr != end);
2469 
2470 	return 1;
2471 }
2472 #else
2473 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2474 		unsigned int pdshift, unsigned long end, unsigned int flags,
2475 		struct page **pages, int *nr)
2476 {
2477 	return 0;
2478 }
2479 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2480 
2481 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2482 			unsigned long end, unsigned int flags,
2483 			struct page **pages, int *nr)
2484 {
2485 	struct page *head, *page;
2486 	int refs;
2487 
2488 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2489 		return 0;
2490 
2491 	if (pmd_devmap(orig)) {
2492 		if (unlikely(flags & FOLL_LONGTERM))
2493 			return 0;
2494 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2495 					     pages, nr);
2496 	}
2497 
2498 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2499 	refs = record_subpages(page, addr, end, pages + *nr);
2500 
2501 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2502 	if (!head)
2503 		return 0;
2504 
2505 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2506 		put_compound_head(head, refs, flags);
2507 		return 0;
2508 	}
2509 
2510 	*nr += refs;
2511 	SetPageReferenced(head);
2512 	return 1;
2513 }
2514 
2515 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2516 			unsigned long end, unsigned int flags,
2517 			struct page **pages, int *nr)
2518 {
2519 	struct page *head, *page;
2520 	int refs;
2521 
2522 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2523 		return 0;
2524 
2525 	if (pud_devmap(orig)) {
2526 		if (unlikely(flags & FOLL_LONGTERM))
2527 			return 0;
2528 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2529 					     pages, nr);
2530 	}
2531 
2532 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2533 	refs = record_subpages(page, addr, end, pages + *nr);
2534 
2535 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2536 	if (!head)
2537 		return 0;
2538 
2539 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2540 		put_compound_head(head, refs, flags);
2541 		return 0;
2542 	}
2543 
2544 	*nr += refs;
2545 	SetPageReferenced(head);
2546 	return 1;
2547 }
2548 
2549 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2550 			unsigned long end, unsigned int flags,
2551 			struct page **pages, int *nr)
2552 {
2553 	int refs;
2554 	struct page *head, *page;
2555 
2556 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2557 		return 0;
2558 
2559 	BUILD_BUG_ON(pgd_devmap(orig));
2560 
2561 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2562 	refs = record_subpages(page, addr, end, pages + *nr);
2563 
2564 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2565 	if (!head)
2566 		return 0;
2567 
2568 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2569 		put_compound_head(head, refs, flags);
2570 		return 0;
2571 	}
2572 
2573 	*nr += refs;
2574 	SetPageReferenced(head);
2575 	return 1;
2576 }
2577 
2578 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2579 		unsigned int flags, struct page **pages, int *nr)
2580 {
2581 	unsigned long next;
2582 	pmd_t *pmdp;
2583 
2584 	pmdp = pmd_offset(&pud, addr);
2585 	do {
2586 		pmd_t pmd = READ_ONCE(*pmdp);
2587 
2588 		next = pmd_addr_end(addr, end);
2589 		if (!pmd_present(pmd))
2590 			return 0;
2591 
2592 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2593 			     pmd_devmap(pmd))) {
2594 			/*
2595 			 * NUMA hinting faults need to be handled in the GUP
2596 			 * slowpath for accounting purposes and so that they
2597 			 * can be serialised against THP migration.
2598 			 */
2599 			if (pmd_protnone(pmd))
2600 				return 0;
2601 
2602 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2603 				pages, nr))
2604 				return 0;
2605 
2606 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2607 			/*
2608 			 * architecture have different format for hugetlbfs
2609 			 * pmd format and THP pmd format
2610 			 */
2611 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2612 					 PMD_SHIFT, next, flags, pages, nr))
2613 				return 0;
2614 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2615 			return 0;
2616 	} while (pmdp++, addr = next, addr != end);
2617 
2618 	return 1;
2619 }
2620 
2621 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2622 			 unsigned int flags, struct page **pages, int *nr)
2623 {
2624 	unsigned long next;
2625 	pud_t *pudp;
2626 
2627 	pudp = pud_offset(&p4d, addr);
2628 	do {
2629 		pud_t pud = READ_ONCE(*pudp);
2630 
2631 		next = pud_addr_end(addr, end);
2632 		if (unlikely(!pud_present(pud)))
2633 			return 0;
2634 		if (unlikely(pud_huge(pud))) {
2635 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2636 					  pages, nr))
2637 				return 0;
2638 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2639 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2640 					 PUD_SHIFT, next, flags, pages, nr))
2641 				return 0;
2642 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2643 			return 0;
2644 	} while (pudp++, addr = next, addr != end);
2645 
2646 	return 1;
2647 }
2648 
2649 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2650 			 unsigned int flags, struct page **pages, int *nr)
2651 {
2652 	unsigned long next;
2653 	p4d_t *p4dp;
2654 
2655 	p4dp = p4d_offset(&pgd, addr);
2656 	do {
2657 		p4d_t p4d = READ_ONCE(*p4dp);
2658 
2659 		next = p4d_addr_end(addr, end);
2660 		if (p4d_none(p4d))
2661 			return 0;
2662 		BUILD_BUG_ON(p4d_huge(p4d));
2663 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2664 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2665 					 P4D_SHIFT, next, flags, pages, nr))
2666 				return 0;
2667 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2668 			return 0;
2669 	} while (p4dp++, addr = next, addr != end);
2670 
2671 	return 1;
2672 }
2673 
2674 static void gup_pgd_range(unsigned long addr, unsigned long end,
2675 		unsigned int flags, struct page **pages, int *nr)
2676 {
2677 	unsigned long next;
2678 	pgd_t *pgdp;
2679 
2680 	pgdp = pgd_offset(current->mm, addr);
2681 	do {
2682 		pgd_t pgd = READ_ONCE(*pgdp);
2683 
2684 		next = pgd_addr_end(addr, end);
2685 		if (pgd_none(pgd))
2686 			return;
2687 		if (unlikely(pgd_huge(pgd))) {
2688 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2689 					  pages, nr))
2690 				return;
2691 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2692 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2693 					 PGDIR_SHIFT, next, flags, pages, nr))
2694 				return;
2695 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2696 			return;
2697 	} while (pgdp++, addr = next, addr != end);
2698 }
2699 #else
2700 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2701 		unsigned int flags, struct page **pages, int *nr)
2702 {
2703 }
2704 #endif /* CONFIG_HAVE_FAST_GUP */
2705 
2706 #ifndef gup_fast_permitted
2707 /*
2708  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2709  * we need to fall back to the slow version:
2710  */
2711 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2712 {
2713 	return true;
2714 }
2715 #endif
2716 
2717 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2718 				   unsigned int gup_flags, struct page **pages)
2719 {
2720 	int ret;
2721 
2722 	/*
2723 	 * FIXME: FOLL_LONGTERM does not work with
2724 	 * get_user_pages_unlocked() (see comments in that function)
2725 	 */
2726 	if (gup_flags & FOLL_LONGTERM) {
2727 		mmap_read_lock(current->mm);
2728 		ret = __gup_longterm_locked(current, current->mm,
2729 					    start, nr_pages,
2730 					    pages, NULL, gup_flags);
2731 		mmap_read_unlock(current->mm);
2732 	} else {
2733 		ret = get_user_pages_unlocked(start, nr_pages,
2734 					      pages, gup_flags);
2735 	}
2736 
2737 	return ret;
2738 }
2739 
2740 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2741 					unsigned int gup_flags,
2742 					struct page **pages)
2743 {
2744 	unsigned long addr, len, end;
2745 	unsigned long flags;
2746 	int nr_pinned = 0, ret = 0;
2747 
2748 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2749 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2750 				       FOLL_FAST_ONLY)))
2751 		return -EINVAL;
2752 
2753 	if (!(gup_flags & FOLL_FAST_ONLY))
2754 		might_lock_read(&current->mm->mmap_lock);
2755 
2756 	start = untagged_addr(start) & PAGE_MASK;
2757 	addr = start;
2758 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2759 	end = start + len;
2760 
2761 	if (end <= start)
2762 		return 0;
2763 	if (unlikely(!access_ok((void __user *)start, len)))
2764 		return -EFAULT;
2765 
2766 	/*
2767 	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2768 	 * because get_user_pages() may need to cause an early COW in
2769 	 * order to avoid confusing the normal COW routines. So only
2770 	 * targets that are already writable are safe to do by just
2771 	 * looking at the page tables.
2772 	 *
2773 	 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2774 	 * because there is no slow path to fall back on. But you'd
2775 	 * better be careful about possible COW pages - you'll get _a_
2776 	 * COW page, but not necessarily the one you intended to get
2777 	 * depending on what COW event happens after this. COW may break
2778 	 * the page copy in a random direction.
2779 	 *
2780 	 * Disable interrupts. The nested form is used, in order to allow
2781 	 * full, general purpose use of this routine.
2782 	 *
2783 	 * With interrupts disabled, we block page table pages from being
2784 	 * freed from under us. See struct mmu_table_batch comments in
2785 	 * include/asm-generic/tlb.h for more details.
2786 	 *
2787 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2788 	 * block IPIs that come from THPs splitting.
2789 	 */
2790 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2791 		unsigned long fast_flags = gup_flags;
2792 		if (!(gup_flags & FOLL_FAST_ONLY))
2793 			fast_flags |= FOLL_WRITE;
2794 
2795 		local_irq_save(flags);
2796 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2797 		local_irq_restore(flags);
2798 		ret = nr_pinned;
2799 	}
2800 
2801 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2802 		/* Try to get the remaining pages with get_user_pages */
2803 		start += nr_pinned << PAGE_SHIFT;
2804 		pages += nr_pinned;
2805 
2806 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2807 					      gup_flags, pages);
2808 
2809 		/* Have to be a bit careful with return values */
2810 		if (nr_pinned > 0) {
2811 			if (ret < 0)
2812 				ret = nr_pinned;
2813 			else
2814 				ret += nr_pinned;
2815 		}
2816 	}
2817 
2818 	return ret;
2819 }
2820 /**
2821  * get_user_pages_fast_only() - pin user pages in memory
2822  * @start:      starting user address
2823  * @nr_pages:   number of pages from start to pin
2824  * @gup_flags:  flags modifying pin behaviour
2825  * @pages:      array that receives pointers to the pages pinned.
2826  *              Should be at least nr_pages long.
2827  *
2828  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2829  * the regular GUP.
2830  * Note a difference with get_user_pages_fast: this always returns the
2831  * number of pages pinned, 0 if no pages were pinned.
2832  *
2833  * If the architecture does not support this function, simply return with no
2834  * pages pinned.
2835  *
2836  * Careful, careful! COW breaking can go either way, so a non-write
2837  * access can get ambiguous page results. If you call this function without
2838  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2839  */
2840 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2841 			     unsigned int gup_flags, struct page **pages)
2842 {
2843 	int nr_pinned;
2844 	/*
2845 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2846 	 * because gup fast is always a "pin with a +1 page refcount" request.
2847 	 *
2848 	 * FOLL_FAST_ONLY is required in order to match the API description of
2849 	 * this routine: no fall back to regular ("slow") GUP.
2850 	 */
2851 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2852 
2853 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2854 						 pages);
2855 
2856 	/*
2857 	 * As specified in the API description above, this routine is not
2858 	 * allowed to return negative values. However, the common core
2859 	 * routine internal_get_user_pages_fast() *can* return -errno.
2860 	 * Therefore, correct for that here:
2861 	 */
2862 	if (nr_pinned < 0)
2863 		nr_pinned = 0;
2864 
2865 	return nr_pinned;
2866 }
2867 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2868 
2869 /**
2870  * get_user_pages_fast() - pin user pages in memory
2871  * @start:      starting user address
2872  * @nr_pages:   number of pages from start to pin
2873  * @gup_flags:  flags modifying pin behaviour
2874  * @pages:      array that receives pointers to the pages pinned.
2875  *              Should be at least nr_pages long.
2876  *
2877  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2878  * If not successful, it will fall back to taking the lock and
2879  * calling get_user_pages().
2880  *
2881  * Returns number of pages pinned. This may be fewer than the number requested.
2882  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2883  * -errno.
2884  */
2885 int get_user_pages_fast(unsigned long start, int nr_pages,
2886 			unsigned int gup_flags, struct page **pages)
2887 {
2888 	/*
2889 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2890 	 * never directly by the caller, so enforce that:
2891 	 */
2892 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2893 		return -EINVAL;
2894 
2895 	/*
2896 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2897 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2898 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2899 	 * request.
2900 	 */
2901 	gup_flags |= FOLL_GET;
2902 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2903 }
2904 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2905 
2906 /**
2907  * pin_user_pages_fast() - pin user pages in memory without taking locks
2908  *
2909  * @start:      starting user address
2910  * @nr_pages:   number of pages from start to pin
2911  * @gup_flags:  flags modifying pin behaviour
2912  * @pages:      array that receives pointers to the pages pinned.
2913  *              Should be at least nr_pages long.
2914  *
2915  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2916  * get_user_pages_fast() for documentation on the function arguments, because
2917  * the arguments here are identical.
2918  *
2919  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2920  * see Documentation/core-api/pin_user_pages.rst for further details.
2921  */
2922 int pin_user_pages_fast(unsigned long start, int nr_pages,
2923 			unsigned int gup_flags, struct page **pages)
2924 {
2925 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2926 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2927 		return -EINVAL;
2928 
2929 	gup_flags |= FOLL_PIN;
2930 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2931 }
2932 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2933 
2934 /*
2935  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2936  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2937  *
2938  * The API rules are the same, too: no negative values may be returned.
2939  */
2940 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2941 			     unsigned int gup_flags, struct page **pages)
2942 {
2943 	int nr_pinned;
2944 
2945 	/*
2946 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2947 	 * rules require returning 0, rather than -errno:
2948 	 */
2949 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2950 		return 0;
2951 	/*
2952 	 * FOLL_FAST_ONLY is required in order to match the API description of
2953 	 * this routine: no fall back to regular ("slow") GUP.
2954 	 */
2955 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2956 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2957 						 pages);
2958 	/*
2959 	 * This routine is not allowed to return negative values. However,
2960 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2961 	 * correct for that here:
2962 	 */
2963 	if (nr_pinned < 0)
2964 		nr_pinned = 0;
2965 
2966 	return nr_pinned;
2967 }
2968 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2969 
2970 /**
2971  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2972  *
2973  * @tsk:	the task_struct to use for page fault accounting, or
2974  *		NULL if faults are not to be recorded.
2975  * @mm:		mm_struct of target mm
2976  * @start:	starting user address
2977  * @nr_pages:	number of pages from start to pin
2978  * @gup_flags:	flags modifying lookup behaviour
2979  * @pages:	array that receives pointers to the pages pinned.
2980  *		Should be at least nr_pages long. Or NULL, if caller
2981  *		only intends to ensure the pages are faulted in.
2982  * @vmas:	array of pointers to vmas corresponding to each page.
2983  *		Or NULL if the caller does not require them.
2984  * @locked:	pointer to lock flag indicating whether lock is held and
2985  *		subsequently whether VM_FAULT_RETRY functionality can be
2986  *		utilised. Lock must initially be held.
2987  *
2988  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2989  * get_user_pages_remote() for documentation on the function arguments, because
2990  * the arguments here are identical.
2991  *
2992  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2993  * see Documentation/core-api/pin_user_pages.rst for details.
2994  */
2995 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2996 			   unsigned long start, unsigned long nr_pages,
2997 			   unsigned int gup_flags, struct page **pages,
2998 			   struct vm_area_struct **vmas, int *locked)
2999 {
3000 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3001 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002 		return -EINVAL;
3003 
3004 	gup_flags |= FOLL_PIN;
3005 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3006 				       pages, vmas, locked);
3007 }
3008 EXPORT_SYMBOL(pin_user_pages_remote);
3009 
3010 /**
3011  * pin_user_pages() - pin user pages in memory for use by other devices
3012  *
3013  * @start:	starting user address
3014  * @nr_pages:	number of pages from start to pin
3015  * @gup_flags:	flags modifying lookup behaviour
3016  * @pages:	array that receives pointers to the pages pinned.
3017  *		Should be at least nr_pages long. Or NULL, if caller
3018  *		only intends to ensure the pages are faulted in.
3019  * @vmas:	array of pointers to vmas corresponding to each page.
3020  *		Or NULL if the caller does not require them.
3021  *
3022  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3023  * FOLL_PIN is set.
3024  *
3025  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3026  * see Documentation/core-api/pin_user_pages.rst for details.
3027  */
3028 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3029 		    unsigned int gup_flags, struct page **pages,
3030 		    struct vm_area_struct **vmas)
3031 {
3032 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3033 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3034 		return -EINVAL;
3035 
3036 	gup_flags |= FOLL_PIN;
3037 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
3038 				     pages, vmas, gup_flags);
3039 }
3040 EXPORT_SYMBOL(pin_user_pages);
3041 
3042 /*
3043  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3044  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3045  * FOLL_PIN and rejects FOLL_GET.
3046  */
3047 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3048 			     struct page **pages, unsigned int gup_flags)
3049 {
3050 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 		return -EINVAL;
3053 
3054 	gup_flags |= FOLL_PIN;
3055 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3056 }
3057 EXPORT_SYMBOL(pin_user_pages_unlocked);
3058 
3059 /*
3060  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3061  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3062  * FOLL_GET.
3063  */
3064 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3065 			   unsigned int gup_flags, struct page **pages,
3066 			   int *locked)
3067 {
3068 	/*
3069 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3070 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3071 	 * vmas.  As there are no users of this flag in this call we simply
3072 	 * disallow this option for now.
3073 	 */
3074 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3075 		return -EINVAL;
3076 
3077 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3078 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3079 		return -EINVAL;
3080 
3081 	gup_flags |= FOLL_PIN;
3082 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
3083 				       pages, NULL, locked,
3084 				       gup_flags | FOLL_TOUCH);
3085 }
3086 EXPORT_SYMBOL(pin_user_pages_locked);
3087