xref: /openbmc/linux/mm/gup.c (revision cd4d09ec)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/pgtable.h>
18 #include <asm/tlbflush.h>
19 
20 #include "internal.h"
21 
22 static struct page *no_page_table(struct vm_area_struct *vma,
23 		unsigned int flags)
24 {
25 	/*
26 	 * When core dumping an enormous anonymous area that nobody
27 	 * has touched so far, we don't want to allocate unnecessary pages or
28 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
29 	 * then get_dump_page() will return NULL to leave a hole in the dump.
30 	 * But we can only make this optimization where a hole would surely
31 	 * be zero-filled if handle_mm_fault() actually did handle it.
32 	 */
33 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
34 		return ERR_PTR(-EFAULT);
35 	return NULL;
36 }
37 
38 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
39 		pte_t *pte, unsigned int flags)
40 {
41 	/* No page to get reference */
42 	if (flags & FOLL_GET)
43 		return -EFAULT;
44 
45 	if (flags & FOLL_TOUCH) {
46 		pte_t entry = *pte;
47 
48 		if (flags & FOLL_WRITE)
49 			entry = pte_mkdirty(entry);
50 		entry = pte_mkyoung(entry);
51 
52 		if (!pte_same(*pte, entry)) {
53 			set_pte_at(vma->vm_mm, address, pte, entry);
54 			update_mmu_cache(vma, address, pte);
55 		}
56 	}
57 
58 	/* Proper page table entry exists, but no corresponding struct page */
59 	return -EEXIST;
60 }
61 
62 static struct page *follow_page_pte(struct vm_area_struct *vma,
63 		unsigned long address, pmd_t *pmd, unsigned int flags)
64 {
65 	struct mm_struct *mm = vma->vm_mm;
66 	struct dev_pagemap *pgmap = NULL;
67 	struct page *page;
68 	spinlock_t *ptl;
69 	pte_t *ptep, pte;
70 
71 retry:
72 	if (unlikely(pmd_bad(*pmd)))
73 		return no_page_table(vma, flags);
74 
75 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
76 	pte = *ptep;
77 	if (!pte_present(pte)) {
78 		swp_entry_t entry;
79 		/*
80 		 * KSM's break_ksm() relies upon recognizing a ksm page
81 		 * even while it is being migrated, so for that case we
82 		 * need migration_entry_wait().
83 		 */
84 		if (likely(!(flags & FOLL_MIGRATION)))
85 			goto no_page;
86 		if (pte_none(pte))
87 			goto no_page;
88 		entry = pte_to_swp_entry(pte);
89 		if (!is_migration_entry(entry))
90 			goto no_page;
91 		pte_unmap_unlock(ptep, ptl);
92 		migration_entry_wait(mm, pmd, address);
93 		goto retry;
94 	}
95 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
96 		goto no_page;
97 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
98 		pte_unmap_unlock(ptep, ptl);
99 		return NULL;
100 	}
101 
102 	page = vm_normal_page(vma, address, pte);
103 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
104 		/*
105 		 * Only return device mapping pages in the FOLL_GET case since
106 		 * they are only valid while holding the pgmap reference.
107 		 */
108 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
109 		if (pgmap)
110 			page = pte_page(pte);
111 		else
112 			goto no_page;
113 	} else if (unlikely(!page)) {
114 		if (flags & FOLL_DUMP) {
115 			/* Avoid special (like zero) pages in core dumps */
116 			page = ERR_PTR(-EFAULT);
117 			goto out;
118 		}
119 
120 		if (is_zero_pfn(pte_pfn(pte))) {
121 			page = pte_page(pte);
122 		} else {
123 			int ret;
124 
125 			ret = follow_pfn_pte(vma, address, ptep, flags);
126 			page = ERR_PTR(ret);
127 			goto out;
128 		}
129 	}
130 
131 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
132 		int ret;
133 		get_page(page);
134 		pte_unmap_unlock(ptep, ptl);
135 		lock_page(page);
136 		ret = split_huge_page(page);
137 		unlock_page(page);
138 		put_page(page);
139 		if (ret)
140 			return ERR_PTR(ret);
141 		goto retry;
142 	}
143 
144 	if (flags & FOLL_GET) {
145 		get_page(page);
146 
147 		/* drop the pgmap reference now that we hold the page */
148 		if (pgmap) {
149 			put_dev_pagemap(pgmap);
150 			pgmap = NULL;
151 		}
152 	}
153 	if (flags & FOLL_TOUCH) {
154 		if ((flags & FOLL_WRITE) &&
155 		    !pte_dirty(pte) && !PageDirty(page))
156 			set_page_dirty(page);
157 		/*
158 		 * pte_mkyoung() would be more correct here, but atomic care
159 		 * is needed to avoid losing the dirty bit: it is easier to use
160 		 * mark_page_accessed().
161 		 */
162 		mark_page_accessed(page);
163 	}
164 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
165 		/* Do not mlock pte-mapped THP */
166 		if (PageTransCompound(page))
167 			goto out;
168 
169 		/*
170 		 * The preliminary mapping check is mainly to avoid the
171 		 * pointless overhead of lock_page on the ZERO_PAGE
172 		 * which might bounce very badly if there is contention.
173 		 *
174 		 * If the page is already locked, we don't need to
175 		 * handle it now - vmscan will handle it later if and
176 		 * when it attempts to reclaim the page.
177 		 */
178 		if (page->mapping && trylock_page(page)) {
179 			lru_add_drain();  /* push cached pages to LRU */
180 			/*
181 			 * Because we lock page here, and migration is
182 			 * blocked by the pte's page reference, and we
183 			 * know the page is still mapped, we don't even
184 			 * need to check for file-cache page truncation.
185 			 */
186 			mlock_vma_page(page);
187 			unlock_page(page);
188 		}
189 	}
190 out:
191 	pte_unmap_unlock(ptep, ptl);
192 	return page;
193 no_page:
194 	pte_unmap_unlock(ptep, ptl);
195 	if (!pte_none(pte))
196 		return NULL;
197 	return no_page_table(vma, flags);
198 }
199 
200 /**
201  * follow_page_mask - look up a page descriptor from a user-virtual address
202  * @vma: vm_area_struct mapping @address
203  * @address: virtual address to look up
204  * @flags: flags modifying lookup behaviour
205  * @page_mask: on output, *page_mask is set according to the size of the page
206  *
207  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
208  *
209  * Returns the mapped (struct page *), %NULL if no mapping exists, or
210  * an error pointer if there is a mapping to something not represented
211  * by a page descriptor (see also vm_normal_page()).
212  */
213 struct page *follow_page_mask(struct vm_area_struct *vma,
214 			      unsigned long address, unsigned int flags,
215 			      unsigned int *page_mask)
216 {
217 	pgd_t *pgd;
218 	pud_t *pud;
219 	pmd_t *pmd;
220 	spinlock_t *ptl;
221 	struct page *page;
222 	struct mm_struct *mm = vma->vm_mm;
223 
224 	*page_mask = 0;
225 
226 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
227 	if (!IS_ERR(page)) {
228 		BUG_ON(flags & FOLL_GET);
229 		return page;
230 	}
231 
232 	pgd = pgd_offset(mm, address);
233 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
234 		return no_page_table(vma, flags);
235 
236 	pud = pud_offset(pgd, address);
237 	if (pud_none(*pud))
238 		return no_page_table(vma, flags);
239 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
240 		page = follow_huge_pud(mm, address, pud, flags);
241 		if (page)
242 			return page;
243 		return no_page_table(vma, flags);
244 	}
245 	if (unlikely(pud_bad(*pud)))
246 		return no_page_table(vma, flags);
247 
248 	pmd = pmd_offset(pud, address);
249 	if (pmd_none(*pmd))
250 		return no_page_table(vma, flags);
251 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
252 		page = follow_huge_pmd(mm, address, pmd, flags);
253 		if (page)
254 			return page;
255 		return no_page_table(vma, flags);
256 	}
257 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
258 		return no_page_table(vma, flags);
259 	if (pmd_devmap(*pmd)) {
260 		ptl = pmd_lock(mm, pmd);
261 		page = follow_devmap_pmd(vma, address, pmd, flags);
262 		spin_unlock(ptl);
263 		if (page)
264 			return page;
265 	}
266 	if (likely(!pmd_trans_huge(*pmd)))
267 		return follow_page_pte(vma, address, pmd, flags);
268 
269 	ptl = pmd_lock(mm, pmd);
270 	if (unlikely(!pmd_trans_huge(*pmd))) {
271 		spin_unlock(ptl);
272 		return follow_page_pte(vma, address, pmd, flags);
273 	}
274 	if (flags & FOLL_SPLIT) {
275 		int ret;
276 		page = pmd_page(*pmd);
277 		if (is_huge_zero_page(page)) {
278 			spin_unlock(ptl);
279 			ret = 0;
280 			split_huge_pmd(vma, pmd, address);
281 		} else {
282 			get_page(page);
283 			spin_unlock(ptl);
284 			lock_page(page);
285 			ret = split_huge_page(page);
286 			unlock_page(page);
287 			put_page(page);
288 		}
289 
290 		return ret ? ERR_PTR(ret) :
291 			follow_page_pte(vma, address, pmd, flags);
292 	}
293 
294 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
295 	spin_unlock(ptl);
296 	*page_mask = HPAGE_PMD_NR - 1;
297 	return page;
298 }
299 
300 static int get_gate_page(struct mm_struct *mm, unsigned long address,
301 		unsigned int gup_flags, struct vm_area_struct **vma,
302 		struct page **page)
303 {
304 	pgd_t *pgd;
305 	pud_t *pud;
306 	pmd_t *pmd;
307 	pte_t *pte;
308 	int ret = -EFAULT;
309 
310 	/* user gate pages are read-only */
311 	if (gup_flags & FOLL_WRITE)
312 		return -EFAULT;
313 	if (address > TASK_SIZE)
314 		pgd = pgd_offset_k(address);
315 	else
316 		pgd = pgd_offset_gate(mm, address);
317 	BUG_ON(pgd_none(*pgd));
318 	pud = pud_offset(pgd, address);
319 	BUG_ON(pud_none(*pud));
320 	pmd = pmd_offset(pud, address);
321 	if (pmd_none(*pmd))
322 		return -EFAULT;
323 	VM_BUG_ON(pmd_trans_huge(*pmd));
324 	pte = pte_offset_map(pmd, address);
325 	if (pte_none(*pte))
326 		goto unmap;
327 	*vma = get_gate_vma(mm);
328 	if (!page)
329 		goto out;
330 	*page = vm_normal_page(*vma, address, *pte);
331 	if (!*page) {
332 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
333 			goto unmap;
334 		*page = pte_page(*pte);
335 	}
336 	get_page(*page);
337 out:
338 	ret = 0;
339 unmap:
340 	pte_unmap(pte);
341 	return ret;
342 }
343 
344 /*
345  * mmap_sem must be held on entry.  If @nonblocking != NULL and
346  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
347  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
348  */
349 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
350 		unsigned long address, unsigned int *flags, int *nonblocking)
351 {
352 	struct mm_struct *mm = vma->vm_mm;
353 	unsigned int fault_flags = 0;
354 	int ret;
355 
356 	/* mlock all present pages, but do not fault in new pages */
357 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
358 		return -ENOENT;
359 	/* For mm_populate(), just skip the stack guard page. */
360 	if ((*flags & FOLL_POPULATE) &&
361 			(stack_guard_page_start(vma, address) ||
362 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
363 		return -ENOENT;
364 	if (*flags & FOLL_WRITE)
365 		fault_flags |= FAULT_FLAG_WRITE;
366 	if (nonblocking)
367 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
368 	if (*flags & FOLL_NOWAIT)
369 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
370 	if (*flags & FOLL_TRIED) {
371 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
372 		fault_flags |= FAULT_FLAG_TRIED;
373 	}
374 
375 	ret = handle_mm_fault(mm, vma, address, fault_flags);
376 	if (ret & VM_FAULT_ERROR) {
377 		if (ret & VM_FAULT_OOM)
378 			return -ENOMEM;
379 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
380 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
381 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
382 			return -EFAULT;
383 		BUG();
384 	}
385 
386 	if (tsk) {
387 		if (ret & VM_FAULT_MAJOR)
388 			tsk->maj_flt++;
389 		else
390 			tsk->min_flt++;
391 	}
392 
393 	if (ret & VM_FAULT_RETRY) {
394 		if (nonblocking)
395 			*nonblocking = 0;
396 		return -EBUSY;
397 	}
398 
399 	/*
400 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
401 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
402 	 * can thus safely do subsequent page lookups as if they were reads.
403 	 * But only do so when looping for pte_write is futile: in some cases
404 	 * userspace may also be wanting to write to the gotten user page,
405 	 * which a read fault here might prevent (a readonly page might get
406 	 * reCOWed by userspace write).
407 	 */
408 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
409 		*flags &= ~FOLL_WRITE;
410 	return 0;
411 }
412 
413 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
414 {
415 	vm_flags_t vm_flags = vma->vm_flags;
416 
417 	if (vm_flags & (VM_IO | VM_PFNMAP))
418 		return -EFAULT;
419 
420 	if (gup_flags & FOLL_WRITE) {
421 		if (!(vm_flags & VM_WRITE)) {
422 			if (!(gup_flags & FOLL_FORCE))
423 				return -EFAULT;
424 			/*
425 			 * We used to let the write,force case do COW in a
426 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
427 			 * set a breakpoint in a read-only mapping of an
428 			 * executable, without corrupting the file (yet only
429 			 * when that file had been opened for writing!).
430 			 * Anon pages in shared mappings are surprising: now
431 			 * just reject it.
432 			 */
433 			if (!is_cow_mapping(vm_flags)) {
434 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
435 				return -EFAULT;
436 			}
437 		}
438 	} else if (!(vm_flags & VM_READ)) {
439 		if (!(gup_flags & FOLL_FORCE))
440 			return -EFAULT;
441 		/*
442 		 * Is there actually any vma we can reach here which does not
443 		 * have VM_MAYREAD set?
444 		 */
445 		if (!(vm_flags & VM_MAYREAD))
446 			return -EFAULT;
447 	}
448 	return 0;
449 }
450 
451 /**
452  * __get_user_pages() - pin user pages in memory
453  * @tsk:	task_struct of target task
454  * @mm:		mm_struct of target mm
455  * @start:	starting user address
456  * @nr_pages:	number of pages from start to pin
457  * @gup_flags:	flags modifying pin behaviour
458  * @pages:	array that receives pointers to the pages pinned.
459  *		Should be at least nr_pages long. Or NULL, if caller
460  *		only intends to ensure the pages are faulted in.
461  * @vmas:	array of pointers to vmas corresponding to each page.
462  *		Or NULL if the caller does not require them.
463  * @nonblocking: whether waiting for disk IO or mmap_sem contention
464  *
465  * Returns number of pages pinned. This may be fewer than the number
466  * requested. If nr_pages is 0 or negative, returns 0. If no pages
467  * were pinned, returns -errno. Each page returned must be released
468  * with a put_page() call when it is finished with. vmas will only
469  * remain valid while mmap_sem is held.
470  *
471  * Must be called with mmap_sem held.  It may be released.  See below.
472  *
473  * __get_user_pages walks a process's page tables and takes a reference to
474  * each struct page that each user address corresponds to at a given
475  * instant. That is, it takes the page that would be accessed if a user
476  * thread accesses the given user virtual address at that instant.
477  *
478  * This does not guarantee that the page exists in the user mappings when
479  * __get_user_pages returns, and there may even be a completely different
480  * page there in some cases (eg. if mmapped pagecache has been invalidated
481  * and subsequently re faulted). However it does guarantee that the page
482  * won't be freed completely. And mostly callers simply care that the page
483  * contains data that was valid *at some point in time*. Typically, an IO
484  * or similar operation cannot guarantee anything stronger anyway because
485  * locks can't be held over the syscall boundary.
486  *
487  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
488  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
489  * appropriate) must be called after the page is finished with, and
490  * before put_page is called.
491  *
492  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
493  * or mmap_sem contention, and if waiting is needed to pin all pages,
494  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
495  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
496  * this case.
497  *
498  * A caller using such a combination of @nonblocking and @gup_flags
499  * must therefore hold the mmap_sem for reading only, and recognize
500  * when it's been released.  Otherwise, it must be held for either
501  * reading or writing and will not be released.
502  *
503  * In most cases, get_user_pages or get_user_pages_fast should be used
504  * instead of __get_user_pages. __get_user_pages should be used only if
505  * you need some special @gup_flags.
506  */
507 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
508 		unsigned long start, unsigned long nr_pages,
509 		unsigned int gup_flags, struct page **pages,
510 		struct vm_area_struct **vmas, int *nonblocking)
511 {
512 	long i = 0;
513 	unsigned int page_mask;
514 	struct vm_area_struct *vma = NULL;
515 
516 	if (!nr_pages)
517 		return 0;
518 
519 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
520 
521 	/*
522 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
523 	 * fault information is unrelated to the reference behaviour of a task
524 	 * using the address space
525 	 */
526 	if (!(gup_flags & FOLL_FORCE))
527 		gup_flags |= FOLL_NUMA;
528 
529 	do {
530 		struct page *page;
531 		unsigned int foll_flags = gup_flags;
532 		unsigned int page_increm;
533 
534 		/* first iteration or cross vma bound */
535 		if (!vma || start >= vma->vm_end) {
536 			vma = find_extend_vma(mm, start);
537 			if (!vma && in_gate_area(mm, start)) {
538 				int ret;
539 				ret = get_gate_page(mm, start & PAGE_MASK,
540 						gup_flags, &vma,
541 						pages ? &pages[i] : NULL);
542 				if (ret)
543 					return i ? : ret;
544 				page_mask = 0;
545 				goto next_page;
546 			}
547 
548 			if (!vma || check_vma_flags(vma, gup_flags))
549 				return i ? : -EFAULT;
550 			if (is_vm_hugetlb_page(vma)) {
551 				i = follow_hugetlb_page(mm, vma, pages, vmas,
552 						&start, &nr_pages, i,
553 						gup_flags);
554 				continue;
555 			}
556 		}
557 retry:
558 		/*
559 		 * If we have a pending SIGKILL, don't keep faulting pages and
560 		 * potentially allocating memory.
561 		 */
562 		if (unlikely(fatal_signal_pending(current)))
563 			return i ? i : -ERESTARTSYS;
564 		cond_resched();
565 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
566 		if (!page) {
567 			int ret;
568 			ret = faultin_page(tsk, vma, start, &foll_flags,
569 					nonblocking);
570 			switch (ret) {
571 			case 0:
572 				goto retry;
573 			case -EFAULT:
574 			case -ENOMEM:
575 			case -EHWPOISON:
576 				return i ? i : ret;
577 			case -EBUSY:
578 				return i;
579 			case -ENOENT:
580 				goto next_page;
581 			}
582 			BUG();
583 		} else if (PTR_ERR(page) == -EEXIST) {
584 			/*
585 			 * Proper page table entry exists, but no corresponding
586 			 * struct page.
587 			 */
588 			goto next_page;
589 		} else if (IS_ERR(page)) {
590 			return i ? i : PTR_ERR(page);
591 		}
592 		if (pages) {
593 			pages[i] = page;
594 			flush_anon_page(vma, page, start);
595 			flush_dcache_page(page);
596 			page_mask = 0;
597 		}
598 next_page:
599 		if (vmas) {
600 			vmas[i] = vma;
601 			page_mask = 0;
602 		}
603 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
604 		if (page_increm > nr_pages)
605 			page_increm = nr_pages;
606 		i += page_increm;
607 		start += page_increm * PAGE_SIZE;
608 		nr_pages -= page_increm;
609 	} while (nr_pages);
610 	return i;
611 }
612 EXPORT_SYMBOL(__get_user_pages);
613 
614 /*
615  * fixup_user_fault() - manually resolve a user page fault
616  * @tsk:	the task_struct to use for page fault accounting, or
617  *		NULL if faults are not to be recorded.
618  * @mm:		mm_struct of target mm
619  * @address:	user address
620  * @fault_flags:flags to pass down to handle_mm_fault()
621  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
622  *		does not allow retry
623  *
624  * This is meant to be called in the specific scenario where for locking reasons
625  * we try to access user memory in atomic context (within a pagefault_disable()
626  * section), this returns -EFAULT, and we want to resolve the user fault before
627  * trying again.
628  *
629  * Typically this is meant to be used by the futex code.
630  *
631  * The main difference with get_user_pages() is that this function will
632  * unconditionally call handle_mm_fault() which will in turn perform all the
633  * necessary SW fixup of the dirty and young bits in the PTE, while
634  * get_user_pages() only guarantees to update these in the struct page.
635  *
636  * This is important for some architectures where those bits also gate the
637  * access permission to the page because they are maintained in software.  On
638  * such architectures, gup() will not be enough to make a subsequent access
639  * succeed.
640  *
641  * This function will not return with an unlocked mmap_sem. So it has not the
642  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
643  */
644 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
645 		     unsigned long address, unsigned int fault_flags,
646 		     bool *unlocked)
647 {
648 	struct vm_area_struct *vma;
649 	vm_flags_t vm_flags;
650 	int ret, major = 0;
651 
652 	if (unlocked)
653 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
654 
655 retry:
656 	vma = find_extend_vma(mm, address);
657 	if (!vma || address < vma->vm_start)
658 		return -EFAULT;
659 
660 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
661 	if (!(vm_flags & vma->vm_flags))
662 		return -EFAULT;
663 
664 	ret = handle_mm_fault(mm, vma, address, fault_flags);
665 	major |= ret & VM_FAULT_MAJOR;
666 	if (ret & VM_FAULT_ERROR) {
667 		if (ret & VM_FAULT_OOM)
668 			return -ENOMEM;
669 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
670 			return -EHWPOISON;
671 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
672 			return -EFAULT;
673 		BUG();
674 	}
675 
676 	if (ret & VM_FAULT_RETRY) {
677 		down_read(&mm->mmap_sem);
678 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
679 			*unlocked = true;
680 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
681 			fault_flags |= FAULT_FLAG_TRIED;
682 			goto retry;
683 		}
684 	}
685 
686 	if (tsk) {
687 		if (major)
688 			tsk->maj_flt++;
689 		else
690 			tsk->min_flt++;
691 	}
692 	return 0;
693 }
694 
695 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
696 						struct mm_struct *mm,
697 						unsigned long start,
698 						unsigned long nr_pages,
699 						int write, int force,
700 						struct page **pages,
701 						struct vm_area_struct **vmas,
702 						int *locked, bool notify_drop,
703 						unsigned int flags)
704 {
705 	long ret, pages_done;
706 	bool lock_dropped;
707 
708 	if (locked) {
709 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
710 		BUG_ON(vmas);
711 		/* check caller initialized locked */
712 		BUG_ON(*locked != 1);
713 	}
714 
715 	if (pages)
716 		flags |= FOLL_GET;
717 	if (write)
718 		flags |= FOLL_WRITE;
719 	if (force)
720 		flags |= FOLL_FORCE;
721 
722 	pages_done = 0;
723 	lock_dropped = false;
724 	for (;;) {
725 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
726 				       vmas, locked);
727 		if (!locked)
728 			/* VM_FAULT_RETRY couldn't trigger, bypass */
729 			return ret;
730 
731 		/* VM_FAULT_RETRY cannot return errors */
732 		if (!*locked) {
733 			BUG_ON(ret < 0);
734 			BUG_ON(ret >= nr_pages);
735 		}
736 
737 		if (!pages)
738 			/* If it's a prefault don't insist harder */
739 			return ret;
740 
741 		if (ret > 0) {
742 			nr_pages -= ret;
743 			pages_done += ret;
744 			if (!nr_pages)
745 				break;
746 		}
747 		if (*locked) {
748 			/* VM_FAULT_RETRY didn't trigger */
749 			if (!pages_done)
750 				pages_done = ret;
751 			break;
752 		}
753 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
754 		pages += ret;
755 		start += ret << PAGE_SHIFT;
756 
757 		/*
758 		 * Repeat on the address that fired VM_FAULT_RETRY
759 		 * without FAULT_FLAG_ALLOW_RETRY but with
760 		 * FAULT_FLAG_TRIED.
761 		 */
762 		*locked = 1;
763 		lock_dropped = true;
764 		down_read(&mm->mmap_sem);
765 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
766 				       pages, NULL, NULL);
767 		if (ret != 1) {
768 			BUG_ON(ret > 1);
769 			if (!pages_done)
770 				pages_done = ret;
771 			break;
772 		}
773 		nr_pages--;
774 		pages_done++;
775 		if (!nr_pages)
776 			break;
777 		pages++;
778 		start += PAGE_SIZE;
779 	}
780 	if (notify_drop && lock_dropped && *locked) {
781 		/*
782 		 * We must let the caller know we temporarily dropped the lock
783 		 * and so the critical section protected by it was lost.
784 		 */
785 		up_read(&mm->mmap_sem);
786 		*locked = 0;
787 	}
788 	return pages_done;
789 }
790 
791 /*
792  * We can leverage the VM_FAULT_RETRY functionality in the page fault
793  * paths better by using either get_user_pages_locked() or
794  * get_user_pages_unlocked().
795  *
796  * get_user_pages_locked() is suitable to replace the form:
797  *
798  *      down_read(&mm->mmap_sem);
799  *      do_something()
800  *      get_user_pages(tsk, mm, ..., pages, NULL);
801  *      up_read(&mm->mmap_sem);
802  *
803  *  to:
804  *
805  *      int locked = 1;
806  *      down_read(&mm->mmap_sem);
807  *      do_something()
808  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
809  *      if (locked)
810  *          up_read(&mm->mmap_sem);
811  */
812 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
813 			   unsigned long start, unsigned long nr_pages,
814 			   int write, int force, struct page **pages,
815 			   int *locked)
816 {
817 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
818 				       pages, NULL, locked, true, FOLL_TOUCH);
819 }
820 EXPORT_SYMBOL(get_user_pages_locked);
821 
822 /*
823  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
824  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
825  *
826  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
827  * caller if required (just like with __get_user_pages). "FOLL_GET",
828  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
829  * according to the parameters "pages", "write", "force"
830  * respectively.
831  */
832 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
833 					       unsigned long start, unsigned long nr_pages,
834 					       int write, int force, struct page **pages,
835 					       unsigned int gup_flags)
836 {
837 	long ret;
838 	int locked = 1;
839 	down_read(&mm->mmap_sem);
840 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
841 				      pages, NULL, &locked, false, gup_flags);
842 	if (locked)
843 		up_read(&mm->mmap_sem);
844 	return ret;
845 }
846 EXPORT_SYMBOL(__get_user_pages_unlocked);
847 
848 /*
849  * get_user_pages_unlocked() is suitable to replace the form:
850  *
851  *      down_read(&mm->mmap_sem);
852  *      get_user_pages(tsk, mm, ..., pages, NULL);
853  *      up_read(&mm->mmap_sem);
854  *
855  *  with:
856  *
857  *      get_user_pages_unlocked(tsk, mm, ..., pages);
858  *
859  * It is functionally equivalent to get_user_pages_fast so
860  * get_user_pages_fast should be used instead, if the two parameters
861  * "tsk" and "mm" are respectively equal to current and current->mm,
862  * or if "force" shall be set to 1 (get_user_pages_fast misses the
863  * "force" parameter).
864  */
865 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
866 			     unsigned long start, unsigned long nr_pages,
867 			     int write, int force, struct page **pages)
868 {
869 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
870 					 force, pages, FOLL_TOUCH);
871 }
872 EXPORT_SYMBOL(get_user_pages_unlocked);
873 
874 /*
875  * get_user_pages() - pin user pages in memory
876  * @tsk:	the task_struct to use for page fault accounting, or
877  *		NULL if faults are not to be recorded.
878  * @mm:		mm_struct of target mm
879  * @start:	starting user address
880  * @nr_pages:	number of pages from start to pin
881  * @write:	whether pages will be written to by the caller
882  * @force:	whether to force access even when user mapping is currently
883  *		protected (but never forces write access to shared mapping).
884  * @pages:	array that receives pointers to the pages pinned.
885  *		Should be at least nr_pages long. Or NULL, if caller
886  *		only intends to ensure the pages are faulted in.
887  * @vmas:	array of pointers to vmas corresponding to each page.
888  *		Or NULL if the caller does not require them.
889  *
890  * Returns number of pages pinned. This may be fewer than the number
891  * requested. If nr_pages is 0 or negative, returns 0. If no pages
892  * were pinned, returns -errno. Each page returned must be released
893  * with a put_page() call when it is finished with. vmas will only
894  * remain valid while mmap_sem is held.
895  *
896  * Must be called with mmap_sem held for read or write.
897  *
898  * get_user_pages walks a process's page tables and takes a reference to
899  * each struct page that each user address corresponds to at a given
900  * instant. That is, it takes the page that would be accessed if a user
901  * thread accesses the given user virtual address at that instant.
902  *
903  * This does not guarantee that the page exists in the user mappings when
904  * get_user_pages returns, and there may even be a completely different
905  * page there in some cases (eg. if mmapped pagecache has been invalidated
906  * and subsequently re faulted). However it does guarantee that the page
907  * won't be freed completely. And mostly callers simply care that the page
908  * contains data that was valid *at some point in time*. Typically, an IO
909  * or similar operation cannot guarantee anything stronger anyway because
910  * locks can't be held over the syscall boundary.
911  *
912  * If write=0, the page must not be written to. If the page is written to,
913  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
914  * after the page is finished with, and before put_page is called.
915  *
916  * get_user_pages is typically used for fewer-copy IO operations, to get a
917  * handle on the memory by some means other than accesses via the user virtual
918  * addresses. The pages may be submitted for DMA to devices or accessed via
919  * their kernel linear mapping (via the kmap APIs). Care should be taken to
920  * use the correct cache flushing APIs.
921  *
922  * See also get_user_pages_fast, for performance critical applications.
923  *
924  * get_user_pages should be phased out in favor of
925  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
926  * should use get_user_pages because it cannot pass
927  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
928  */
929 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
930 		unsigned long start, unsigned long nr_pages, int write,
931 		int force, struct page **pages, struct vm_area_struct **vmas)
932 {
933 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
934 				       pages, vmas, NULL, false, FOLL_TOUCH);
935 }
936 EXPORT_SYMBOL(get_user_pages);
937 
938 /**
939  * populate_vma_page_range() -  populate a range of pages in the vma.
940  * @vma:   target vma
941  * @start: start address
942  * @end:   end address
943  * @nonblocking:
944  *
945  * This takes care of mlocking the pages too if VM_LOCKED is set.
946  *
947  * return 0 on success, negative error code on error.
948  *
949  * vma->vm_mm->mmap_sem must be held.
950  *
951  * If @nonblocking is NULL, it may be held for read or write and will
952  * be unperturbed.
953  *
954  * If @nonblocking is non-NULL, it must held for read only and may be
955  * released.  If it's released, *@nonblocking will be set to 0.
956  */
957 long populate_vma_page_range(struct vm_area_struct *vma,
958 		unsigned long start, unsigned long end, int *nonblocking)
959 {
960 	struct mm_struct *mm = vma->vm_mm;
961 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
962 	int gup_flags;
963 
964 	VM_BUG_ON(start & ~PAGE_MASK);
965 	VM_BUG_ON(end   & ~PAGE_MASK);
966 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
967 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
968 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
969 
970 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
971 	if (vma->vm_flags & VM_LOCKONFAULT)
972 		gup_flags &= ~FOLL_POPULATE;
973 	/*
974 	 * We want to touch writable mappings with a write fault in order
975 	 * to break COW, except for shared mappings because these don't COW
976 	 * and we would not want to dirty them for nothing.
977 	 */
978 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
979 		gup_flags |= FOLL_WRITE;
980 
981 	/*
982 	 * We want mlock to succeed for regions that have any permissions
983 	 * other than PROT_NONE.
984 	 */
985 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
986 		gup_flags |= FOLL_FORCE;
987 
988 	/*
989 	 * We made sure addr is within a VMA, so the following will
990 	 * not result in a stack expansion that recurses back here.
991 	 */
992 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
993 				NULL, NULL, nonblocking);
994 }
995 
996 /*
997  * __mm_populate - populate and/or mlock pages within a range of address space.
998  *
999  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1000  * flags. VMAs must be already marked with the desired vm_flags, and
1001  * mmap_sem must not be held.
1002  */
1003 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1004 {
1005 	struct mm_struct *mm = current->mm;
1006 	unsigned long end, nstart, nend;
1007 	struct vm_area_struct *vma = NULL;
1008 	int locked = 0;
1009 	long ret = 0;
1010 
1011 	VM_BUG_ON(start & ~PAGE_MASK);
1012 	VM_BUG_ON(len != PAGE_ALIGN(len));
1013 	end = start + len;
1014 
1015 	for (nstart = start; nstart < end; nstart = nend) {
1016 		/*
1017 		 * We want to fault in pages for [nstart; end) address range.
1018 		 * Find first corresponding VMA.
1019 		 */
1020 		if (!locked) {
1021 			locked = 1;
1022 			down_read(&mm->mmap_sem);
1023 			vma = find_vma(mm, nstart);
1024 		} else if (nstart >= vma->vm_end)
1025 			vma = vma->vm_next;
1026 		if (!vma || vma->vm_start >= end)
1027 			break;
1028 		/*
1029 		 * Set [nstart; nend) to intersection of desired address
1030 		 * range with the first VMA. Also, skip undesirable VMA types.
1031 		 */
1032 		nend = min(end, vma->vm_end);
1033 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034 			continue;
1035 		if (nstart < vma->vm_start)
1036 			nstart = vma->vm_start;
1037 		/*
1038 		 * Now fault in a range of pages. populate_vma_page_range()
1039 		 * double checks the vma flags, so that it won't mlock pages
1040 		 * if the vma was already munlocked.
1041 		 */
1042 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1043 		if (ret < 0) {
1044 			if (ignore_errors) {
1045 				ret = 0;
1046 				continue;	/* continue at next VMA */
1047 			}
1048 			break;
1049 		}
1050 		nend = nstart + ret * PAGE_SIZE;
1051 		ret = 0;
1052 	}
1053 	if (locked)
1054 		up_read(&mm->mmap_sem);
1055 	return ret;	/* 0 or negative error code */
1056 }
1057 
1058 /**
1059  * get_dump_page() - pin user page in memory while writing it to core dump
1060  * @addr: user address
1061  *
1062  * Returns struct page pointer of user page pinned for dump,
1063  * to be freed afterwards by page_cache_release() or put_page().
1064  *
1065  * Returns NULL on any kind of failure - a hole must then be inserted into
1066  * the corefile, to preserve alignment with its headers; and also returns
1067  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1068  * allowing a hole to be left in the corefile to save diskspace.
1069  *
1070  * Called without mmap_sem, but after all other threads have been killed.
1071  */
1072 #ifdef CONFIG_ELF_CORE
1073 struct page *get_dump_page(unsigned long addr)
1074 {
1075 	struct vm_area_struct *vma;
1076 	struct page *page;
1077 
1078 	if (__get_user_pages(current, current->mm, addr, 1,
1079 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1080 			     NULL) < 1)
1081 		return NULL;
1082 	flush_cache_page(vma, addr, page_to_pfn(page));
1083 	return page;
1084 }
1085 #endif /* CONFIG_ELF_CORE */
1086 
1087 /*
1088  * Generic RCU Fast GUP
1089  *
1090  * get_user_pages_fast attempts to pin user pages by walking the page
1091  * tables directly and avoids taking locks. Thus the walker needs to be
1092  * protected from page table pages being freed from under it, and should
1093  * block any THP splits.
1094  *
1095  * One way to achieve this is to have the walker disable interrupts, and
1096  * rely on IPIs from the TLB flushing code blocking before the page table
1097  * pages are freed. This is unsuitable for architectures that do not need
1098  * to broadcast an IPI when invalidating TLBs.
1099  *
1100  * Another way to achieve this is to batch up page table containing pages
1101  * belonging to more than one mm_user, then rcu_sched a callback to free those
1102  * pages. Disabling interrupts will allow the fast_gup walker to both block
1103  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1104  * (which is a relatively rare event). The code below adopts this strategy.
1105  *
1106  * Before activating this code, please be aware that the following assumptions
1107  * are currently made:
1108  *
1109  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1110  *      pages containing page tables.
1111  *
1112  *  *) ptes can be read atomically by the architecture.
1113  *
1114  *  *) access_ok is sufficient to validate userspace address ranges.
1115  *
1116  * The last two assumptions can be relaxed by the addition of helper functions.
1117  *
1118  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1119  */
1120 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1121 
1122 #ifdef __HAVE_ARCH_PTE_SPECIAL
1123 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1124 			 int write, struct page **pages, int *nr)
1125 {
1126 	pte_t *ptep, *ptem;
1127 	int ret = 0;
1128 
1129 	ptem = ptep = pte_offset_map(&pmd, addr);
1130 	do {
1131 		/*
1132 		 * In the line below we are assuming that the pte can be read
1133 		 * atomically. If this is not the case for your architecture,
1134 		 * please wrap this in a helper function!
1135 		 *
1136 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1137 		 */
1138 		pte_t pte = READ_ONCE(*ptep);
1139 		struct page *head, *page;
1140 
1141 		/*
1142 		 * Similar to the PMD case below, NUMA hinting must take slow
1143 		 * path using the pte_protnone check.
1144 		 */
1145 		if (!pte_present(pte) || pte_special(pte) ||
1146 			pte_protnone(pte) || (write && !pte_write(pte)))
1147 			goto pte_unmap;
1148 
1149 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1150 		page = pte_page(pte);
1151 		head = compound_head(page);
1152 
1153 		if (!page_cache_get_speculative(head))
1154 			goto pte_unmap;
1155 
1156 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1157 			put_page(head);
1158 			goto pte_unmap;
1159 		}
1160 
1161 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1162 		pages[*nr] = page;
1163 		(*nr)++;
1164 
1165 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1166 
1167 	ret = 1;
1168 
1169 pte_unmap:
1170 	pte_unmap(ptem);
1171 	return ret;
1172 }
1173 #else
1174 
1175 /*
1176  * If we can't determine whether or not a pte is special, then fail immediately
1177  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1178  * to be special.
1179  *
1180  * For a futex to be placed on a THP tail page, get_futex_key requires a
1181  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1182  * useful to have gup_huge_pmd even if we can't operate on ptes.
1183  */
1184 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1185 			 int write, struct page **pages, int *nr)
1186 {
1187 	return 0;
1188 }
1189 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1190 
1191 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1192 		unsigned long end, int write, struct page **pages, int *nr)
1193 {
1194 	struct page *head, *page;
1195 	int refs;
1196 
1197 	if (write && !pmd_write(orig))
1198 		return 0;
1199 
1200 	refs = 0;
1201 	head = pmd_page(orig);
1202 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1203 	do {
1204 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1205 		pages[*nr] = page;
1206 		(*nr)++;
1207 		page++;
1208 		refs++;
1209 	} while (addr += PAGE_SIZE, addr != end);
1210 
1211 	if (!page_cache_add_speculative(head, refs)) {
1212 		*nr -= refs;
1213 		return 0;
1214 	}
1215 
1216 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1217 		*nr -= refs;
1218 		while (refs--)
1219 			put_page(head);
1220 		return 0;
1221 	}
1222 
1223 	return 1;
1224 }
1225 
1226 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1227 		unsigned long end, int write, struct page **pages, int *nr)
1228 {
1229 	struct page *head, *page;
1230 	int refs;
1231 
1232 	if (write && !pud_write(orig))
1233 		return 0;
1234 
1235 	refs = 0;
1236 	head = pud_page(orig);
1237 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1238 	do {
1239 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1240 		pages[*nr] = page;
1241 		(*nr)++;
1242 		page++;
1243 		refs++;
1244 	} while (addr += PAGE_SIZE, addr != end);
1245 
1246 	if (!page_cache_add_speculative(head, refs)) {
1247 		*nr -= refs;
1248 		return 0;
1249 	}
1250 
1251 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1252 		*nr -= refs;
1253 		while (refs--)
1254 			put_page(head);
1255 		return 0;
1256 	}
1257 
1258 	return 1;
1259 }
1260 
1261 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1262 			unsigned long end, int write,
1263 			struct page **pages, int *nr)
1264 {
1265 	int refs;
1266 	struct page *head, *page;
1267 
1268 	if (write && !pgd_write(orig))
1269 		return 0;
1270 
1271 	refs = 0;
1272 	head = pgd_page(orig);
1273 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1274 	do {
1275 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1276 		pages[*nr] = page;
1277 		(*nr)++;
1278 		page++;
1279 		refs++;
1280 	} while (addr += PAGE_SIZE, addr != end);
1281 
1282 	if (!page_cache_add_speculative(head, refs)) {
1283 		*nr -= refs;
1284 		return 0;
1285 	}
1286 
1287 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1288 		*nr -= refs;
1289 		while (refs--)
1290 			put_page(head);
1291 		return 0;
1292 	}
1293 
1294 	return 1;
1295 }
1296 
1297 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1298 		int write, struct page **pages, int *nr)
1299 {
1300 	unsigned long next;
1301 	pmd_t *pmdp;
1302 
1303 	pmdp = pmd_offset(&pud, addr);
1304 	do {
1305 		pmd_t pmd = READ_ONCE(*pmdp);
1306 
1307 		next = pmd_addr_end(addr, end);
1308 		if (pmd_none(pmd))
1309 			return 0;
1310 
1311 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1312 			/*
1313 			 * NUMA hinting faults need to be handled in the GUP
1314 			 * slowpath for accounting purposes and so that they
1315 			 * can be serialised against THP migration.
1316 			 */
1317 			if (pmd_protnone(pmd))
1318 				return 0;
1319 
1320 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1321 				pages, nr))
1322 				return 0;
1323 
1324 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1325 			/*
1326 			 * architecture have different format for hugetlbfs
1327 			 * pmd format and THP pmd format
1328 			 */
1329 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1330 					 PMD_SHIFT, next, write, pages, nr))
1331 				return 0;
1332 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1333 				return 0;
1334 	} while (pmdp++, addr = next, addr != end);
1335 
1336 	return 1;
1337 }
1338 
1339 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1340 			 int write, struct page **pages, int *nr)
1341 {
1342 	unsigned long next;
1343 	pud_t *pudp;
1344 
1345 	pudp = pud_offset(&pgd, addr);
1346 	do {
1347 		pud_t pud = READ_ONCE(*pudp);
1348 
1349 		next = pud_addr_end(addr, end);
1350 		if (pud_none(pud))
1351 			return 0;
1352 		if (unlikely(pud_huge(pud))) {
1353 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1354 					  pages, nr))
1355 				return 0;
1356 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1357 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1358 					 PUD_SHIFT, next, write, pages, nr))
1359 				return 0;
1360 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1361 			return 0;
1362 	} while (pudp++, addr = next, addr != end);
1363 
1364 	return 1;
1365 }
1366 
1367 /*
1368  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1369  * the regular GUP. It will only return non-negative values.
1370  */
1371 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1372 			  struct page **pages)
1373 {
1374 	struct mm_struct *mm = current->mm;
1375 	unsigned long addr, len, end;
1376 	unsigned long next, flags;
1377 	pgd_t *pgdp;
1378 	int nr = 0;
1379 
1380 	start &= PAGE_MASK;
1381 	addr = start;
1382 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1383 	end = start + len;
1384 
1385 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1386 					start, len)))
1387 		return 0;
1388 
1389 	/*
1390 	 * Disable interrupts.  We use the nested form as we can already have
1391 	 * interrupts disabled by get_futex_key.
1392 	 *
1393 	 * With interrupts disabled, we block page table pages from being
1394 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1395 	 * for more details.
1396 	 *
1397 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1398 	 * block IPIs that come from THPs splitting.
1399 	 */
1400 
1401 	local_irq_save(flags);
1402 	pgdp = pgd_offset(mm, addr);
1403 	do {
1404 		pgd_t pgd = READ_ONCE(*pgdp);
1405 
1406 		next = pgd_addr_end(addr, end);
1407 		if (pgd_none(pgd))
1408 			break;
1409 		if (unlikely(pgd_huge(pgd))) {
1410 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1411 					  pages, &nr))
1412 				break;
1413 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1414 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1415 					 PGDIR_SHIFT, next, write, pages, &nr))
1416 				break;
1417 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1418 			break;
1419 	} while (pgdp++, addr = next, addr != end);
1420 	local_irq_restore(flags);
1421 
1422 	return nr;
1423 }
1424 
1425 /**
1426  * get_user_pages_fast() - pin user pages in memory
1427  * @start:	starting user address
1428  * @nr_pages:	number of pages from start to pin
1429  * @write:	whether pages will be written to
1430  * @pages:	array that receives pointers to the pages pinned.
1431  *		Should be at least nr_pages long.
1432  *
1433  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1434  * If not successful, it will fall back to taking the lock and
1435  * calling get_user_pages().
1436  *
1437  * Returns number of pages pinned. This may be fewer than the number
1438  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1439  * were pinned, returns -errno.
1440  */
1441 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1442 			struct page **pages)
1443 {
1444 	struct mm_struct *mm = current->mm;
1445 	int nr, ret;
1446 
1447 	start &= PAGE_MASK;
1448 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1449 	ret = nr;
1450 
1451 	if (nr < nr_pages) {
1452 		/* Try to get the remaining pages with get_user_pages */
1453 		start += nr << PAGE_SHIFT;
1454 		pages += nr;
1455 
1456 		ret = get_user_pages_unlocked(current, mm, start,
1457 					      nr_pages - nr, write, 0, pages);
1458 
1459 		/* Have to be a bit careful with return values */
1460 		if (nr > 0) {
1461 			if (ret < 0)
1462 				ret = nr;
1463 			else
1464 				ret += nr;
1465 		}
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1472