1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 static struct page *follow_page_pte(struct vm_area_struct *vma, 64 unsigned long address, pmd_t *pmd, unsigned int flags) 65 { 66 struct mm_struct *mm = vma->vm_mm; 67 struct dev_pagemap *pgmap = NULL; 68 struct page *page; 69 spinlock_t *ptl; 70 pte_t *ptep, pte; 71 72 retry: 73 if (unlikely(pmd_bad(*pmd))) 74 return no_page_table(vma, flags); 75 76 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 77 pte = *ptep; 78 if (!pte_present(pte)) { 79 swp_entry_t entry; 80 /* 81 * KSM's break_ksm() relies upon recognizing a ksm page 82 * even while it is being migrated, so for that case we 83 * need migration_entry_wait(). 84 */ 85 if (likely(!(flags & FOLL_MIGRATION))) 86 goto no_page; 87 if (pte_none(pte)) 88 goto no_page; 89 entry = pte_to_swp_entry(pte); 90 if (!is_migration_entry(entry)) 91 goto no_page; 92 pte_unmap_unlock(ptep, ptl); 93 migration_entry_wait(mm, pmd, address); 94 goto retry; 95 } 96 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 97 goto no_page; 98 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 99 pte_unmap_unlock(ptep, ptl); 100 return NULL; 101 } 102 103 page = vm_normal_page(vma, address, pte); 104 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 105 /* 106 * Only return device mapping pages in the FOLL_GET case since 107 * they are only valid while holding the pgmap reference. 108 */ 109 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 110 if (pgmap) 111 page = pte_page(pte); 112 else 113 goto no_page; 114 } else if (unlikely(!page)) { 115 if (flags & FOLL_DUMP) { 116 /* Avoid special (like zero) pages in core dumps */ 117 page = ERR_PTR(-EFAULT); 118 goto out; 119 } 120 121 if (is_zero_pfn(pte_pfn(pte))) { 122 page = pte_page(pte); 123 } else { 124 int ret; 125 126 ret = follow_pfn_pte(vma, address, ptep, flags); 127 page = ERR_PTR(ret); 128 goto out; 129 } 130 } 131 132 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 133 int ret; 134 get_page(page); 135 pte_unmap_unlock(ptep, ptl); 136 lock_page(page); 137 ret = split_huge_page(page); 138 unlock_page(page); 139 put_page(page); 140 if (ret) 141 return ERR_PTR(ret); 142 goto retry; 143 } 144 145 if (flags & FOLL_GET) { 146 get_page(page); 147 148 /* drop the pgmap reference now that we hold the page */ 149 if (pgmap) { 150 put_dev_pagemap(pgmap); 151 pgmap = NULL; 152 } 153 } 154 if (flags & FOLL_TOUCH) { 155 if ((flags & FOLL_WRITE) && 156 !pte_dirty(pte) && !PageDirty(page)) 157 set_page_dirty(page); 158 /* 159 * pte_mkyoung() would be more correct here, but atomic care 160 * is needed to avoid losing the dirty bit: it is easier to use 161 * mark_page_accessed(). 162 */ 163 mark_page_accessed(page); 164 } 165 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 166 /* Do not mlock pte-mapped THP */ 167 if (PageTransCompound(page)) 168 goto out; 169 170 /* 171 * The preliminary mapping check is mainly to avoid the 172 * pointless overhead of lock_page on the ZERO_PAGE 173 * which might bounce very badly if there is contention. 174 * 175 * If the page is already locked, we don't need to 176 * handle it now - vmscan will handle it later if and 177 * when it attempts to reclaim the page. 178 */ 179 if (page->mapping && trylock_page(page)) { 180 lru_add_drain(); /* push cached pages to LRU */ 181 /* 182 * Because we lock page here, and migration is 183 * blocked by the pte's page reference, and we 184 * know the page is still mapped, we don't even 185 * need to check for file-cache page truncation. 186 */ 187 mlock_vma_page(page); 188 unlock_page(page); 189 } 190 } 191 out: 192 pte_unmap_unlock(ptep, ptl); 193 return page; 194 no_page: 195 pte_unmap_unlock(ptep, ptl); 196 if (!pte_none(pte)) 197 return NULL; 198 return no_page_table(vma, flags); 199 } 200 201 /** 202 * follow_page_mask - look up a page descriptor from a user-virtual address 203 * @vma: vm_area_struct mapping @address 204 * @address: virtual address to look up 205 * @flags: flags modifying lookup behaviour 206 * @page_mask: on output, *page_mask is set according to the size of the page 207 * 208 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 209 * 210 * Returns the mapped (struct page *), %NULL if no mapping exists, or 211 * an error pointer if there is a mapping to something not represented 212 * by a page descriptor (see also vm_normal_page()). 213 */ 214 struct page *follow_page_mask(struct vm_area_struct *vma, 215 unsigned long address, unsigned int flags, 216 unsigned int *page_mask) 217 { 218 pgd_t *pgd; 219 pud_t *pud; 220 pmd_t *pmd; 221 spinlock_t *ptl; 222 struct page *page; 223 struct mm_struct *mm = vma->vm_mm; 224 225 *page_mask = 0; 226 227 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 228 if (!IS_ERR(page)) { 229 BUG_ON(flags & FOLL_GET); 230 return page; 231 } 232 233 pgd = pgd_offset(mm, address); 234 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 235 return no_page_table(vma, flags); 236 237 pud = pud_offset(pgd, address); 238 if (pud_none(*pud)) 239 return no_page_table(vma, flags); 240 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 241 page = follow_huge_pud(mm, address, pud, flags); 242 if (page) 243 return page; 244 return no_page_table(vma, flags); 245 } 246 if (unlikely(pud_bad(*pud))) 247 return no_page_table(vma, flags); 248 249 pmd = pmd_offset(pud, address); 250 if (pmd_none(*pmd)) 251 return no_page_table(vma, flags); 252 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 253 page = follow_huge_pmd(mm, address, pmd, flags); 254 if (page) 255 return page; 256 return no_page_table(vma, flags); 257 } 258 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 259 return no_page_table(vma, flags); 260 if (pmd_devmap(*pmd)) { 261 ptl = pmd_lock(mm, pmd); 262 page = follow_devmap_pmd(vma, address, pmd, flags); 263 spin_unlock(ptl); 264 if (page) 265 return page; 266 } 267 if (likely(!pmd_trans_huge(*pmd))) 268 return follow_page_pte(vma, address, pmd, flags); 269 270 ptl = pmd_lock(mm, pmd); 271 if (unlikely(!pmd_trans_huge(*pmd))) { 272 spin_unlock(ptl); 273 return follow_page_pte(vma, address, pmd, flags); 274 } 275 if (flags & FOLL_SPLIT) { 276 int ret; 277 page = pmd_page(*pmd); 278 if (is_huge_zero_page(page)) { 279 spin_unlock(ptl); 280 ret = 0; 281 split_huge_pmd(vma, pmd, address); 282 if (pmd_trans_unstable(pmd)) 283 ret = -EBUSY; 284 } else { 285 get_page(page); 286 spin_unlock(ptl); 287 lock_page(page); 288 ret = split_huge_page(page); 289 unlock_page(page); 290 put_page(page); 291 if (pmd_none(*pmd)) 292 return no_page_table(vma, flags); 293 } 294 295 return ret ? ERR_PTR(ret) : 296 follow_page_pte(vma, address, pmd, flags); 297 } 298 299 page = follow_trans_huge_pmd(vma, address, pmd, flags); 300 spin_unlock(ptl); 301 *page_mask = HPAGE_PMD_NR - 1; 302 return page; 303 } 304 305 static int get_gate_page(struct mm_struct *mm, unsigned long address, 306 unsigned int gup_flags, struct vm_area_struct **vma, 307 struct page **page) 308 { 309 pgd_t *pgd; 310 pud_t *pud; 311 pmd_t *pmd; 312 pte_t *pte; 313 int ret = -EFAULT; 314 315 /* user gate pages are read-only */ 316 if (gup_flags & FOLL_WRITE) 317 return -EFAULT; 318 if (address > TASK_SIZE) 319 pgd = pgd_offset_k(address); 320 else 321 pgd = pgd_offset_gate(mm, address); 322 BUG_ON(pgd_none(*pgd)); 323 pud = pud_offset(pgd, address); 324 BUG_ON(pud_none(*pud)); 325 pmd = pmd_offset(pud, address); 326 if (pmd_none(*pmd)) 327 return -EFAULT; 328 VM_BUG_ON(pmd_trans_huge(*pmd)); 329 pte = pte_offset_map(pmd, address); 330 if (pte_none(*pte)) 331 goto unmap; 332 *vma = get_gate_vma(mm); 333 if (!page) 334 goto out; 335 *page = vm_normal_page(*vma, address, *pte); 336 if (!*page) { 337 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 338 goto unmap; 339 *page = pte_page(*pte); 340 } 341 get_page(*page); 342 out: 343 ret = 0; 344 unmap: 345 pte_unmap(pte); 346 return ret; 347 } 348 349 /* 350 * mmap_sem must be held on entry. If @nonblocking != NULL and 351 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 352 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 353 */ 354 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 355 unsigned long address, unsigned int *flags, int *nonblocking) 356 { 357 unsigned int fault_flags = 0; 358 int ret; 359 360 /* mlock all present pages, but do not fault in new pages */ 361 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 362 return -ENOENT; 363 /* For mm_populate(), just skip the stack guard page. */ 364 if ((*flags & FOLL_POPULATE) && 365 (stack_guard_page_start(vma, address) || 366 stack_guard_page_end(vma, address + PAGE_SIZE))) 367 return -ENOENT; 368 if (*flags & FOLL_WRITE) 369 fault_flags |= FAULT_FLAG_WRITE; 370 if (*flags & FOLL_REMOTE) 371 fault_flags |= FAULT_FLAG_REMOTE; 372 if (nonblocking) 373 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 374 if (*flags & FOLL_NOWAIT) 375 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 376 if (*flags & FOLL_TRIED) { 377 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 378 fault_flags |= FAULT_FLAG_TRIED; 379 } 380 381 ret = handle_mm_fault(vma, address, fault_flags); 382 if (ret & VM_FAULT_ERROR) { 383 if (ret & VM_FAULT_OOM) 384 return -ENOMEM; 385 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 386 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 387 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 388 return -EFAULT; 389 BUG(); 390 } 391 392 if (tsk) { 393 if (ret & VM_FAULT_MAJOR) 394 tsk->maj_flt++; 395 else 396 tsk->min_flt++; 397 } 398 399 if (ret & VM_FAULT_RETRY) { 400 if (nonblocking) 401 *nonblocking = 0; 402 return -EBUSY; 403 } 404 405 /* 406 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 407 * necessary, even if maybe_mkwrite decided not to set pte_write. We 408 * can thus safely do subsequent page lookups as if they were reads. 409 * But only do so when looping for pte_write is futile: in some cases 410 * userspace may also be wanting to write to the gotten user page, 411 * which a read fault here might prevent (a readonly page might get 412 * reCOWed by userspace write). 413 */ 414 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 415 *flags &= ~FOLL_WRITE; 416 return 0; 417 } 418 419 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 420 { 421 vm_flags_t vm_flags = vma->vm_flags; 422 int write = (gup_flags & FOLL_WRITE); 423 int foreign = (gup_flags & FOLL_REMOTE); 424 425 if (vm_flags & (VM_IO | VM_PFNMAP)) 426 return -EFAULT; 427 428 if (write) { 429 if (!(vm_flags & VM_WRITE)) { 430 if (!(gup_flags & FOLL_FORCE)) 431 return -EFAULT; 432 /* 433 * We used to let the write,force case do COW in a 434 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 435 * set a breakpoint in a read-only mapping of an 436 * executable, without corrupting the file (yet only 437 * when that file had been opened for writing!). 438 * Anon pages in shared mappings are surprising: now 439 * just reject it. 440 */ 441 if (!is_cow_mapping(vm_flags)) 442 return -EFAULT; 443 } 444 } else if (!(vm_flags & VM_READ)) { 445 if (!(gup_flags & FOLL_FORCE)) 446 return -EFAULT; 447 /* 448 * Is there actually any vma we can reach here which does not 449 * have VM_MAYREAD set? 450 */ 451 if (!(vm_flags & VM_MAYREAD)) 452 return -EFAULT; 453 } 454 /* 455 * gups are always data accesses, not instruction 456 * fetches, so execute=false here 457 */ 458 if (!arch_vma_access_permitted(vma, write, false, foreign)) 459 return -EFAULT; 460 return 0; 461 } 462 463 /** 464 * __get_user_pages() - pin user pages in memory 465 * @tsk: task_struct of target task 466 * @mm: mm_struct of target mm 467 * @start: starting user address 468 * @nr_pages: number of pages from start to pin 469 * @gup_flags: flags modifying pin behaviour 470 * @pages: array that receives pointers to the pages pinned. 471 * Should be at least nr_pages long. Or NULL, if caller 472 * only intends to ensure the pages are faulted in. 473 * @vmas: array of pointers to vmas corresponding to each page. 474 * Or NULL if the caller does not require them. 475 * @nonblocking: whether waiting for disk IO or mmap_sem contention 476 * 477 * Returns number of pages pinned. This may be fewer than the number 478 * requested. If nr_pages is 0 or negative, returns 0. If no pages 479 * were pinned, returns -errno. Each page returned must be released 480 * with a put_page() call when it is finished with. vmas will only 481 * remain valid while mmap_sem is held. 482 * 483 * Must be called with mmap_sem held. It may be released. See below. 484 * 485 * __get_user_pages walks a process's page tables and takes a reference to 486 * each struct page that each user address corresponds to at a given 487 * instant. That is, it takes the page that would be accessed if a user 488 * thread accesses the given user virtual address at that instant. 489 * 490 * This does not guarantee that the page exists in the user mappings when 491 * __get_user_pages returns, and there may even be a completely different 492 * page there in some cases (eg. if mmapped pagecache has been invalidated 493 * and subsequently re faulted). However it does guarantee that the page 494 * won't be freed completely. And mostly callers simply care that the page 495 * contains data that was valid *at some point in time*. Typically, an IO 496 * or similar operation cannot guarantee anything stronger anyway because 497 * locks can't be held over the syscall boundary. 498 * 499 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 500 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 501 * appropriate) must be called after the page is finished with, and 502 * before put_page is called. 503 * 504 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 505 * or mmap_sem contention, and if waiting is needed to pin all pages, 506 * *@nonblocking will be set to 0. Further, if @gup_flags does not 507 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 508 * this case. 509 * 510 * A caller using such a combination of @nonblocking and @gup_flags 511 * must therefore hold the mmap_sem for reading only, and recognize 512 * when it's been released. Otherwise, it must be held for either 513 * reading or writing and will not be released. 514 * 515 * In most cases, get_user_pages or get_user_pages_fast should be used 516 * instead of __get_user_pages. __get_user_pages should be used only if 517 * you need some special @gup_flags. 518 */ 519 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 520 unsigned long start, unsigned long nr_pages, 521 unsigned int gup_flags, struct page **pages, 522 struct vm_area_struct **vmas, int *nonblocking) 523 { 524 long i = 0; 525 unsigned int page_mask; 526 struct vm_area_struct *vma = NULL; 527 528 if (!nr_pages) 529 return 0; 530 531 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 532 533 /* 534 * If FOLL_FORCE is set then do not force a full fault as the hinting 535 * fault information is unrelated to the reference behaviour of a task 536 * using the address space 537 */ 538 if (!(gup_flags & FOLL_FORCE)) 539 gup_flags |= FOLL_NUMA; 540 541 do { 542 struct page *page; 543 unsigned int foll_flags = gup_flags; 544 unsigned int page_increm; 545 546 /* first iteration or cross vma bound */ 547 if (!vma || start >= vma->vm_end) { 548 vma = find_extend_vma(mm, start); 549 if (!vma && in_gate_area(mm, start)) { 550 int ret; 551 ret = get_gate_page(mm, start & PAGE_MASK, 552 gup_flags, &vma, 553 pages ? &pages[i] : NULL); 554 if (ret) 555 return i ? : ret; 556 page_mask = 0; 557 goto next_page; 558 } 559 560 if (!vma || check_vma_flags(vma, gup_flags)) 561 return i ? : -EFAULT; 562 if (is_vm_hugetlb_page(vma)) { 563 i = follow_hugetlb_page(mm, vma, pages, vmas, 564 &start, &nr_pages, i, 565 gup_flags); 566 continue; 567 } 568 } 569 retry: 570 /* 571 * If we have a pending SIGKILL, don't keep faulting pages and 572 * potentially allocating memory. 573 */ 574 if (unlikely(fatal_signal_pending(current))) 575 return i ? i : -ERESTARTSYS; 576 cond_resched(); 577 page = follow_page_mask(vma, start, foll_flags, &page_mask); 578 if (!page) { 579 int ret; 580 ret = faultin_page(tsk, vma, start, &foll_flags, 581 nonblocking); 582 switch (ret) { 583 case 0: 584 goto retry; 585 case -EFAULT: 586 case -ENOMEM: 587 case -EHWPOISON: 588 return i ? i : ret; 589 case -EBUSY: 590 return i; 591 case -ENOENT: 592 goto next_page; 593 } 594 BUG(); 595 } else if (PTR_ERR(page) == -EEXIST) { 596 /* 597 * Proper page table entry exists, but no corresponding 598 * struct page. 599 */ 600 goto next_page; 601 } else if (IS_ERR(page)) { 602 return i ? i : PTR_ERR(page); 603 } 604 if (pages) { 605 pages[i] = page; 606 flush_anon_page(vma, page, start); 607 flush_dcache_page(page); 608 page_mask = 0; 609 } 610 next_page: 611 if (vmas) { 612 vmas[i] = vma; 613 page_mask = 0; 614 } 615 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 616 if (page_increm > nr_pages) 617 page_increm = nr_pages; 618 i += page_increm; 619 start += page_increm * PAGE_SIZE; 620 nr_pages -= page_increm; 621 } while (nr_pages); 622 return i; 623 } 624 EXPORT_SYMBOL(__get_user_pages); 625 626 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags) 627 { 628 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 629 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 630 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 631 632 if (!(vm_flags & vma->vm_flags)) 633 return false; 634 635 /* 636 * The architecture might have a hardware protection 637 * mechanism other than read/write that can deny access. 638 * 639 * gup always represents data access, not instruction 640 * fetches, so execute=false here: 641 */ 642 if (!arch_vma_access_permitted(vma, write, false, foreign)) 643 return false; 644 645 return true; 646 } 647 648 /* 649 * fixup_user_fault() - manually resolve a user page fault 650 * @tsk: the task_struct to use for page fault accounting, or 651 * NULL if faults are not to be recorded. 652 * @mm: mm_struct of target mm 653 * @address: user address 654 * @fault_flags:flags to pass down to handle_mm_fault() 655 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 656 * does not allow retry 657 * 658 * This is meant to be called in the specific scenario where for locking reasons 659 * we try to access user memory in atomic context (within a pagefault_disable() 660 * section), this returns -EFAULT, and we want to resolve the user fault before 661 * trying again. 662 * 663 * Typically this is meant to be used by the futex code. 664 * 665 * The main difference with get_user_pages() is that this function will 666 * unconditionally call handle_mm_fault() which will in turn perform all the 667 * necessary SW fixup of the dirty and young bits in the PTE, while 668 * get_user_pages() only guarantees to update these in the struct page. 669 * 670 * This is important for some architectures where those bits also gate the 671 * access permission to the page because they are maintained in software. On 672 * such architectures, gup() will not be enough to make a subsequent access 673 * succeed. 674 * 675 * This function will not return with an unlocked mmap_sem. So it has not the 676 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 677 */ 678 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 679 unsigned long address, unsigned int fault_flags, 680 bool *unlocked) 681 { 682 struct vm_area_struct *vma; 683 int ret, major = 0; 684 685 if (unlocked) 686 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 687 688 retry: 689 vma = find_extend_vma(mm, address); 690 if (!vma || address < vma->vm_start) 691 return -EFAULT; 692 693 if (!vma_permits_fault(vma, fault_flags)) 694 return -EFAULT; 695 696 ret = handle_mm_fault(vma, address, fault_flags); 697 major |= ret & VM_FAULT_MAJOR; 698 if (ret & VM_FAULT_ERROR) { 699 if (ret & VM_FAULT_OOM) 700 return -ENOMEM; 701 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 702 return -EHWPOISON; 703 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 704 return -EFAULT; 705 BUG(); 706 } 707 708 if (ret & VM_FAULT_RETRY) { 709 down_read(&mm->mmap_sem); 710 if (!(fault_flags & FAULT_FLAG_TRIED)) { 711 *unlocked = true; 712 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 713 fault_flags |= FAULT_FLAG_TRIED; 714 goto retry; 715 } 716 } 717 718 if (tsk) { 719 if (major) 720 tsk->maj_flt++; 721 else 722 tsk->min_flt++; 723 } 724 return 0; 725 } 726 EXPORT_SYMBOL_GPL(fixup_user_fault); 727 728 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 729 struct mm_struct *mm, 730 unsigned long start, 731 unsigned long nr_pages, 732 int write, int force, 733 struct page **pages, 734 struct vm_area_struct **vmas, 735 int *locked, bool notify_drop, 736 unsigned int flags) 737 { 738 long ret, pages_done; 739 bool lock_dropped; 740 741 if (locked) { 742 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 743 BUG_ON(vmas); 744 /* check caller initialized locked */ 745 BUG_ON(*locked != 1); 746 } 747 748 if (pages) 749 flags |= FOLL_GET; 750 if (write) 751 flags |= FOLL_WRITE; 752 if (force) 753 flags |= FOLL_FORCE; 754 755 pages_done = 0; 756 lock_dropped = false; 757 for (;;) { 758 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 759 vmas, locked); 760 if (!locked) 761 /* VM_FAULT_RETRY couldn't trigger, bypass */ 762 return ret; 763 764 /* VM_FAULT_RETRY cannot return errors */ 765 if (!*locked) { 766 BUG_ON(ret < 0); 767 BUG_ON(ret >= nr_pages); 768 } 769 770 if (!pages) 771 /* If it's a prefault don't insist harder */ 772 return ret; 773 774 if (ret > 0) { 775 nr_pages -= ret; 776 pages_done += ret; 777 if (!nr_pages) 778 break; 779 } 780 if (*locked) { 781 /* VM_FAULT_RETRY didn't trigger */ 782 if (!pages_done) 783 pages_done = ret; 784 break; 785 } 786 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 787 pages += ret; 788 start += ret << PAGE_SHIFT; 789 790 /* 791 * Repeat on the address that fired VM_FAULT_RETRY 792 * without FAULT_FLAG_ALLOW_RETRY but with 793 * FAULT_FLAG_TRIED. 794 */ 795 *locked = 1; 796 lock_dropped = true; 797 down_read(&mm->mmap_sem); 798 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 799 pages, NULL, NULL); 800 if (ret != 1) { 801 BUG_ON(ret > 1); 802 if (!pages_done) 803 pages_done = ret; 804 break; 805 } 806 nr_pages--; 807 pages_done++; 808 if (!nr_pages) 809 break; 810 pages++; 811 start += PAGE_SIZE; 812 } 813 if (notify_drop && lock_dropped && *locked) { 814 /* 815 * We must let the caller know we temporarily dropped the lock 816 * and so the critical section protected by it was lost. 817 */ 818 up_read(&mm->mmap_sem); 819 *locked = 0; 820 } 821 return pages_done; 822 } 823 824 /* 825 * We can leverage the VM_FAULT_RETRY functionality in the page fault 826 * paths better by using either get_user_pages_locked() or 827 * get_user_pages_unlocked(). 828 * 829 * get_user_pages_locked() is suitable to replace the form: 830 * 831 * down_read(&mm->mmap_sem); 832 * do_something() 833 * get_user_pages(tsk, mm, ..., pages, NULL); 834 * up_read(&mm->mmap_sem); 835 * 836 * to: 837 * 838 * int locked = 1; 839 * down_read(&mm->mmap_sem); 840 * do_something() 841 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 842 * if (locked) 843 * up_read(&mm->mmap_sem); 844 */ 845 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 846 int write, int force, struct page **pages, 847 int *locked) 848 { 849 return __get_user_pages_locked(current, current->mm, start, nr_pages, 850 write, force, pages, NULL, locked, true, 851 FOLL_TOUCH); 852 } 853 EXPORT_SYMBOL(get_user_pages_locked); 854 855 /* 856 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to 857 * pass additional gup_flags as last parameter (like FOLL_HWPOISON). 858 * 859 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 860 * caller if required (just like with __get_user_pages). "FOLL_GET", 861 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed 862 * according to the parameters "pages", "write", "force" 863 * respectively. 864 */ 865 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 866 unsigned long start, unsigned long nr_pages, 867 int write, int force, struct page **pages, 868 unsigned int gup_flags) 869 { 870 long ret; 871 int locked = 1; 872 down_read(&mm->mmap_sem); 873 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 874 pages, NULL, &locked, false, gup_flags); 875 if (locked) 876 up_read(&mm->mmap_sem); 877 return ret; 878 } 879 EXPORT_SYMBOL(__get_user_pages_unlocked); 880 881 /* 882 * get_user_pages_unlocked() is suitable to replace the form: 883 * 884 * down_read(&mm->mmap_sem); 885 * get_user_pages(tsk, mm, ..., pages, NULL); 886 * up_read(&mm->mmap_sem); 887 * 888 * with: 889 * 890 * get_user_pages_unlocked(tsk, mm, ..., pages); 891 * 892 * It is functionally equivalent to get_user_pages_fast so 893 * get_user_pages_fast should be used instead, if the two parameters 894 * "tsk" and "mm" are respectively equal to current and current->mm, 895 * or if "force" shall be set to 1 (get_user_pages_fast misses the 896 * "force" parameter). 897 */ 898 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 899 int write, int force, struct page **pages) 900 { 901 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 902 write, force, pages, FOLL_TOUCH); 903 } 904 EXPORT_SYMBOL(get_user_pages_unlocked); 905 906 /* 907 * get_user_pages_remote() - pin user pages in memory 908 * @tsk: the task_struct to use for page fault accounting, or 909 * NULL if faults are not to be recorded. 910 * @mm: mm_struct of target mm 911 * @start: starting user address 912 * @nr_pages: number of pages from start to pin 913 * @write: whether pages will be written to by the caller 914 * @force: whether to force access even when user mapping is currently 915 * protected (but never forces write access to shared mapping). 916 * @pages: array that receives pointers to the pages pinned. 917 * Should be at least nr_pages long. Or NULL, if caller 918 * only intends to ensure the pages are faulted in. 919 * @vmas: array of pointers to vmas corresponding to each page. 920 * Or NULL if the caller does not require them. 921 * 922 * Returns number of pages pinned. This may be fewer than the number 923 * requested. If nr_pages is 0 or negative, returns 0. If no pages 924 * were pinned, returns -errno. Each page returned must be released 925 * with a put_page() call when it is finished with. vmas will only 926 * remain valid while mmap_sem is held. 927 * 928 * Must be called with mmap_sem held for read or write. 929 * 930 * get_user_pages walks a process's page tables and takes a reference to 931 * each struct page that each user address corresponds to at a given 932 * instant. That is, it takes the page that would be accessed if a user 933 * thread accesses the given user virtual address at that instant. 934 * 935 * This does not guarantee that the page exists in the user mappings when 936 * get_user_pages returns, and there may even be a completely different 937 * page there in some cases (eg. if mmapped pagecache has been invalidated 938 * and subsequently re faulted). However it does guarantee that the page 939 * won't be freed completely. And mostly callers simply care that the page 940 * contains data that was valid *at some point in time*. Typically, an IO 941 * or similar operation cannot guarantee anything stronger anyway because 942 * locks can't be held over the syscall boundary. 943 * 944 * If write=0, the page must not be written to. If the page is written to, 945 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 946 * after the page is finished with, and before put_page is called. 947 * 948 * get_user_pages is typically used for fewer-copy IO operations, to get a 949 * handle on the memory by some means other than accesses via the user virtual 950 * addresses. The pages may be submitted for DMA to devices or accessed via 951 * their kernel linear mapping (via the kmap APIs). Care should be taken to 952 * use the correct cache flushing APIs. 953 * 954 * See also get_user_pages_fast, for performance critical applications. 955 * 956 * get_user_pages should be phased out in favor of 957 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 958 * should use get_user_pages because it cannot pass 959 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 960 */ 961 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 962 unsigned long start, unsigned long nr_pages, 963 int write, int force, struct page **pages, 964 struct vm_area_struct **vmas) 965 { 966 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 967 pages, vmas, NULL, false, 968 FOLL_TOUCH | FOLL_REMOTE); 969 } 970 EXPORT_SYMBOL(get_user_pages_remote); 971 972 /* 973 * This is the same as get_user_pages_remote(), just with a 974 * less-flexible calling convention where we assume that the task 975 * and mm being operated on are the current task's. We also 976 * obviously don't pass FOLL_REMOTE in here. 977 */ 978 long get_user_pages(unsigned long start, unsigned long nr_pages, 979 int write, int force, struct page **pages, 980 struct vm_area_struct **vmas) 981 { 982 return __get_user_pages_locked(current, current->mm, start, nr_pages, 983 write, force, pages, vmas, NULL, false, 984 FOLL_TOUCH); 985 } 986 EXPORT_SYMBOL(get_user_pages); 987 988 /** 989 * populate_vma_page_range() - populate a range of pages in the vma. 990 * @vma: target vma 991 * @start: start address 992 * @end: end address 993 * @nonblocking: 994 * 995 * This takes care of mlocking the pages too if VM_LOCKED is set. 996 * 997 * return 0 on success, negative error code on error. 998 * 999 * vma->vm_mm->mmap_sem must be held. 1000 * 1001 * If @nonblocking is NULL, it may be held for read or write and will 1002 * be unperturbed. 1003 * 1004 * If @nonblocking is non-NULL, it must held for read only and may be 1005 * released. If it's released, *@nonblocking will be set to 0. 1006 */ 1007 long populate_vma_page_range(struct vm_area_struct *vma, 1008 unsigned long start, unsigned long end, int *nonblocking) 1009 { 1010 struct mm_struct *mm = vma->vm_mm; 1011 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1012 int gup_flags; 1013 1014 VM_BUG_ON(start & ~PAGE_MASK); 1015 VM_BUG_ON(end & ~PAGE_MASK); 1016 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1017 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1018 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1019 1020 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1021 if (vma->vm_flags & VM_LOCKONFAULT) 1022 gup_flags &= ~FOLL_POPULATE; 1023 /* 1024 * We want to touch writable mappings with a write fault in order 1025 * to break COW, except for shared mappings because these don't COW 1026 * and we would not want to dirty them for nothing. 1027 */ 1028 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1029 gup_flags |= FOLL_WRITE; 1030 1031 /* 1032 * We want mlock to succeed for regions that have any permissions 1033 * other than PROT_NONE. 1034 */ 1035 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1036 gup_flags |= FOLL_FORCE; 1037 1038 /* 1039 * We made sure addr is within a VMA, so the following will 1040 * not result in a stack expansion that recurses back here. 1041 */ 1042 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1043 NULL, NULL, nonblocking); 1044 } 1045 1046 /* 1047 * __mm_populate - populate and/or mlock pages within a range of address space. 1048 * 1049 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1050 * flags. VMAs must be already marked with the desired vm_flags, and 1051 * mmap_sem must not be held. 1052 */ 1053 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1054 { 1055 struct mm_struct *mm = current->mm; 1056 unsigned long end, nstart, nend; 1057 struct vm_area_struct *vma = NULL; 1058 int locked = 0; 1059 long ret = 0; 1060 1061 VM_BUG_ON(start & ~PAGE_MASK); 1062 VM_BUG_ON(len != PAGE_ALIGN(len)); 1063 end = start + len; 1064 1065 for (nstart = start; nstart < end; nstart = nend) { 1066 /* 1067 * We want to fault in pages for [nstart; end) address range. 1068 * Find first corresponding VMA. 1069 */ 1070 if (!locked) { 1071 locked = 1; 1072 down_read(&mm->mmap_sem); 1073 vma = find_vma(mm, nstart); 1074 } else if (nstart >= vma->vm_end) 1075 vma = vma->vm_next; 1076 if (!vma || vma->vm_start >= end) 1077 break; 1078 /* 1079 * Set [nstart; nend) to intersection of desired address 1080 * range with the first VMA. Also, skip undesirable VMA types. 1081 */ 1082 nend = min(end, vma->vm_end); 1083 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1084 continue; 1085 if (nstart < vma->vm_start) 1086 nstart = vma->vm_start; 1087 /* 1088 * Now fault in a range of pages. populate_vma_page_range() 1089 * double checks the vma flags, so that it won't mlock pages 1090 * if the vma was already munlocked. 1091 */ 1092 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1093 if (ret < 0) { 1094 if (ignore_errors) { 1095 ret = 0; 1096 continue; /* continue at next VMA */ 1097 } 1098 break; 1099 } 1100 nend = nstart + ret * PAGE_SIZE; 1101 ret = 0; 1102 } 1103 if (locked) 1104 up_read(&mm->mmap_sem); 1105 return ret; /* 0 or negative error code */ 1106 } 1107 1108 /** 1109 * get_dump_page() - pin user page in memory while writing it to core dump 1110 * @addr: user address 1111 * 1112 * Returns struct page pointer of user page pinned for dump, 1113 * to be freed afterwards by put_page(). 1114 * 1115 * Returns NULL on any kind of failure - a hole must then be inserted into 1116 * the corefile, to preserve alignment with its headers; and also returns 1117 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1118 * allowing a hole to be left in the corefile to save diskspace. 1119 * 1120 * Called without mmap_sem, but after all other threads have been killed. 1121 */ 1122 #ifdef CONFIG_ELF_CORE 1123 struct page *get_dump_page(unsigned long addr) 1124 { 1125 struct vm_area_struct *vma; 1126 struct page *page; 1127 1128 if (__get_user_pages(current, current->mm, addr, 1, 1129 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1130 NULL) < 1) 1131 return NULL; 1132 flush_cache_page(vma, addr, page_to_pfn(page)); 1133 return page; 1134 } 1135 #endif /* CONFIG_ELF_CORE */ 1136 1137 /* 1138 * Generic RCU Fast GUP 1139 * 1140 * get_user_pages_fast attempts to pin user pages by walking the page 1141 * tables directly and avoids taking locks. Thus the walker needs to be 1142 * protected from page table pages being freed from under it, and should 1143 * block any THP splits. 1144 * 1145 * One way to achieve this is to have the walker disable interrupts, and 1146 * rely on IPIs from the TLB flushing code blocking before the page table 1147 * pages are freed. This is unsuitable for architectures that do not need 1148 * to broadcast an IPI when invalidating TLBs. 1149 * 1150 * Another way to achieve this is to batch up page table containing pages 1151 * belonging to more than one mm_user, then rcu_sched a callback to free those 1152 * pages. Disabling interrupts will allow the fast_gup walker to both block 1153 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1154 * (which is a relatively rare event). The code below adopts this strategy. 1155 * 1156 * Before activating this code, please be aware that the following assumptions 1157 * are currently made: 1158 * 1159 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1160 * pages containing page tables. 1161 * 1162 * *) ptes can be read atomically by the architecture. 1163 * 1164 * *) access_ok is sufficient to validate userspace address ranges. 1165 * 1166 * The last two assumptions can be relaxed by the addition of helper functions. 1167 * 1168 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1169 */ 1170 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1171 1172 #ifdef __HAVE_ARCH_PTE_SPECIAL 1173 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1174 int write, struct page **pages, int *nr) 1175 { 1176 pte_t *ptep, *ptem; 1177 int ret = 0; 1178 1179 ptem = ptep = pte_offset_map(&pmd, addr); 1180 do { 1181 /* 1182 * In the line below we are assuming that the pte can be read 1183 * atomically. If this is not the case for your architecture, 1184 * please wrap this in a helper function! 1185 * 1186 * for an example see gup_get_pte in arch/x86/mm/gup.c 1187 */ 1188 pte_t pte = READ_ONCE(*ptep); 1189 struct page *head, *page; 1190 1191 /* 1192 * Similar to the PMD case below, NUMA hinting must take slow 1193 * path using the pte_protnone check. 1194 */ 1195 if (!pte_present(pte) || pte_special(pte) || 1196 pte_protnone(pte) || (write && !pte_write(pte))) 1197 goto pte_unmap; 1198 1199 if (!arch_pte_access_permitted(pte, write)) 1200 goto pte_unmap; 1201 1202 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1203 page = pte_page(pte); 1204 head = compound_head(page); 1205 1206 if (!page_cache_get_speculative(head)) 1207 goto pte_unmap; 1208 1209 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1210 put_page(head); 1211 goto pte_unmap; 1212 } 1213 1214 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1215 pages[*nr] = page; 1216 (*nr)++; 1217 1218 } while (ptep++, addr += PAGE_SIZE, addr != end); 1219 1220 ret = 1; 1221 1222 pte_unmap: 1223 pte_unmap(ptem); 1224 return ret; 1225 } 1226 #else 1227 1228 /* 1229 * If we can't determine whether or not a pte is special, then fail immediately 1230 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1231 * to be special. 1232 * 1233 * For a futex to be placed on a THP tail page, get_futex_key requires a 1234 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1235 * useful to have gup_huge_pmd even if we can't operate on ptes. 1236 */ 1237 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1238 int write, struct page **pages, int *nr) 1239 { 1240 return 0; 1241 } 1242 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1243 1244 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1245 unsigned long end, int write, struct page **pages, int *nr) 1246 { 1247 struct page *head, *page; 1248 int refs; 1249 1250 if (write && !pmd_write(orig)) 1251 return 0; 1252 1253 refs = 0; 1254 head = pmd_page(orig); 1255 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1256 do { 1257 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1258 pages[*nr] = page; 1259 (*nr)++; 1260 page++; 1261 refs++; 1262 } while (addr += PAGE_SIZE, addr != end); 1263 1264 if (!page_cache_add_speculative(head, refs)) { 1265 *nr -= refs; 1266 return 0; 1267 } 1268 1269 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1270 *nr -= refs; 1271 while (refs--) 1272 put_page(head); 1273 return 0; 1274 } 1275 1276 return 1; 1277 } 1278 1279 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1280 unsigned long end, int write, struct page **pages, int *nr) 1281 { 1282 struct page *head, *page; 1283 int refs; 1284 1285 if (write && !pud_write(orig)) 1286 return 0; 1287 1288 refs = 0; 1289 head = pud_page(orig); 1290 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1291 do { 1292 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1293 pages[*nr] = page; 1294 (*nr)++; 1295 page++; 1296 refs++; 1297 } while (addr += PAGE_SIZE, addr != end); 1298 1299 if (!page_cache_add_speculative(head, refs)) { 1300 *nr -= refs; 1301 return 0; 1302 } 1303 1304 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1305 *nr -= refs; 1306 while (refs--) 1307 put_page(head); 1308 return 0; 1309 } 1310 1311 return 1; 1312 } 1313 1314 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1315 unsigned long end, int write, 1316 struct page **pages, int *nr) 1317 { 1318 int refs; 1319 struct page *head, *page; 1320 1321 if (write && !pgd_write(orig)) 1322 return 0; 1323 1324 refs = 0; 1325 head = pgd_page(orig); 1326 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1327 do { 1328 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1329 pages[*nr] = page; 1330 (*nr)++; 1331 page++; 1332 refs++; 1333 } while (addr += PAGE_SIZE, addr != end); 1334 1335 if (!page_cache_add_speculative(head, refs)) { 1336 *nr -= refs; 1337 return 0; 1338 } 1339 1340 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1341 *nr -= refs; 1342 while (refs--) 1343 put_page(head); 1344 return 0; 1345 } 1346 1347 return 1; 1348 } 1349 1350 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1351 int write, struct page **pages, int *nr) 1352 { 1353 unsigned long next; 1354 pmd_t *pmdp; 1355 1356 pmdp = pmd_offset(&pud, addr); 1357 do { 1358 pmd_t pmd = READ_ONCE(*pmdp); 1359 1360 next = pmd_addr_end(addr, end); 1361 if (pmd_none(pmd)) 1362 return 0; 1363 1364 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1365 /* 1366 * NUMA hinting faults need to be handled in the GUP 1367 * slowpath for accounting purposes and so that they 1368 * can be serialised against THP migration. 1369 */ 1370 if (pmd_protnone(pmd)) 1371 return 0; 1372 1373 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1374 pages, nr)) 1375 return 0; 1376 1377 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1378 /* 1379 * architecture have different format for hugetlbfs 1380 * pmd format and THP pmd format 1381 */ 1382 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1383 PMD_SHIFT, next, write, pages, nr)) 1384 return 0; 1385 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1386 return 0; 1387 } while (pmdp++, addr = next, addr != end); 1388 1389 return 1; 1390 } 1391 1392 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, 1393 int write, struct page **pages, int *nr) 1394 { 1395 unsigned long next; 1396 pud_t *pudp; 1397 1398 pudp = pud_offset(&pgd, addr); 1399 do { 1400 pud_t pud = READ_ONCE(*pudp); 1401 1402 next = pud_addr_end(addr, end); 1403 if (pud_none(pud)) 1404 return 0; 1405 if (unlikely(pud_huge(pud))) { 1406 if (!gup_huge_pud(pud, pudp, addr, next, write, 1407 pages, nr)) 1408 return 0; 1409 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1410 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1411 PUD_SHIFT, next, write, pages, nr)) 1412 return 0; 1413 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1414 return 0; 1415 } while (pudp++, addr = next, addr != end); 1416 1417 return 1; 1418 } 1419 1420 /* 1421 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1422 * the regular GUP. It will only return non-negative values. 1423 */ 1424 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1425 struct page **pages) 1426 { 1427 struct mm_struct *mm = current->mm; 1428 unsigned long addr, len, end; 1429 unsigned long next, flags; 1430 pgd_t *pgdp; 1431 int nr = 0; 1432 1433 start &= PAGE_MASK; 1434 addr = start; 1435 len = (unsigned long) nr_pages << PAGE_SHIFT; 1436 end = start + len; 1437 1438 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1439 start, len))) 1440 return 0; 1441 1442 /* 1443 * Disable interrupts. We use the nested form as we can already have 1444 * interrupts disabled by get_futex_key. 1445 * 1446 * With interrupts disabled, we block page table pages from being 1447 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1448 * for more details. 1449 * 1450 * We do not adopt an rcu_read_lock(.) here as we also want to 1451 * block IPIs that come from THPs splitting. 1452 */ 1453 1454 local_irq_save(flags); 1455 pgdp = pgd_offset(mm, addr); 1456 do { 1457 pgd_t pgd = READ_ONCE(*pgdp); 1458 1459 next = pgd_addr_end(addr, end); 1460 if (pgd_none(pgd)) 1461 break; 1462 if (unlikely(pgd_huge(pgd))) { 1463 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1464 pages, &nr)) 1465 break; 1466 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1467 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1468 PGDIR_SHIFT, next, write, pages, &nr)) 1469 break; 1470 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) 1471 break; 1472 } while (pgdp++, addr = next, addr != end); 1473 local_irq_restore(flags); 1474 1475 return nr; 1476 } 1477 1478 /** 1479 * get_user_pages_fast() - pin user pages in memory 1480 * @start: starting user address 1481 * @nr_pages: number of pages from start to pin 1482 * @write: whether pages will be written to 1483 * @pages: array that receives pointers to the pages pinned. 1484 * Should be at least nr_pages long. 1485 * 1486 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1487 * If not successful, it will fall back to taking the lock and 1488 * calling get_user_pages(). 1489 * 1490 * Returns number of pages pinned. This may be fewer than the number 1491 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1492 * were pinned, returns -errno. 1493 */ 1494 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1495 struct page **pages) 1496 { 1497 int nr, ret; 1498 1499 start &= PAGE_MASK; 1500 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1501 ret = nr; 1502 1503 if (nr < nr_pages) { 1504 /* Try to get the remaining pages with get_user_pages */ 1505 start += nr << PAGE_SHIFT; 1506 pages += nr; 1507 1508 ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages); 1509 1510 /* Have to be a bit careful with return values */ 1511 if (nr > 0) { 1512 if (ret < 0) 1513 ret = nr; 1514 else 1515 ret += nr; 1516 } 1517 } 1518 1519 return ret; 1520 } 1521 1522 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1523