xref: /openbmc/linux/mm/gup.c (revision babbdf5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 						   int refs, unsigned int flags)
83 {
84 	if (flags & FOLL_GET)
85 		return try_get_compound_head(page, refs);
86 	else if (flags & FOLL_PIN) {
87 		int orig_refs = refs;
88 
89 		/*
90 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
91 		 * right zone, so fail and let the caller fall back to the slow
92 		 * path.
93 		 */
94 		if (unlikely((flags & FOLL_LONGTERM) &&
95 			     !is_pinnable_page(page)))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 static void put_compound_head(struct page *page, int refs, unsigned int flags)
127 {
128 	if (flags & FOLL_PIN) {
129 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
130 				    refs);
131 
132 		if (hpage_pincount_available(page))
133 			hpage_pincount_sub(page, refs);
134 		else
135 			refs *= GUP_PIN_COUNTING_BIAS;
136 	}
137 
138 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
139 	/*
140 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
141 	 * ref needs a put_page().
142 	 */
143 	if (refs > 1)
144 		page_ref_sub(page, refs - 1);
145 	put_page(page);
146 }
147 
148 /**
149  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
150  *
151  * This might not do anything at all, depending on the flags argument.
152  *
153  * "grab" names in this file mean, "look at flags to decide whether to use
154  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
155  *
156  * @page:    pointer to page to be grabbed
157  * @flags:   gup flags: these are the FOLL_* flag values.
158  *
159  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
160  * time. Cases:
161  *
162  *    FOLL_GET: page's refcount will be incremented by 1.
163  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
164  *
165  * Return: true for success, or if no action was required (if neither FOLL_PIN
166  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
167  * FOLL_PIN was set, but the page could not be grabbed.
168  */
169 bool __must_check try_grab_page(struct page *page, unsigned int flags)
170 {
171 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
172 
173 	if (flags & FOLL_GET)
174 		return try_get_page(page);
175 	else if (flags & FOLL_PIN) {
176 		int refs = 1;
177 
178 		page = compound_head(page);
179 
180 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
181 			return false;
182 
183 		if (hpage_pincount_available(page))
184 			hpage_pincount_add(page, 1);
185 		else
186 			refs = GUP_PIN_COUNTING_BIAS;
187 
188 		/*
189 		 * Similar to try_grab_compound_head(): even if using the
190 		 * hpage_pincount_add/_sub() routines, be sure to
191 		 * *also* increment the normal page refcount field at least
192 		 * once, so that the page really is pinned.
193 		 */
194 		page_ref_add(page, refs);
195 
196 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
197 	}
198 
199 	return true;
200 }
201 
202 /**
203  * unpin_user_page() - release a dma-pinned page
204  * @page:            pointer to page to be released
205  *
206  * Pages that were pinned via pin_user_pages*() must be released via either
207  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
208  * that such pages can be separately tracked and uniquely handled. In
209  * particular, interactions with RDMA and filesystems need special handling.
210  */
211 void unpin_user_page(struct page *page)
212 {
213 	put_compound_head(compound_head(page), 1, FOLL_PIN);
214 }
215 EXPORT_SYMBOL(unpin_user_page);
216 
217 static inline void compound_range_next(unsigned long i, unsigned long npages,
218 				       struct page **list, struct page **head,
219 				       unsigned int *ntails)
220 {
221 	struct page *next, *page;
222 	unsigned int nr = 1;
223 
224 	if (i >= npages)
225 		return;
226 
227 	next = *list + i;
228 	page = compound_head(next);
229 	if (PageCompound(page) && compound_order(page) >= 1)
230 		nr = min_t(unsigned int,
231 			   page + compound_nr(page) - next, npages - i);
232 
233 	*head = page;
234 	*ntails = nr;
235 }
236 
237 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
238 	for (__i = 0, \
239 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
240 	     __i < __npages; __i += __ntails, \
241 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
242 
243 static inline void compound_next(unsigned long i, unsigned long npages,
244 				 struct page **list, struct page **head,
245 				 unsigned int *ntails)
246 {
247 	struct page *page;
248 	unsigned int nr;
249 
250 	if (i >= npages)
251 		return;
252 
253 	page = compound_head(list[i]);
254 	for (nr = i + 1; nr < npages; nr++) {
255 		if (compound_head(list[nr]) != page)
256 			break;
257 	}
258 
259 	*head = page;
260 	*ntails = nr - i;
261 }
262 
263 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
264 	for (__i = 0, \
265 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
266 	     __i < __npages; __i += __ntails, \
267 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
268 
269 /**
270  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
271  * @pages:  array of pages to be maybe marked dirty, and definitely released.
272  * @npages: number of pages in the @pages array.
273  * @make_dirty: whether to mark the pages dirty
274  *
275  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
276  * variants called on that page.
277  *
278  * For each page in the @pages array, make that page (or its head page, if a
279  * compound page) dirty, if @make_dirty is true, and if the page was previously
280  * listed as clean. In any case, releases all pages using unpin_user_page(),
281  * possibly via unpin_user_pages(), for the non-dirty case.
282  *
283  * Please see the unpin_user_page() documentation for details.
284  *
285  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
286  * required, then the caller should a) verify that this is really correct,
287  * because _lock() is usually required, and b) hand code it:
288  * set_page_dirty_lock(), unpin_user_page().
289  *
290  */
291 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
292 				 bool make_dirty)
293 {
294 	unsigned long index;
295 	struct page *head;
296 	unsigned int ntails;
297 
298 	if (!make_dirty) {
299 		unpin_user_pages(pages, npages);
300 		return;
301 	}
302 
303 	for_each_compound_head(index, pages, npages, head, ntails) {
304 		/*
305 		 * Checking PageDirty at this point may race with
306 		 * clear_page_dirty_for_io(), but that's OK. Two key
307 		 * cases:
308 		 *
309 		 * 1) This code sees the page as already dirty, so it
310 		 * skips the call to set_page_dirty(). That could happen
311 		 * because clear_page_dirty_for_io() called
312 		 * page_mkclean(), followed by set_page_dirty().
313 		 * However, now the page is going to get written back,
314 		 * which meets the original intention of setting it
315 		 * dirty, so all is well: clear_page_dirty_for_io() goes
316 		 * on to call TestClearPageDirty(), and write the page
317 		 * back.
318 		 *
319 		 * 2) This code sees the page as clean, so it calls
320 		 * set_page_dirty(). The page stays dirty, despite being
321 		 * written back, so it gets written back again in the
322 		 * next writeback cycle. This is harmless.
323 		 */
324 		if (!PageDirty(head))
325 			set_page_dirty_lock(head);
326 		put_compound_head(head, ntails, FOLL_PIN);
327 	}
328 }
329 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
330 
331 /**
332  * unpin_user_page_range_dirty_lock() - release and optionally dirty
333  * gup-pinned page range
334  *
335  * @page:  the starting page of a range maybe marked dirty, and definitely released.
336  * @npages: number of consecutive pages to release.
337  * @make_dirty: whether to mark the pages dirty
338  *
339  * "gup-pinned page range" refers to a range of pages that has had one of the
340  * pin_user_pages() variants called on that page.
341  *
342  * For the page ranges defined by [page .. page+npages], make that range (or
343  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
344  * page range was previously listed as clean.
345  *
346  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
347  * required, then the caller should a) verify that this is really correct,
348  * because _lock() is usually required, and b) hand code it:
349  * set_page_dirty_lock(), unpin_user_page().
350  *
351  */
352 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
353 				      bool make_dirty)
354 {
355 	unsigned long index;
356 	struct page *head;
357 	unsigned int ntails;
358 
359 	for_each_compound_range(index, &page, npages, head, ntails) {
360 		if (make_dirty && !PageDirty(head))
361 			set_page_dirty_lock(head);
362 		put_compound_head(head, ntails, FOLL_PIN);
363 	}
364 }
365 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
366 
367 /**
368  * unpin_user_pages() - release an array of gup-pinned pages.
369  * @pages:  array of pages to be marked dirty and released.
370  * @npages: number of pages in the @pages array.
371  *
372  * For each page in the @pages array, release the page using unpin_user_page().
373  *
374  * Please see the unpin_user_page() documentation for details.
375  */
376 void unpin_user_pages(struct page **pages, unsigned long npages)
377 {
378 	unsigned long index;
379 	struct page *head;
380 	unsigned int ntails;
381 
382 	/*
383 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
384 	 * leaving them pinned), but probably not. More likely, gup/pup returned
385 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
386 	 */
387 	if (WARN_ON(IS_ERR_VALUE(npages)))
388 		return;
389 
390 	for_each_compound_head(index, pages, npages, head, ntails)
391 		put_compound_head(head, ntails, FOLL_PIN);
392 }
393 EXPORT_SYMBOL(unpin_user_pages);
394 
395 #ifdef CONFIG_MMU
396 static struct page *no_page_table(struct vm_area_struct *vma,
397 		unsigned int flags)
398 {
399 	/*
400 	 * When core dumping an enormous anonymous area that nobody
401 	 * has touched so far, we don't want to allocate unnecessary pages or
402 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
403 	 * then get_dump_page() will return NULL to leave a hole in the dump.
404 	 * But we can only make this optimization where a hole would surely
405 	 * be zero-filled if handle_mm_fault() actually did handle it.
406 	 */
407 	if ((flags & FOLL_DUMP) &&
408 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
409 		return ERR_PTR(-EFAULT);
410 	return NULL;
411 }
412 
413 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
414 		pte_t *pte, unsigned int flags)
415 {
416 	/* No page to get reference */
417 	if (flags & FOLL_GET)
418 		return -EFAULT;
419 
420 	if (flags & FOLL_TOUCH) {
421 		pte_t entry = *pte;
422 
423 		if (flags & FOLL_WRITE)
424 			entry = pte_mkdirty(entry);
425 		entry = pte_mkyoung(entry);
426 
427 		if (!pte_same(*pte, entry)) {
428 			set_pte_at(vma->vm_mm, address, pte, entry);
429 			update_mmu_cache(vma, address, pte);
430 		}
431 	}
432 
433 	/* Proper page table entry exists, but no corresponding struct page */
434 	return -EEXIST;
435 }
436 
437 /*
438  * FOLL_FORCE can write to even unwritable pte's, but only
439  * after we've gone through a COW cycle and they are dirty.
440  */
441 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
442 {
443 	return pte_write(pte) ||
444 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
445 }
446 
447 static struct page *follow_page_pte(struct vm_area_struct *vma,
448 		unsigned long address, pmd_t *pmd, unsigned int flags,
449 		struct dev_pagemap **pgmap)
450 {
451 	struct mm_struct *mm = vma->vm_mm;
452 	struct page *page;
453 	spinlock_t *ptl;
454 	pte_t *ptep, pte;
455 	int ret;
456 
457 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
458 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
459 			 (FOLL_PIN | FOLL_GET)))
460 		return ERR_PTR(-EINVAL);
461 retry:
462 	if (unlikely(pmd_bad(*pmd)))
463 		return no_page_table(vma, flags);
464 
465 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
466 	pte = *ptep;
467 	if (!pte_present(pte)) {
468 		swp_entry_t entry;
469 		/*
470 		 * KSM's break_ksm() relies upon recognizing a ksm page
471 		 * even while it is being migrated, so for that case we
472 		 * need migration_entry_wait().
473 		 */
474 		if (likely(!(flags & FOLL_MIGRATION)))
475 			goto no_page;
476 		if (pte_none(pte))
477 			goto no_page;
478 		entry = pte_to_swp_entry(pte);
479 		if (!is_migration_entry(entry))
480 			goto no_page;
481 		pte_unmap_unlock(ptep, ptl);
482 		migration_entry_wait(mm, pmd, address);
483 		goto retry;
484 	}
485 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
486 		goto no_page;
487 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
488 		pte_unmap_unlock(ptep, ptl);
489 		return NULL;
490 	}
491 
492 	page = vm_normal_page(vma, address, pte);
493 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
494 		/*
495 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
496 		 * case since they are only valid while holding the pgmap
497 		 * reference.
498 		 */
499 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
500 		if (*pgmap)
501 			page = pte_page(pte);
502 		else
503 			goto no_page;
504 	} else if (unlikely(!page)) {
505 		if (flags & FOLL_DUMP) {
506 			/* Avoid special (like zero) pages in core dumps */
507 			page = ERR_PTR(-EFAULT);
508 			goto out;
509 		}
510 
511 		if (is_zero_pfn(pte_pfn(pte))) {
512 			page = pte_page(pte);
513 		} else {
514 			ret = follow_pfn_pte(vma, address, ptep, flags);
515 			page = ERR_PTR(ret);
516 			goto out;
517 		}
518 	}
519 
520 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
521 	if (unlikely(!try_grab_page(page, flags))) {
522 		page = ERR_PTR(-ENOMEM);
523 		goto out;
524 	}
525 	/*
526 	 * We need to make the page accessible if and only if we are going
527 	 * to access its content (the FOLL_PIN case).  Please see
528 	 * Documentation/core-api/pin_user_pages.rst for details.
529 	 */
530 	if (flags & FOLL_PIN) {
531 		ret = arch_make_page_accessible(page);
532 		if (ret) {
533 			unpin_user_page(page);
534 			page = ERR_PTR(ret);
535 			goto out;
536 		}
537 	}
538 	if (flags & FOLL_TOUCH) {
539 		if ((flags & FOLL_WRITE) &&
540 		    !pte_dirty(pte) && !PageDirty(page))
541 			set_page_dirty(page);
542 		/*
543 		 * pte_mkyoung() would be more correct here, but atomic care
544 		 * is needed to avoid losing the dirty bit: it is easier to use
545 		 * mark_page_accessed().
546 		 */
547 		mark_page_accessed(page);
548 	}
549 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
550 		/* Do not mlock pte-mapped THP */
551 		if (PageTransCompound(page))
552 			goto out;
553 
554 		/*
555 		 * The preliminary mapping check is mainly to avoid the
556 		 * pointless overhead of lock_page on the ZERO_PAGE
557 		 * which might bounce very badly if there is contention.
558 		 *
559 		 * If the page is already locked, we don't need to
560 		 * handle it now - vmscan will handle it later if and
561 		 * when it attempts to reclaim the page.
562 		 */
563 		if (page->mapping && trylock_page(page)) {
564 			lru_add_drain();  /* push cached pages to LRU */
565 			/*
566 			 * Because we lock page here, and migration is
567 			 * blocked by the pte's page reference, and we
568 			 * know the page is still mapped, we don't even
569 			 * need to check for file-cache page truncation.
570 			 */
571 			mlock_vma_page(page);
572 			unlock_page(page);
573 		}
574 	}
575 out:
576 	pte_unmap_unlock(ptep, ptl);
577 	return page;
578 no_page:
579 	pte_unmap_unlock(ptep, ptl);
580 	if (!pte_none(pte))
581 		return NULL;
582 	return no_page_table(vma, flags);
583 }
584 
585 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
586 				    unsigned long address, pud_t *pudp,
587 				    unsigned int flags,
588 				    struct follow_page_context *ctx)
589 {
590 	pmd_t *pmd, pmdval;
591 	spinlock_t *ptl;
592 	struct page *page;
593 	struct mm_struct *mm = vma->vm_mm;
594 
595 	pmd = pmd_offset(pudp, address);
596 	/*
597 	 * The READ_ONCE() will stabilize the pmdval in a register or
598 	 * on the stack so that it will stop changing under the code.
599 	 */
600 	pmdval = READ_ONCE(*pmd);
601 	if (pmd_none(pmdval))
602 		return no_page_table(vma, flags);
603 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
604 		page = follow_huge_pmd(mm, address, pmd, flags);
605 		if (page)
606 			return page;
607 		return no_page_table(vma, flags);
608 	}
609 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
610 		page = follow_huge_pd(vma, address,
611 				      __hugepd(pmd_val(pmdval)), flags,
612 				      PMD_SHIFT);
613 		if (page)
614 			return page;
615 		return no_page_table(vma, flags);
616 	}
617 retry:
618 	if (!pmd_present(pmdval)) {
619 		if (likely(!(flags & FOLL_MIGRATION)))
620 			return no_page_table(vma, flags);
621 		VM_BUG_ON(thp_migration_supported() &&
622 				  !is_pmd_migration_entry(pmdval));
623 		if (is_pmd_migration_entry(pmdval))
624 			pmd_migration_entry_wait(mm, pmd);
625 		pmdval = READ_ONCE(*pmd);
626 		/*
627 		 * MADV_DONTNEED may convert the pmd to null because
628 		 * mmap_lock is held in read mode
629 		 */
630 		if (pmd_none(pmdval))
631 			return no_page_table(vma, flags);
632 		goto retry;
633 	}
634 	if (pmd_devmap(pmdval)) {
635 		ptl = pmd_lock(mm, pmd);
636 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
637 		spin_unlock(ptl);
638 		if (page)
639 			return page;
640 	}
641 	if (likely(!pmd_trans_huge(pmdval)))
642 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
643 
644 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
645 		return no_page_table(vma, flags);
646 
647 retry_locked:
648 	ptl = pmd_lock(mm, pmd);
649 	if (unlikely(pmd_none(*pmd))) {
650 		spin_unlock(ptl);
651 		return no_page_table(vma, flags);
652 	}
653 	if (unlikely(!pmd_present(*pmd))) {
654 		spin_unlock(ptl);
655 		if (likely(!(flags & FOLL_MIGRATION)))
656 			return no_page_table(vma, flags);
657 		pmd_migration_entry_wait(mm, pmd);
658 		goto retry_locked;
659 	}
660 	if (unlikely(!pmd_trans_huge(*pmd))) {
661 		spin_unlock(ptl);
662 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
663 	}
664 	if (flags & FOLL_SPLIT_PMD) {
665 		int ret;
666 		page = pmd_page(*pmd);
667 		if (is_huge_zero_page(page)) {
668 			spin_unlock(ptl);
669 			ret = 0;
670 			split_huge_pmd(vma, pmd, address);
671 			if (pmd_trans_unstable(pmd))
672 				ret = -EBUSY;
673 		} else {
674 			spin_unlock(ptl);
675 			split_huge_pmd(vma, pmd, address);
676 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
677 		}
678 
679 		return ret ? ERR_PTR(ret) :
680 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
681 	}
682 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
683 	spin_unlock(ptl);
684 	ctx->page_mask = HPAGE_PMD_NR - 1;
685 	return page;
686 }
687 
688 static struct page *follow_pud_mask(struct vm_area_struct *vma,
689 				    unsigned long address, p4d_t *p4dp,
690 				    unsigned int flags,
691 				    struct follow_page_context *ctx)
692 {
693 	pud_t *pud;
694 	spinlock_t *ptl;
695 	struct page *page;
696 	struct mm_struct *mm = vma->vm_mm;
697 
698 	pud = pud_offset(p4dp, address);
699 	if (pud_none(*pud))
700 		return no_page_table(vma, flags);
701 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
702 		page = follow_huge_pud(mm, address, pud, flags);
703 		if (page)
704 			return page;
705 		return no_page_table(vma, flags);
706 	}
707 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
708 		page = follow_huge_pd(vma, address,
709 				      __hugepd(pud_val(*pud)), flags,
710 				      PUD_SHIFT);
711 		if (page)
712 			return page;
713 		return no_page_table(vma, flags);
714 	}
715 	if (pud_devmap(*pud)) {
716 		ptl = pud_lock(mm, pud);
717 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
718 		spin_unlock(ptl);
719 		if (page)
720 			return page;
721 	}
722 	if (unlikely(pud_bad(*pud)))
723 		return no_page_table(vma, flags);
724 
725 	return follow_pmd_mask(vma, address, pud, flags, ctx);
726 }
727 
728 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
729 				    unsigned long address, pgd_t *pgdp,
730 				    unsigned int flags,
731 				    struct follow_page_context *ctx)
732 {
733 	p4d_t *p4d;
734 	struct page *page;
735 
736 	p4d = p4d_offset(pgdp, address);
737 	if (p4d_none(*p4d))
738 		return no_page_table(vma, flags);
739 	BUILD_BUG_ON(p4d_huge(*p4d));
740 	if (unlikely(p4d_bad(*p4d)))
741 		return no_page_table(vma, flags);
742 
743 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
744 		page = follow_huge_pd(vma, address,
745 				      __hugepd(p4d_val(*p4d)), flags,
746 				      P4D_SHIFT);
747 		if (page)
748 			return page;
749 		return no_page_table(vma, flags);
750 	}
751 	return follow_pud_mask(vma, address, p4d, flags, ctx);
752 }
753 
754 /**
755  * follow_page_mask - look up a page descriptor from a user-virtual address
756  * @vma: vm_area_struct mapping @address
757  * @address: virtual address to look up
758  * @flags: flags modifying lookup behaviour
759  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
760  *       pointer to output page_mask
761  *
762  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
763  *
764  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
765  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
766  *
767  * On output, the @ctx->page_mask is set according to the size of the page.
768  *
769  * Return: the mapped (struct page *), %NULL if no mapping exists, or
770  * an error pointer if there is a mapping to something not represented
771  * by a page descriptor (see also vm_normal_page()).
772  */
773 static struct page *follow_page_mask(struct vm_area_struct *vma,
774 			      unsigned long address, unsigned int flags,
775 			      struct follow_page_context *ctx)
776 {
777 	pgd_t *pgd;
778 	struct page *page;
779 	struct mm_struct *mm = vma->vm_mm;
780 
781 	ctx->page_mask = 0;
782 
783 	/* make this handle hugepd */
784 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
785 	if (!IS_ERR(page)) {
786 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
787 		return page;
788 	}
789 
790 	pgd = pgd_offset(mm, address);
791 
792 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
793 		return no_page_table(vma, flags);
794 
795 	if (pgd_huge(*pgd)) {
796 		page = follow_huge_pgd(mm, address, pgd, flags);
797 		if (page)
798 			return page;
799 		return no_page_table(vma, flags);
800 	}
801 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
802 		page = follow_huge_pd(vma, address,
803 				      __hugepd(pgd_val(*pgd)), flags,
804 				      PGDIR_SHIFT);
805 		if (page)
806 			return page;
807 		return no_page_table(vma, flags);
808 	}
809 
810 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
811 }
812 
813 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
814 			 unsigned int foll_flags)
815 {
816 	struct follow_page_context ctx = { NULL };
817 	struct page *page;
818 
819 	page = follow_page_mask(vma, address, foll_flags, &ctx);
820 	if (ctx.pgmap)
821 		put_dev_pagemap(ctx.pgmap);
822 	return page;
823 }
824 
825 static int get_gate_page(struct mm_struct *mm, unsigned long address,
826 		unsigned int gup_flags, struct vm_area_struct **vma,
827 		struct page **page)
828 {
829 	pgd_t *pgd;
830 	p4d_t *p4d;
831 	pud_t *pud;
832 	pmd_t *pmd;
833 	pte_t *pte;
834 	int ret = -EFAULT;
835 
836 	/* user gate pages are read-only */
837 	if (gup_flags & FOLL_WRITE)
838 		return -EFAULT;
839 	if (address > TASK_SIZE)
840 		pgd = pgd_offset_k(address);
841 	else
842 		pgd = pgd_offset_gate(mm, address);
843 	if (pgd_none(*pgd))
844 		return -EFAULT;
845 	p4d = p4d_offset(pgd, address);
846 	if (p4d_none(*p4d))
847 		return -EFAULT;
848 	pud = pud_offset(p4d, address);
849 	if (pud_none(*pud))
850 		return -EFAULT;
851 	pmd = pmd_offset(pud, address);
852 	if (!pmd_present(*pmd))
853 		return -EFAULT;
854 	VM_BUG_ON(pmd_trans_huge(*pmd));
855 	pte = pte_offset_map(pmd, address);
856 	if (pte_none(*pte))
857 		goto unmap;
858 	*vma = get_gate_vma(mm);
859 	if (!page)
860 		goto out;
861 	*page = vm_normal_page(*vma, address, *pte);
862 	if (!*page) {
863 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
864 			goto unmap;
865 		*page = pte_page(*pte);
866 	}
867 	if (unlikely(!try_grab_page(*page, gup_flags))) {
868 		ret = -ENOMEM;
869 		goto unmap;
870 	}
871 out:
872 	ret = 0;
873 unmap:
874 	pte_unmap(pte);
875 	return ret;
876 }
877 
878 /*
879  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
880  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
881  * is, *@locked will be set to 0 and -EBUSY returned.
882  */
883 static int faultin_page(struct vm_area_struct *vma,
884 		unsigned long address, unsigned int *flags, int *locked)
885 {
886 	unsigned int fault_flags = 0;
887 	vm_fault_t ret;
888 
889 	/* mlock all present pages, but do not fault in new pages */
890 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
891 		return -ENOENT;
892 	if (*flags & FOLL_WRITE)
893 		fault_flags |= FAULT_FLAG_WRITE;
894 	if (*flags & FOLL_REMOTE)
895 		fault_flags |= FAULT_FLAG_REMOTE;
896 	if (locked)
897 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
898 	if (*flags & FOLL_NOWAIT)
899 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
900 	if (*flags & FOLL_TRIED) {
901 		/*
902 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
903 		 * can co-exist
904 		 */
905 		fault_flags |= FAULT_FLAG_TRIED;
906 	}
907 
908 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
909 	if (ret & VM_FAULT_ERROR) {
910 		int err = vm_fault_to_errno(ret, *flags);
911 
912 		if (err)
913 			return err;
914 		BUG();
915 	}
916 
917 	if (ret & VM_FAULT_RETRY) {
918 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
919 			*locked = 0;
920 		return -EBUSY;
921 	}
922 
923 	/*
924 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
925 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
926 	 * can thus safely do subsequent page lookups as if they were reads.
927 	 * But only do so when looping for pte_write is futile: in some cases
928 	 * userspace may also be wanting to write to the gotten user page,
929 	 * which a read fault here might prevent (a readonly page might get
930 	 * reCOWed by userspace write).
931 	 */
932 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
933 		*flags |= FOLL_COW;
934 	return 0;
935 }
936 
937 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
938 {
939 	vm_flags_t vm_flags = vma->vm_flags;
940 	int write = (gup_flags & FOLL_WRITE);
941 	int foreign = (gup_flags & FOLL_REMOTE);
942 
943 	if (vm_flags & (VM_IO | VM_PFNMAP))
944 		return -EFAULT;
945 
946 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
947 		return -EFAULT;
948 
949 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
950 		return -EOPNOTSUPP;
951 
952 	if (write) {
953 		if (!(vm_flags & VM_WRITE)) {
954 			if (!(gup_flags & FOLL_FORCE))
955 				return -EFAULT;
956 			/*
957 			 * We used to let the write,force case do COW in a
958 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
959 			 * set a breakpoint in a read-only mapping of an
960 			 * executable, without corrupting the file (yet only
961 			 * when that file had been opened for writing!).
962 			 * Anon pages in shared mappings are surprising: now
963 			 * just reject it.
964 			 */
965 			if (!is_cow_mapping(vm_flags))
966 				return -EFAULT;
967 		}
968 	} else if (!(vm_flags & VM_READ)) {
969 		if (!(gup_flags & FOLL_FORCE))
970 			return -EFAULT;
971 		/*
972 		 * Is there actually any vma we can reach here which does not
973 		 * have VM_MAYREAD set?
974 		 */
975 		if (!(vm_flags & VM_MAYREAD))
976 			return -EFAULT;
977 	}
978 	/*
979 	 * gups are always data accesses, not instruction
980 	 * fetches, so execute=false here
981 	 */
982 	if (!arch_vma_access_permitted(vma, write, false, foreign))
983 		return -EFAULT;
984 	return 0;
985 }
986 
987 /**
988  * __get_user_pages() - pin user pages in memory
989  * @mm:		mm_struct of target mm
990  * @start:	starting user address
991  * @nr_pages:	number of pages from start to pin
992  * @gup_flags:	flags modifying pin behaviour
993  * @pages:	array that receives pointers to the pages pinned.
994  *		Should be at least nr_pages long. Or NULL, if caller
995  *		only intends to ensure the pages are faulted in.
996  * @vmas:	array of pointers to vmas corresponding to each page.
997  *		Or NULL if the caller does not require them.
998  * @locked:     whether we're still with the mmap_lock held
999  *
1000  * Returns either number of pages pinned (which may be less than the
1001  * number requested), or an error. Details about the return value:
1002  *
1003  * -- If nr_pages is 0, returns 0.
1004  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1005  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1006  *    pages pinned. Again, this may be less than nr_pages.
1007  * -- 0 return value is possible when the fault would need to be retried.
1008  *
1009  * The caller is responsible for releasing returned @pages, via put_page().
1010  *
1011  * @vmas are valid only as long as mmap_lock is held.
1012  *
1013  * Must be called with mmap_lock held.  It may be released.  See below.
1014  *
1015  * __get_user_pages walks a process's page tables and takes a reference to
1016  * each struct page that each user address corresponds to at a given
1017  * instant. That is, it takes the page that would be accessed if a user
1018  * thread accesses the given user virtual address at that instant.
1019  *
1020  * This does not guarantee that the page exists in the user mappings when
1021  * __get_user_pages returns, and there may even be a completely different
1022  * page there in some cases (eg. if mmapped pagecache has been invalidated
1023  * and subsequently re faulted). However it does guarantee that the page
1024  * won't be freed completely. And mostly callers simply care that the page
1025  * contains data that was valid *at some point in time*. Typically, an IO
1026  * or similar operation cannot guarantee anything stronger anyway because
1027  * locks can't be held over the syscall boundary.
1028  *
1029  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1030  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1031  * appropriate) must be called after the page is finished with, and
1032  * before put_page is called.
1033  *
1034  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1035  * released by an up_read().  That can happen if @gup_flags does not
1036  * have FOLL_NOWAIT.
1037  *
1038  * A caller using such a combination of @locked and @gup_flags
1039  * must therefore hold the mmap_lock for reading only, and recognize
1040  * when it's been released.  Otherwise, it must be held for either
1041  * reading or writing and will not be released.
1042  *
1043  * In most cases, get_user_pages or get_user_pages_fast should be used
1044  * instead of __get_user_pages. __get_user_pages should be used only if
1045  * you need some special @gup_flags.
1046  */
1047 static long __get_user_pages(struct mm_struct *mm,
1048 		unsigned long start, unsigned long nr_pages,
1049 		unsigned int gup_flags, struct page **pages,
1050 		struct vm_area_struct **vmas, int *locked)
1051 {
1052 	long ret = 0, i = 0;
1053 	struct vm_area_struct *vma = NULL;
1054 	struct follow_page_context ctx = { NULL };
1055 
1056 	if (!nr_pages)
1057 		return 0;
1058 
1059 	start = untagged_addr(start);
1060 
1061 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1062 
1063 	/*
1064 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1065 	 * fault information is unrelated to the reference behaviour of a task
1066 	 * using the address space
1067 	 */
1068 	if (!(gup_flags & FOLL_FORCE))
1069 		gup_flags |= FOLL_NUMA;
1070 
1071 	do {
1072 		struct page *page;
1073 		unsigned int foll_flags = gup_flags;
1074 		unsigned int page_increm;
1075 
1076 		/* first iteration or cross vma bound */
1077 		if (!vma || start >= vma->vm_end) {
1078 			vma = find_extend_vma(mm, start);
1079 			if (!vma && in_gate_area(mm, start)) {
1080 				ret = get_gate_page(mm, start & PAGE_MASK,
1081 						gup_flags, &vma,
1082 						pages ? &pages[i] : NULL);
1083 				if (ret)
1084 					goto out;
1085 				ctx.page_mask = 0;
1086 				goto next_page;
1087 			}
1088 
1089 			if (!vma) {
1090 				ret = -EFAULT;
1091 				goto out;
1092 			}
1093 			ret = check_vma_flags(vma, gup_flags);
1094 			if (ret)
1095 				goto out;
1096 
1097 			if (is_vm_hugetlb_page(vma)) {
1098 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1099 						&start, &nr_pages, i,
1100 						gup_flags, locked);
1101 				if (locked && *locked == 0) {
1102 					/*
1103 					 * We've got a VM_FAULT_RETRY
1104 					 * and we've lost mmap_lock.
1105 					 * We must stop here.
1106 					 */
1107 					BUG_ON(gup_flags & FOLL_NOWAIT);
1108 					BUG_ON(ret != 0);
1109 					goto out;
1110 				}
1111 				continue;
1112 			}
1113 		}
1114 retry:
1115 		/*
1116 		 * If we have a pending SIGKILL, don't keep faulting pages and
1117 		 * potentially allocating memory.
1118 		 */
1119 		if (fatal_signal_pending(current)) {
1120 			ret = -EINTR;
1121 			goto out;
1122 		}
1123 		cond_resched();
1124 
1125 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1126 		if (!page) {
1127 			ret = faultin_page(vma, start, &foll_flags, locked);
1128 			switch (ret) {
1129 			case 0:
1130 				goto retry;
1131 			case -EBUSY:
1132 				ret = 0;
1133 				fallthrough;
1134 			case -EFAULT:
1135 			case -ENOMEM:
1136 			case -EHWPOISON:
1137 				goto out;
1138 			case -ENOENT:
1139 				goto next_page;
1140 			}
1141 			BUG();
1142 		} else if (PTR_ERR(page) == -EEXIST) {
1143 			/*
1144 			 * Proper page table entry exists, but no corresponding
1145 			 * struct page.
1146 			 */
1147 			goto next_page;
1148 		} else if (IS_ERR(page)) {
1149 			ret = PTR_ERR(page);
1150 			goto out;
1151 		}
1152 		if (pages) {
1153 			pages[i] = page;
1154 			flush_anon_page(vma, page, start);
1155 			flush_dcache_page(page);
1156 			ctx.page_mask = 0;
1157 		}
1158 next_page:
1159 		if (vmas) {
1160 			vmas[i] = vma;
1161 			ctx.page_mask = 0;
1162 		}
1163 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1164 		if (page_increm > nr_pages)
1165 			page_increm = nr_pages;
1166 		i += page_increm;
1167 		start += page_increm * PAGE_SIZE;
1168 		nr_pages -= page_increm;
1169 	} while (nr_pages);
1170 out:
1171 	if (ctx.pgmap)
1172 		put_dev_pagemap(ctx.pgmap);
1173 	return i ? i : ret;
1174 }
1175 
1176 static bool vma_permits_fault(struct vm_area_struct *vma,
1177 			      unsigned int fault_flags)
1178 {
1179 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1180 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1181 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1182 
1183 	if (!(vm_flags & vma->vm_flags))
1184 		return false;
1185 
1186 	/*
1187 	 * The architecture might have a hardware protection
1188 	 * mechanism other than read/write that can deny access.
1189 	 *
1190 	 * gup always represents data access, not instruction
1191 	 * fetches, so execute=false here:
1192 	 */
1193 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1194 		return false;
1195 
1196 	return true;
1197 }
1198 
1199 /**
1200  * fixup_user_fault() - manually resolve a user page fault
1201  * @mm:		mm_struct of target mm
1202  * @address:	user address
1203  * @fault_flags:flags to pass down to handle_mm_fault()
1204  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1205  *		does not allow retry. If NULL, the caller must guarantee
1206  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1207  *
1208  * This is meant to be called in the specific scenario where for locking reasons
1209  * we try to access user memory in atomic context (within a pagefault_disable()
1210  * section), this returns -EFAULT, and we want to resolve the user fault before
1211  * trying again.
1212  *
1213  * Typically this is meant to be used by the futex code.
1214  *
1215  * The main difference with get_user_pages() is that this function will
1216  * unconditionally call handle_mm_fault() which will in turn perform all the
1217  * necessary SW fixup of the dirty and young bits in the PTE, while
1218  * get_user_pages() only guarantees to update these in the struct page.
1219  *
1220  * This is important for some architectures where those bits also gate the
1221  * access permission to the page because they are maintained in software.  On
1222  * such architectures, gup() will not be enough to make a subsequent access
1223  * succeed.
1224  *
1225  * This function will not return with an unlocked mmap_lock. So it has not the
1226  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1227  */
1228 int fixup_user_fault(struct mm_struct *mm,
1229 		     unsigned long address, unsigned int fault_flags,
1230 		     bool *unlocked)
1231 {
1232 	struct vm_area_struct *vma;
1233 	vm_fault_t ret, major = 0;
1234 
1235 	address = untagged_addr(address);
1236 
1237 	if (unlocked)
1238 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1239 
1240 retry:
1241 	vma = find_extend_vma(mm, address);
1242 	if (!vma || address < vma->vm_start)
1243 		return -EFAULT;
1244 
1245 	if (!vma_permits_fault(vma, fault_flags))
1246 		return -EFAULT;
1247 
1248 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1249 	    fatal_signal_pending(current))
1250 		return -EINTR;
1251 
1252 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1253 	major |= ret & VM_FAULT_MAJOR;
1254 	if (ret & VM_FAULT_ERROR) {
1255 		int err = vm_fault_to_errno(ret, 0);
1256 
1257 		if (err)
1258 			return err;
1259 		BUG();
1260 	}
1261 
1262 	if (ret & VM_FAULT_RETRY) {
1263 		mmap_read_lock(mm);
1264 		*unlocked = true;
1265 		fault_flags |= FAULT_FLAG_TRIED;
1266 		goto retry;
1267 	}
1268 
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(fixup_user_fault);
1272 
1273 /*
1274  * Please note that this function, unlike __get_user_pages will not
1275  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1276  */
1277 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1278 						unsigned long start,
1279 						unsigned long nr_pages,
1280 						struct page **pages,
1281 						struct vm_area_struct **vmas,
1282 						int *locked,
1283 						unsigned int flags)
1284 {
1285 	long ret, pages_done;
1286 	bool lock_dropped;
1287 
1288 	if (locked) {
1289 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1290 		BUG_ON(vmas);
1291 		/* check caller initialized locked */
1292 		BUG_ON(*locked != 1);
1293 	}
1294 
1295 	if (flags & FOLL_PIN)
1296 		atomic_set(&mm->has_pinned, 1);
1297 
1298 	/*
1299 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1300 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1301 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1302 	 * for FOLL_GET, not for the newer FOLL_PIN.
1303 	 *
1304 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1305 	 * that here, as any failures will be obvious enough.
1306 	 */
1307 	if (pages && !(flags & FOLL_PIN))
1308 		flags |= FOLL_GET;
1309 
1310 	pages_done = 0;
1311 	lock_dropped = false;
1312 	for (;;) {
1313 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1314 				       vmas, locked);
1315 		if (!locked)
1316 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1317 			return ret;
1318 
1319 		/* VM_FAULT_RETRY cannot return errors */
1320 		if (!*locked) {
1321 			BUG_ON(ret < 0);
1322 			BUG_ON(ret >= nr_pages);
1323 		}
1324 
1325 		if (ret > 0) {
1326 			nr_pages -= ret;
1327 			pages_done += ret;
1328 			if (!nr_pages)
1329 				break;
1330 		}
1331 		if (*locked) {
1332 			/*
1333 			 * VM_FAULT_RETRY didn't trigger or it was a
1334 			 * FOLL_NOWAIT.
1335 			 */
1336 			if (!pages_done)
1337 				pages_done = ret;
1338 			break;
1339 		}
1340 		/*
1341 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1342 		 * For the prefault case (!pages) we only update counts.
1343 		 */
1344 		if (likely(pages))
1345 			pages += ret;
1346 		start += ret << PAGE_SHIFT;
1347 		lock_dropped = true;
1348 
1349 retry:
1350 		/*
1351 		 * Repeat on the address that fired VM_FAULT_RETRY
1352 		 * with both FAULT_FLAG_ALLOW_RETRY and
1353 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1354 		 * by fatal signals, so we need to check it before we
1355 		 * start trying again otherwise it can loop forever.
1356 		 */
1357 
1358 		if (fatal_signal_pending(current)) {
1359 			if (!pages_done)
1360 				pages_done = -EINTR;
1361 			break;
1362 		}
1363 
1364 		ret = mmap_read_lock_killable(mm);
1365 		if (ret) {
1366 			BUG_ON(ret > 0);
1367 			if (!pages_done)
1368 				pages_done = ret;
1369 			break;
1370 		}
1371 
1372 		*locked = 1;
1373 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1374 				       pages, NULL, locked);
1375 		if (!*locked) {
1376 			/* Continue to retry until we succeeded */
1377 			BUG_ON(ret != 0);
1378 			goto retry;
1379 		}
1380 		if (ret != 1) {
1381 			BUG_ON(ret > 1);
1382 			if (!pages_done)
1383 				pages_done = ret;
1384 			break;
1385 		}
1386 		nr_pages--;
1387 		pages_done++;
1388 		if (!nr_pages)
1389 			break;
1390 		if (likely(pages))
1391 			pages++;
1392 		start += PAGE_SIZE;
1393 	}
1394 	if (lock_dropped && *locked) {
1395 		/*
1396 		 * We must let the caller know we temporarily dropped the lock
1397 		 * and so the critical section protected by it was lost.
1398 		 */
1399 		mmap_read_unlock(mm);
1400 		*locked = 0;
1401 	}
1402 	return pages_done;
1403 }
1404 
1405 /**
1406  * populate_vma_page_range() -  populate a range of pages in the vma.
1407  * @vma:   target vma
1408  * @start: start address
1409  * @end:   end address
1410  * @locked: whether the mmap_lock is still held
1411  *
1412  * This takes care of mlocking the pages too if VM_LOCKED is set.
1413  *
1414  * Return either number of pages pinned in the vma, or a negative error
1415  * code on error.
1416  *
1417  * vma->vm_mm->mmap_lock must be held.
1418  *
1419  * If @locked is NULL, it may be held for read or write and will
1420  * be unperturbed.
1421  *
1422  * If @locked is non-NULL, it must held for read only and may be
1423  * released.  If it's released, *@locked will be set to 0.
1424  */
1425 long populate_vma_page_range(struct vm_area_struct *vma,
1426 		unsigned long start, unsigned long end, int *locked)
1427 {
1428 	struct mm_struct *mm = vma->vm_mm;
1429 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1430 	int gup_flags;
1431 
1432 	VM_BUG_ON(start & ~PAGE_MASK);
1433 	VM_BUG_ON(end   & ~PAGE_MASK);
1434 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1435 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1436 	mmap_assert_locked(mm);
1437 
1438 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1439 	if (vma->vm_flags & VM_LOCKONFAULT)
1440 		gup_flags &= ~FOLL_POPULATE;
1441 	/*
1442 	 * We want to touch writable mappings with a write fault in order
1443 	 * to break COW, except for shared mappings because these don't COW
1444 	 * and we would not want to dirty them for nothing.
1445 	 */
1446 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1447 		gup_flags |= FOLL_WRITE;
1448 
1449 	/*
1450 	 * We want mlock to succeed for regions that have any permissions
1451 	 * other than PROT_NONE.
1452 	 */
1453 	if (vma_is_accessible(vma))
1454 		gup_flags |= FOLL_FORCE;
1455 
1456 	/*
1457 	 * We made sure addr is within a VMA, so the following will
1458 	 * not result in a stack expansion that recurses back here.
1459 	 */
1460 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1461 				NULL, NULL, locked);
1462 }
1463 
1464 /*
1465  * __mm_populate - populate and/or mlock pages within a range of address space.
1466  *
1467  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1468  * flags. VMAs must be already marked with the desired vm_flags, and
1469  * mmap_lock must not be held.
1470  */
1471 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1472 {
1473 	struct mm_struct *mm = current->mm;
1474 	unsigned long end, nstart, nend;
1475 	struct vm_area_struct *vma = NULL;
1476 	int locked = 0;
1477 	long ret = 0;
1478 
1479 	end = start + len;
1480 
1481 	for (nstart = start; nstart < end; nstart = nend) {
1482 		/*
1483 		 * We want to fault in pages for [nstart; end) address range.
1484 		 * Find first corresponding VMA.
1485 		 */
1486 		if (!locked) {
1487 			locked = 1;
1488 			mmap_read_lock(mm);
1489 			vma = find_vma(mm, nstart);
1490 		} else if (nstart >= vma->vm_end)
1491 			vma = vma->vm_next;
1492 		if (!vma || vma->vm_start >= end)
1493 			break;
1494 		/*
1495 		 * Set [nstart; nend) to intersection of desired address
1496 		 * range with the first VMA. Also, skip undesirable VMA types.
1497 		 */
1498 		nend = min(end, vma->vm_end);
1499 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1500 			continue;
1501 		if (nstart < vma->vm_start)
1502 			nstart = vma->vm_start;
1503 		/*
1504 		 * Now fault in a range of pages. populate_vma_page_range()
1505 		 * double checks the vma flags, so that it won't mlock pages
1506 		 * if the vma was already munlocked.
1507 		 */
1508 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1509 		if (ret < 0) {
1510 			if (ignore_errors) {
1511 				ret = 0;
1512 				continue;	/* continue at next VMA */
1513 			}
1514 			break;
1515 		}
1516 		nend = nstart + ret * PAGE_SIZE;
1517 		ret = 0;
1518 	}
1519 	if (locked)
1520 		mmap_read_unlock(mm);
1521 	return ret;	/* 0 or negative error code */
1522 }
1523 #else /* CONFIG_MMU */
1524 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1525 		unsigned long nr_pages, struct page **pages,
1526 		struct vm_area_struct **vmas, int *locked,
1527 		unsigned int foll_flags)
1528 {
1529 	struct vm_area_struct *vma;
1530 	unsigned long vm_flags;
1531 	long i;
1532 
1533 	/* calculate required read or write permissions.
1534 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1535 	 */
1536 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1537 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1538 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1539 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1540 
1541 	for (i = 0; i < nr_pages; i++) {
1542 		vma = find_vma(mm, start);
1543 		if (!vma)
1544 			goto finish_or_fault;
1545 
1546 		/* protect what we can, including chardevs */
1547 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1548 		    !(vm_flags & vma->vm_flags))
1549 			goto finish_or_fault;
1550 
1551 		if (pages) {
1552 			pages[i] = virt_to_page(start);
1553 			if (pages[i])
1554 				get_page(pages[i]);
1555 		}
1556 		if (vmas)
1557 			vmas[i] = vma;
1558 		start = (start + PAGE_SIZE) & PAGE_MASK;
1559 	}
1560 
1561 	return i;
1562 
1563 finish_or_fault:
1564 	return i ? : -EFAULT;
1565 }
1566 #endif /* !CONFIG_MMU */
1567 
1568 /**
1569  * get_dump_page() - pin user page in memory while writing it to core dump
1570  * @addr: user address
1571  *
1572  * Returns struct page pointer of user page pinned for dump,
1573  * to be freed afterwards by put_page().
1574  *
1575  * Returns NULL on any kind of failure - a hole must then be inserted into
1576  * the corefile, to preserve alignment with its headers; and also returns
1577  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1578  * allowing a hole to be left in the corefile to save disk space.
1579  *
1580  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1581  */
1582 #ifdef CONFIG_ELF_CORE
1583 struct page *get_dump_page(unsigned long addr)
1584 {
1585 	struct mm_struct *mm = current->mm;
1586 	struct page *page;
1587 	int locked = 1;
1588 	int ret;
1589 
1590 	if (mmap_read_lock_killable(mm))
1591 		return NULL;
1592 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1593 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1594 	if (locked)
1595 		mmap_read_unlock(mm);
1596 	return (ret == 1) ? page : NULL;
1597 }
1598 #endif /* CONFIG_ELF_CORE */
1599 
1600 #ifdef CONFIG_MIGRATION
1601 /*
1602  * Check whether all pages are pinnable, if so return number of pages.  If some
1603  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1604  * pages were migrated, or if some pages were not successfully isolated.
1605  * Return negative error if migration fails.
1606  */
1607 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1608 					    struct page **pages,
1609 					    unsigned int gup_flags)
1610 {
1611 	unsigned long i;
1612 	unsigned long isolation_error_count = 0;
1613 	bool drain_allow = true;
1614 	LIST_HEAD(movable_page_list);
1615 	long ret = 0;
1616 	struct page *prev_head = NULL;
1617 	struct page *head;
1618 	struct migration_target_control mtc = {
1619 		.nid = NUMA_NO_NODE,
1620 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1621 	};
1622 
1623 	for (i = 0; i < nr_pages; i++) {
1624 		head = compound_head(pages[i]);
1625 		if (head == prev_head)
1626 			continue;
1627 		prev_head = head;
1628 		/*
1629 		 * If we get a movable page, since we are going to be pinning
1630 		 * these entries, try to move them out if possible.
1631 		 */
1632 		if (!is_pinnable_page(head)) {
1633 			if (PageHuge(head)) {
1634 				if (!isolate_huge_page(head, &movable_page_list))
1635 					isolation_error_count++;
1636 			} else {
1637 				if (!PageLRU(head) && drain_allow) {
1638 					lru_add_drain_all();
1639 					drain_allow = false;
1640 				}
1641 
1642 				if (isolate_lru_page(head)) {
1643 					isolation_error_count++;
1644 					continue;
1645 				}
1646 				list_add_tail(&head->lru, &movable_page_list);
1647 				mod_node_page_state(page_pgdat(head),
1648 						    NR_ISOLATED_ANON +
1649 						    page_is_file_lru(head),
1650 						    thp_nr_pages(head));
1651 			}
1652 		}
1653 	}
1654 
1655 	/*
1656 	 * If list is empty, and no isolation errors, means that all pages are
1657 	 * in the correct zone.
1658 	 */
1659 	if (list_empty(&movable_page_list) && !isolation_error_count)
1660 		return nr_pages;
1661 
1662 	if (gup_flags & FOLL_PIN) {
1663 		unpin_user_pages(pages, nr_pages);
1664 	} else {
1665 		for (i = 0; i < nr_pages; i++)
1666 			put_page(pages[i]);
1667 	}
1668 	if (!list_empty(&movable_page_list)) {
1669 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1670 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1671 				    MR_LONGTERM_PIN);
1672 		if (ret && !list_empty(&movable_page_list))
1673 			putback_movable_pages(&movable_page_list);
1674 	}
1675 
1676 	return ret > 0 ? -ENOMEM : ret;
1677 }
1678 #else
1679 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1680 					    struct page **pages,
1681 					    unsigned int gup_flags)
1682 {
1683 	return nr_pages;
1684 }
1685 #endif /* CONFIG_MIGRATION */
1686 
1687 /*
1688  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1689  * allows us to process the FOLL_LONGTERM flag.
1690  */
1691 static long __gup_longterm_locked(struct mm_struct *mm,
1692 				  unsigned long start,
1693 				  unsigned long nr_pages,
1694 				  struct page **pages,
1695 				  struct vm_area_struct **vmas,
1696 				  unsigned int gup_flags)
1697 {
1698 	unsigned int flags;
1699 	long rc;
1700 
1701 	if (!(gup_flags & FOLL_LONGTERM))
1702 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1703 					       NULL, gup_flags);
1704 	flags = memalloc_pin_save();
1705 	do {
1706 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1707 					     NULL, gup_flags);
1708 		if (rc <= 0)
1709 			break;
1710 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1711 	} while (!rc);
1712 	memalloc_pin_restore(flags);
1713 
1714 	return rc;
1715 }
1716 
1717 static bool is_valid_gup_flags(unsigned int gup_flags)
1718 {
1719 	/*
1720 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1721 	 * never directly by the caller, so enforce that with an assertion:
1722 	 */
1723 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1724 		return false;
1725 	/*
1726 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1727 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1728 	 * FOLL_PIN.
1729 	 */
1730 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1731 		return false;
1732 
1733 	return true;
1734 }
1735 
1736 #ifdef CONFIG_MMU
1737 static long __get_user_pages_remote(struct mm_struct *mm,
1738 				    unsigned long start, unsigned long nr_pages,
1739 				    unsigned int gup_flags, struct page **pages,
1740 				    struct vm_area_struct **vmas, int *locked)
1741 {
1742 	/*
1743 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1744 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1745 	 * vmas. However, this only comes up if locked is set, and there are
1746 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1747 	 * allow what we can.
1748 	 */
1749 	if (gup_flags & FOLL_LONGTERM) {
1750 		if (WARN_ON_ONCE(locked))
1751 			return -EINVAL;
1752 		/*
1753 		 * This will check the vmas (even if our vmas arg is NULL)
1754 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1755 		 */
1756 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1757 					     vmas, gup_flags | FOLL_TOUCH |
1758 					     FOLL_REMOTE);
1759 	}
1760 
1761 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1762 				       locked,
1763 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1764 }
1765 
1766 /**
1767  * get_user_pages_remote() - pin user pages in memory
1768  * @mm:		mm_struct of target mm
1769  * @start:	starting user address
1770  * @nr_pages:	number of pages from start to pin
1771  * @gup_flags:	flags modifying lookup behaviour
1772  * @pages:	array that receives pointers to the pages pinned.
1773  *		Should be at least nr_pages long. Or NULL, if caller
1774  *		only intends to ensure the pages are faulted in.
1775  * @vmas:	array of pointers to vmas corresponding to each page.
1776  *		Or NULL if the caller does not require them.
1777  * @locked:	pointer to lock flag indicating whether lock is held and
1778  *		subsequently whether VM_FAULT_RETRY functionality can be
1779  *		utilised. Lock must initially be held.
1780  *
1781  * Returns either number of pages pinned (which may be less than the
1782  * number requested), or an error. Details about the return value:
1783  *
1784  * -- If nr_pages is 0, returns 0.
1785  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1786  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1787  *    pages pinned. Again, this may be less than nr_pages.
1788  *
1789  * The caller is responsible for releasing returned @pages, via put_page().
1790  *
1791  * @vmas are valid only as long as mmap_lock is held.
1792  *
1793  * Must be called with mmap_lock held for read or write.
1794  *
1795  * get_user_pages_remote walks a process's page tables and takes a reference
1796  * to each struct page that each user address corresponds to at a given
1797  * instant. That is, it takes the page that would be accessed if a user
1798  * thread accesses the given user virtual address at that instant.
1799  *
1800  * This does not guarantee that the page exists in the user mappings when
1801  * get_user_pages_remote returns, and there may even be a completely different
1802  * page there in some cases (eg. if mmapped pagecache has been invalidated
1803  * and subsequently re faulted). However it does guarantee that the page
1804  * won't be freed completely. And mostly callers simply care that the page
1805  * contains data that was valid *at some point in time*. Typically, an IO
1806  * or similar operation cannot guarantee anything stronger anyway because
1807  * locks can't be held over the syscall boundary.
1808  *
1809  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1810  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1811  * be called after the page is finished with, and before put_page is called.
1812  *
1813  * get_user_pages_remote is typically used for fewer-copy IO operations,
1814  * to get a handle on the memory by some means other than accesses
1815  * via the user virtual addresses. The pages may be submitted for
1816  * DMA to devices or accessed via their kernel linear mapping (via the
1817  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1818  *
1819  * See also get_user_pages_fast, for performance critical applications.
1820  *
1821  * get_user_pages_remote should be phased out in favor of
1822  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1823  * should use get_user_pages_remote because it cannot pass
1824  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1825  */
1826 long get_user_pages_remote(struct mm_struct *mm,
1827 		unsigned long start, unsigned long nr_pages,
1828 		unsigned int gup_flags, struct page **pages,
1829 		struct vm_area_struct **vmas, int *locked)
1830 {
1831 	if (!is_valid_gup_flags(gup_flags))
1832 		return -EINVAL;
1833 
1834 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1835 				       pages, vmas, locked);
1836 }
1837 EXPORT_SYMBOL(get_user_pages_remote);
1838 
1839 #else /* CONFIG_MMU */
1840 long get_user_pages_remote(struct mm_struct *mm,
1841 			   unsigned long start, unsigned long nr_pages,
1842 			   unsigned int gup_flags, struct page **pages,
1843 			   struct vm_area_struct **vmas, int *locked)
1844 {
1845 	return 0;
1846 }
1847 
1848 static long __get_user_pages_remote(struct mm_struct *mm,
1849 				    unsigned long start, unsigned long nr_pages,
1850 				    unsigned int gup_flags, struct page **pages,
1851 				    struct vm_area_struct **vmas, int *locked)
1852 {
1853 	return 0;
1854 }
1855 #endif /* !CONFIG_MMU */
1856 
1857 /**
1858  * get_user_pages() - pin user pages in memory
1859  * @start:      starting user address
1860  * @nr_pages:   number of pages from start to pin
1861  * @gup_flags:  flags modifying lookup behaviour
1862  * @pages:      array that receives pointers to the pages pinned.
1863  *              Should be at least nr_pages long. Or NULL, if caller
1864  *              only intends to ensure the pages are faulted in.
1865  * @vmas:       array of pointers to vmas corresponding to each page.
1866  *              Or NULL if the caller does not require them.
1867  *
1868  * This is the same as get_user_pages_remote(), just with a less-flexible
1869  * calling convention where we assume that the mm being operated on belongs to
1870  * the current task, and doesn't allow passing of a locked parameter.  We also
1871  * obviously don't pass FOLL_REMOTE in here.
1872  */
1873 long get_user_pages(unsigned long start, unsigned long nr_pages,
1874 		unsigned int gup_flags, struct page **pages,
1875 		struct vm_area_struct **vmas)
1876 {
1877 	if (!is_valid_gup_flags(gup_flags))
1878 		return -EINVAL;
1879 
1880 	return __gup_longterm_locked(current->mm, start, nr_pages,
1881 				     pages, vmas, gup_flags | FOLL_TOUCH);
1882 }
1883 EXPORT_SYMBOL(get_user_pages);
1884 
1885 /**
1886  * get_user_pages_locked() - variant of get_user_pages()
1887  *
1888  * @start:      starting user address
1889  * @nr_pages:   number of pages from start to pin
1890  * @gup_flags:  flags modifying lookup behaviour
1891  * @pages:      array that receives pointers to the pages pinned.
1892  *              Should be at least nr_pages long. Or NULL, if caller
1893  *              only intends to ensure the pages are faulted in.
1894  * @locked:     pointer to lock flag indicating whether lock is held and
1895  *              subsequently whether VM_FAULT_RETRY functionality can be
1896  *              utilised. Lock must initially be held.
1897  *
1898  * It is suitable to replace the form:
1899  *
1900  *      mmap_read_lock(mm);
1901  *      do_something()
1902  *      get_user_pages(mm, ..., pages, NULL);
1903  *      mmap_read_unlock(mm);
1904  *
1905  *  to:
1906  *
1907  *      int locked = 1;
1908  *      mmap_read_lock(mm);
1909  *      do_something()
1910  *      get_user_pages_locked(mm, ..., pages, &locked);
1911  *      if (locked)
1912  *          mmap_read_unlock(mm);
1913  *
1914  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1915  * paths better by using either get_user_pages_locked() or
1916  * get_user_pages_unlocked().
1917  *
1918  */
1919 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1920 			   unsigned int gup_flags, struct page **pages,
1921 			   int *locked)
1922 {
1923 	/*
1924 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1925 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1926 	 * vmas.  As there are no users of this flag in this call we simply
1927 	 * disallow this option for now.
1928 	 */
1929 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1930 		return -EINVAL;
1931 	/*
1932 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1933 	 * never directly by the caller, so enforce that:
1934 	 */
1935 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1936 		return -EINVAL;
1937 
1938 	return __get_user_pages_locked(current->mm, start, nr_pages,
1939 				       pages, NULL, locked,
1940 				       gup_flags | FOLL_TOUCH);
1941 }
1942 EXPORT_SYMBOL(get_user_pages_locked);
1943 
1944 /*
1945  * get_user_pages_unlocked() is suitable to replace the form:
1946  *
1947  *      mmap_read_lock(mm);
1948  *      get_user_pages(mm, ..., pages, NULL);
1949  *      mmap_read_unlock(mm);
1950  *
1951  *  with:
1952  *
1953  *      get_user_pages_unlocked(mm, ..., pages);
1954  *
1955  * It is functionally equivalent to get_user_pages_fast so
1956  * get_user_pages_fast should be used instead if specific gup_flags
1957  * (e.g. FOLL_FORCE) are not required.
1958  */
1959 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1960 			     struct page **pages, unsigned int gup_flags)
1961 {
1962 	struct mm_struct *mm = current->mm;
1963 	int locked = 1;
1964 	long ret;
1965 
1966 	/*
1967 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1968 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1969 	 * vmas.  As there are no users of this flag in this call we simply
1970 	 * disallow this option for now.
1971 	 */
1972 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1973 		return -EINVAL;
1974 
1975 	mmap_read_lock(mm);
1976 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1977 				      &locked, gup_flags | FOLL_TOUCH);
1978 	if (locked)
1979 		mmap_read_unlock(mm);
1980 	return ret;
1981 }
1982 EXPORT_SYMBOL(get_user_pages_unlocked);
1983 
1984 /*
1985  * Fast GUP
1986  *
1987  * get_user_pages_fast attempts to pin user pages by walking the page
1988  * tables directly and avoids taking locks. Thus the walker needs to be
1989  * protected from page table pages being freed from under it, and should
1990  * block any THP splits.
1991  *
1992  * One way to achieve this is to have the walker disable interrupts, and
1993  * rely on IPIs from the TLB flushing code blocking before the page table
1994  * pages are freed. This is unsuitable for architectures that do not need
1995  * to broadcast an IPI when invalidating TLBs.
1996  *
1997  * Another way to achieve this is to batch up page table containing pages
1998  * belonging to more than one mm_user, then rcu_sched a callback to free those
1999  * pages. Disabling interrupts will allow the fast_gup walker to both block
2000  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2001  * (which is a relatively rare event). The code below adopts this strategy.
2002  *
2003  * Before activating this code, please be aware that the following assumptions
2004  * are currently made:
2005  *
2006  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2007  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2008  *
2009  *  *) ptes can be read atomically by the architecture.
2010  *
2011  *  *) access_ok is sufficient to validate userspace address ranges.
2012  *
2013  * The last two assumptions can be relaxed by the addition of helper functions.
2014  *
2015  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2016  */
2017 #ifdef CONFIG_HAVE_FAST_GUP
2018 
2019 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2020 					    unsigned int flags,
2021 					    struct page **pages)
2022 {
2023 	while ((*nr) - nr_start) {
2024 		struct page *page = pages[--(*nr)];
2025 
2026 		ClearPageReferenced(page);
2027 		if (flags & FOLL_PIN)
2028 			unpin_user_page(page);
2029 		else
2030 			put_page(page);
2031 	}
2032 }
2033 
2034 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2035 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2036 			 unsigned int flags, struct page **pages, int *nr)
2037 {
2038 	struct dev_pagemap *pgmap = NULL;
2039 	int nr_start = *nr, ret = 0;
2040 	pte_t *ptep, *ptem;
2041 
2042 	ptem = ptep = pte_offset_map(&pmd, addr);
2043 	do {
2044 		pte_t pte = ptep_get_lockless(ptep);
2045 		struct page *head, *page;
2046 
2047 		/*
2048 		 * Similar to the PMD case below, NUMA hinting must take slow
2049 		 * path using the pte_protnone check.
2050 		 */
2051 		if (pte_protnone(pte))
2052 			goto pte_unmap;
2053 
2054 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2055 			goto pte_unmap;
2056 
2057 		if (pte_devmap(pte)) {
2058 			if (unlikely(flags & FOLL_LONGTERM))
2059 				goto pte_unmap;
2060 
2061 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2062 			if (unlikely(!pgmap)) {
2063 				undo_dev_pagemap(nr, nr_start, flags, pages);
2064 				goto pte_unmap;
2065 			}
2066 		} else if (pte_special(pte))
2067 			goto pte_unmap;
2068 
2069 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2070 		page = pte_page(pte);
2071 
2072 		head = try_grab_compound_head(page, 1, flags);
2073 		if (!head)
2074 			goto pte_unmap;
2075 
2076 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2077 			put_compound_head(head, 1, flags);
2078 			goto pte_unmap;
2079 		}
2080 
2081 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2082 
2083 		/*
2084 		 * We need to make the page accessible if and only if we are
2085 		 * going to access its content (the FOLL_PIN case).  Please
2086 		 * see Documentation/core-api/pin_user_pages.rst for
2087 		 * details.
2088 		 */
2089 		if (flags & FOLL_PIN) {
2090 			ret = arch_make_page_accessible(page);
2091 			if (ret) {
2092 				unpin_user_page(page);
2093 				goto pte_unmap;
2094 			}
2095 		}
2096 		SetPageReferenced(page);
2097 		pages[*nr] = page;
2098 		(*nr)++;
2099 
2100 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2101 
2102 	ret = 1;
2103 
2104 pte_unmap:
2105 	if (pgmap)
2106 		put_dev_pagemap(pgmap);
2107 	pte_unmap(ptem);
2108 	return ret;
2109 }
2110 #else
2111 
2112 /*
2113  * If we can't determine whether or not a pte is special, then fail immediately
2114  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2115  * to be special.
2116  *
2117  * For a futex to be placed on a THP tail page, get_futex_key requires a
2118  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2119  * useful to have gup_huge_pmd even if we can't operate on ptes.
2120  */
2121 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2122 			 unsigned int flags, struct page **pages, int *nr)
2123 {
2124 	return 0;
2125 }
2126 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2127 
2128 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2129 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2130 			     unsigned long end, unsigned int flags,
2131 			     struct page **pages, int *nr)
2132 {
2133 	int nr_start = *nr;
2134 	struct dev_pagemap *pgmap = NULL;
2135 
2136 	do {
2137 		struct page *page = pfn_to_page(pfn);
2138 
2139 		pgmap = get_dev_pagemap(pfn, pgmap);
2140 		if (unlikely(!pgmap)) {
2141 			undo_dev_pagemap(nr, nr_start, flags, pages);
2142 			return 0;
2143 		}
2144 		SetPageReferenced(page);
2145 		pages[*nr] = page;
2146 		if (unlikely(!try_grab_page(page, flags))) {
2147 			undo_dev_pagemap(nr, nr_start, flags, pages);
2148 			return 0;
2149 		}
2150 		(*nr)++;
2151 		pfn++;
2152 	} while (addr += PAGE_SIZE, addr != end);
2153 
2154 	if (pgmap)
2155 		put_dev_pagemap(pgmap);
2156 	return 1;
2157 }
2158 
2159 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2160 				 unsigned long end, unsigned int flags,
2161 				 struct page **pages, int *nr)
2162 {
2163 	unsigned long fault_pfn;
2164 	int nr_start = *nr;
2165 
2166 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2167 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2168 		return 0;
2169 
2170 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2171 		undo_dev_pagemap(nr, nr_start, flags, pages);
2172 		return 0;
2173 	}
2174 	return 1;
2175 }
2176 
2177 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2178 				 unsigned long end, unsigned int flags,
2179 				 struct page **pages, int *nr)
2180 {
2181 	unsigned long fault_pfn;
2182 	int nr_start = *nr;
2183 
2184 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2185 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2186 		return 0;
2187 
2188 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2189 		undo_dev_pagemap(nr, nr_start, flags, pages);
2190 		return 0;
2191 	}
2192 	return 1;
2193 }
2194 #else
2195 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2196 				 unsigned long end, unsigned int flags,
2197 				 struct page **pages, int *nr)
2198 {
2199 	BUILD_BUG();
2200 	return 0;
2201 }
2202 
2203 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2204 				 unsigned long end, unsigned int flags,
2205 				 struct page **pages, int *nr)
2206 {
2207 	BUILD_BUG();
2208 	return 0;
2209 }
2210 #endif
2211 
2212 static int record_subpages(struct page *page, unsigned long addr,
2213 			   unsigned long end, struct page **pages)
2214 {
2215 	int nr;
2216 
2217 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2218 		pages[nr++] = page++;
2219 
2220 	return nr;
2221 }
2222 
2223 #ifdef CONFIG_ARCH_HAS_HUGEPD
2224 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2225 				      unsigned long sz)
2226 {
2227 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2228 	return (__boundary - 1 < end - 1) ? __boundary : end;
2229 }
2230 
2231 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2232 		       unsigned long end, unsigned int flags,
2233 		       struct page **pages, int *nr)
2234 {
2235 	unsigned long pte_end;
2236 	struct page *head, *page;
2237 	pte_t pte;
2238 	int refs;
2239 
2240 	pte_end = (addr + sz) & ~(sz-1);
2241 	if (pte_end < end)
2242 		end = pte_end;
2243 
2244 	pte = huge_ptep_get(ptep);
2245 
2246 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2247 		return 0;
2248 
2249 	/* hugepages are never "special" */
2250 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2251 
2252 	head = pte_page(pte);
2253 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2254 	refs = record_subpages(page, addr, end, pages + *nr);
2255 
2256 	head = try_grab_compound_head(head, refs, flags);
2257 	if (!head)
2258 		return 0;
2259 
2260 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2261 		put_compound_head(head, refs, flags);
2262 		return 0;
2263 	}
2264 
2265 	*nr += refs;
2266 	SetPageReferenced(head);
2267 	return 1;
2268 }
2269 
2270 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2271 		unsigned int pdshift, unsigned long end, unsigned int flags,
2272 		struct page **pages, int *nr)
2273 {
2274 	pte_t *ptep;
2275 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2276 	unsigned long next;
2277 
2278 	ptep = hugepte_offset(hugepd, addr, pdshift);
2279 	do {
2280 		next = hugepte_addr_end(addr, end, sz);
2281 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2282 			return 0;
2283 	} while (ptep++, addr = next, addr != end);
2284 
2285 	return 1;
2286 }
2287 #else
2288 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2289 		unsigned int pdshift, unsigned long end, unsigned int flags,
2290 		struct page **pages, int *nr)
2291 {
2292 	return 0;
2293 }
2294 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2295 
2296 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2297 			unsigned long end, unsigned int flags,
2298 			struct page **pages, int *nr)
2299 {
2300 	struct page *head, *page;
2301 	int refs;
2302 
2303 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2304 		return 0;
2305 
2306 	if (pmd_devmap(orig)) {
2307 		if (unlikely(flags & FOLL_LONGTERM))
2308 			return 0;
2309 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2310 					     pages, nr);
2311 	}
2312 
2313 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2314 	refs = record_subpages(page, addr, end, pages + *nr);
2315 
2316 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2317 	if (!head)
2318 		return 0;
2319 
2320 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2321 		put_compound_head(head, refs, flags);
2322 		return 0;
2323 	}
2324 
2325 	*nr += refs;
2326 	SetPageReferenced(head);
2327 	return 1;
2328 }
2329 
2330 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2331 			unsigned long end, unsigned int flags,
2332 			struct page **pages, int *nr)
2333 {
2334 	struct page *head, *page;
2335 	int refs;
2336 
2337 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2338 		return 0;
2339 
2340 	if (pud_devmap(orig)) {
2341 		if (unlikely(flags & FOLL_LONGTERM))
2342 			return 0;
2343 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2344 					     pages, nr);
2345 	}
2346 
2347 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2348 	refs = record_subpages(page, addr, end, pages + *nr);
2349 
2350 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2351 	if (!head)
2352 		return 0;
2353 
2354 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2355 		put_compound_head(head, refs, flags);
2356 		return 0;
2357 	}
2358 
2359 	*nr += refs;
2360 	SetPageReferenced(head);
2361 	return 1;
2362 }
2363 
2364 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2365 			unsigned long end, unsigned int flags,
2366 			struct page **pages, int *nr)
2367 {
2368 	int refs;
2369 	struct page *head, *page;
2370 
2371 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2372 		return 0;
2373 
2374 	BUILD_BUG_ON(pgd_devmap(orig));
2375 
2376 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2377 	refs = record_subpages(page, addr, end, pages + *nr);
2378 
2379 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2380 	if (!head)
2381 		return 0;
2382 
2383 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2384 		put_compound_head(head, refs, flags);
2385 		return 0;
2386 	}
2387 
2388 	*nr += refs;
2389 	SetPageReferenced(head);
2390 	return 1;
2391 }
2392 
2393 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2394 		unsigned int flags, struct page **pages, int *nr)
2395 {
2396 	unsigned long next;
2397 	pmd_t *pmdp;
2398 
2399 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2400 	do {
2401 		pmd_t pmd = READ_ONCE(*pmdp);
2402 
2403 		next = pmd_addr_end(addr, end);
2404 		if (!pmd_present(pmd))
2405 			return 0;
2406 
2407 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2408 			     pmd_devmap(pmd))) {
2409 			/*
2410 			 * NUMA hinting faults need to be handled in the GUP
2411 			 * slowpath for accounting purposes and so that they
2412 			 * can be serialised against THP migration.
2413 			 */
2414 			if (pmd_protnone(pmd))
2415 				return 0;
2416 
2417 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2418 				pages, nr))
2419 				return 0;
2420 
2421 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2422 			/*
2423 			 * architecture have different format for hugetlbfs
2424 			 * pmd format and THP pmd format
2425 			 */
2426 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2427 					 PMD_SHIFT, next, flags, pages, nr))
2428 				return 0;
2429 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2430 			return 0;
2431 	} while (pmdp++, addr = next, addr != end);
2432 
2433 	return 1;
2434 }
2435 
2436 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2437 			 unsigned int flags, struct page **pages, int *nr)
2438 {
2439 	unsigned long next;
2440 	pud_t *pudp;
2441 
2442 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2443 	do {
2444 		pud_t pud = READ_ONCE(*pudp);
2445 
2446 		next = pud_addr_end(addr, end);
2447 		if (unlikely(!pud_present(pud)))
2448 			return 0;
2449 		if (unlikely(pud_huge(pud))) {
2450 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2451 					  pages, nr))
2452 				return 0;
2453 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2454 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2455 					 PUD_SHIFT, next, flags, pages, nr))
2456 				return 0;
2457 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2458 			return 0;
2459 	} while (pudp++, addr = next, addr != end);
2460 
2461 	return 1;
2462 }
2463 
2464 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2465 			 unsigned int flags, struct page **pages, int *nr)
2466 {
2467 	unsigned long next;
2468 	p4d_t *p4dp;
2469 
2470 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2471 	do {
2472 		p4d_t p4d = READ_ONCE(*p4dp);
2473 
2474 		next = p4d_addr_end(addr, end);
2475 		if (p4d_none(p4d))
2476 			return 0;
2477 		BUILD_BUG_ON(p4d_huge(p4d));
2478 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2479 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2480 					 P4D_SHIFT, next, flags, pages, nr))
2481 				return 0;
2482 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2483 			return 0;
2484 	} while (p4dp++, addr = next, addr != end);
2485 
2486 	return 1;
2487 }
2488 
2489 static void gup_pgd_range(unsigned long addr, unsigned long end,
2490 		unsigned int flags, struct page **pages, int *nr)
2491 {
2492 	unsigned long next;
2493 	pgd_t *pgdp;
2494 
2495 	pgdp = pgd_offset(current->mm, addr);
2496 	do {
2497 		pgd_t pgd = READ_ONCE(*pgdp);
2498 
2499 		next = pgd_addr_end(addr, end);
2500 		if (pgd_none(pgd))
2501 			return;
2502 		if (unlikely(pgd_huge(pgd))) {
2503 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2504 					  pages, nr))
2505 				return;
2506 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2507 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2508 					 PGDIR_SHIFT, next, flags, pages, nr))
2509 				return;
2510 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2511 			return;
2512 	} while (pgdp++, addr = next, addr != end);
2513 }
2514 #else
2515 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2516 		unsigned int flags, struct page **pages, int *nr)
2517 {
2518 }
2519 #endif /* CONFIG_HAVE_FAST_GUP */
2520 
2521 #ifndef gup_fast_permitted
2522 /*
2523  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2524  * we need to fall back to the slow version:
2525  */
2526 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2527 {
2528 	return true;
2529 }
2530 #endif
2531 
2532 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2533 				   unsigned int gup_flags, struct page **pages)
2534 {
2535 	int ret;
2536 
2537 	/*
2538 	 * FIXME: FOLL_LONGTERM does not work with
2539 	 * get_user_pages_unlocked() (see comments in that function)
2540 	 */
2541 	if (gup_flags & FOLL_LONGTERM) {
2542 		mmap_read_lock(current->mm);
2543 		ret = __gup_longterm_locked(current->mm,
2544 					    start, nr_pages,
2545 					    pages, NULL, gup_flags);
2546 		mmap_read_unlock(current->mm);
2547 	} else {
2548 		ret = get_user_pages_unlocked(start, nr_pages,
2549 					      pages, gup_flags);
2550 	}
2551 
2552 	return ret;
2553 }
2554 
2555 static unsigned long lockless_pages_from_mm(unsigned long start,
2556 					    unsigned long end,
2557 					    unsigned int gup_flags,
2558 					    struct page **pages)
2559 {
2560 	unsigned long flags;
2561 	int nr_pinned = 0;
2562 	unsigned seq;
2563 
2564 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2565 	    !gup_fast_permitted(start, end))
2566 		return 0;
2567 
2568 	if (gup_flags & FOLL_PIN) {
2569 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2570 		if (seq & 1)
2571 			return 0;
2572 	}
2573 
2574 	/*
2575 	 * Disable interrupts. The nested form is used, in order to allow full,
2576 	 * general purpose use of this routine.
2577 	 *
2578 	 * With interrupts disabled, we block page table pages from being freed
2579 	 * from under us. See struct mmu_table_batch comments in
2580 	 * include/asm-generic/tlb.h for more details.
2581 	 *
2582 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2583 	 * that come from THPs splitting.
2584 	 */
2585 	local_irq_save(flags);
2586 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2587 	local_irq_restore(flags);
2588 
2589 	/*
2590 	 * When pinning pages for DMA there could be a concurrent write protect
2591 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2592 	 */
2593 	if (gup_flags & FOLL_PIN) {
2594 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2595 			unpin_user_pages(pages, nr_pinned);
2596 			return 0;
2597 		}
2598 	}
2599 	return nr_pinned;
2600 }
2601 
2602 static int internal_get_user_pages_fast(unsigned long start,
2603 					unsigned long nr_pages,
2604 					unsigned int gup_flags,
2605 					struct page **pages)
2606 {
2607 	unsigned long len, end;
2608 	unsigned long nr_pinned;
2609 	int ret;
2610 
2611 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2612 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2613 				       FOLL_FAST_ONLY)))
2614 		return -EINVAL;
2615 
2616 	if (gup_flags & FOLL_PIN)
2617 		atomic_set(&current->mm->has_pinned, 1);
2618 
2619 	if (!(gup_flags & FOLL_FAST_ONLY))
2620 		might_lock_read(&current->mm->mmap_lock);
2621 
2622 	start = untagged_addr(start) & PAGE_MASK;
2623 	len = nr_pages << PAGE_SHIFT;
2624 	if (check_add_overflow(start, len, &end))
2625 		return 0;
2626 	if (unlikely(!access_ok((void __user *)start, len)))
2627 		return -EFAULT;
2628 
2629 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2630 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2631 		return nr_pinned;
2632 
2633 	/* Slow path: try to get the remaining pages with get_user_pages */
2634 	start += nr_pinned << PAGE_SHIFT;
2635 	pages += nr_pinned;
2636 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2637 				      pages);
2638 	if (ret < 0) {
2639 		/*
2640 		 * The caller has to unpin the pages we already pinned so
2641 		 * returning -errno is not an option
2642 		 */
2643 		if (nr_pinned)
2644 			return nr_pinned;
2645 		return ret;
2646 	}
2647 	return ret + nr_pinned;
2648 }
2649 
2650 /**
2651  * get_user_pages_fast_only() - pin user pages in memory
2652  * @start:      starting user address
2653  * @nr_pages:   number of pages from start to pin
2654  * @gup_flags:  flags modifying pin behaviour
2655  * @pages:      array that receives pointers to the pages pinned.
2656  *              Should be at least nr_pages long.
2657  *
2658  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2659  * the regular GUP.
2660  * Note a difference with get_user_pages_fast: this always returns the
2661  * number of pages pinned, 0 if no pages were pinned.
2662  *
2663  * If the architecture does not support this function, simply return with no
2664  * pages pinned.
2665  *
2666  * Careful, careful! COW breaking can go either way, so a non-write
2667  * access can get ambiguous page results. If you call this function without
2668  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2669  */
2670 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2671 			     unsigned int gup_flags, struct page **pages)
2672 {
2673 	int nr_pinned;
2674 	/*
2675 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2676 	 * because gup fast is always a "pin with a +1 page refcount" request.
2677 	 *
2678 	 * FOLL_FAST_ONLY is required in order to match the API description of
2679 	 * this routine: no fall back to regular ("slow") GUP.
2680 	 */
2681 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2682 
2683 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2684 						 pages);
2685 
2686 	/*
2687 	 * As specified in the API description above, this routine is not
2688 	 * allowed to return negative values. However, the common core
2689 	 * routine internal_get_user_pages_fast() *can* return -errno.
2690 	 * Therefore, correct for that here:
2691 	 */
2692 	if (nr_pinned < 0)
2693 		nr_pinned = 0;
2694 
2695 	return nr_pinned;
2696 }
2697 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2698 
2699 /**
2700  * get_user_pages_fast() - pin user pages in memory
2701  * @start:      starting user address
2702  * @nr_pages:   number of pages from start to pin
2703  * @gup_flags:  flags modifying pin behaviour
2704  * @pages:      array that receives pointers to the pages pinned.
2705  *              Should be at least nr_pages long.
2706  *
2707  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2708  * If not successful, it will fall back to taking the lock and
2709  * calling get_user_pages().
2710  *
2711  * Returns number of pages pinned. This may be fewer than the number requested.
2712  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2713  * -errno.
2714  */
2715 int get_user_pages_fast(unsigned long start, int nr_pages,
2716 			unsigned int gup_flags, struct page **pages)
2717 {
2718 	if (!is_valid_gup_flags(gup_flags))
2719 		return -EINVAL;
2720 
2721 	/*
2722 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2723 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2724 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2725 	 * request.
2726 	 */
2727 	gup_flags |= FOLL_GET;
2728 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2729 }
2730 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2731 
2732 /**
2733  * pin_user_pages_fast() - pin user pages in memory without taking locks
2734  *
2735  * @start:      starting user address
2736  * @nr_pages:   number of pages from start to pin
2737  * @gup_flags:  flags modifying pin behaviour
2738  * @pages:      array that receives pointers to the pages pinned.
2739  *              Should be at least nr_pages long.
2740  *
2741  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2742  * get_user_pages_fast() for documentation on the function arguments, because
2743  * the arguments here are identical.
2744  *
2745  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2746  * see Documentation/core-api/pin_user_pages.rst for further details.
2747  */
2748 int pin_user_pages_fast(unsigned long start, int nr_pages,
2749 			unsigned int gup_flags, struct page **pages)
2750 {
2751 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2752 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2753 		return -EINVAL;
2754 
2755 	gup_flags |= FOLL_PIN;
2756 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2757 }
2758 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2759 
2760 /*
2761  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2762  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2763  *
2764  * The API rules are the same, too: no negative values may be returned.
2765  */
2766 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2767 			     unsigned int gup_flags, struct page **pages)
2768 {
2769 	int nr_pinned;
2770 
2771 	/*
2772 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2773 	 * rules require returning 0, rather than -errno:
2774 	 */
2775 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2776 		return 0;
2777 	/*
2778 	 * FOLL_FAST_ONLY is required in order to match the API description of
2779 	 * this routine: no fall back to regular ("slow") GUP.
2780 	 */
2781 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2782 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2783 						 pages);
2784 	/*
2785 	 * This routine is not allowed to return negative values. However,
2786 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2787 	 * correct for that here:
2788 	 */
2789 	if (nr_pinned < 0)
2790 		nr_pinned = 0;
2791 
2792 	return nr_pinned;
2793 }
2794 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2795 
2796 /**
2797  * pin_user_pages_remote() - pin pages of a remote process
2798  *
2799  * @mm:		mm_struct of target mm
2800  * @start:	starting user address
2801  * @nr_pages:	number of pages from start to pin
2802  * @gup_flags:	flags modifying lookup behaviour
2803  * @pages:	array that receives pointers to the pages pinned.
2804  *		Should be at least nr_pages long. Or NULL, if caller
2805  *		only intends to ensure the pages are faulted in.
2806  * @vmas:	array of pointers to vmas corresponding to each page.
2807  *		Or NULL if the caller does not require them.
2808  * @locked:	pointer to lock flag indicating whether lock is held and
2809  *		subsequently whether VM_FAULT_RETRY functionality can be
2810  *		utilised. Lock must initially be held.
2811  *
2812  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2813  * get_user_pages_remote() for documentation on the function arguments, because
2814  * the arguments here are identical.
2815  *
2816  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2817  * see Documentation/core-api/pin_user_pages.rst for details.
2818  */
2819 long pin_user_pages_remote(struct mm_struct *mm,
2820 			   unsigned long start, unsigned long nr_pages,
2821 			   unsigned int gup_flags, struct page **pages,
2822 			   struct vm_area_struct **vmas, int *locked)
2823 {
2824 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2825 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2826 		return -EINVAL;
2827 
2828 	gup_flags |= FOLL_PIN;
2829 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2830 				       pages, vmas, locked);
2831 }
2832 EXPORT_SYMBOL(pin_user_pages_remote);
2833 
2834 /**
2835  * pin_user_pages() - pin user pages in memory for use by other devices
2836  *
2837  * @start:	starting user address
2838  * @nr_pages:	number of pages from start to pin
2839  * @gup_flags:	flags modifying lookup behaviour
2840  * @pages:	array that receives pointers to the pages pinned.
2841  *		Should be at least nr_pages long. Or NULL, if caller
2842  *		only intends to ensure the pages are faulted in.
2843  * @vmas:	array of pointers to vmas corresponding to each page.
2844  *		Or NULL if the caller does not require them.
2845  *
2846  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2847  * FOLL_PIN is set.
2848  *
2849  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2850  * see Documentation/core-api/pin_user_pages.rst for details.
2851  */
2852 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2853 		    unsigned int gup_flags, struct page **pages,
2854 		    struct vm_area_struct **vmas)
2855 {
2856 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2857 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2858 		return -EINVAL;
2859 
2860 	gup_flags |= FOLL_PIN;
2861 	return __gup_longterm_locked(current->mm, start, nr_pages,
2862 				     pages, vmas, gup_flags);
2863 }
2864 EXPORT_SYMBOL(pin_user_pages);
2865 
2866 /*
2867  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2868  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2869  * FOLL_PIN and rejects FOLL_GET.
2870  */
2871 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2872 			     struct page **pages, unsigned int gup_flags)
2873 {
2874 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2875 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2876 		return -EINVAL;
2877 
2878 	gup_flags |= FOLL_PIN;
2879 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2880 }
2881 EXPORT_SYMBOL(pin_user_pages_unlocked);
2882 
2883 /*
2884  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2885  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2886  * FOLL_GET.
2887  */
2888 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2889 			   unsigned int gup_flags, struct page **pages,
2890 			   int *locked)
2891 {
2892 	/*
2893 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2894 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2895 	 * vmas.  As there are no users of this flag in this call we simply
2896 	 * disallow this option for now.
2897 	 */
2898 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2899 		return -EINVAL;
2900 
2901 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2902 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2903 		return -EINVAL;
2904 
2905 	gup_flags |= FOLL_PIN;
2906 	return __get_user_pages_locked(current->mm, start, nr_pages,
2907 				       pages, NULL, locked,
2908 				       gup_flags | FOLL_TOUCH);
2909 }
2910 EXPORT_SYMBOL(pin_user_pages_locked);
2911