1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, unsigned int flags) 83 { 84 if (flags & FOLL_GET) 85 return try_get_compound_head(page, refs); 86 else if (flags & FOLL_PIN) { 87 int orig_refs = refs; 88 89 /* 90 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 91 * right zone, so fail and let the caller fall back to the slow 92 * path. 93 */ 94 if (unlikely((flags & FOLL_LONGTERM) && 95 !is_pinnable_page(page))) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 static void put_compound_head(struct page *page, int refs, unsigned int flags) 127 { 128 if (flags & FOLL_PIN) { 129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 130 refs); 131 132 if (hpage_pincount_available(page)) 133 hpage_pincount_sub(page, refs); 134 else 135 refs *= GUP_PIN_COUNTING_BIAS; 136 } 137 138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 139 /* 140 * Calling put_page() for each ref is unnecessarily slow. Only the last 141 * ref needs a put_page(). 142 */ 143 if (refs > 1) 144 page_ref_sub(page, refs - 1); 145 put_page(page); 146 } 147 148 /** 149 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 150 * 151 * This might not do anything at all, depending on the flags argument. 152 * 153 * "grab" names in this file mean, "look at flags to decide whether to use 154 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 155 * 156 * @page: pointer to page to be grabbed 157 * @flags: gup flags: these are the FOLL_* flag values. 158 * 159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 160 * time. Cases: 161 * 162 * FOLL_GET: page's refcount will be incremented by 1. 163 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 164 * 165 * Return: true for success, or if no action was required (if neither FOLL_PIN 166 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 167 * FOLL_PIN was set, but the page could not be grabbed. 168 */ 169 bool __must_check try_grab_page(struct page *page, unsigned int flags) 170 { 171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 172 173 if (flags & FOLL_GET) 174 return try_get_page(page); 175 else if (flags & FOLL_PIN) { 176 int refs = 1; 177 178 page = compound_head(page); 179 180 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 181 return false; 182 183 if (hpage_pincount_available(page)) 184 hpage_pincount_add(page, 1); 185 else 186 refs = GUP_PIN_COUNTING_BIAS; 187 188 /* 189 * Similar to try_grab_compound_head(): even if using the 190 * hpage_pincount_add/_sub() routines, be sure to 191 * *also* increment the normal page refcount field at least 192 * once, so that the page really is pinned. 193 */ 194 page_ref_add(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 197 } 198 199 return true; 200 } 201 202 /** 203 * unpin_user_page() - release a dma-pinned page 204 * @page: pointer to page to be released 205 * 206 * Pages that were pinned via pin_user_pages*() must be released via either 207 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 208 * that such pages can be separately tracked and uniquely handled. In 209 * particular, interactions with RDMA and filesystems need special handling. 210 */ 211 void unpin_user_page(struct page *page) 212 { 213 put_compound_head(compound_head(page), 1, FOLL_PIN); 214 } 215 EXPORT_SYMBOL(unpin_user_page); 216 217 static inline void compound_range_next(unsigned long i, unsigned long npages, 218 struct page **list, struct page **head, 219 unsigned int *ntails) 220 { 221 struct page *next, *page; 222 unsigned int nr = 1; 223 224 if (i >= npages) 225 return; 226 227 next = *list + i; 228 page = compound_head(next); 229 if (PageCompound(page) && compound_order(page) >= 1) 230 nr = min_t(unsigned int, 231 page + compound_nr(page) - next, npages - i); 232 233 *head = page; 234 *ntails = nr; 235 } 236 237 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 238 for (__i = 0, \ 239 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 240 __i < __npages; __i += __ntails, \ 241 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 242 243 static inline void compound_next(unsigned long i, unsigned long npages, 244 struct page **list, struct page **head, 245 unsigned int *ntails) 246 { 247 struct page *page; 248 unsigned int nr; 249 250 if (i >= npages) 251 return; 252 253 page = compound_head(list[i]); 254 for (nr = i + 1; nr < npages; nr++) { 255 if (compound_head(list[nr]) != page) 256 break; 257 } 258 259 *head = page; 260 *ntails = nr - i; 261 } 262 263 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 264 for (__i = 0, \ 265 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 266 __i < __npages; __i += __ntails, \ 267 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 268 269 /** 270 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 271 * @pages: array of pages to be maybe marked dirty, and definitely released. 272 * @npages: number of pages in the @pages array. 273 * @make_dirty: whether to mark the pages dirty 274 * 275 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 276 * variants called on that page. 277 * 278 * For each page in the @pages array, make that page (or its head page, if a 279 * compound page) dirty, if @make_dirty is true, and if the page was previously 280 * listed as clean. In any case, releases all pages using unpin_user_page(), 281 * possibly via unpin_user_pages(), for the non-dirty case. 282 * 283 * Please see the unpin_user_page() documentation for details. 284 * 285 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 286 * required, then the caller should a) verify that this is really correct, 287 * because _lock() is usually required, and b) hand code it: 288 * set_page_dirty_lock(), unpin_user_page(). 289 * 290 */ 291 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 292 bool make_dirty) 293 { 294 unsigned long index; 295 struct page *head; 296 unsigned int ntails; 297 298 if (!make_dirty) { 299 unpin_user_pages(pages, npages); 300 return; 301 } 302 303 for_each_compound_head(index, pages, npages, head, ntails) { 304 /* 305 * Checking PageDirty at this point may race with 306 * clear_page_dirty_for_io(), but that's OK. Two key 307 * cases: 308 * 309 * 1) This code sees the page as already dirty, so it 310 * skips the call to set_page_dirty(). That could happen 311 * because clear_page_dirty_for_io() called 312 * page_mkclean(), followed by set_page_dirty(). 313 * However, now the page is going to get written back, 314 * which meets the original intention of setting it 315 * dirty, so all is well: clear_page_dirty_for_io() goes 316 * on to call TestClearPageDirty(), and write the page 317 * back. 318 * 319 * 2) This code sees the page as clean, so it calls 320 * set_page_dirty(). The page stays dirty, despite being 321 * written back, so it gets written back again in the 322 * next writeback cycle. This is harmless. 323 */ 324 if (!PageDirty(head)) 325 set_page_dirty_lock(head); 326 put_compound_head(head, ntails, FOLL_PIN); 327 } 328 } 329 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 330 331 /** 332 * unpin_user_page_range_dirty_lock() - release and optionally dirty 333 * gup-pinned page range 334 * 335 * @page: the starting page of a range maybe marked dirty, and definitely released. 336 * @npages: number of consecutive pages to release. 337 * @make_dirty: whether to mark the pages dirty 338 * 339 * "gup-pinned page range" refers to a range of pages that has had one of the 340 * pin_user_pages() variants called on that page. 341 * 342 * For the page ranges defined by [page .. page+npages], make that range (or 343 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 344 * page range was previously listed as clean. 345 * 346 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 347 * required, then the caller should a) verify that this is really correct, 348 * because _lock() is usually required, and b) hand code it: 349 * set_page_dirty_lock(), unpin_user_page(). 350 * 351 */ 352 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 353 bool make_dirty) 354 { 355 unsigned long index; 356 struct page *head; 357 unsigned int ntails; 358 359 for_each_compound_range(index, &page, npages, head, ntails) { 360 if (make_dirty && !PageDirty(head)) 361 set_page_dirty_lock(head); 362 put_compound_head(head, ntails, FOLL_PIN); 363 } 364 } 365 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 366 367 /** 368 * unpin_user_pages() - release an array of gup-pinned pages. 369 * @pages: array of pages to be marked dirty and released. 370 * @npages: number of pages in the @pages array. 371 * 372 * For each page in the @pages array, release the page using unpin_user_page(). 373 * 374 * Please see the unpin_user_page() documentation for details. 375 */ 376 void unpin_user_pages(struct page **pages, unsigned long npages) 377 { 378 unsigned long index; 379 struct page *head; 380 unsigned int ntails; 381 382 /* 383 * If this WARN_ON() fires, then the system *might* be leaking pages (by 384 * leaving them pinned), but probably not. More likely, gup/pup returned 385 * a hard -ERRNO error to the caller, who erroneously passed it here. 386 */ 387 if (WARN_ON(IS_ERR_VALUE(npages))) 388 return; 389 390 for_each_compound_head(index, pages, npages, head, ntails) 391 put_compound_head(head, ntails, FOLL_PIN); 392 } 393 EXPORT_SYMBOL(unpin_user_pages); 394 395 #ifdef CONFIG_MMU 396 static struct page *no_page_table(struct vm_area_struct *vma, 397 unsigned int flags) 398 { 399 /* 400 * When core dumping an enormous anonymous area that nobody 401 * has touched so far, we don't want to allocate unnecessary pages or 402 * page tables. Return error instead of NULL to skip handle_mm_fault, 403 * then get_dump_page() will return NULL to leave a hole in the dump. 404 * But we can only make this optimization where a hole would surely 405 * be zero-filled if handle_mm_fault() actually did handle it. 406 */ 407 if ((flags & FOLL_DUMP) && 408 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 409 return ERR_PTR(-EFAULT); 410 return NULL; 411 } 412 413 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 414 pte_t *pte, unsigned int flags) 415 { 416 /* No page to get reference */ 417 if (flags & FOLL_GET) 418 return -EFAULT; 419 420 if (flags & FOLL_TOUCH) { 421 pte_t entry = *pte; 422 423 if (flags & FOLL_WRITE) 424 entry = pte_mkdirty(entry); 425 entry = pte_mkyoung(entry); 426 427 if (!pte_same(*pte, entry)) { 428 set_pte_at(vma->vm_mm, address, pte, entry); 429 update_mmu_cache(vma, address, pte); 430 } 431 } 432 433 /* Proper page table entry exists, but no corresponding struct page */ 434 return -EEXIST; 435 } 436 437 /* 438 * FOLL_FORCE can write to even unwritable pte's, but only 439 * after we've gone through a COW cycle and they are dirty. 440 */ 441 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 442 { 443 return pte_write(pte) || 444 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 445 } 446 447 static struct page *follow_page_pte(struct vm_area_struct *vma, 448 unsigned long address, pmd_t *pmd, unsigned int flags, 449 struct dev_pagemap **pgmap) 450 { 451 struct mm_struct *mm = vma->vm_mm; 452 struct page *page; 453 spinlock_t *ptl; 454 pte_t *ptep, pte; 455 int ret; 456 457 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 458 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 459 (FOLL_PIN | FOLL_GET))) 460 return ERR_PTR(-EINVAL); 461 retry: 462 if (unlikely(pmd_bad(*pmd))) 463 return no_page_table(vma, flags); 464 465 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 466 pte = *ptep; 467 if (!pte_present(pte)) { 468 swp_entry_t entry; 469 /* 470 * KSM's break_ksm() relies upon recognizing a ksm page 471 * even while it is being migrated, so for that case we 472 * need migration_entry_wait(). 473 */ 474 if (likely(!(flags & FOLL_MIGRATION))) 475 goto no_page; 476 if (pte_none(pte)) 477 goto no_page; 478 entry = pte_to_swp_entry(pte); 479 if (!is_migration_entry(entry)) 480 goto no_page; 481 pte_unmap_unlock(ptep, ptl); 482 migration_entry_wait(mm, pmd, address); 483 goto retry; 484 } 485 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 486 goto no_page; 487 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 488 pte_unmap_unlock(ptep, ptl); 489 return NULL; 490 } 491 492 page = vm_normal_page(vma, address, pte); 493 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 494 /* 495 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 496 * case since they are only valid while holding the pgmap 497 * reference. 498 */ 499 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 500 if (*pgmap) 501 page = pte_page(pte); 502 else 503 goto no_page; 504 } else if (unlikely(!page)) { 505 if (flags & FOLL_DUMP) { 506 /* Avoid special (like zero) pages in core dumps */ 507 page = ERR_PTR(-EFAULT); 508 goto out; 509 } 510 511 if (is_zero_pfn(pte_pfn(pte))) { 512 page = pte_page(pte); 513 } else { 514 ret = follow_pfn_pte(vma, address, ptep, flags); 515 page = ERR_PTR(ret); 516 goto out; 517 } 518 } 519 520 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 521 if (unlikely(!try_grab_page(page, flags))) { 522 page = ERR_PTR(-ENOMEM); 523 goto out; 524 } 525 /* 526 * We need to make the page accessible if and only if we are going 527 * to access its content (the FOLL_PIN case). Please see 528 * Documentation/core-api/pin_user_pages.rst for details. 529 */ 530 if (flags & FOLL_PIN) { 531 ret = arch_make_page_accessible(page); 532 if (ret) { 533 unpin_user_page(page); 534 page = ERR_PTR(ret); 535 goto out; 536 } 537 } 538 if (flags & FOLL_TOUCH) { 539 if ((flags & FOLL_WRITE) && 540 !pte_dirty(pte) && !PageDirty(page)) 541 set_page_dirty(page); 542 /* 543 * pte_mkyoung() would be more correct here, but atomic care 544 * is needed to avoid losing the dirty bit: it is easier to use 545 * mark_page_accessed(). 546 */ 547 mark_page_accessed(page); 548 } 549 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 550 /* Do not mlock pte-mapped THP */ 551 if (PageTransCompound(page)) 552 goto out; 553 554 /* 555 * The preliminary mapping check is mainly to avoid the 556 * pointless overhead of lock_page on the ZERO_PAGE 557 * which might bounce very badly if there is contention. 558 * 559 * If the page is already locked, we don't need to 560 * handle it now - vmscan will handle it later if and 561 * when it attempts to reclaim the page. 562 */ 563 if (page->mapping && trylock_page(page)) { 564 lru_add_drain(); /* push cached pages to LRU */ 565 /* 566 * Because we lock page here, and migration is 567 * blocked by the pte's page reference, and we 568 * know the page is still mapped, we don't even 569 * need to check for file-cache page truncation. 570 */ 571 mlock_vma_page(page); 572 unlock_page(page); 573 } 574 } 575 out: 576 pte_unmap_unlock(ptep, ptl); 577 return page; 578 no_page: 579 pte_unmap_unlock(ptep, ptl); 580 if (!pte_none(pte)) 581 return NULL; 582 return no_page_table(vma, flags); 583 } 584 585 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 586 unsigned long address, pud_t *pudp, 587 unsigned int flags, 588 struct follow_page_context *ctx) 589 { 590 pmd_t *pmd, pmdval; 591 spinlock_t *ptl; 592 struct page *page; 593 struct mm_struct *mm = vma->vm_mm; 594 595 pmd = pmd_offset(pudp, address); 596 /* 597 * The READ_ONCE() will stabilize the pmdval in a register or 598 * on the stack so that it will stop changing under the code. 599 */ 600 pmdval = READ_ONCE(*pmd); 601 if (pmd_none(pmdval)) 602 return no_page_table(vma, flags); 603 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 604 page = follow_huge_pmd(mm, address, pmd, flags); 605 if (page) 606 return page; 607 return no_page_table(vma, flags); 608 } 609 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 610 page = follow_huge_pd(vma, address, 611 __hugepd(pmd_val(pmdval)), flags, 612 PMD_SHIFT); 613 if (page) 614 return page; 615 return no_page_table(vma, flags); 616 } 617 retry: 618 if (!pmd_present(pmdval)) { 619 if (likely(!(flags & FOLL_MIGRATION))) 620 return no_page_table(vma, flags); 621 VM_BUG_ON(thp_migration_supported() && 622 !is_pmd_migration_entry(pmdval)); 623 if (is_pmd_migration_entry(pmdval)) 624 pmd_migration_entry_wait(mm, pmd); 625 pmdval = READ_ONCE(*pmd); 626 /* 627 * MADV_DONTNEED may convert the pmd to null because 628 * mmap_lock is held in read mode 629 */ 630 if (pmd_none(pmdval)) 631 return no_page_table(vma, flags); 632 goto retry; 633 } 634 if (pmd_devmap(pmdval)) { 635 ptl = pmd_lock(mm, pmd); 636 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 637 spin_unlock(ptl); 638 if (page) 639 return page; 640 } 641 if (likely(!pmd_trans_huge(pmdval))) 642 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 643 644 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 645 return no_page_table(vma, flags); 646 647 retry_locked: 648 ptl = pmd_lock(mm, pmd); 649 if (unlikely(pmd_none(*pmd))) { 650 spin_unlock(ptl); 651 return no_page_table(vma, flags); 652 } 653 if (unlikely(!pmd_present(*pmd))) { 654 spin_unlock(ptl); 655 if (likely(!(flags & FOLL_MIGRATION))) 656 return no_page_table(vma, flags); 657 pmd_migration_entry_wait(mm, pmd); 658 goto retry_locked; 659 } 660 if (unlikely(!pmd_trans_huge(*pmd))) { 661 spin_unlock(ptl); 662 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 663 } 664 if (flags & FOLL_SPLIT_PMD) { 665 int ret; 666 page = pmd_page(*pmd); 667 if (is_huge_zero_page(page)) { 668 spin_unlock(ptl); 669 ret = 0; 670 split_huge_pmd(vma, pmd, address); 671 if (pmd_trans_unstable(pmd)) 672 ret = -EBUSY; 673 } else { 674 spin_unlock(ptl); 675 split_huge_pmd(vma, pmd, address); 676 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 677 } 678 679 return ret ? ERR_PTR(ret) : 680 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 681 } 682 page = follow_trans_huge_pmd(vma, address, pmd, flags); 683 spin_unlock(ptl); 684 ctx->page_mask = HPAGE_PMD_NR - 1; 685 return page; 686 } 687 688 static struct page *follow_pud_mask(struct vm_area_struct *vma, 689 unsigned long address, p4d_t *p4dp, 690 unsigned int flags, 691 struct follow_page_context *ctx) 692 { 693 pud_t *pud; 694 spinlock_t *ptl; 695 struct page *page; 696 struct mm_struct *mm = vma->vm_mm; 697 698 pud = pud_offset(p4dp, address); 699 if (pud_none(*pud)) 700 return no_page_table(vma, flags); 701 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 702 page = follow_huge_pud(mm, address, pud, flags); 703 if (page) 704 return page; 705 return no_page_table(vma, flags); 706 } 707 if (is_hugepd(__hugepd(pud_val(*pud)))) { 708 page = follow_huge_pd(vma, address, 709 __hugepd(pud_val(*pud)), flags, 710 PUD_SHIFT); 711 if (page) 712 return page; 713 return no_page_table(vma, flags); 714 } 715 if (pud_devmap(*pud)) { 716 ptl = pud_lock(mm, pud); 717 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 718 spin_unlock(ptl); 719 if (page) 720 return page; 721 } 722 if (unlikely(pud_bad(*pud))) 723 return no_page_table(vma, flags); 724 725 return follow_pmd_mask(vma, address, pud, flags, ctx); 726 } 727 728 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 729 unsigned long address, pgd_t *pgdp, 730 unsigned int flags, 731 struct follow_page_context *ctx) 732 { 733 p4d_t *p4d; 734 struct page *page; 735 736 p4d = p4d_offset(pgdp, address); 737 if (p4d_none(*p4d)) 738 return no_page_table(vma, flags); 739 BUILD_BUG_ON(p4d_huge(*p4d)); 740 if (unlikely(p4d_bad(*p4d))) 741 return no_page_table(vma, flags); 742 743 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 744 page = follow_huge_pd(vma, address, 745 __hugepd(p4d_val(*p4d)), flags, 746 P4D_SHIFT); 747 if (page) 748 return page; 749 return no_page_table(vma, flags); 750 } 751 return follow_pud_mask(vma, address, p4d, flags, ctx); 752 } 753 754 /** 755 * follow_page_mask - look up a page descriptor from a user-virtual address 756 * @vma: vm_area_struct mapping @address 757 * @address: virtual address to look up 758 * @flags: flags modifying lookup behaviour 759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 760 * pointer to output page_mask 761 * 762 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 763 * 764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 765 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 766 * 767 * On output, the @ctx->page_mask is set according to the size of the page. 768 * 769 * Return: the mapped (struct page *), %NULL if no mapping exists, or 770 * an error pointer if there is a mapping to something not represented 771 * by a page descriptor (see also vm_normal_page()). 772 */ 773 static struct page *follow_page_mask(struct vm_area_struct *vma, 774 unsigned long address, unsigned int flags, 775 struct follow_page_context *ctx) 776 { 777 pgd_t *pgd; 778 struct page *page; 779 struct mm_struct *mm = vma->vm_mm; 780 781 ctx->page_mask = 0; 782 783 /* make this handle hugepd */ 784 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 785 if (!IS_ERR(page)) { 786 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 787 return page; 788 } 789 790 pgd = pgd_offset(mm, address); 791 792 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 793 return no_page_table(vma, flags); 794 795 if (pgd_huge(*pgd)) { 796 page = follow_huge_pgd(mm, address, pgd, flags); 797 if (page) 798 return page; 799 return no_page_table(vma, flags); 800 } 801 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 802 page = follow_huge_pd(vma, address, 803 __hugepd(pgd_val(*pgd)), flags, 804 PGDIR_SHIFT); 805 if (page) 806 return page; 807 return no_page_table(vma, flags); 808 } 809 810 return follow_p4d_mask(vma, address, pgd, flags, ctx); 811 } 812 813 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 814 unsigned int foll_flags) 815 { 816 struct follow_page_context ctx = { NULL }; 817 struct page *page; 818 819 page = follow_page_mask(vma, address, foll_flags, &ctx); 820 if (ctx.pgmap) 821 put_dev_pagemap(ctx.pgmap); 822 return page; 823 } 824 825 static int get_gate_page(struct mm_struct *mm, unsigned long address, 826 unsigned int gup_flags, struct vm_area_struct **vma, 827 struct page **page) 828 { 829 pgd_t *pgd; 830 p4d_t *p4d; 831 pud_t *pud; 832 pmd_t *pmd; 833 pte_t *pte; 834 int ret = -EFAULT; 835 836 /* user gate pages are read-only */ 837 if (gup_flags & FOLL_WRITE) 838 return -EFAULT; 839 if (address > TASK_SIZE) 840 pgd = pgd_offset_k(address); 841 else 842 pgd = pgd_offset_gate(mm, address); 843 if (pgd_none(*pgd)) 844 return -EFAULT; 845 p4d = p4d_offset(pgd, address); 846 if (p4d_none(*p4d)) 847 return -EFAULT; 848 pud = pud_offset(p4d, address); 849 if (pud_none(*pud)) 850 return -EFAULT; 851 pmd = pmd_offset(pud, address); 852 if (!pmd_present(*pmd)) 853 return -EFAULT; 854 VM_BUG_ON(pmd_trans_huge(*pmd)); 855 pte = pte_offset_map(pmd, address); 856 if (pte_none(*pte)) 857 goto unmap; 858 *vma = get_gate_vma(mm); 859 if (!page) 860 goto out; 861 *page = vm_normal_page(*vma, address, *pte); 862 if (!*page) { 863 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 864 goto unmap; 865 *page = pte_page(*pte); 866 } 867 if (unlikely(!try_grab_page(*page, gup_flags))) { 868 ret = -ENOMEM; 869 goto unmap; 870 } 871 out: 872 ret = 0; 873 unmap: 874 pte_unmap(pte); 875 return ret; 876 } 877 878 /* 879 * mmap_lock must be held on entry. If @locked != NULL and *@flags 880 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 881 * is, *@locked will be set to 0 and -EBUSY returned. 882 */ 883 static int faultin_page(struct vm_area_struct *vma, 884 unsigned long address, unsigned int *flags, int *locked) 885 { 886 unsigned int fault_flags = 0; 887 vm_fault_t ret; 888 889 /* mlock all present pages, but do not fault in new pages */ 890 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 891 return -ENOENT; 892 if (*flags & FOLL_WRITE) 893 fault_flags |= FAULT_FLAG_WRITE; 894 if (*flags & FOLL_REMOTE) 895 fault_flags |= FAULT_FLAG_REMOTE; 896 if (locked) 897 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 898 if (*flags & FOLL_NOWAIT) 899 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 900 if (*flags & FOLL_TRIED) { 901 /* 902 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 903 * can co-exist 904 */ 905 fault_flags |= FAULT_FLAG_TRIED; 906 } 907 908 ret = handle_mm_fault(vma, address, fault_flags, NULL); 909 if (ret & VM_FAULT_ERROR) { 910 int err = vm_fault_to_errno(ret, *flags); 911 912 if (err) 913 return err; 914 BUG(); 915 } 916 917 if (ret & VM_FAULT_RETRY) { 918 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 919 *locked = 0; 920 return -EBUSY; 921 } 922 923 /* 924 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 925 * necessary, even if maybe_mkwrite decided not to set pte_write. We 926 * can thus safely do subsequent page lookups as if they were reads. 927 * But only do so when looping for pte_write is futile: in some cases 928 * userspace may also be wanting to write to the gotten user page, 929 * which a read fault here might prevent (a readonly page might get 930 * reCOWed by userspace write). 931 */ 932 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 933 *flags |= FOLL_COW; 934 return 0; 935 } 936 937 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 938 { 939 vm_flags_t vm_flags = vma->vm_flags; 940 int write = (gup_flags & FOLL_WRITE); 941 int foreign = (gup_flags & FOLL_REMOTE); 942 943 if (vm_flags & (VM_IO | VM_PFNMAP)) 944 return -EFAULT; 945 946 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 947 return -EFAULT; 948 949 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 950 return -EOPNOTSUPP; 951 952 if (write) { 953 if (!(vm_flags & VM_WRITE)) { 954 if (!(gup_flags & FOLL_FORCE)) 955 return -EFAULT; 956 /* 957 * We used to let the write,force case do COW in a 958 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 959 * set a breakpoint in a read-only mapping of an 960 * executable, without corrupting the file (yet only 961 * when that file had been opened for writing!). 962 * Anon pages in shared mappings are surprising: now 963 * just reject it. 964 */ 965 if (!is_cow_mapping(vm_flags)) 966 return -EFAULT; 967 } 968 } else if (!(vm_flags & VM_READ)) { 969 if (!(gup_flags & FOLL_FORCE)) 970 return -EFAULT; 971 /* 972 * Is there actually any vma we can reach here which does not 973 * have VM_MAYREAD set? 974 */ 975 if (!(vm_flags & VM_MAYREAD)) 976 return -EFAULT; 977 } 978 /* 979 * gups are always data accesses, not instruction 980 * fetches, so execute=false here 981 */ 982 if (!arch_vma_access_permitted(vma, write, false, foreign)) 983 return -EFAULT; 984 return 0; 985 } 986 987 /** 988 * __get_user_pages() - pin user pages in memory 989 * @mm: mm_struct of target mm 990 * @start: starting user address 991 * @nr_pages: number of pages from start to pin 992 * @gup_flags: flags modifying pin behaviour 993 * @pages: array that receives pointers to the pages pinned. 994 * Should be at least nr_pages long. Or NULL, if caller 995 * only intends to ensure the pages are faulted in. 996 * @vmas: array of pointers to vmas corresponding to each page. 997 * Or NULL if the caller does not require them. 998 * @locked: whether we're still with the mmap_lock held 999 * 1000 * Returns either number of pages pinned (which may be less than the 1001 * number requested), or an error. Details about the return value: 1002 * 1003 * -- If nr_pages is 0, returns 0. 1004 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1005 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1006 * pages pinned. Again, this may be less than nr_pages. 1007 * -- 0 return value is possible when the fault would need to be retried. 1008 * 1009 * The caller is responsible for releasing returned @pages, via put_page(). 1010 * 1011 * @vmas are valid only as long as mmap_lock is held. 1012 * 1013 * Must be called with mmap_lock held. It may be released. See below. 1014 * 1015 * __get_user_pages walks a process's page tables and takes a reference to 1016 * each struct page that each user address corresponds to at a given 1017 * instant. That is, it takes the page that would be accessed if a user 1018 * thread accesses the given user virtual address at that instant. 1019 * 1020 * This does not guarantee that the page exists in the user mappings when 1021 * __get_user_pages returns, and there may even be a completely different 1022 * page there in some cases (eg. if mmapped pagecache has been invalidated 1023 * and subsequently re faulted). However it does guarantee that the page 1024 * won't be freed completely. And mostly callers simply care that the page 1025 * contains data that was valid *at some point in time*. Typically, an IO 1026 * or similar operation cannot guarantee anything stronger anyway because 1027 * locks can't be held over the syscall boundary. 1028 * 1029 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1030 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1031 * appropriate) must be called after the page is finished with, and 1032 * before put_page is called. 1033 * 1034 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1035 * released by an up_read(). That can happen if @gup_flags does not 1036 * have FOLL_NOWAIT. 1037 * 1038 * A caller using such a combination of @locked and @gup_flags 1039 * must therefore hold the mmap_lock for reading only, and recognize 1040 * when it's been released. Otherwise, it must be held for either 1041 * reading or writing and will not be released. 1042 * 1043 * In most cases, get_user_pages or get_user_pages_fast should be used 1044 * instead of __get_user_pages. __get_user_pages should be used only if 1045 * you need some special @gup_flags. 1046 */ 1047 static long __get_user_pages(struct mm_struct *mm, 1048 unsigned long start, unsigned long nr_pages, 1049 unsigned int gup_flags, struct page **pages, 1050 struct vm_area_struct **vmas, int *locked) 1051 { 1052 long ret = 0, i = 0; 1053 struct vm_area_struct *vma = NULL; 1054 struct follow_page_context ctx = { NULL }; 1055 1056 if (!nr_pages) 1057 return 0; 1058 1059 start = untagged_addr(start); 1060 1061 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1062 1063 /* 1064 * If FOLL_FORCE is set then do not force a full fault as the hinting 1065 * fault information is unrelated to the reference behaviour of a task 1066 * using the address space 1067 */ 1068 if (!(gup_flags & FOLL_FORCE)) 1069 gup_flags |= FOLL_NUMA; 1070 1071 do { 1072 struct page *page; 1073 unsigned int foll_flags = gup_flags; 1074 unsigned int page_increm; 1075 1076 /* first iteration or cross vma bound */ 1077 if (!vma || start >= vma->vm_end) { 1078 vma = find_extend_vma(mm, start); 1079 if (!vma && in_gate_area(mm, start)) { 1080 ret = get_gate_page(mm, start & PAGE_MASK, 1081 gup_flags, &vma, 1082 pages ? &pages[i] : NULL); 1083 if (ret) 1084 goto out; 1085 ctx.page_mask = 0; 1086 goto next_page; 1087 } 1088 1089 if (!vma) { 1090 ret = -EFAULT; 1091 goto out; 1092 } 1093 ret = check_vma_flags(vma, gup_flags); 1094 if (ret) 1095 goto out; 1096 1097 if (is_vm_hugetlb_page(vma)) { 1098 i = follow_hugetlb_page(mm, vma, pages, vmas, 1099 &start, &nr_pages, i, 1100 gup_flags, locked); 1101 if (locked && *locked == 0) { 1102 /* 1103 * We've got a VM_FAULT_RETRY 1104 * and we've lost mmap_lock. 1105 * We must stop here. 1106 */ 1107 BUG_ON(gup_flags & FOLL_NOWAIT); 1108 BUG_ON(ret != 0); 1109 goto out; 1110 } 1111 continue; 1112 } 1113 } 1114 retry: 1115 /* 1116 * If we have a pending SIGKILL, don't keep faulting pages and 1117 * potentially allocating memory. 1118 */ 1119 if (fatal_signal_pending(current)) { 1120 ret = -EINTR; 1121 goto out; 1122 } 1123 cond_resched(); 1124 1125 page = follow_page_mask(vma, start, foll_flags, &ctx); 1126 if (!page) { 1127 ret = faultin_page(vma, start, &foll_flags, locked); 1128 switch (ret) { 1129 case 0: 1130 goto retry; 1131 case -EBUSY: 1132 ret = 0; 1133 fallthrough; 1134 case -EFAULT: 1135 case -ENOMEM: 1136 case -EHWPOISON: 1137 goto out; 1138 case -ENOENT: 1139 goto next_page; 1140 } 1141 BUG(); 1142 } else if (PTR_ERR(page) == -EEXIST) { 1143 /* 1144 * Proper page table entry exists, but no corresponding 1145 * struct page. 1146 */ 1147 goto next_page; 1148 } else if (IS_ERR(page)) { 1149 ret = PTR_ERR(page); 1150 goto out; 1151 } 1152 if (pages) { 1153 pages[i] = page; 1154 flush_anon_page(vma, page, start); 1155 flush_dcache_page(page); 1156 ctx.page_mask = 0; 1157 } 1158 next_page: 1159 if (vmas) { 1160 vmas[i] = vma; 1161 ctx.page_mask = 0; 1162 } 1163 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1164 if (page_increm > nr_pages) 1165 page_increm = nr_pages; 1166 i += page_increm; 1167 start += page_increm * PAGE_SIZE; 1168 nr_pages -= page_increm; 1169 } while (nr_pages); 1170 out: 1171 if (ctx.pgmap) 1172 put_dev_pagemap(ctx.pgmap); 1173 return i ? i : ret; 1174 } 1175 1176 static bool vma_permits_fault(struct vm_area_struct *vma, 1177 unsigned int fault_flags) 1178 { 1179 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1180 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1181 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1182 1183 if (!(vm_flags & vma->vm_flags)) 1184 return false; 1185 1186 /* 1187 * The architecture might have a hardware protection 1188 * mechanism other than read/write that can deny access. 1189 * 1190 * gup always represents data access, not instruction 1191 * fetches, so execute=false here: 1192 */ 1193 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1194 return false; 1195 1196 return true; 1197 } 1198 1199 /** 1200 * fixup_user_fault() - manually resolve a user page fault 1201 * @mm: mm_struct of target mm 1202 * @address: user address 1203 * @fault_flags:flags to pass down to handle_mm_fault() 1204 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1205 * does not allow retry. If NULL, the caller must guarantee 1206 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1207 * 1208 * This is meant to be called in the specific scenario where for locking reasons 1209 * we try to access user memory in atomic context (within a pagefault_disable() 1210 * section), this returns -EFAULT, and we want to resolve the user fault before 1211 * trying again. 1212 * 1213 * Typically this is meant to be used by the futex code. 1214 * 1215 * The main difference with get_user_pages() is that this function will 1216 * unconditionally call handle_mm_fault() which will in turn perform all the 1217 * necessary SW fixup of the dirty and young bits in the PTE, while 1218 * get_user_pages() only guarantees to update these in the struct page. 1219 * 1220 * This is important for some architectures where those bits also gate the 1221 * access permission to the page because they are maintained in software. On 1222 * such architectures, gup() will not be enough to make a subsequent access 1223 * succeed. 1224 * 1225 * This function will not return with an unlocked mmap_lock. So it has not the 1226 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1227 */ 1228 int fixup_user_fault(struct mm_struct *mm, 1229 unsigned long address, unsigned int fault_flags, 1230 bool *unlocked) 1231 { 1232 struct vm_area_struct *vma; 1233 vm_fault_t ret, major = 0; 1234 1235 address = untagged_addr(address); 1236 1237 if (unlocked) 1238 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1239 1240 retry: 1241 vma = find_extend_vma(mm, address); 1242 if (!vma || address < vma->vm_start) 1243 return -EFAULT; 1244 1245 if (!vma_permits_fault(vma, fault_flags)) 1246 return -EFAULT; 1247 1248 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1249 fatal_signal_pending(current)) 1250 return -EINTR; 1251 1252 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1253 major |= ret & VM_FAULT_MAJOR; 1254 if (ret & VM_FAULT_ERROR) { 1255 int err = vm_fault_to_errno(ret, 0); 1256 1257 if (err) 1258 return err; 1259 BUG(); 1260 } 1261 1262 if (ret & VM_FAULT_RETRY) { 1263 mmap_read_lock(mm); 1264 *unlocked = true; 1265 fault_flags |= FAULT_FLAG_TRIED; 1266 goto retry; 1267 } 1268 1269 return 0; 1270 } 1271 EXPORT_SYMBOL_GPL(fixup_user_fault); 1272 1273 /* 1274 * Please note that this function, unlike __get_user_pages will not 1275 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1276 */ 1277 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1278 unsigned long start, 1279 unsigned long nr_pages, 1280 struct page **pages, 1281 struct vm_area_struct **vmas, 1282 int *locked, 1283 unsigned int flags) 1284 { 1285 long ret, pages_done; 1286 bool lock_dropped; 1287 1288 if (locked) { 1289 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1290 BUG_ON(vmas); 1291 /* check caller initialized locked */ 1292 BUG_ON(*locked != 1); 1293 } 1294 1295 if (flags & FOLL_PIN) 1296 atomic_set(&mm->has_pinned, 1); 1297 1298 /* 1299 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1300 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1301 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1302 * for FOLL_GET, not for the newer FOLL_PIN. 1303 * 1304 * FOLL_PIN always expects pages to be non-null, but no need to assert 1305 * that here, as any failures will be obvious enough. 1306 */ 1307 if (pages && !(flags & FOLL_PIN)) 1308 flags |= FOLL_GET; 1309 1310 pages_done = 0; 1311 lock_dropped = false; 1312 for (;;) { 1313 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1314 vmas, locked); 1315 if (!locked) 1316 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1317 return ret; 1318 1319 /* VM_FAULT_RETRY cannot return errors */ 1320 if (!*locked) { 1321 BUG_ON(ret < 0); 1322 BUG_ON(ret >= nr_pages); 1323 } 1324 1325 if (ret > 0) { 1326 nr_pages -= ret; 1327 pages_done += ret; 1328 if (!nr_pages) 1329 break; 1330 } 1331 if (*locked) { 1332 /* 1333 * VM_FAULT_RETRY didn't trigger or it was a 1334 * FOLL_NOWAIT. 1335 */ 1336 if (!pages_done) 1337 pages_done = ret; 1338 break; 1339 } 1340 /* 1341 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1342 * For the prefault case (!pages) we only update counts. 1343 */ 1344 if (likely(pages)) 1345 pages += ret; 1346 start += ret << PAGE_SHIFT; 1347 lock_dropped = true; 1348 1349 retry: 1350 /* 1351 * Repeat on the address that fired VM_FAULT_RETRY 1352 * with both FAULT_FLAG_ALLOW_RETRY and 1353 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1354 * by fatal signals, so we need to check it before we 1355 * start trying again otherwise it can loop forever. 1356 */ 1357 1358 if (fatal_signal_pending(current)) { 1359 if (!pages_done) 1360 pages_done = -EINTR; 1361 break; 1362 } 1363 1364 ret = mmap_read_lock_killable(mm); 1365 if (ret) { 1366 BUG_ON(ret > 0); 1367 if (!pages_done) 1368 pages_done = ret; 1369 break; 1370 } 1371 1372 *locked = 1; 1373 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1374 pages, NULL, locked); 1375 if (!*locked) { 1376 /* Continue to retry until we succeeded */ 1377 BUG_ON(ret != 0); 1378 goto retry; 1379 } 1380 if (ret != 1) { 1381 BUG_ON(ret > 1); 1382 if (!pages_done) 1383 pages_done = ret; 1384 break; 1385 } 1386 nr_pages--; 1387 pages_done++; 1388 if (!nr_pages) 1389 break; 1390 if (likely(pages)) 1391 pages++; 1392 start += PAGE_SIZE; 1393 } 1394 if (lock_dropped && *locked) { 1395 /* 1396 * We must let the caller know we temporarily dropped the lock 1397 * and so the critical section protected by it was lost. 1398 */ 1399 mmap_read_unlock(mm); 1400 *locked = 0; 1401 } 1402 return pages_done; 1403 } 1404 1405 /** 1406 * populate_vma_page_range() - populate a range of pages in the vma. 1407 * @vma: target vma 1408 * @start: start address 1409 * @end: end address 1410 * @locked: whether the mmap_lock is still held 1411 * 1412 * This takes care of mlocking the pages too if VM_LOCKED is set. 1413 * 1414 * Return either number of pages pinned in the vma, or a negative error 1415 * code on error. 1416 * 1417 * vma->vm_mm->mmap_lock must be held. 1418 * 1419 * If @locked is NULL, it may be held for read or write and will 1420 * be unperturbed. 1421 * 1422 * If @locked is non-NULL, it must held for read only and may be 1423 * released. If it's released, *@locked will be set to 0. 1424 */ 1425 long populate_vma_page_range(struct vm_area_struct *vma, 1426 unsigned long start, unsigned long end, int *locked) 1427 { 1428 struct mm_struct *mm = vma->vm_mm; 1429 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1430 int gup_flags; 1431 1432 VM_BUG_ON(start & ~PAGE_MASK); 1433 VM_BUG_ON(end & ~PAGE_MASK); 1434 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1435 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1436 mmap_assert_locked(mm); 1437 1438 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1439 if (vma->vm_flags & VM_LOCKONFAULT) 1440 gup_flags &= ~FOLL_POPULATE; 1441 /* 1442 * We want to touch writable mappings with a write fault in order 1443 * to break COW, except for shared mappings because these don't COW 1444 * and we would not want to dirty them for nothing. 1445 */ 1446 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1447 gup_flags |= FOLL_WRITE; 1448 1449 /* 1450 * We want mlock to succeed for regions that have any permissions 1451 * other than PROT_NONE. 1452 */ 1453 if (vma_is_accessible(vma)) 1454 gup_flags |= FOLL_FORCE; 1455 1456 /* 1457 * We made sure addr is within a VMA, so the following will 1458 * not result in a stack expansion that recurses back here. 1459 */ 1460 return __get_user_pages(mm, start, nr_pages, gup_flags, 1461 NULL, NULL, locked); 1462 } 1463 1464 /* 1465 * __mm_populate - populate and/or mlock pages within a range of address space. 1466 * 1467 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1468 * flags. VMAs must be already marked with the desired vm_flags, and 1469 * mmap_lock must not be held. 1470 */ 1471 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1472 { 1473 struct mm_struct *mm = current->mm; 1474 unsigned long end, nstart, nend; 1475 struct vm_area_struct *vma = NULL; 1476 int locked = 0; 1477 long ret = 0; 1478 1479 end = start + len; 1480 1481 for (nstart = start; nstart < end; nstart = nend) { 1482 /* 1483 * We want to fault in pages for [nstart; end) address range. 1484 * Find first corresponding VMA. 1485 */ 1486 if (!locked) { 1487 locked = 1; 1488 mmap_read_lock(mm); 1489 vma = find_vma(mm, nstart); 1490 } else if (nstart >= vma->vm_end) 1491 vma = vma->vm_next; 1492 if (!vma || vma->vm_start >= end) 1493 break; 1494 /* 1495 * Set [nstart; nend) to intersection of desired address 1496 * range with the first VMA. Also, skip undesirable VMA types. 1497 */ 1498 nend = min(end, vma->vm_end); 1499 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1500 continue; 1501 if (nstart < vma->vm_start) 1502 nstart = vma->vm_start; 1503 /* 1504 * Now fault in a range of pages. populate_vma_page_range() 1505 * double checks the vma flags, so that it won't mlock pages 1506 * if the vma was already munlocked. 1507 */ 1508 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1509 if (ret < 0) { 1510 if (ignore_errors) { 1511 ret = 0; 1512 continue; /* continue at next VMA */ 1513 } 1514 break; 1515 } 1516 nend = nstart + ret * PAGE_SIZE; 1517 ret = 0; 1518 } 1519 if (locked) 1520 mmap_read_unlock(mm); 1521 return ret; /* 0 or negative error code */ 1522 } 1523 #else /* CONFIG_MMU */ 1524 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1525 unsigned long nr_pages, struct page **pages, 1526 struct vm_area_struct **vmas, int *locked, 1527 unsigned int foll_flags) 1528 { 1529 struct vm_area_struct *vma; 1530 unsigned long vm_flags; 1531 long i; 1532 1533 /* calculate required read or write permissions. 1534 * If FOLL_FORCE is set, we only require the "MAY" flags. 1535 */ 1536 vm_flags = (foll_flags & FOLL_WRITE) ? 1537 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1538 vm_flags &= (foll_flags & FOLL_FORCE) ? 1539 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1540 1541 for (i = 0; i < nr_pages; i++) { 1542 vma = find_vma(mm, start); 1543 if (!vma) 1544 goto finish_or_fault; 1545 1546 /* protect what we can, including chardevs */ 1547 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1548 !(vm_flags & vma->vm_flags)) 1549 goto finish_or_fault; 1550 1551 if (pages) { 1552 pages[i] = virt_to_page(start); 1553 if (pages[i]) 1554 get_page(pages[i]); 1555 } 1556 if (vmas) 1557 vmas[i] = vma; 1558 start = (start + PAGE_SIZE) & PAGE_MASK; 1559 } 1560 1561 return i; 1562 1563 finish_or_fault: 1564 return i ? : -EFAULT; 1565 } 1566 #endif /* !CONFIG_MMU */ 1567 1568 /** 1569 * get_dump_page() - pin user page in memory while writing it to core dump 1570 * @addr: user address 1571 * 1572 * Returns struct page pointer of user page pinned for dump, 1573 * to be freed afterwards by put_page(). 1574 * 1575 * Returns NULL on any kind of failure - a hole must then be inserted into 1576 * the corefile, to preserve alignment with its headers; and also returns 1577 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1578 * allowing a hole to be left in the corefile to save disk space. 1579 * 1580 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1581 */ 1582 #ifdef CONFIG_ELF_CORE 1583 struct page *get_dump_page(unsigned long addr) 1584 { 1585 struct mm_struct *mm = current->mm; 1586 struct page *page; 1587 int locked = 1; 1588 int ret; 1589 1590 if (mmap_read_lock_killable(mm)) 1591 return NULL; 1592 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1593 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1594 if (locked) 1595 mmap_read_unlock(mm); 1596 return (ret == 1) ? page : NULL; 1597 } 1598 #endif /* CONFIG_ELF_CORE */ 1599 1600 #ifdef CONFIG_MIGRATION 1601 /* 1602 * Check whether all pages are pinnable, if so return number of pages. If some 1603 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1604 * pages were migrated, or if some pages were not successfully isolated. 1605 * Return negative error if migration fails. 1606 */ 1607 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1608 struct page **pages, 1609 unsigned int gup_flags) 1610 { 1611 unsigned long i; 1612 unsigned long isolation_error_count = 0; 1613 bool drain_allow = true; 1614 LIST_HEAD(movable_page_list); 1615 long ret = 0; 1616 struct page *prev_head = NULL; 1617 struct page *head; 1618 struct migration_target_control mtc = { 1619 .nid = NUMA_NO_NODE, 1620 .gfp_mask = GFP_USER | __GFP_NOWARN, 1621 }; 1622 1623 for (i = 0; i < nr_pages; i++) { 1624 head = compound_head(pages[i]); 1625 if (head == prev_head) 1626 continue; 1627 prev_head = head; 1628 /* 1629 * If we get a movable page, since we are going to be pinning 1630 * these entries, try to move them out if possible. 1631 */ 1632 if (!is_pinnable_page(head)) { 1633 if (PageHuge(head)) { 1634 if (!isolate_huge_page(head, &movable_page_list)) 1635 isolation_error_count++; 1636 } else { 1637 if (!PageLRU(head) && drain_allow) { 1638 lru_add_drain_all(); 1639 drain_allow = false; 1640 } 1641 1642 if (isolate_lru_page(head)) { 1643 isolation_error_count++; 1644 continue; 1645 } 1646 list_add_tail(&head->lru, &movable_page_list); 1647 mod_node_page_state(page_pgdat(head), 1648 NR_ISOLATED_ANON + 1649 page_is_file_lru(head), 1650 thp_nr_pages(head)); 1651 } 1652 } 1653 } 1654 1655 /* 1656 * If list is empty, and no isolation errors, means that all pages are 1657 * in the correct zone. 1658 */ 1659 if (list_empty(&movable_page_list) && !isolation_error_count) 1660 return nr_pages; 1661 1662 if (gup_flags & FOLL_PIN) { 1663 unpin_user_pages(pages, nr_pages); 1664 } else { 1665 for (i = 0; i < nr_pages; i++) 1666 put_page(pages[i]); 1667 } 1668 if (!list_empty(&movable_page_list)) { 1669 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1670 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1671 MR_LONGTERM_PIN); 1672 if (ret && !list_empty(&movable_page_list)) 1673 putback_movable_pages(&movable_page_list); 1674 } 1675 1676 return ret > 0 ? -ENOMEM : ret; 1677 } 1678 #else 1679 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1680 struct page **pages, 1681 unsigned int gup_flags) 1682 { 1683 return nr_pages; 1684 } 1685 #endif /* CONFIG_MIGRATION */ 1686 1687 /* 1688 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1689 * allows us to process the FOLL_LONGTERM flag. 1690 */ 1691 static long __gup_longterm_locked(struct mm_struct *mm, 1692 unsigned long start, 1693 unsigned long nr_pages, 1694 struct page **pages, 1695 struct vm_area_struct **vmas, 1696 unsigned int gup_flags) 1697 { 1698 unsigned int flags; 1699 long rc; 1700 1701 if (!(gup_flags & FOLL_LONGTERM)) 1702 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1703 NULL, gup_flags); 1704 flags = memalloc_pin_save(); 1705 do { 1706 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1707 NULL, gup_flags); 1708 if (rc <= 0) 1709 break; 1710 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1711 } while (!rc); 1712 memalloc_pin_restore(flags); 1713 1714 return rc; 1715 } 1716 1717 static bool is_valid_gup_flags(unsigned int gup_flags) 1718 { 1719 /* 1720 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1721 * never directly by the caller, so enforce that with an assertion: 1722 */ 1723 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1724 return false; 1725 /* 1726 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1727 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1728 * FOLL_PIN. 1729 */ 1730 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1731 return false; 1732 1733 return true; 1734 } 1735 1736 #ifdef CONFIG_MMU 1737 static long __get_user_pages_remote(struct mm_struct *mm, 1738 unsigned long start, unsigned long nr_pages, 1739 unsigned int gup_flags, struct page **pages, 1740 struct vm_area_struct **vmas, int *locked) 1741 { 1742 /* 1743 * Parts of FOLL_LONGTERM behavior are incompatible with 1744 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1745 * vmas. However, this only comes up if locked is set, and there are 1746 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1747 * allow what we can. 1748 */ 1749 if (gup_flags & FOLL_LONGTERM) { 1750 if (WARN_ON_ONCE(locked)) 1751 return -EINVAL; 1752 /* 1753 * This will check the vmas (even if our vmas arg is NULL) 1754 * and return -ENOTSUPP if DAX isn't allowed in this case: 1755 */ 1756 return __gup_longterm_locked(mm, start, nr_pages, pages, 1757 vmas, gup_flags | FOLL_TOUCH | 1758 FOLL_REMOTE); 1759 } 1760 1761 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1762 locked, 1763 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1764 } 1765 1766 /** 1767 * get_user_pages_remote() - pin user pages in memory 1768 * @mm: mm_struct of target mm 1769 * @start: starting user address 1770 * @nr_pages: number of pages from start to pin 1771 * @gup_flags: flags modifying lookup behaviour 1772 * @pages: array that receives pointers to the pages pinned. 1773 * Should be at least nr_pages long. Or NULL, if caller 1774 * only intends to ensure the pages are faulted in. 1775 * @vmas: array of pointers to vmas corresponding to each page. 1776 * Or NULL if the caller does not require them. 1777 * @locked: pointer to lock flag indicating whether lock is held and 1778 * subsequently whether VM_FAULT_RETRY functionality can be 1779 * utilised. Lock must initially be held. 1780 * 1781 * Returns either number of pages pinned (which may be less than the 1782 * number requested), or an error. Details about the return value: 1783 * 1784 * -- If nr_pages is 0, returns 0. 1785 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1786 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1787 * pages pinned. Again, this may be less than nr_pages. 1788 * 1789 * The caller is responsible for releasing returned @pages, via put_page(). 1790 * 1791 * @vmas are valid only as long as mmap_lock is held. 1792 * 1793 * Must be called with mmap_lock held for read or write. 1794 * 1795 * get_user_pages_remote walks a process's page tables and takes a reference 1796 * to each struct page that each user address corresponds to at a given 1797 * instant. That is, it takes the page that would be accessed if a user 1798 * thread accesses the given user virtual address at that instant. 1799 * 1800 * This does not guarantee that the page exists in the user mappings when 1801 * get_user_pages_remote returns, and there may even be a completely different 1802 * page there in some cases (eg. if mmapped pagecache has been invalidated 1803 * and subsequently re faulted). However it does guarantee that the page 1804 * won't be freed completely. And mostly callers simply care that the page 1805 * contains data that was valid *at some point in time*. Typically, an IO 1806 * or similar operation cannot guarantee anything stronger anyway because 1807 * locks can't be held over the syscall boundary. 1808 * 1809 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1810 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1811 * be called after the page is finished with, and before put_page is called. 1812 * 1813 * get_user_pages_remote is typically used for fewer-copy IO operations, 1814 * to get a handle on the memory by some means other than accesses 1815 * via the user virtual addresses. The pages may be submitted for 1816 * DMA to devices or accessed via their kernel linear mapping (via the 1817 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1818 * 1819 * See also get_user_pages_fast, for performance critical applications. 1820 * 1821 * get_user_pages_remote should be phased out in favor of 1822 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1823 * should use get_user_pages_remote because it cannot pass 1824 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1825 */ 1826 long get_user_pages_remote(struct mm_struct *mm, 1827 unsigned long start, unsigned long nr_pages, 1828 unsigned int gup_flags, struct page **pages, 1829 struct vm_area_struct **vmas, int *locked) 1830 { 1831 if (!is_valid_gup_flags(gup_flags)) 1832 return -EINVAL; 1833 1834 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1835 pages, vmas, locked); 1836 } 1837 EXPORT_SYMBOL(get_user_pages_remote); 1838 1839 #else /* CONFIG_MMU */ 1840 long get_user_pages_remote(struct mm_struct *mm, 1841 unsigned long start, unsigned long nr_pages, 1842 unsigned int gup_flags, struct page **pages, 1843 struct vm_area_struct **vmas, int *locked) 1844 { 1845 return 0; 1846 } 1847 1848 static long __get_user_pages_remote(struct mm_struct *mm, 1849 unsigned long start, unsigned long nr_pages, 1850 unsigned int gup_flags, struct page **pages, 1851 struct vm_area_struct **vmas, int *locked) 1852 { 1853 return 0; 1854 } 1855 #endif /* !CONFIG_MMU */ 1856 1857 /** 1858 * get_user_pages() - pin user pages in memory 1859 * @start: starting user address 1860 * @nr_pages: number of pages from start to pin 1861 * @gup_flags: flags modifying lookup behaviour 1862 * @pages: array that receives pointers to the pages pinned. 1863 * Should be at least nr_pages long. Or NULL, if caller 1864 * only intends to ensure the pages are faulted in. 1865 * @vmas: array of pointers to vmas corresponding to each page. 1866 * Or NULL if the caller does not require them. 1867 * 1868 * This is the same as get_user_pages_remote(), just with a less-flexible 1869 * calling convention where we assume that the mm being operated on belongs to 1870 * the current task, and doesn't allow passing of a locked parameter. We also 1871 * obviously don't pass FOLL_REMOTE in here. 1872 */ 1873 long get_user_pages(unsigned long start, unsigned long nr_pages, 1874 unsigned int gup_flags, struct page **pages, 1875 struct vm_area_struct **vmas) 1876 { 1877 if (!is_valid_gup_flags(gup_flags)) 1878 return -EINVAL; 1879 1880 return __gup_longterm_locked(current->mm, start, nr_pages, 1881 pages, vmas, gup_flags | FOLL_TOUCH); 1882 } 1883 EXPORT_SYMBOL(get_user_pages); 1884 1885 /** 1886 * get_user_pages_locked() - variant of get_user_pages() 1887 * 1888 * @start: starting user address 1889 * @nr_pages: number of pages from start to pin 1890 * @gup_flags: flags modifying lookup behaviour 1891 * @pages: array that receives pointers to the pages pinned. 1892 * Should be at least nr_pages long. Or NULL, if caller 1893 * only intends to ensure the pages are faulted in. 1894 * @locked: pointer to lock flag indicating whether lock is held and 1895 * subsequently whether VM_FAULT_RETRY functionality can be 1896 * utilised. Lock must initially be held. 1897 * 1898 * It is suitable to replace the form: 1899 * 1900 * mmap_read_lock(mm); 1901 * do_something() 1902 * get_user_pages(mm, ..., pages, NULL); 1903 * mmap_read_unlock(mm); 1904 * 1905 * to: 1906 * 1907 * int locked = 1; 1908 * mmap_read_lock(mm); 1909 * do_something() 1910 * get_user_pages_locked(mm, ..., pages, &locked); 1911 * if (locked) 1912 * mmap_read_unlock(mm); 1913 * 1914 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1915 * paths better by using either get_user_pages_locked() or 1916 * get_user_pages_unlocked(). 1917 * 1918 */ 1919 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1920 unsigned int gup_flags, struct page **pages, 1921 int *locked) 1922 { 1923 /* 1924 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1925 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1926 * vmas. As there are no users of this flag in this call we simply 1927 * disallow this option for now. 1928 */ 1929 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1930 return -EINVAL; 1931 /* 1932 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1933 * never directly by the caller, so enforce that: 1934 */ 1935 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1936 return -EINVAL; 1937 1938 return __get_user_pages_locked(current->mm, start, nr_pages, 1939 pages, NULL, locked, 1940 gup_flags | FOLL_TOUCH); 1941 } 1942 EXPORT_SYMBOL(get_user_pages_locked); 1943 1944 /* 1945 * get_user_pages_unlocked() is suitable to replace the form: 1946 * 1947 * mmap_read_lock(mm); 1948 * get_user_pages(mm, ..., pages, NULL); 1949 * mmap_read_unlock(mm); 1950 * 1951 * with: 1952 * 1953 * get_user_pages_unlocked(mm, ..., pages); 1954 * 1955 * It is functionally equivalent to get_user_pages_fast so 1956 * get_user_pages_fast should be used instead if specific gup_flags 1957 * (e.g. FOLL_FORCE) are not required. 1958 */ 1959 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1960 struct page **pages, unsigned int gup_flags) 1961 { 1962 struct mm_struct *mm = current->mm; 1963 int locked = 1; 1964 long ret; 1965 1966 /* 1967 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1968 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1969 * vmas. As there are no users of this flag in this call we simply 1970 * disallow this option for now. 1971 */ 1972 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1973 return -EINVAL; 1974 1975 mmap_read_lock(mm); 1976 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 1977 &locked, gup_flags | FOLL_TOUCH); 1978 if (locked) 1979 mmap_read_unlock(mm); 1980 return ret; 1981 } 1982 EXPORT_SYMBOL(get_user_pages_unlocked); 1983 1984 /* 1985 * Fast GUP 1986 * 1987 * get_user_pages_fast attempts to pin user pages by walking the page 1988 * tables directly and avoids taking locks. Thus the walker needs to be 1989 * protected from page table pages being freed from under it, and should 1990 * block any THP splits. 1991 * 1992 * One way to achieve this is to have the walker disable interrupts, and 1993 * rely on IPIs from the TLB flushing code blocking before the page table 1994 * pages are freed. This is unsuitable for architectures that do not need 1995 * to broadcast an IPI when invalidating TLBs. 1996 * 1997 * Another way to achieve this is to batch up page table containing pages 1998 * belonging to more than one mm_user, then rcu_sched a callback to free those 1999 * pages. Disabling interrupts will allow the fast_gup walker to both block 2000 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2001 * (which is a relatively rare event). The code below adopts this strategy. 2002 * 2003 * Before activating this code, please be aware that the following assumptions 2004 * are currently made: 2005 * 2006 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2007 * free pages containing page tables or TLB flushing requires IPI broadcast. 2008 * 2009 * *) ptes can be read atomically by the architecture. 2010 * 2011 * *) access_ok is sufficient to validate userspace address ranges. 2012 * 2013 * The last two assumptions can be relaxed by the addition of helper functions. 2014 * 2015 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2016 */ 2017 #ifdef CONFIG_HAVE_FAST_GUP 2018 2019 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2020 unsigned int flags, 2021 struct page **pages) 2022 { 2023 while ((*nr) - nr_start) { 2024 struct page *page = pages[--(*nr)]; 2025 2026 ClearPageReferenced(page); 2027 if (flags & FOLL_PIN) 2028 unpin_user_page(page); 2029 else 2030 put_page(page); 2031 } 2032 } 2033 2034 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2035 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2036 unsigned int flags, struct page **pages, int *nr) 2037 { 2038 struct dev_pagemap *pgmap = NULL; 2039 int nr_start = *nr, ret = 0; 2040 pte_t *ptep, *ptem; 2041 2042 ptem = ptep = pte_offset_map(&pmd, addr); 2043 do { 2044 pte_t pte = ptep_get_lockless(ptep); 2045 struct page *head, *page; 2046 2047 /* 2048 * Similar to the PMD case below, NUMA hinting must take slow 2049 * path using the pte_protnone check. 2050 */ 2051 if (pte_protnone(pte)) 2052 goto pte_unmap; 2053 2054 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2055 goto pte_unmap; 2056 2057 if (pte_devmap(pte)) { 2058 if (unlikely(flags & FOLL_LONGTERM)) 2059 goto pte_unmap; 2060 2061 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2062 if (unlikely(!pgmap)) { 2063 undo_dev_pagemap(nr, nr_start, flags, pages); 2064 goto pte_unmap; 2065 } 2066 } else if (pte_special(pte)) 2067 goto pte_unmap; 2068 2069 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2070 page = pte_page(pte); 2071 2072 head = try_grab_compound_head(page, 1, flags); 2073 if (!head) 2074 goto pte_unmap; 2075 2076 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2077 put_compound_head(head, 1, flags); 2078 goto pte_unmap; 2079 } 2080 2081 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2082 2083 /* 2084 * We need to make the page accessible if and only if we are 2085 * going to access its content (the FOLL_PIN case). Please 2086 * see Documentation/core-api/pin_user_pages.rst for 2087 * details. 2088 */ 2089 if (flags & FOLL_PIN) { 2090 ret = arch_make_page_accessible(page); 2091 if (ret) { 2092 unpin_user_page(page); 2093 goto pte_unmap; 2094 } 2095 } 2096 SetPageReferenced(page); 2097 pages[*nr] = page; 2098 (*nr)++; 2099 2100 } while (ptep++, addr += PAGE_SIZE, addr != end); 2101 2102 ret = 1; 2103 2104 pte_unmap: 2105 if (pgmap) 2106 put_dev_pagemap(pgmap); 2107 pte_unmap(ptem); 2108 return ret; 2109 } 2110 #else 2111 2112 /* 2113 * If we can't determine whether or not a pte is special, then fail immediately 2114 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2115 * to be special. 2116 * 2117 * For a futex to be placed on a THP tail page, get_futex_key requires a 2118 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2119 * useful to have gup_huge_pmd even if we can't operate on ptes. 2120 */ 2121 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2122 unsigned int flags, struct page **pages, int *nr) 2123 { 2124 return 0; 2125 } 2126 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2127 2128 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2129 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2130 unsigned long end, unsigned int flags, 2131 struct page **pages, int *nr) 2132 { 2133 int nr_start = *nr; 2134 struct dev_pagemap *pgmap = NULL; 2135 2136 do { 2137 struct page *page = pfn_to_page(pfn); 2138 2139 pgmap = get_dev_pagemap(pfn, pgmap); 2140 if (unlikely(!pgmap)) { 2141 undo_dev_pagemap(nr, nr_start, flags, pages); 2142 return 0; 2143 } 2144 SetPageReferenced(page); 2145 pages[*nr] = page; 2146 if (unlikely(!try_grab_page(page, flags))) { 2147 undo_dev_pagemap(nr, nr_start, flags, pages); 2148 return 0; 2149 } 2150 (*nr)++; 2151 pfn++; 2152 } while (addr += PAGE_SIZE, addr != end); 2153 2154 if (pgmap) 2155 put_dev_pagemap(pgmap); 2156 return 1; 2157 } 2158 2159 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2160 unsigned long end, unsigned int flags, 2161 struct page **pages, int *nr) 2162 { 2163 unsigned long fault_pfn; 2164 int nr_start = *nr; 2165 2166 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2167 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2168 return 0; 2169 2170 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2171 undo_dev_pagemap(nr, nr_start, flags, pages); 2172 return 0; 2173 } 2174 return 1; 2175 } 2176 2177 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2178 unsigned long end, unsigned int flags, 2179 struct page **pages, int *nr) 2180 { 2181 unsigned long fault_pfn; 2182 int nr_start = *nr; 2183 2184 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2185 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2186 return 0; 2187 2188 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2189 undo_dev_pagemap(nr, nr_start, flags, pages); 2190 return 0; 2191 } 2192 return 1; 2193 } 2194 #else 2195 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2196 unsigned long end, unsigned int flags, 2197 struct page **pages, int *nr) 2198 { 2199 BUILD_BUG(); 2200 return 0; 2201 } 2202 2203 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2204 unsigned long end, unsigned int flags, 2205 struct page **pages, int *nr) 2206 { 2207 BUILD_BUG(); 2208 return 0; 2209 } 2210 #endif 2211 2212 static int record_subpages(struct page *page, unsigned long addr, 2213 unsigned long end, struct page **pages) 2214 { 2215 int nr; 2216 2217 for (nr = 0; addr != end; addr += PAGE_SIZE) 2218 pages[nr++] = page++; 2219 2220 return nr; 2221 } 2222 2223 #ifdef CONFIG_ARCH_HAS_HUGEPD 2224 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2225 unsigned long sz) 2226 { 2227 unsigned long __boundary = (addr + sz) & ~(sz-1); 2228 return (__boundary - 1 < end - 1) ? __boundary : end; 2229 } 2230 2231 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2232 unsigned long end, unsigned int flags, 2233 struct page **pages, int *nr) 2234 { 2235 unsigned long pte_end; 2236 struct page *head, *page; 2237 pte_t pte; 2238 int refs; 2239 2240 pte_end = (addr + sz) & ~(sz-1); 2241 if (pte_end < end) 2242 end = pte_end; 2243 2244 pte = huge_ptep_get(ptep); 2245 2246 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2247 return 0; 2248 2249 /* hugepages are never "special" */ 2250 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2251 2252 head = pte_page(pte); 2253 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2254 refs = record_subpages(page, addr, end, pages + *nr); 2255 2256 head = try_grab_compound_head(head, refs, flags); 2257 if (!head) 2258 return 0; 2259 2260 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2261 put_compound_head(head, refs, flags); 2262 return 0; 2263 } 2264 2265 *nr += refs; 2266 SetPageReferenced(head); 2267 return 1; 2268 } 2269 2270 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2271 unsigned int pdshift, unsigned long end, unsigned int flags, 2272 struct page **pages, int *nr) 2273 { 2274 pte_t *ptep; 2275 unsigned long sz = 1UL << hugepd_shift(hugepd); 2276 unsigned long next; 2277 2278 ptep = hugepte_offset(hugepd, addr, pdshift); 2279 do { 2280 next = hugepte_addr_end(addr, end, sz); 2281 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2282 return 0; 2283 } while (ptep++, addr = next, addr != end); 2284 2285 return 1; 2286 } 2287 #else 2288 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2289 unsigned int pdshift, unsigned long end, unsigned int flags, 2290 struct page **pages, int *nr) 2291 { 2292 return 0; 2293 } 2294 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2295 2296 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2297 unsigned long end, unsigned int flags, 2298 struct page **pages, int *nr) 2299 { 2300 struct page *head, *page; 2301 int refs; 2302 2303 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2304 return 0; 2305 2306 if (pmd_devmap(orig)) { 2307 if (unlikely(flags & FOLL_LONGTERM)) 2308 return 0; 2309 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2310 pages, nr); 2311 } 2312 2313 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2314 refs = record_subpages(page, addr, end, pages + *nr); 2315 2316 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2317 if (!head) 2318 return 0; 2319 2320 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2321 put_compound_head(head, refs, flags); 2322 return 0; 2323 } 2324 2325 *nr += refs; 2326 SetPageReferenced(head); 2327 return 1; 2328 } 2329 2330 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2331 unsigned long end, unsigned int flags, 2332 struct page **pages, int *nr) 2333 { 2334 struct page *head, *page; 2335 int refs; 2336 2337 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2338 return 0; 2339 2340 if (pud_devmap(orig)) { 2341 if (unlikely(flags & FOLL_LONGTERM)) 2342 return 0; 2343 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2344 pages, nr); 2345 } 2346 2347 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2348 refs = record_subpages(page, addr, end, pages + *nr); 2349 2350 head = try_grab_compound_head(pud_page(orig), refs, flags); 2351 if (!head) 2352 return 0; 2353 2354 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2355 put_compound_head(head, refs, flags); 2356 return 0; 2357 } 2358 2359 *nr += refs; 2360 SetPageReferenced(head); 2361 return 1; 2362 } 2363 2364 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2365 unsigned long end, unsigned int flags, 2366 struct page **pages, int *nr) 2367 { 2368 int refs; 2369 struct page *head, *page; 2370 2371 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2372 return 0; 2373 2374 BUILD_BUG_ON(pgd_devmap(orig)); 2375 2376 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2377 refs = record_subpages(page, addr, end, pages + *nr); 2378 2379 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2380 if (!head) 2381 return 0; 2382 2383 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2384 put_compound_head(head, refs, flags); 2385 return 0; 2386 } 2387 2388 *nr += refs; 2389 SetPageReferenced(head); 2390 return 1; 2391 } 2392 2393 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2394 unsigned int flags, struct page **pages, int *nr) 2395 { 2396 unsigned long next; 2397 pmd_t *pmdp; 2398 2399 pmdp = pmd_offset_lockless(pudp, pud, addr); 2400 do { 2401 pmd_t pmd = READ_ONCE(*pmdp); 2402 2403 next = pmd_addr_end(addr, end); 2404 if (!pmd_present(pmd)) 2405 return 0; 2406 2407 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2408 pmd_devmap(pmd))) { 2409 /* 2410 * NUMA hinting faults need to be handled in the GUP 2411 * slowpath for accounting purposes and so that they 2412 * can be serialised against THP migration. 2413 */ 2414 if (pmd_protnone(pmd)) 2415 return 0; 2416 2417 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2418 pages, nr)) 2419 return 0; 2420 2421 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2422 /* 2423 * architecture have different format for hugetlbfs 2424 * pmd format and THP pmd format 2425 */ 2426 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2427 PMD_SHIFT, next, flags, pages, nr)) 2428 return 0; 2429 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2430 return 0; 2431 } while (pmdp++, addr = next, addr != end); 2432 2433 return 1; 2434 } 2435 2436 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2437 unsigned int flags, struct page **pages, int *nr) 2438 { 2439 unsigned long next; 2440 pud_t *pudp; 2441 2442 pudp = pud_offset_lockless(p4dp, p4d, addr); 2443 do { 2444 pud_t pud = READ_ONCE(*pudp); 2445 2446 next = pud_addr_end(addr, end); 2447 if (unlikely(!pud_present(pud))) 2448 return 0; 2449 if (unlikely(pud_huge(pud))) { 2450 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2451 pages, nr)) 2452 return 0; 2453 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2454 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2455 PUD_SHIFT, next, flags, pages, nr)) 2456 return 0; 2457 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2458 return 0; 2459 } while (pudp++, addr = next, addr != end); 2460 2461 return 1; 2462 } 2463 2464 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2465 unsigned int flags, struct page **pages, int *nr) 2466 { 2467 unsigned long next; 2468 p4d_t *p4dp; 2469 2470 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2471 do { 2472 p4d_t p4d = READ_ONCE(*p4dp); 2473 2474 next = p4d_addr_end(addr, end); 2475 if (p4d_none(p4d)) 2476 return 0; 2477 BUILD_BUG_ON(p4d_huge(p4d)); 2478 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2479 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2480 P4D_SHIFT, next, flags, pages, nr)) 2481 return 0; 2482 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2483 return 0; 2484 } while (p4dp++, addr = next, addr != end); 2485 2486 return 1; 2487 } 2488 2489 static void gup_pgd_range(unsigned long addr, unsigned long end, 2490 unsigned int flags, struct page **pages, int *nr) 2491 { 2492 unsigned long next; 2493 pgd_t *pgdp; 2494 2495 pgdp = pgd_offset(current->mm, addr); 2496 do { 2497 pgd_t pgd = READ_ONCE(*pgdp); 2498 2499 next = pgd_addr_end(addr, end); 2500 if (pgd_none(pgd)) 2501 return; 2502 if (unlikely(pgd_huge(pgd))) { 2503 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2504 pages, nr)) 2505 return; 2506 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2507 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2508 PGDIR_SHIFT, next, flags, pages, nr)) 2509 return; 2510 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2511 return; 2512 } while (pgdp++, addr = next, addr != end); 2513 } 2514 #else 2515 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2516 unsigned int flags, struct page **pages, int *nr) 2517 { 2518 } 2519 #endif /* CONFIG_HAVE_FAST_GUP */ 2520 2521 #ifndef gup_fast_permitted 2522 /* 2523 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2524 * we need to fall back to the slow version: 2525 */ 2526 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2527 { 2528 return true; 2529 } 2530 #endif 2531 2532 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2533 unsigned int gup_flags, struct page **pages) 2534 { 2535 int ret; 2536 2537 /* 2538 * FIXME: FOLL_LONGTERM does not work with 2539 * get_user_pages_unlocked() (see comments in that function) 2540 */ 2541 if (gup_flags & FOLL_LONGTERM) { 2542 mmap_read_lock(current->mm); 2543 ret = __gup_longterm_locked(current->mm, 2544 start, nr_pages, 2545 pages, NULL, gup_flags); 2546 mmap_read_unlock(current->mm); 2547 } else { 2548 ret = get_user_pages_unlocked(start, nr_pages, 2549 pages, gup_flags); 2550 } 2551 2552 return ret; 2553 } 2554 2555 static unsigned long lockless_pages_from_mm(unsigned long start, 2556 unsigned long end, 2557 unsigned int gup_flags, 2558 struct page **pages) 2559 { 2560 unsigned long flags; 2561 int nr_pinned = 0; 2562 unsigned seq; 2563 2564 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2565 !gup_fast_permitted(start, end)) 2566 return 0; 2567 2568 if (gup_flags & FOLL_PIN) { 2569 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2570 if (seq & 1) 2571 return 0; 2572 } 2573 2574 /* 2575 * Disable interrupts. The nested form is used, in order to allow full, 2576 * general purpose use of this routine. 2577 * 2578 * With interrupts disabled, we block page table pages from being freed 2579 * from under us. See struct mmu_table_batch comments in 2580 * include/asm-generic/tlb.h for more details. 2581 * 2582 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2583 * that come from THPs splitting. 2584 */ 2585 local_irq_save(flags); 2586 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2587 local_irq_restore(flags); 2588 2589 /* 2590 * When pinning pages for DMA there could be a concurrent write protect 2591 * from fork() via copy_page_range(), in this case always fail fast GUP. 2592 */ 2593 if (gup_flags & FOLL_PIN) { 2594 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2595 unpin_user_pages(pages, nr_pinned); 2596 return 0; 2597 } 2598 } 2599 return nr_pinned; 2600 } 2601 2602 static int internal_get_user_pages_fast(unsigned long start, 2603 unsigned long nr_pages, 2604 unsigned int gup_flags, 2605 struct page **pages) 2606 { 2607 unsigned long len, end; 2608 unsigned long nr_pinned; 2609 int ret; 2610 2611 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2612 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2613 FOLL_FAST_ONLY))) 2614 return -EINVAL; 2615 2616 if (gup_flags & FOLL_PIN) 2617 atomic_set(¤t->mm->has_pinned, 1); 2618 2619 if (!(gup_flags & FOLL_FAST_ONLY)) 2620 might_lock_read(¤t->mm->mmap_lock); 2621 2622 start = untagged_addr(start) & PAGE_MASK; 2623 len = nr_pages << PAGE_SHIFT; 2624 if (check_add_overflow(start, len, &end)) 2625 return 0; 2626 if (unlikely(!access_ok((void __user *)start, len))) 2627 return -EFAULT; 2628 2629 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2630 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2631 return nr_pinned; 2632 2633 /* Slow path: try to get the remaining pages with get_user_pages */ 2634 start += nr_pinned << PAGE_SHIFT; 2635 pages += nr_pinned; 2636 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2637 pages); 2638 if (ret < 0) { 2639 /* 2640 * The caller has to unpin the pages we already pinned so 2641 * returning -errno is not an option 2642 */ 2643 if (nr_pinned) 2644 return nr_pinned; 2645 return ret; 2646 } 2647 return ret + nr_pinned; 2648 } 2649 2650 /** 2651 * get_user_pages_fast_only() - pin user pages in memory 2652 * @start: starting user address 2653 * @nr_pages: number of pages from start to pin 2654 * @gup_flags: flags modifying pin behaviour 2655 * @pages: array that receives pointers to the pages pinned. 2656 * Should be at least nr_pages long. 2657 * 2658 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2659 * the regular GUP. 2660 * Note a difference with get_user_pages_fast: this always returns the 2661 * number of pages pinned, 0 if no pages were pinned. 2662 * 2663 * If the architecture does not support this function, simply return with no 2664 * pages pinned. 2665 * 2666 * Careful, careful! COW breaking can go either way, so a non-write 2667 * access can get ambiguous page results. If you call this function without 2668 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2669 */ 2670 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2671 unsigned int gup_flags, struct page **pages) 2672 { 2673 int nr_pinned; 2674 /* 2675 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2676 * because gup fast is always a "pin with a +1 page refcount" request. 2677 * 2678 * FOLL_FAST_ONLY is required in order to match the API description of 2679 * this routine: no fall back to regular ("slow") GUP. 2680 */ 2681 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2682 2683 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2684 pages); 2685 2686 /* 2687 * As specified in the API description above, this routine is not 2688 * allowed to return negative values. However, the common core 2689 * routine internal_get_user_pages_fast() *can* return -errno. 2690 * Therefore, correct for that here: 2691 */ 2692 if (nr_pinned < 0) 2693 nr_pinned = 0; 2694 2695 return nr_pinned; 2696 } 2697 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2698 2699 /** 2700 * get_user_pages_fast() - pin user pages in memory 2701 * @start: starting user address 2702 * @nr_pages: number of pages from start to pin 2703 * @gup_flags: flags modifying pin behaviour 2704 * @pages: array that receives pointers to the pages pinned. 2705 * Should be at least nr_pages long. 2706 * 2707 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2708 * If not successful, it will fall back to taking the lock and 2709 * calling get_user_pages(). 2710 * 2711 * Returns number of pages pinned. This may be fewer than the number requested. 2712 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2713 * -errno. 2714 */ 2715 int get_user_pages_fast(unsigned long start, int nr_pages, 2716 unsigned int gup_flags, struct page **pages) 2717 { 2718 if (!is_valid_gup_flags(gup_flags)) 2719 return -EINVAL; 2720 2721 /* 2722 * The caller may or may not have explicitly set FOLL_GET; either way is 2723 * OK. However, internally (within mm/gup.c), gup fast variants must set 2724 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2725 * request. 2726 */ 2727 gup_flags |= FOLL_GET; 2728 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2729 } 2730 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2731 2732 /** 2733 * pin_user_pages_fast() - pin user pages in memory without taking locks 2734 * 2735 * @start: starting user address 2736 * @nr_pages: number of pages from start to pin 2737 * @gup_flags: flags modifying pin behaviour 2738 * @pages: array that receives pointers to the pages pinned. 2739 * Should be at least nr_pages long. 2740 * 2741 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2742 * get_user_pages_fast() for documentation on the function arguments, because 2743 * the arguments here are identical. 2744 * 2745 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2746 * see Documentation/core-api/pin_user_pages.rst for further details. 2747 */ 2748 int pin_user_pages_fast(unsigned long start, int nr_pages, 2749 unsigned int gup_flags, struct page **pages) 2750 { 2751 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2752 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2753 return -EINVAL; 2754 2755 gup_flags |= FOLL_PIN; 2756 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2757 } 2758 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2759 2760 /* 2761 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2762 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2763 * 2764 * The API rules are the same, too: no negative values may be returned. 2765 */ 2766 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2767 unsigned int gup_flags, struct page **pages) 2768 { 2769 int nr_pinned; 2770 2771 /* 2772 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2773 * rules require returning 0, rather than -errno: 2774 */ 2775 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2776 return 0; 2777 /* 2778 * FOLL_FAST_ONLY is required in order to match the API description of 2779 * this routine: no fall back to regular ("slow") GUP. 2780 */ 2781 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2782 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2783 pages); 2784 /* 2785 * This routine is not allowed to return negative values. However, 2786 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2787 * correct for that here: 2788 */ 2789 if (nr_pinned < 0) 2790 nr_pinned = 0; 2791 2792 return nr_pinned; 2793 } 2794 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2795 2796 /** 2797 * pin_user_pages_remote() - pin pages of a remote process 2798 * 2799 * @mm: mm_struct of target mm 2800 * @start: starting user address 2801 * @nr_pages: number of pages from start to pin 2802 * @gup_flags: flags modifying lookup behaviour 2803 * @pages: array that receives pointers to the pages pinned. 2804 * Should be at least nr_pages long. Or NULL, if caller 2805 * only intends to ensure the pages are faulted in. 2806 * @vmas: array of pointers to vmas corresponding to each page. 2807 * Or NULL if the caller does not require them. 2808 * @locked: pointer to lock flag indicating whether lock is held and 2809 * subsequently whether VM_FAULT_RETRY functionality can be 2810 * utilised. Lock must initially be held. 2811 * 2812 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2813 * get_user_pages_remote() for documentation on the function arguments, because 2814 * the arguments here are identical. 2815 * 2816 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2817 * see Documentation/core-api/pin_user_pages.rst for details. 2818 */ 2819 long pin_user_pages_remote(struct mm_struct *mm, 2820 unsigned long start, unsigned long nr_pages, 2821 unsigned int gup_flags, struct page **pages, 2822 struct vm_area_struct **vmas, int *locked) 2823 { 2824 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2825 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2826 return -EINVAL; 2827 2828 gup_flags |= FOLL_PIN; 2829 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2830 pages, vmas, locked); 2831 } 2832 EXPORT_SYMBOL(pin_user_pages_remote); 2833 2834 /** 2835 * pin_user_pages() - pin user pages in memory for use by other devices 2836 * 2837 * @start: starting user address 2838 * @nr_pages: number of pages from start to pin 2839 * @gup_flags: flags modifying lookup behaviour 2840 * @pages: array that receives pointers to the pages pinned. 2841 * Should be at least nr_pages long. Or NULL, if caller 2842 * only intends to ensure the pages are faulted in. 2843 * @vmas: array of pointers to vmas corresponding to each page. 2844 * Or NULL if the caller does not require them. 2845 * 2846 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2847 * FOLL_PIN is set. 2848 * 2849 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2850 * see Documentation/core-api/pin_user_pages.rst for details. 2851 */ 2852 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2853 unsigned int gup_flags, struct page **pages, 2854 struct vm_area_struct **vmas) 2855 { 2856 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2857 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2858 return -EINVAL; 2859 2860 gup_flags |= FOLL_PIN; 2861 return __gup_longterm_locked(current->mm, start, nr_pages, 2862 pages, vmas, gup_flags); 2863 } 2864 EXPORT_SYMBOL(pin_user_pages); 2865 2866 /* 2867 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2868 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2869 * FOLL_PIN and rejects FOLL_GET. 2870 */ 2871 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2872 struct page **pages, unsigned int gup_flags) 2873 { 2874 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2875 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2876 return -EINVAL; 2877 2878 gup_flags |= FOLL_PIN; 2879 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2880 } 2881 EXPORT_SYMBOL(pin_user_pages_unlocked); 2882 2883 /* 2884 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2885 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2886 * FOLL_GET. 2887 */ 2888 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2889 unsigned int gup_flags, struct page **pages, 2890 int *locked) 2891 { 2892 /* 2893 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2894 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2895 * vmas. As there are no users of this flag in this call we simply 2896 * disallow this option for now. 2897 */ 2898 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2899 return -EINVAL; 2900 2901 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2902 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2903 return -EINVAL; 2904 2905 gup_flags |= FOLL_PIN; 2906 return __get_user_pages_locked(current->mm, start, nr_pages, 2907 pages, NULL, locked, 2908 gup_flags | FOLL_TOUCH); 2909 } 2910 EXPORT_SYMBOL(pin_user_pages_locked); 2911