xref: /openbmc/linux/mm/gup.c (revision b664e06d)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/migrate.h>
17 #include <linux/mm_inline.h>
18 #include <linux/sched/mm.h>
19 
20 #include <asm/mmu_context.h>
21 #include <asm/pgtable.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 typedef int (*set_dirty_func_t)(struct page *page);
32 
33 static void __put_user_pages_dirty(struct page **pages,
34 				   unsigned long npages,
35 				   set_dirty_func_t sdf)
36 {
37 	unsigned long index;
38 
39 	for (index = 0; index < npages; index++) {
40 		struct page *page = compound_head(pages[index]);
41 
42 		/*
43 		 * Checking PageDirty at this point may race with
44 		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
45 		 *
46 		 * 1) This code sees the page as already dirty, so it skips
47 		 * the call to sdf(). That could happen because
48 		 * clear_page_dirty_for_io() called page_mkclean(),
49 		 * followed by set_page_dirty(). However, now the page is
50 		 * going to get written back, which meets the original
51 		 * intention of setting it dirty, so all is well:
52 		 * clear_page_dirty_for_io() goes on to call
53 		 * TestClearPageDirty(), and write the page back.
54 		 *
55 		 * 2) This code sees the page as clean, so it calls sdf().
56 		 * The page stays dirty, despite being written back, so it
57 		 * gets written back again in the next writeback cycle.
58 		 * This is harmless.
59 		 */
60 		if (!PageDirty(page))
61 			sdf(page);
62 
63 		put_user_page(page);
64 	}
65 }
66 
67 /**
68  * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
69  * @pages:  array of pages to be marked dirty and released.
70  * @npages: number of pages in the @pages array.
71  *
72  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
73  * variants called on that page.
74  *
75  * For each page in the @pages array, make that page (or its head page, if a
76  * compound page) dirty, if it was previously listed as clean. Then, release
77  * the page using put_user_page().
78  *
79  * Please see the put_user_page() documentation for details.
80  *
81  * set_page_dirty(), which does not lock the page, is used here.
82  * Therefore, it is the caller's responsibility to ensure that this is
83  * safe. If not, then put_user_pages_dirty_lock() should be called instead.
84  *
85  */
86 void put_user_pages_dirty(struct page **pages, unsigned long npages)
87 {
88 	__put_user_pages_dirty(pages, npages, set_page_dirty);
89 }
90 EXPORT_SYMBOL(put_user_pages_dirty);
91 
92 /**
93  * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
94  * @pages:  array of pages to be marked dirty and released.
95  * @npages: number of pages in the @pages array.
96  *
97  * For each page in the @pages array, make that page (or its head page, if a
98  * compound page) dirty, if it was previously listed as clean. Then, release
99  * the page using put_user_page().
100  *
101  * Please see the put_user_page() documentation for details.
102  *
103  * This is just like put_user_pages_dirty(), except that it invokes
104  * set_page_dirty_lock(), instead of set_page_dirty().
105  *
106  */
107 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
108 {
109 	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
110 }
111 EXPORT_SYMBOL(put_user_pages_dirty_lock);
112 
113 /**
114  * put_user_pages() - release an array of gup-pinned pages.
115  * @pages:  array of pages to be marked dirty and released.
116  * @npages: number of pages in the @pages array.
117  *
118  * For each page in the @pages array, release the page using put_user_page().
119  *
120  * Please see the put_user_page() documentation for details.
121  */
122 void put_user_pages(struct page **pages, unsigned long npages)
123 {
124 	unsigned long index;
125 
126 	/*
127 	 * TODO: this can be optimized for huge pages: if a series of pages is
128 	 * physically contiguous and part of the same compound page, then a
129 	 * single operation to the head page should suffice.
130 	 */
131 	for (index = 0; index < npages; index++)
132 		put_user_page(pages[index]);
133 }
134 EXPORT_SYMBOL(put_user_pages);
135 
136 static struct page *no_page_table(struct vm_area_struct *vma,
137 		unsigned int flags)
138 {
139 	/*
140 	 * When core dumping an enormous anonymous area that nobody
141 	 * has touched so far, we don't want to allocate unnecessary pages or
142 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
143 	 * then get_dump_page() will return NULL to leave a hole in the dump.
144 	 * But we can only make this optimization where a hole would surely
145 	 * be zero-filled if handle_mm_fault() actually did handle it.
146 	 */
147 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
148 		return ERR_PTR(-EFAULT);
149 	return NULL;
150 }
151 
152 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
153 		pte_t *pte, unsigned int flags)
154 {
155 	/* No page to get reference */
156 	if (flags & FOLL_GET)
157 		return -EFAULT;
158 
159 	if (flags & FOLL_TOUCH) {
160 		pte_t entry = *pte;
161 
162 		if (flags & FOLL_WRITE)
163 			entry = pte_mkdirty(entry);
164 		entry = pte_mkyoung(entry);
165 
166 		if (!pte_same(*pte, entry)) {
167 			set_pte_at(vma->vm_mm, address, pte, entry);
168 			update_mmu_cache(vma, address, pte);
169 		}
170 	}
171 
172 	/* Proper page table entry exists, but no corresponding struct page */
173 	return -EEXIST;
174 }
175 
176 /*
177  * FOLL_FORCE can write to even unwritable pte's, but only
178  * after we've gone through a COW cycle and they are dirty.
179  */
180 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
181 {
182 	return pte_write(pte) ||
183 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
184 }
185 
186 static struct page *follow_page_pte(struct vm_area_struct *vma,
187 		unsigned long address, pmd_t *pmd, unsigned int flags,
188 		struct dev_pagemap **pgmap)
189 {
190 	struct mm_struct *mm = vma->vm_mm;
191 	struct page *page;
192 	spinlock_t *ptl;
193 	pte_t *ptep, pte;
194 
195 retry:
196 	if (unlikely(pmd_bad(*pmd)))
197 		return no_page_table(vma, flags);
198 
199 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
200 	pte = *ptep;
201 	if (!pte_present(pte)) {
202 		swp_entry_t entry;
203 		/*
204 		 * KSM's break_ksm() relies upon recognizing a ksm page
205 		 * even while it is being migrated, so for that case we
206 		 * need migration_entry_wait().
207 		 */
208 		if (likely(!(flags & FOLL_MIGRATION)))
209 			goto no_page;
210 		if (pte_none(pte))
211 			goto no_page;
212 		entry = pte_to_swp_entry(pte);
213 		if (!is_migration_entry(entry))
214 			goto no_page;
215 		pte_unmap_unlock(ptep, ptl);
216 		migration_entry_wait(mm, pmd, address);
217 		goto retry;
218 	}
219 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
220 		goto no_page;
221 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
222 		pte_unmap_unlock(ptep, ptl);
223 		return NULL;
224 	}
225 
226 	page = vm_normal_page(vma, address, pte);
227 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
228 		/*
229 		 * Only return device mapping pages in the FOLL_GET case since
230 		 * they are only valid while holding the pgmap reference.
231 		 */
232 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
233 		if (*pgmap)
234 			page = pte_page(pte);
235 		else
236 			goto no_page;
237 	} else if (unlikely(!page)) {
238 		if (flags & FOLL_DUMP) {
239 			/* Avoid special (like zero) pages in core dumps */
240 			page = ERR_PTR(-EFAULT);
241 			goto out;
242 		}
243 
244 		if (is_zero_pfn(pte_pfn(pte))) {
245 			page = pte_page(pte);
246 		} else {
247 			int ret;
248 
249 			ret = follow_pfn_pte(vma, address, ptep, flags);
250 			page = ERR_PTR(ret);
251 			goto out;
252 		}
253 	}
254 
255 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
256 		int ret;
257 		get_page(page);
258 		pte_unmap_unlock(ptep, ptl);
259 		lock_page(page);
260 		ret = split_huge_page(page);
261 		unlock_page(page);
262 		put_page(page);
263 		if (ret)
264 			return ERR_PTR(ret);
265 		goto retry;
266 	}
267 
268 	if (flags & FOLL_GET) {
269 		if (unlikely(!try_get_page(page))) {
270 			page = ERR_PTR(-ENOMEM);
271 			goto out;
272 		}
273 	}
274 	if (flags & FOLL_TOUCH) {
275 		if ((flags & FOLL_WRITE) &&
276 		    !pte_dirty(pte) && !PageDirty(page))
277 			set_page_dirty(page);
278 		/*
279 		 * pte_mkyoung() would be more correct here, but atomic care
280 		 * is needed to avoid losing the dirty bit: it is easier to use
281 		 * mark_page_accessed().
282 		 */
283 		mark_page_accessed(page);
284 	}
285 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
286 		/* Do not mlock pte-mapped THP */
287 		if (PageTransCompound(page))
288 			goto out;
289 
290 		/*
291 		 * The preliminary mapping check is mainly to avoid the
292 		 * pointless overhead of lock_page on the ZERO_PAGE
293 		 * which might bounce very badly if there is contention.
294 		 *
295 		 * If the page is already locked, we don't need to
296 		 * handle it now - vmscan will handle it later if and
297 		 * when it attempts to reclaim the page.
298 		 */
299 		if (page->mapping && trylock_page(page)) {
300 			lru_add_drain();  /* push cached pages to LRU */
301 			/*
302 			 * Because we lock page here, and migration is
303 			 * blocked by the pte's page reference, and we
304 			 * know the page is still mapped, we don't even
305 			 * need to check for file-cache page truncation.
306 			 */
307 			mlock_vma_page(page);
308 			unlock_page(page);
309 		}
310 	}
311 out:
312 	pte_unmap_unlock(ptep, ptl);
313 	return page;
314 no_page:
315 	pte_unmap_unlock(ptep, ptl);
316 	if (!pte_none(pte))
317 		return NULL;
318 	return no_page_table(vma, flags);
319 }
320 
321 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
322 				    unsigned long address, pud_t *pudp,
323 				    unsigned int flags,
324 				    struct follow_page_context *ctx)
325 {
326 	pmd_t *pmd, pmdval;
327 	spinlock_t *ptl;
328 	struct page *page;
329 	struct mm_struct *mm = vma->vm_mm;
330 
331 	pmd = pmd_offset(pudp, address);
332 	/*
333 	 * The READ_ONCE() will stabilize the pmdval in a register or
334 	 * on the stack so that it will stop changing under the code.
335 	 */
336 	pmdval = READ_ONCE(*pmd);
337 	if (pmd_none(pmdval))
338 		return no_page_table(vma, flags);
339 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
340 		page = follow_huge_pmd(mm, address, pmd, flags);
341 		if (page)
342 			return page;
343 		return no_page_table(vma, flags);
344 	}
345 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
346 		page = follow_huge_pd(vma, address,
347 				      __hugepd(pmd_val(pmdval)), flags,
348 				      PMD_SHIFT);
349 		if (page)
350 			return page;
351 		return no_page_table(vma, flags);
352 	}
353 retry:
354 	if (!pmd_present(pmdval)) {
355 		if (likely(!(flags & FOLL_MIGRATION)))
356 			return no_page_table(vma, flags);
357 		VM_BUG_ON(thp_migration_supported() &&
358 				  !is_pmd_migration_entry(pmdval));
359 		if (is_pmd_migration_entry(pmdval))
360 			pmd_migration_entry_wait(mm, pmd);
361 		pmdval = READ_ONCE(*pmd);
362 		/*
363 		 * MADV_DONTNEED may convert the pmd to null because
364 		 * mmap_sem is held in read mode
365 		 */
366 		if (pmd_none(pmdval))
367 			return no_page_table(vma, flags);
368 		goto retry;
369 	}
370 	if (pmd_devmap(pmdval)) {
371 		ptl = pmd_lock(mm, pmd);
372 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
373 		spin_unlock(ptl);
374 		if (page)
375 			return page;
376 	}
377 	if (likely(!pmd_trans_huge(pmdval)))
378 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
379 
380 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
381 		return no_page_table(vma, flags);
382 
383 retry_locked:
384 	ptl = pmd_lock(mm, pmd);
385 	if (unlikely(pmd_none(*pmd))) {
386 		spin_unlock(ptl);
387 		return no_page_table(vma, flags);
388 	}
389 	if (unlikely(!pmd_present(*pmd))) {
390 		spin_unlock(ptl);
391 		if (likely(!(flags & FOLL_MIGRATION)))
392 			return no_page_table(vma, flags);
393 		pmd_migration_entry_wait(mm, pmd);
394 		goto retry_locked;
395 	}
396 	if (unlikely(!pmd_trans_huge(*pmd))) {
397 		spin_unlock(ptl);
398 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
399 	}
400 	if (flags & FOLL_SPLIT) {
401 		int ret;
402 		page = pmd_page(*pmd);
403 		if (is_huge_zero_page(page)) {
404 			spin_unlock(ptl);
405 			ret = 0;
406 			split_huge_pmd(vma, pmd, address);
407 			if (pmd_trans_unstable(pmd))
408 				ret = -EBUSY;
409 		} else {
410 			if (unlikely(!try_get_page(page))) {
411 				spin_unlock(ptl);
412 				return ERR_PTR(-ENOMEM);
413 			}
414 			spin_unlock(ptl);
415 			lock_page(page);
416 			ret = split_huge_page(page);
417 			unlock_page(page);
418 			put_page(page);
419 			if (pmd_none(*pmd))
420 				return no_page_table(vma, flags);
421 		}
422 
423 		return ret ? ERR_PTR(ret) :
424 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
425 	}
426 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
427 	spin_unlock(ptl);
428 	ctx->page_mask = HPAGE_PMD_NR - 1;
429 	return page;
430 }
431 
432 static struct page *follow_pud_mask(struct vm_area_struct *vma,
433 				    unsigned long address, p4d_t *p4dp,
434 				    unsigned int flags,
435 				    struct follow_page_context *ctx)
436 {
437 	pud_t *pud;
438 	spinlock_t *ptl;
439 	struct page *page;
440 	struct mm_struct *mm = vma->vm_mm;
441 
442 	pud = pud_offset(p4dp, address);
443 	if (pud_none(*pud))
444 		return no_page_table(vma, flags);
445 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
446 		page = follow_huge_pud(mm, address, pud, flags);
447 		if (page)
448 			return page;
449 		return no_page_table(vma, flags);
450 	}
451 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
452 		page = follow_huge_pd(vma, address,
453 				      __hugepd(pud_val(*pud)), flags,
454 				      PUD_SHIFT);
455 		if (page)
456 			return page;
457 		return no_page_table(vma, flags);
458 	}
459 	if (pud_devmap(*pud)) {
460 		ptl = pud_lock(mm, pud);
461 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
462 		spin_unlock(ptl);
463 		if (page)
464 			return page;
465 	}
466 	if (unlikely(pud_bad(*pud)))
467 		return no_page_table(vma, flags);
468 
469 	return follow_pmd_mask(vma, address, pud, flags, ctx);
470 }
471 
472 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
473 				    unsigned long address, pgd_t *pgdp,
474 				    unsigned int flags,
475 				    struct follow_page_context *ctx)
476 {
477 	p4d_t *p4d;
478 	struct page *page;
479 
480 	p4d = p4d_offset(pgdp, address);
481 	if (p4d_none(*p4d))
482 		return no_page_table(vma, flags);
483 	BUILD_BUG_ON(p4d_huge(*p4d));
484 	if (unlikely(p4d_bad(*p4d)))
485 		return no_page_table(vma, flags);
486 
487 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
488 		page = follow_huge_pd(vma, address,
489 				      __hugepd(p4d_val(*p4d)), flags,
490 				      P4D_SHIFT);
491 		if (page)
492 			return page;
493 		return no_page_table(vma, flags);
494 	}
495 	return follow_pud_mask(vma, address, p4d, flags, ctx);
496 }
497 
498 /**
499  * follow_page_mask - look up a page descriptor from a user-virtual address
500  * @vma: vm_area_struct mapping @address
501  * @address: virtual address to look up
502  * @flags: flags modifying lookup behaviour
503  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
504  *       pointer to output page_mask
505  *
506  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
507  *
508  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
509  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
510  *
511  * On output, the @ctx->page_mask is set according to the size of the page.
512  *
513  * Return: the mapped (struct page *), %NULL if no mapping exists, or
514  * an error pointer if there is a mapping to something not represented
515  * by a page descriptor (see also vm_normal_page()).
516  */
517 struct page *follow_page_mask(struct vm_area_struct *vma,
518 			      unsigned long address, unsigned int flags,
519 			      struct follow_page_context *ctx)
520 {
521 	pgd_t *pgd;
522 	struct page *page;
523 	struct mm_struct *mm = vma->vm_mm;
524 
525 	ctx->page_mask = 0;
526 
527 	/* make this handle hugepd */
528 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
529 	if (!IS_ERR(page)) {
530 		BUG_ON(flags & FOLL_GET);
531 		return page;
532 	}
533 
534 	pgd = pgd_offset(mm, address);
535 
536 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
537 		return no_page_table(vma, flags);
538 
539 	if (pgd_huge(*pgd)) {
540 		page = follow_huge_pgd(mm, address, pgd, flags);
541 		if (page)
542 			return page;
543 		return no_page_table(vma, flags);
544 	}
545 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
546 		page = follow_huge_pd(vma, address,
547 				      __hugepd(pgd_val(*pgd)), flags,
548 				      PGDIR_SHIFT);
549 		if (page)
550 			return page;
551 		return no_page_table(vma, flags);
552 	}
553 
554 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
555 }
556 
557 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
558 			 unsigned int foll_flags)
559 {
560 	struct follow_page_context ctx = { NULL };
561 	struct page *page;
562 
563 	page = follow_page_mask(vma, address, foll_flags, &ctx);
564 	if (ctx.pgmap)
565 		put_dev_pagemap(ctx.pgmap);
566 	return page;
567 }
568 
569 static int get_gate_page(struct mm_struct *mm, unsigned long address,
570 		unsigned int gup_flags, struct vm_area_struct **vma,
571 		struct page **page)
572 {
573 	pgd_t *pgd;
574 	p4d_t *p4d;
575 	pud_t *pud;
576 	pmd_t *pmd;
577 	pte_t *pte;
578 	int ret = -EFAULT;
579 
580 	/* user gate pages are read-only */
581 	if (gup_flags & FOLL_WRITE)
582 		return -EFAULT;
583 	if (address > TASK_SIZE)
584 		pgd = pgd_offset_k(address);
585 	else
586 		pgd = pgd_offset_gate(mm, address);
587 	BUG_ON(pgd_none(*pgd));
588 	p4d = p4d_offset(pgd, address);
589 	BUG_ON(p4d_none(*p4d));
590 	pud = pud_offset(p4d, address);
591 	BUG_ON(pud_none(*pud));
592 	pmd = pmd_offset(pud, address);
593 	if (!pmd_present(*pmd))
594 		return -EFAULT;
595 	VM_BUG_ON(pmd_trans_huge(*pmd));
596 	pte = pte_offset_map(pmd, address);
597 	if (pte_none(*pte))
598 		goto unmap;
599 	*vma = get_gate_vma(mm);
600 	if (!page)
601 		goto out;
602 	*page = vm_normal_page(*vma, address, *pte);
603 	if (!*page) {
604 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
605 			goto unmap;
606 		*page = pte_page(*pte);
607 
608 		/*
609 		 * This should never happen (a device public page in the gate
610 		 * area).
611 		 */
612 		if (is_device_public_page(*page))
613 			goto unmap;
614 	}
615 	if (unlikely(!try_get_page(*page))) {
616 		ret = -ENOMEM;
617 		goto unmap;
618 	}
619 out:
620 	ret = 0;
621 unmap:
622 	pte_unmap(pte);
623 	return ret;
624 }
625 
626 /*
627  * mmap_sem must be held on entry.  If @nonblocking != NULL and
628  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
629  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
630  */
631 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
632 		unsigned long address, unsigned int *flags, int *nonblocking)
633 {
634 	unsigned int fault_flags = 0;
635 	vm_fault_t ret;
636 
637 	/* mlock all present pages, but do not fault in new pages */
638 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
639 		return -ENOENT;
640 	if (*flags & FOLL_WRITE)
641 		fault_flags |= FAULT_FLAG_WRITE;
642 	if (*flags & FOLL_REMOTE)
643 		fault_flags |= FAULT_FLAG_REMOTE;
644 	if (nonblocking)
645 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
646 	if (*flags & FOLL_NOWAIT)
647 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
648 	if (*flags & FOLL_TRIED) {
649 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
650 		fault_flags |= FAULT_FLAG_TRIED;
651 	}
652 
653 	ret = handle_mm_fault(vma, address, fault_flags);
654 	if (ret & VM_FAULT_ERROR) {
655 		int err = vm_fault_to_errno(ret, *flags);
656 
657 		if (err)
658 			return err;
659 		BUG();
660 	}
661 
662 	if (tsk) {
663 		if (ret & VM_FAULT_MAJOR)
664 			tsk->maj_flt++;
665 		else
666 			tsk->min_flt++;
667 	}
668 
669 	if (ret & VM_FAULT_RETRY) {
670 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
671 			*nonblocking = 0;
672 		return -EBUSY;
673 	}
674 
675 	/*
676 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
677 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
678 	 * can thus safely do subsequent page lookups as if they were reads.
679 	 * But only do so when looping for pte_write is futile: in some cases
680 	 * userspace may also be wanting to write to the gotten user page,
681 	 * which a read fault here might prevent (a readonly page might get
682 	 * reCOWed by userspace write).
683 	 */
684 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
685 		*flags |= FOLL_COW;
686 	return 0;
687 }
688 
689 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
690 {
691 	vm_flags_t vm_flags = vma->vm_flags;
692 	int write = (gup_flags & FOLL_WRITE);
693 	int foreign = (gup_flags & FOLL_REMOTE);
694 
695 	if (vm_flags & (VM_IO | VM_PFNMAP))
696 		return -EFAULT;
697 
698 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
699 		return -EFAULT;
700 
701 	if (write) {
702 		if (!(vm_flags & VM_WRITE)) {
703 			if (!(gup_flags & FOLL_FORCE))
704 				return -EFAULT;
705 			/*
706 			 * We used to let the write,force case do COW in a
707 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
708 			 * set a breakpoint in a read-only mapping of an
709 			 * executable, without corrupting the file (yet only
710 			 * when that file had been opened for writing!).
711 			 * Anon pages in shared mappings are surprising: now
712 			 * just reject it.
713 			 */
714 			if (!is_cow_mapping(vm_flags))
715 				return -EFAULT;
716 		}
717 	} else if (!(vm_flags & VM_READ)) {
718 		if (!(gup_flags & FOLL_FORCE))
719 			return -EFAULT;
720 		/*
721 		 * Is there actually any vma we can reach here which does not
722 		 * have VM_MAYREAD set?
723 		 */
724 		if (!(vm_flags & VM_MAYREAD))
725 			return -EFAULT;
726 	}
727 	/*
728 	 * gups are always data accesses, not instruction
729 	 * fetches, so execute=false here
730 	 */
731 	if (!arch_vma_access_permitted(vma, write, false, foreign))
732 		return -EFAULT;
733 	return 0;
734 }
735 
736 /**
737  * __get_user_pages() - pin user pages in memory
738  * @tsk:	task_struct of target task
739  * @mm:		mm_struct of target mm
740  * @start:	starting user address
741  * @nr_pages:	number of pages from start to pin
742  * @gup_flags:	flags modifying pin behaviour
743  * @pages:	array that receives pointers to the pages pinned.
744  *		Should be at least nr_pages long. Or NULL, if caller
745  *		only intends to ensure the pages are faulted in.
746  * @vmas:	array of pointers to vmas corresponding to each page.
747  *		Or NULL if the caller does not require them.
748  * @nonblocking: whether waiting for disk IO or mmap_sem contention
749  *
750  * Returns number of pages pinned. This may be fewer than the number
751  * requested. If nr_pages is 0 or negative, returns 0. If no pages
752  * were pinned, returns -errno. Each page returned must be released
753  * with a put_page() call when it is finished with. vmas will only
754  * remain valid while mmap_sem is held.
755  *
756  * Must be called with mmap_sem held.  It may be released.  See below.
757  *
758  * __get_user_pages walks a process's page tables and takes a reference to
759  * each struct page that each user address corresponds to at a given
760  * instant. That is, it takes the page that would be accessed if a user
761  * thread accesses the given user virtual address at that instant.
762  *
763  * This does not guarantee that the page exists in the user mappings when
764  * __get_user_pages returns, and there may even be a completely different
765  * page there in some cases (eg. if mmapped pagecache has been invalidated
766  * and subsequently re faulted). However it does guarantee that the page
767  * won't be freed completely. And mostly callers simply care that the page
768  * contains data that was valid *at some point in time*. Typically, an IO
769  * or similar operation cannot guarantee anything stronger anyway because
770  * locks can't be held over the syscall boundary.
771  *
772  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
773  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
774  * appropriate) must be called after the page is finished with, and
775  * before put_page is called.
776  *
777  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
778  * or mmap_sem contention, and if waiting is needed to pin all pages,
779  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
780  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
781  * this case.
782  *
783  * A caller using such a combination of @nonblocking and @gup_flags
784  * must therefore hold the mmap_sem for reading only, and recognize
785  * when it's been released.  Otherwise, it must be held for either
786  * reading or writing and will not be released.
787  *
788  * In most cases, get_user_pages or get_user_pages_fast should be used
789  * instead of __get_user_pages. __get_user_pages should be used only if
790  * you need some special @gup_flags.
791  */
792 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
793 		unsigned long start, unsigned long nr_pages,
794 		unsigned int gup_flags, struct page **pages,
795 		struct vm_area_struct **vmas, int *nonblocking)
796 {
797 	long ret = 0, i = 0;
798 	struct vm_area_struct *vma = NULL;
799 	struct follow_page_context ctx = { NULL };
800 
801 	if (!nr_pages)
802 		return 0;
803 
804 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
805 
806 	/*
807 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
808 	 * fault information is unrelated to the reference behaviour of a task
809 	 * using the address space
810 	 */
811 	if (!(gup_flags & FOLL_FORCE))
812 		gup_flags |= FOLL_NUMA;
813 
814 	do {
815 		struct page *page;
816 		unsigned int foll_flags = gup_flags;
817 		unsigned int page_increm;
818 
819 		/* first iteration or cross vma bound */
820 		if (!vma || start >= vma->vm_end) {
821 			vma = find_extend_vma(mm, start);
822 			if (!vma && in_gate_area(mm, start)) {
823 				ret = get_gate_page(mm, start & PAGE_MASK,
824 						gup_flags, &vma,
825 						pages ? &pages[i] : NULL);
826 				if (ret)
827 					goto out;
828 				ctx.page_mask = 0;
829 				goto next_page;
830 			}
831 
832 			if (!vma || check_vma_flags(vma, gup_flags)) {
833 				ret = -EFAULT;
834 				goto out;
835 			}
836 			if (is_vm_hugetlb_page(vma)) {
837 				i = follow_hugetlb_page(mm, vma, pages, vmas,
838 						&start, &nr_pages, i,
839 						gup_flags, nonblocking);
840 				continue;
841 			}
842 		}
843 retry:
844 		/*
845 		 * If we have a pending SIGKILL, don't keep faulting pages and
846 		 * potentially allocating memory.
847 		 */
848 		if (fatal_signal_pending(current)) {
849 			ret = -ERESTARTSYS;
850 			goto out;
851 		}
852 		cond_resched();
853 
854 		page = follow_page_mask(vma, start, foll_flags, &ctx);
855 		if (!page) {
856 			ret = faultin_page(tsk, vma, start, &foll_flags,
857 					nonblocking);
858 			switch (ret) {
859 			case 0:
860 				goto retry;
861 			case -EBUSY:
862 				ret = 0;
863 				/* FALLTHRU */
864 			case -EFAULT:
865 			case -ENOMEM:
866 			case -EHWPOISON:
867 				goto out;
868 			case -ENOENT:
869 				goto next_page;
870 			}
871 			BUG();
872 		} else if (PTR_ERR(page) == -EEXIST) {
873 			/*
874 			 * Proper page table entry exists, but no corresponding
875 			 * struct page.
876 			 */
877 			goto next_page;
878 		} else if (IS_ERR(page)) {
879 			ret = PTR_ERR(page);
880 			goto out;
881 		}
882 		if (pages) {
883 			pages[i] = page;
884 			flush_anon_page(vma, page, start);
885 			flush_dcache_page(page);
886 			ctx.page_mask = 0;
887 		}
888 next_page:
889 		if (vmas) {
890 			vmas[i] = vma;
891 			ctx.page_mask = 0;
892 		}
893 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
894 		if (page_increm > nr_pages)
895 			page_increm = nr_pages;
896 		i += page_increm;
897 		start += page_increm * PAGE_SIZE;
898 		nr_pages -= page_increm;
899 	} while (nr_pages);
900 out:
901 	if (ctx.pgmap)
902 		put_dev_pagemap(ctx.pgmap);
903 	return i ? i : ret;
904 }
905 
906 static bool vma_permits_fault(struct vm_area_struct *vma,
907 			      unsigned int fault_flags)
908 {
909 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
910 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
911 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
912 
913 	if (!(vm_flags & vma->vm_flags))
914 		return false;
915 
916 	/*
917 	 * The architecture might have a hardware protection
918 	 * mechanism other than read/write that can deny access.
919 	 *
920 	 * gup always represents data access, not instruction
921 	 * fetches, so execute=false here:
922 	 */
923 	if (!arch_vma_access_permitted(vma, write, false, foreign))
924 		return false;
925 
926 	return true;
927 }
928 
929 /*
930  * fixup_user_fault() - manually resolve a user page fault
931  * @tsk:	the task_struct to use for page fault accounting, or
932  *		NULL if faults are not to be recorded.
933  * @mm:		mm_struct of target mm
934  * @address:	user address
935  * @fault_flags:flags to pass down to handle_mm_fault()
936  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
937  *		does not allow retry
938  *
939  * This is meant to be called in the specific scenario where for locking reasons
940  * we try to access user memory in atomic context (within a pagefault_disable()
941  * section), this returns -EFAULT, and we want to resolve the user fault before
942  * trying again.
943  *
944  * Typically this is meant to be used by the futex code.
945  *
946  * The main difference with get_user_pages() is that this function will
947  * unconditionally call handle_mm_fault() which will in turn perform all the
948  * necessary SW fixup of the dirty and young bits in the PTE, while
949  * get_user_pages() only guarantees to update these in the struct page.
950  *
951  * This is important for some architectures where those bits also gate the
952  * access permission to the page because they are maintained in software.  On
953  * such architectures, gup() will not be enough to make a subsequent access
954  * succeed.
955  *
956  * This function will not return with an unlocked mmap_sem. So it has not the
957  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
958  */
959 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
960 		     unsigned long address, unsigned int fault_flags,
961 		     bool *unlocked)
962 {
963 	struct vm_area_struct *vma;
964 	vm_fault_t ret, major = 0;
965 
966 	if (unlocked)
967 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
968 
969 retry:
970 	vma = find_extend_vma(mm, address);
971 	if (!vma || address < vma->vm_start)
972 		return -EFAULT;
973 
974 	if (!vma_permits_fault(vma, fault_flags))
975 		return -EFAULT;
976 
977 	ret = handle_mm_fault(vma, address, fault_flags);
978 	major |= ret & VM_FAULT_MAJOR;
979 	if (ret & VM_FAULT_ERROR) {
980 		int err = vm_fault_to_errno(ret, 0);
981 
982 		if (err)
983 			return err;
984 		BUG();
985 	}
986 
987 	if (ret & VM_FAULT_RETRY) {
988 		down_read(&mm->mmap_sem);
989 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
990 			*unlocked = true;
991 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
992 			fault_flags |= FAULT_FLAG_TRIED;
993 			goto retry;
994 		}
995 	}
996 
997 	if (tsk) {
998 		if (major)
999 			tsk->maj_flt++;
1000 		else
1001 			tsk->min_flt++;
1002 	}
1003 	return 0;
1004 }
1005 EXPORT_SYMBOL_GPL(fixup_user_fault);
1006 
1007 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1008 						struct mm_struct *mm,
1009 						unsigned long start,
1010 						unsigned long nr_pages,
1011 						struct page **pages,
1012 						struct vm_area_struct **vmas,
1013 						int *locked,
1014 						unsigned int flags)
1015 {
1016 	long ret, pages_done;
1017 	bool lock_dropped;
1018 
1019 	if (locked) {
1020 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1021 		BUG_ON(vmas);
1022 		/* check caller initialized locked */
1023 		BUG_ON(*locked != 1);
1024 	}
1025 
1026 	if (pages)
1027 		flags |= FOLL_GET;
1028 
1029 	pages_done = 0;
1030 	lock_dropped = false;
1031 	for (;;) {
1032 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1033 				       vmas, locked);
1034 		if (!locked)
1035 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1036 			return ret;
1037 
1038 		/* VM_FAULT_RETRY cannot return errors */
1039 		if (!*locked) {
1040 			BUG_ON(ret < 0);
1041 			BUG_ON(ret >= nr_pages);
1042 		}
1043 
1044 		if (!pages)
1045 			/* If it's a prefault don't insist harder */
1046 			return ret;
1047 
1048 		if (ret > 0) {
1049 			nr_pages -= ret;
1050 			pages_done += ret;
1051 			if (!nr_pages)
1052 				break;
1053 		}
1054 		if (*locked) {
1055 			/*
1056 			 * VM_FAULT_RETRY didn't trigger or it was a
1057 			 * FOLL_NOWAIT.
1058 			 */
1059 			if (!pages_done)
1060 				pages_done = ret;
1061 			break;
1062 		}
1063 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
1064 		pages += ret;
1065 		start += ret << PAGE_SHIFT;
1066 
1067 		/*
1068 		 * Repeat on the address that fired VM_FAULT_RETRY
1069 		 * without FAULT_FLAG_ALLOW_RETRY but with
1070 		 * FAULT_FLAG_TRIED.
1071 		 */
1072 		*locked = 1;
1073 		lock_dropped = true;
1074 		down_read(&mm->mmap_sem);
1075 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1076 				       pages, NULL, NULL);
1077 		if (ret != 1) {
1078 			BUG_ON(ret > 1);
1079 			if (!pages_done)
1080 				pages_done = ret;
1081 			break;
1082 		}
1083 		nr_pages--;
1084 		pages_done++;
1085 		if (!nr_pages)
1086 			break;
1087 		pages++;
1088 		start += PAGE_SIZE;
1089 	}
1090 	if (lock_dropped && *locked) {
1091 		/*
1092 		 * We must let the caller know we temporarily dropped the lock
1093 		 * and so the critical section protected by it was lost.
1094 		 */
1095 		up_read(&mm->mmap_sem);
1096 		*locked = 0;
1097 	}
1098 	return pages_done;
1099 }
1100 
1101 /*
1102  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1103  * paths better by using either get_user_pages_locked() or
1104  * get_user_pages_unlocked().
1105  *
1106  * get_user_pages_locked() is suitable to replace the form:
1107  *
1108  *      down_read(&mm->mmap_sem);
1109  *      do_something()
1110  *      get_user_pages(tsk, mm, ..., pages, NULL);
1111  *      up_read(&mm->mmap_sem);
1112  *
1113  *  to:
1114  *
1115  *      int locked = 1;
1116  *      down_read(&mm->mmap_sem);
1117  *      do_something()
1118  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1119  *      if (locked)
1120  *          up_read(&mm->mmap_sem);
1121  */
1122 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1123 			   unsigned int gup_flags, struct page **pages,
1124 			   int *locked)
1125 {
1126 	/*
1127 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1128 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1129 	 * vmas.  As there are no users of this flag in this call we simply
1130 	 * disallow this option for now.
1131 	 */
1132 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1133 		return -EINVAL;
1134 
1135 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1136 				       pages, NULL, locked,
1137 				       gup_flags | FOLL_TOUCH);
1138 }
1139 EXPORT_SYMBOL(get_user_pages_locked);
1140 
1141 /*
1142  * get_user_pages_unlocked() is suitable to replace the form:
1143  *
1144  *      down_read(&mm->mmap_sem);
1145  *      get_user_pages(tsk, mm, ..., pages, NULL);
1146  *      up_read(&mm->mmap_sem);
1147  *
1148  *  with:
1149  *
1150  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1151  *
1152  * It is functionally equivalent to get_user_pages_fast so
1153  * get_user_pages_fast should be used instead if specific gup_flags
1154  * (e.g. FOLL_FORCE) are not required.
1155  */
1156 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1157 			     struct page **pages, unsigned int gup_flags)
1158 {
1159 	struct mm_struct *mm = current->mm;
1160 	int locked = 1;
1161 	long ret;
1162 
1163 	/*
1164 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1165 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1166 	 * vmas.  As there are no users of this flag in this call we simply
1167 	 * disallow this option for now.
1168 	 */
1169 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1170 		return -EINVAL;
1171 
1172 	down_read(&mm->mmap_sem);
1173 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1174 				      &locked, gup_flags | FOLL_TOUCH);
1175 	if (locked)
1176 		up_read(&mm->mmap_sem);
1177 	return ret;
1178 }
1179 EXPORT_SYMBOL(get_user_pages_unlocked);
1180 
1181 /*
1182  * get_user_pages_remote() - pin user pages in memory
1183  * @tsk:	the task_struct to use for page fault accounting, or
1184  *		NULL if faults are not to be recorded.
1185  * @mm:		mm_struct of target mm
1186  * @start:	starting user address
1187  * @nr_pages:	number of pages from start to pin
1188  * @gup_flags:	flags modifying lookup behaviour
1189  * @pages:	array that receives pointers to the pages pinned.
1190  *		Should be at least nr_pages long. Or NULL, if caller
1191  *		only intends to ensure the pages are faulted in.
1192  * @vmas:	array of pointers to vmas corresponding to each page.
1193  *		Or NULL if the caller does not require them.
1194  * @locked:	pointer to lock flag indicating whether lock is held and
1195  *		subsequently whether VM_FAULT_RETRY functionality can be
1196  *		utilised. Lock must initially be held.
1197  *
1198  * Returns number of pages pinned. This may be fewer than the number
1199  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1200  * were pinned, returns -errno. Each page returned must be released
1201  * with a put_page() call when it is finished with. vmas will only
1202  * remain valid while mmap_sem is held.
1203  *
1204  * Must be called with mmap_sem held for read or write.
1205  *
1206  * get_user_pages walks a process's page tables and takes a reference to
1207  * each struct page that each user address corresponds to at a given
1208  * instant. That is, it takes the page that would be accessed if a user
1209  * thread accesses the given user virtual address at that instant.
1210  *
1211  * This does not guarantee that the page exists in the user mappings when
1212  * get_user_pages returns, and there may even be a completely different
1213  * page there in some cases (eg. if mmapped pagecache has been invalidated
1214  * and subsequently re faulted). However it does guarantee that the page
1215  * won't be freed completely. And mostly callers simply care that the page
1216  * contains data that was valid *at some point in time*. Typically, an IO
1217  * or similar operation cannot guarantee anything stronger anyway because
1218  * locks can't be held over the syscall boundary.
1219  *
1220  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1221  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1222  * be called after the page is finished with, and before put_page is called.
1223  *
1224  * get_user_pages is typically used for fewer-copy IO operations, to get a
1225  * handle on the memory by some means other than accesses via the user virtual
1226  * addresses. The pages may be submitted for DMA to devices or accessed via
1227  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1228  * use the correct cache flushing APIs.
1229  *
1230  * See also get_user_pages_fast, for performance critical applications.
1231  *
1232  * get_user_pages should be phased out in favor of
1233  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1234  * should use get_user_pages because it cannot pass
1235  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1236  */
1237 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1238 		unsigned long start, unsigned long nr_pages,
1239 		unsigned int gup_flags, struct page **pages,
1240 		struct vm_area_struct **vmas, int *locked)
1241 {
1242 	/*
1243 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1244 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1245 	 * vmas.  As there are no users of this flag in this call we simply
1246 	 * disallow this option for now.
1247 	 */
1248 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1249 		return -EINVAL;
1250 
1251 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1252 				       locked,
1253 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1254 }
1255 EXPORT_SYMBOL(get_user_pages_remote);
1256 
1257 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1258 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1259 {
1260 	long i;
1261 	struct vm_area_struct *vma_prev = NULL;
1262 
1263 	for (i = 0; i < nr_pages; i++) {
1264 		struct vm_area_struct *vma = vmas[i];
1265 
1266 		if (vma == vma_prev)
1267 			continue;
1268 
1269 		vma_prev = vma;
1270 
1271 		if (vma_is_fsdax(vma))
1272 			return true;
1273 	}
1274 	return false;
1275 }
1276 
1277 #ifdef CONFIG_CMA
1278 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1279 {
1280 	/*
1281 	 * We want to make sure we allocate the new page from the same node
1282 	 * as the source page.
1283 	 */
1284 	int nid = page_to_nid(page);
1285 	/*
1286 	 * Trying to allocate a page for migration. Ignore allocation
1287 	 * failure warnings. We don't force __GFP_THISNODE here because
1288 	 * this node here is the node where we have CMA reservation and
1289 	 * in some case these nodes will have really less non movable
1290 	 * allocation memory.
1291 	 */
1292 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1293 
1294 	if (PageHighMem(page))
1295 		gfp_mask |= __GFP_HIGHMEM;
1296 
1297 #ifdef CONFIG_HUGETLB_PAGE
1298 	if (PageHuge(page)) {
1299 		struct hstate *h = page_hstate(page);
1300 		/*
1301 		 * We don't want to dequeue from the pool because pool pages will
1302 		 * mostly be from the CMA region.
1303 		 */
1304 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1305 	}
1306 #endif
1307 	if (PageTransHuge(page)) {
1308 		struct page *thp;
1309 		/*
1310 		 * ignore allocation failure warnings
1311 		 */
1312 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1313 
1314 		/*
1315 		 * Remove the movable mask so that we don't allocate from
1316 		 * CMA area again.
1317 		 */
1318 		thp_gfpmask &= ~__GFP_MOVABLE;
1319 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1320 		if (!thp)
1321 			return NULL;
1322 		prep_transhuge_page(thp);
1323 		return thp;
1324 	}
1325 
1326 	return __alloc_pages_node(nid, gfp_mask, 0);
1327 }
1328 
1329 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1330 					struct mm_struct *mm,
1331 					unsigned long start,
1332 					unsigned long nr_pages,
1333 					struct page **pages,
1334 					struct vm_area_struct **vmas,
1335 					unsigned int gup_flags)
1336 {
1337 	long i;
1338 	bool drain_allow = true;
1339 	bool migrate_allow = true;
1340 	LIST_HEAD(cma_page_list);
1341 
1342 check_again:
1343 	for (i = 0; i < nr_pages; i++) {
1344 		/*
1345 		 * If we get a page from the CMA zone, since we are going to
1346 		 * be pinning these entries, we might as well move them out
1347 		 * of the CMA zone if possible.
1348 		 */
1349 		if (is_migrate_cma_page(pages[i])) {
1350 
1351 			struct page *head = compound_head(pages[i]);
1352 
1353 			if (PageHuge(head)) {
1354 				isolate_huge_page(head, &cma_page_list);
1355 			} else {
1356 				if (!PageLRU(head) && drain_allow) {
1357 					lru_add_drain_all();
1358 					drain_allow = false;
1359 				}
1360 
1361 				if (!isolate_lru_page(head)) {
1362 					list_add_tail(&head->lru, &cma_page_list);
1363 					mod_node_page_state(page_pgdat(head),
1364 							    NR_ISOLATED_ANON +
1365 							    page_is_file_cache(head),
1366 							    hpage_nr_pages(head));
1367 				}
1368 			}
1369 		}
1370 	}
1371 
1372 	if (!list_empty(&cma_page_list)) {
1373 		/*
1374 		 * drop the above get_user_pages reference.
1375 		 */
1376 		for (i = 0; i < nr_pages; i++)
1377 			put_page(pages[i]);
1378 
1379 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1380 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1381 			/*
1382 			 * some of the pages failed migration. Do get_user_pages
1383 			 * without migration.
1384 			 */
1385 			migrate_allow = false;
1386 
1387 			if (!list_empty(&cma_page_list))
1388 				putback_movable_pages(&cma_page_list);
1389 		}
1390 		/*
1391 		 * We did migrate all the pages, Try to get the page references
1392 		 * again migrating any new CMA pages which we failed to isolate
1393 		 * earlier.
1394 		 */
1395 		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1396 						   pages, vmas, NULL,
1397 						   gup_flags);
1398 
1399 		if ((nr_pages > 0) && migrate_allow) {
1400 			drain_allow = true;
1401 			goto check_again;
1402 		}
1403 	}
1404 
1405 	return nr_pages;
1406 }
1407 #else
1408 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1409 					struct mm_struct *mm,
1410 					unsigned long start,
1411 					unsigned long nr_pages,
1412 					struct page **pages,
1413 					struct vm_area_struct **vmas,
1414 					unsigned int gup_flags)
1415 {
1416 	return nr_pages;
1417 }
1418 #endif
1419 
1420 /*
1421  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1422  * allows us to process the FOLL_LONGTERM flag.
1423  */
1424 static long __gup_longterm_locked(struct task_struct *tsk,
1425 				  struct mm_struct *mm,
1426 				  unsigned long start,
1427 				  unsigned long nr_pages,
1428 				  struct page **pages,
1429 				  struct vm_area_struct **vmas,
1430 				  unsigned int gup_flags)
1431 {
1432 	struct vm_area_struct **vmas_tmp = vmas;
1433 	unsigned long flags = 0;
1434 	long rc, i;
1435 
1436 	if (gup_flags & FOLL_LONGTERM) {
1437 		if (!pages)
1438 			return -EINVAL;
1439 
1440 		if (!vmas_tmp) {
1441 			vmas_tmp = kcalloc(nr_pages,
1442 					   sizeof(struct vm_area_struct *),
1443 					   GFP_KERNEL);
1444 			if (!vmas_tmp)
1445 				return -ENOMEM;
1446 		}
1447 		flags = memalloc_nocma_save();
1448 	}
1449 
1450 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1451 				     vmas_tmp, NULL, gup_flags);
1452 
1453 	if (gup_flags & FOLL_LONGTERM) {
1454 		memalloc_nocma_restore(flags);
1455 		if (rc < 0)
1456 			goto out;
1457 
1458 		if (check_dax_vmas(vmas_tmp, rc)) {
1459 			for (i = 0; i < rc; i++)
1460 				put_page(pages[i]);
1461 			rc = -EOPNOTSUPP;
1462 			goto out;
1463 		}
1464 
1465 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1466 						 vmas_tmp, gup_flags);
1467 	}
1468 
1469 out:
1470 	if (vmas_tmp != vmas)
1471 		kfree(vmas_tmp);
1472 	return rc;
1473 }
1474 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1475 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1476 						  struct mm_struct *mm,
1477 						  unsigned long start,
1478 						  unsigned long nr_pages,
1479 						  struct page **pages,
1480 						  struct vm_area_struct **vmas,
1481 						  unsigned int flags)
1482 {
1483 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1484 				       NULL, flags);
1485 }
1486 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1487 
1488 /*
1489  * This is the same as get_user_pages_remote(), just with a
1490  * less-flexible calling convention where we assume that the task
1491  * and mm being operated on are the current task's and don't allow
1492  * passing of a locked parameter.  We also obviously don't pass
1493  * FOLL_REMOTE in here.
1494  */
1495 long get_user_pages(unsigned long start, unsigned long nr_pages,
1496 		unsigned int gup_flags, struct page **pages,
1497 		struct vm_area_struct **vmas)
1498 {
1499 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1500 				     pages, vmas, gup_flags | FOLL_TOUCH);
1501 }
1502 EXPORT_SYMBOL(get_user_pages);
1503 
1504 /**
1505  * populate_vma_page_range() -  populate a range of pages in the vma.
1506  * @vma:   target vma
1507  * @start: start address
1508  * @end:   end address
1509  * @nonblocking:
1510  *
1511  * This takes care of mlocking the pages too if VM_LOCKED is set.
1512  *
1513  * return 0 on success, negative error code on error.
1514  *
1515  * vma->vm_mm->mmap_sem must be held.
1516  *
1517  * If @nonblocking is NULL, it may be held for read or write and will
1518  * be unperturbed.
1519  *
1520  * If @nonblocking is non-NULL, it must held for read only and may be
1521  * released.  If it's released, *@nonblocking will be set to 0.
1522  */
1523 long populate_vma_page_range(struct vm_area_struct *vma,
1524 		unsigned long start, unsigned long end, int *nonblocking)
1525 {
1526 	struct mm_struct *mm = vma->vm_mm;
1527 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1528 	int gup_flags;
1529 
1530 	VM_BUG_ON(start & ~PAGE_MASK);
1531 	VM_BUG_ON(end   & ~PAGE_MASK);
1532 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1533 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1534 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1535 
1536 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1537 	if (vma->vm_flags & VM_LOCKONFAULT)
1538 		gup_flags &= ~FOLL_POPULATE;
1539 	/*
1540 	 * We want to touch writable mappings with a write fault in order
1541 	 * to break COW, except for shared mappings because these don't COW
1542 	 * and we would not want to dirty them for nothing.
1543 	 */
1544 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1545 		gup_flags |= FOLL_WRITE;
1546 
1547 	/*
1548 	 * We want mlock to succeed for regions that have any permissions
1549 	 * other than PROT_NONE.
1550 	 */
1551 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1552 		gup_flags |= FOLL_FORCE;
1553 
1554 	/*
1555 	 * We made sure addr is within a VMA, so the following will
1556 	 * not result in a stack expansion that recurses back here.
1557 	 */
1558 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1559 				NULL, NULL, nonblocking);
1560 }
1561 
1562 /*
1563  * __mm_populate - populate and/or mlock pages within a range of address space.
1564  *
1565  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1566  * flags. VMAs must be already marked with the desired vm_flags, and
1567  * mmap_sem must not be held.
1568  */
1569 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1570 {
1571 	struct mm_struct *mm = current->mm;
1572 	unsigned long end, nstart, nend;
1573 	struct vm_area_struct *vma = NULL;
1574 	int locked = 0;
1575 	long ret = 0;
1576 
1577 	end = start + len;
1578 
1579 	for (nstart = start; nstart < end; nstart = nend) {
1580 		/*
1581 		 * We want to fault in pages for [nstart; end) address range.
1582 		 * Find first corresponding VMA.
1583 		 */
1584 		if (!locked) {
1585 			locked = 1;
1586 			down_read(&mm->mmap_sem);
1587 			vma = find_vma(mm, nstart);
1588 		} else if (nstart >= vma->vm_end)
1589 			vma = vma->vm_next;
1590 		if (!vma || vma->vm_start >= end)
1591 			break;
1592 		/*
1593 		 * Set [nstart; nend) to intersection of desired address
1594 		 * range with the first VMA. Also, skip undesirable VMA types.
1595 		 */
1596 		nend = min(end, vma->vm_end);
1597 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1598 			continue;
1599 		if (nstart < vma->vm_start)
1600 			nstart = vma->vm_start;
1601 		/*
1602 		 * Now fault in a range of pages. populate_vma_page_range()
1603 		 * double checks the vma flags, so that it won't mlock pages
1604 		 * if the vma was already munlocked.
1605 		 */
1606 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1607 		if (ret < 0) {
1608 			if (ignore_errors) {
1609 				ret = 0;
1610 				continue;	/* continue at next VMA */
1611 			}
1612 			break;
1613 		}
1614 		nend = nstart + ret * PAGE_SIZE;
1615 		ret = 0;
1616 	}
1617 	if (locked)
1618 		up_read(&mm->mmap_sem);
1619 	return ret;	/* 0 or negative error code */
1620 }
1621 
1622 /**
1623  * get_dump_page() - pin user page in memory while writing it to core dump
1624  * @addr: user address
1625  *
1626  * Returns struct page pointer of user page pinned for dump,
1627  * to be freed afterwards by put_page().
1628  *
1629  * Returns NULL on any kind of failure - a hole must then be inserted into
1630  * the corefile, to preserve alignment with its headers; and also returns
1631  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1632  * allowing a hole to be left in the corefile to save diskspace.
1633  *
1634  * Called without mmap_sem, but after all other threads have been killed.
1635  */
1636 #ifdef CONFIG_ELF_CORE
1637 struct page *get_dump_page(unsigned long addr)
1638 {
1639 	struct vm_area_struct *vma;
1640 	struct page *page;
1641 
1642 	if (__get_user_pages(current, current->mm, addr, 1,
1643 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1644 			     NULL) < 1)
1645 		return NULL;
1646 	flush_cache_page(vma, addr, page_to_pfn(page));
1647 	return page;
1648 }
1649 #endif /* CONFIG_ELF_CORE */
1650 
1651 /*
1652  * Generic Fast GUP
1653  *
1654  * get_user_pages_fast attempts to pin user pages by walking the page
1655  * tables directly and avoids taking locks. Thus the walker needs to be
1656  * protected from page table pages being freed from under it, and should
1657  * block any THP splits.
1658  *
1659  * One way to achieve this is to have the walker disable interrupts, and
1660  * rely on IPIs from the TLB flushing code blocking before the page table
1661  * pages are freed. This is unsuitable for architectures that do not need
1662  * to broadcast an IPI when invalidating TLBs.
1663  *
1664  * Another way to achieve this is to batch up page table containing pages
1665  * belonging to more than one mm_user, then rcu_sched a callback to free those
1666  * pages. Disabling interrupts will allow the fast_gup walker to both block
1667  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1668  * (which is a relatively rare event). The code below adopts this strategy.
1669  *
1670  * Before activating this code, please be aware that the following assumptions
1671  * are currently made:
1672  *
1673  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1674  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1675  *
1676  *  *) ptes can be read atomically by the architecture.
1677  *
1678  *  *) access_ok is sufficient to validate userspace address ranges.
1679  *
1680  * The last two assumptions can be relaxed by the addition of helper functions.
1681  *
1682  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1683  */
1684 #ifdef CONFIG_HAVE_GENERIC_GUP
1685 
1686 #ifndef gup_get_pte
1687 /*
1688  * We assume that the PTE can be read atomically. If this is not the case for
1689  * your architecture, please provide the helper.
1690  */
1691 static inline pte_t gup_get_pte(pte_t *ptep)
1692 {
1693 	return READ_ONCE(*ptep);
1694 }
1695 #endif
1696 
1697 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1698 {
1699 	while ((*nr) - nr_start) {
1700 		struct page *page = pages[--(*nr)];
1701 
1702 		ClearPageReferenced(page);
1703 		put_page(page);
1704 	}
1705 }
1706 
1707 /*
1708  * Return the compund head page with ref appropriately incremented,
1709  * or NULL if that failed.
1710  */
1711 static inline struct page *try_get_compound_head(struct page *page, int refs)
1712 {
1713 	struct page *head = compound_head(page);
1714 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1715 		return NULL;
1716 	if (unlikely(!page_cache_add_speculative(head, refs)))
1717 		return NULL;
1718 	return head;
1719 }
1720 
1721 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1722 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1723 			 unsigned int flags, struct page **pages, int *nr)
1724 {
1725 	struct dev_pagemap *pgmap = NULL;
1726 	int nr_start = *nr, ret = 0;
1727 	pte_t *ptep, *ptem;
1728 
1729 	ptem = ptep = pte_offset_map(&pmd, addr);
1730 	do {
1731 		pte_t pte = gup_get_pte(ptep);
1732 		struct page *head, *page;
1733 
1734 		/*
1735 		 * Similar to the PMD case below, NUMA hinting must take slow
1736 		 * path using the pte_protnone check.
1737 		 */
1738 		if (pte_protnone(pte))
1739 			goto pte_unmap;
1740 
1741 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1742 			goto pte_unmap;
1743 
1744 		if (pte_devmap(pte)) {
1745 			if (unlikely(flags & FOLL_LONGTERM))
1746 				goto pte_unmap;
1747 
1748 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1749 			if (unlikely(!pgmap)) {
1750 				undo_dev_pagemap(nr, nr_start, pages);
1751 				goto pte_unmap;
1752 			}
1753 		} else if (pte_special(pte))
1754 			goto pte_unmap;
1755 
1756 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1757 		page = pte_page(pte);
1758 
1759 		head = try_get_compound_head(page, 1);
1760 		if (!head)
1761 			goto pte_unmap;
1762 
1763 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1764 			put_page(head);
1765 			goto pte_unmap;
1766 		}
1767 
1768 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1769 
1770 		SetPageReferenced(page);
1771 		pages[*nr] = page;
1772 		(*nr)++;
1773 
1774 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1775 
1776 	ret = 1;
1777 
1778 pte_unmap:
1779 	if (pgmap)
1780 		put_dev_pagemap(pgmap);
1781 	pte_unmap(ptem);
1782 	return ret;
1783 }
1784 #else
1785 
1786 /*
1787  * If we can't determine whether or not a pte is special, then fail immediately
1788  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1789  * to be special.
1790  *
1791  * For a futex to be placed on a THP tail page, get_futex_key requires a
1792  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1793  * useful to have gup_huge_pmd even if we can't operate on ptes.
1794  */
1795 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1796 			 unsigned int flags, struct page **pages, int *nr)
1797 {
1798 	return 0;
1799 }
1800 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1801 
1802 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1803 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1804 		unsigned long end, struct page **pages, int *nr)
1805 {
1806 	int nr_start = *nr;
1807 	struct dev_pagemap *pgmap = NULL;
1808 
1809 	do {
1810 		struct page *page = pfn_to_page(pfn);
1811 
1812 		pgmap = get_dev_pagemap(pfn, pgmap);
1813 		if (unlikely(!pgmap)) {
1814 			undo_dev_pagemap(nr, nr_start, pages);
1815 			return 0;
1816 		}
1817 		SetPageReferenced(page);
1818 		pages[*nr] = page;
1819 		get_page(page);
1820 		(*nr)++;
1821 		pfn++;
1822 	} while (addr += PAGE_SIZE, addr != end);
1823 
1824 	if (pgmap)
1825 		put_dev_pagemap(pgmap);
1826 	return 1;
1827 }
1828 
1829 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1830 		unsigned long end, struct page **pages, int *nr)
1831 {
1832 	unsigned long fault_pfn;
1833 	int nr_start = *nr;
1834 
1835 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1836 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1837 		return 0;
1838 
1839 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1840 		undo_dev_pagemap(nr, nr_start, pages);
1841 		return 0;
1842 	}
1843 	return 1;
1844 }
1845 
1846 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1847 		unsigned long end, struct page **pages, int *nr)
1848 {
1849 	unsigned long fault_pfn;
1850 	int nr_start = *nr;
1851 
1852 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1853 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1854 		return 0;
1855 
1856 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1857 		undo_dev_pagemap(nr, nr_start, pages);
1858 		return 0;
1859 	}
1860 	return 1;
1861 }
1862 #else
1863 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1864 		unsigned long end, struct page **pages, int *nr)
1865 {
1866 	BUILD_BUG();
1867 	return 0;
1868 }
1869 
1870 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1871 		unsigned long end, struct page **pages, int *nr)
1872 {
1873 	BUILD_BUG();
1874 	return 0;
1875 }
1876 #endif
1877 
1878 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1879 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1880 {
1881 	struct page *head, *page;
1882 	int refs;
1883 
1884 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
1885 		return 0;
1886 
1887 	if (pmd_devmap(orig)) {
1888 		if (unlikely(flags & FOLL_LONGTERM))
1889 			return 0;
1890 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1891 	}
1892 
1893 	refs = 0;
1894 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1895 	do {
1896 		pages[*nr] = page;
1897 		(*nr)++;
1898 		page++;
1899 		refs++;
1900 	} while (addr += PAGE_SIZE, addr != end);
1901 
1902 	head = try_get_compound_head(pmd_page(orig), refs);
1903 	if (!head) {
1904 		*nr -= refs;
1905 		return 0;
1906 	}
1907 
1908 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1909 		*nr -= refs;
1910 		while (refs--)
1911 			put_page(head);
1912 		return 0;
1913 	}
1914 
1915 	SetPageReferenced(head);
1916 	return 1;
1917 }
1918 
1919 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1920 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
1921 {
1922 	struct page *head, *page;
1923 	int refs;
1924 
1925 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
1926 		return 0;
1927 
1928 	if (pud_devmap(orig)) {
1929 		if (unlikely(flags & FOLL_LONGTERM))
1930 			return 0;
1931 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1932 	}
1933 
1934 	refs = 0;
1935 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1936 	do {
1937 		pages[*nr] = page;
1938 		(*nr)++;
1939 		page++;
1940 		refs++;
1941 	} while (addr += PAGE_SIZE, addr != end);
1942 
1943 	head = try_get_compound_head(pud_page(orig), refs);
1944 	if (!head) {
1945 		*nr -= refs;
1946 		return 0;
1947 	}
1948 
1949 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1950 		*nr -= refs;
1951 		while (refs--)
1952 			put_page(head);
1953 		return 0;
1954 	}
1955 
1956 	SetPageReferenced(head);
1957 	return 1;
1958 }
1959 
1960 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1961 			unsigned long end, unsigned int flags,
1962 			struct page **pages, int *nr)
1963 {
1964 	int refs;
1965 	struct page *head, *page;
1966 
1967 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
1968 		return 0;
1969 
1970 	BUILD_BUG_ON(pgd_devmap(orig));
1971 	refs = 0;
1972 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1973 	do {
1974 		pages[*nr] = page;
1975 		(*nr)++;
1976 		page++;
1977 		refs++;
1978 	} while (addr += PAGE_SIZE, addr != end);
1979 
1980 	head = try_get_compound_head(pgd_page(orig), refs);
1981 	if (!head) {
1982 		*nr -= refs;
1983 		return 0;
1984 	}
1985 
1986 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1987 		*nr -= refs;
1988 		while (refs--)
1989 			put_page(head);
1990 		return 0;
1991 	}
1992 
1993 	SetPageReferenced(head);
1994 	return 1;
1995 }
1996 
1997 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1998 		unsigned int flags, struct page **pages, int *nr)
1999 {
2000 	unsigned long next;
2001 	pmd_t *pmdp;
2002 
2003 	pmdp = pmd_offset(&pud, addr);
2004 	do {
2005 		pmd_t pmd = READ_ONCE(*pmdp);
2006 
2007 		next = pmd_addr_end(addr, end);
2008 		if (!pmd_present(pmd))
2009 			return 0;
2010 
2011 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2012 			     pmd_devmap(pmd))) {
2013 			/*
2014 			 * NUMA hinting faults need to be handled in the GUP
2015 			 * slowpath for accounting purposes and so that they
2016 			 * can be serialised against THP migration.
2017 			 */
2018 			if (pmd_protnone(pmd))
2019 				return 0;
2020 
2021 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2022 				pages, nr))
2023 				return 0;
2024 
2025 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2026 			/*
2027 			 * architecture have different format for hugetlbfs
2028 			 * pmd format and THP pmd format
2029 			 */
2030 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2031 					 PMD_SHIFT, next, flags, pages, nr))
2032 				return 0;
2033 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2034 			return 0;
2035 	} while (pmdp++, addr = next, addr != end);
2036 
2037 	return 1;
2038 }
2039 
2040 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2041 			 unsigned int flags, struct page **pages, int *nr)
2042 {
2043 	unsigned long next;
2044 	pud_t *pudp;
2045 
2046 	pudp = pud_offset(&p4d, addr);
2047 	do {
2048 		pud_t pud = READ_ONCE(*pudp);
2049 
2050 		next = pud_addr_end(addr, end);
2051 		if (pud_none(pud))
2052 			return 0;
2053 		if (unlikely(pud_huge(pud))) {
2054 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2055 					  pages, nr))
2056 				return 0;
2057 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2058 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2059 					 PUD_SHIFT, next, flags, pages, nr))
2060 				return 0;
2061 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2062 			return 0;
2063 	} while (pudp++, addr = next, addr != end);
2064 
2065 	return 1;
2066 }
2067 
2068 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2069 			 unsigned int flags, struct page **pages, int *nr)
2070 {
2071 	unsigned long next;
2072 	p4d_t *p4dp;
2073 
2074 	p4dp = p4d_offset(&pgd, addr);
2075 	do {
2076 		p4d_t p4d = READ_ONCE(*p4dp);
2077 
2078 		next = p4d_addr_end(addr, end);
2079 		if (p4d_none(p4d))
2080 			return 0;
2081 		BUILD_BUG_ON(p4d_huge(p4d));
2082 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2083 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2084 					 P4D_SHIFT, next, flags, pages, nr))
2085 				return 0;
2086 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2087 			return 0;
2088 	} while (p4dp++, addr = next, addr != end);
2089 
2090 	return 1;
2091 }
2092 
2093 static void gup_pgd_range(unsigned long addr, unsigned long end,
2094 		unsigned int flags, struct page **pages, int *nr)
2095 {
2096 	unsigned long next;
2097 	pgd_t *pgdp;
2098 
2099 	pgdp = pgd_offset(current->mm, addr);
2100 	do {
2101 		pgd_t pgd = READ_ONCE(*pgdp);
2102 
2103 		next = pgd_addr_end(addr, end);
2104 		if (pgd_none(pgd))
2105 			return;
2106 		if (unlikely(pgd_huge(pgd))) {
2107 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2108 					  pages, nr))
2109 				return;
2110 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2111 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2112 					 PGDIR_SHIFT, next, flags, pages, nr))
2113 				return;
2114 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2115 			return;
2116 	} while (pgdp++, addr = next, addr != end);
2117 }
2118 
2119 #ifndef gup_fast_permitted
2120 /*
2121  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2122  * we need to fall back to the slow version:
2123  */
2124 bool gup_fast_permitted(unsigned long start, int nr_pages)
2125 {
2126 	unsigned long len, end;
2127 
2128 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2129 	end = start + len;
2130 	return end >= start;
2131 }
2132 #endif
2133 
2134 /*
2135  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2136  * the regular GUP.
2137  * Note a difference with get_user_pages_fast: this always returns the
2138  * number of pages pinned, 0 if no pages were pinned.
2139  */
2140 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2141 			  struct page **pages)
2142 {
2143 	unsigned long len, end;
2144 	unsigned long flags;
2145 	int nr = 0;
2146 
2147 	start &= PAGE_MASK;
2148 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2149 	end = start + len;
2150 
2151 	if (unlikely(!access_ok((void __user *)start, len)))
2152 		return 0;
2153 
2154 	/*
2155 	 * Disable interrupts.  We use the nested form as we can already have
2156 	 * interrupts disabled by get_futex_key.
2157 	 *
2158 	 * With interrupts disabled, we block page table pages from being
2159 	 * freed from under us. See struct mmu_table_batch comments in
2160 	 * include/asm-generic/tlb.h for more details.
2161 	 *
2162 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2163 	 * block IPIs that come from THPs splitting.
2164 	 */
2165 
2166 	if (gup_fast_permitted(start, nr_pages)) {
2167 		local_irq_save(flags);
2168 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2169 		local_irq_restore(flags);
2170 	}
2171 
2172 	return nr;
2173 }
2174 
2175 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2176 				   unsigned int gup_flags, struct page **pages)
2177 {
2178 	int ret;
2179 
2180 	/*
2181 	 * FIXME: FOLL_LONGTERM does not work with
2182 	 * get_user_pages_unlocked() (see comments in that function)
2183 	 */
2184 	if (gup_flags & FOLL_LONGTERM) {
2185 		down_read(&current->mm->mmap_sem);
2186 		ret = __gup_longterm_locked(current, current->mm,
2187 					    start, nr_pages,
2188 					    pages, NULL, gup_flags);
2189 		up_read(&current->mm->mmap_sem);
2190 	} else {
2191 		ret = get_user_pages_unlocked(start, nr_pages,
2192 					      pages, gup_flags);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 /**
2199  * get_user_pages_fast() - pin user pages in memory
2200  * @start:	starting user address
2201  * @nr_pages:	number of pages from start to pin
2202  * @gup_flags:	flags modifying pin behaviour
2203  * @pages:	array that receives pointers to the pages pinned.
2204  *		Should be at least nr_pages long.
2205  *
2206  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2207  * If not successful, it will fall back to taking the lock and
2208  * calling get_user_pages().
2209  *
2210  * Returns number of pages pinned. This may be fewer than the number
2211  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2212  * were pinned, returns -errno.
2213  */
2214 int get_user_pages_fast(unsigned long start, int nr_pages,
2215 			unsigned int gup_flags, struct page **pages)
2216 {
2217 	unsigned long addr, len, end;
2218 	int nr = 0, ret = 0;
2219 
2220 	start &= PAGE_MASK;
2221 	addr = start;
2222 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2223 	end = start + len;
2224 
2225 	if (nr_pages <= 0)
2226 		return 0;
2227 
2228 	if (unlikely(!access_ok((void __user *)start, len)))
2229 		return -EFAULT;
2230 
2231 	if (gup_fast_permitted(start, nr_pages)) {
2232 		local_irq_disable();
2233 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2234 		local_irq_enable();
2235 		ret = nr;
2236 	}
2237 
2238 	if (nr < nr_pages) {
2239 		/* Try to get the remaining pages with get_user_pages */
2240 		start += nr << PAGE_SHIFT;
2241 		pages += nr;
2242 
2243 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2244 					      gup_flags, pages);
2245 
2246 		/* Have to be a bit careful with return values */
2247 		if (nr > 0) {
2248 			if (ret < 0)
2249 				ret = nr;
2250 			else
2251 				ret += nr;
2252 		}
2253 	}
2254 
2255 	return ret;
2256 }
2257 
2258 #endif /* CONFIG_HAVE_GENERIC_GUP */
2259