1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/tlbflush.h> 23 24 #include "internal.h" 25 26 struct follow_page_context { 27 struct dev_pagemap *pgmap; 28 unsigned int page_mask; 29 }; 30 31 static void hpage_pincount_add(struct page *page, int refs) 32 { 33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 34 VM_BUG_ON_PAGE(page != compound_head(page), page); 35 36 atomic_add(refs, compound_pincount_ptr(page)); 37 } 38 39 static void hpage_pincount_sub(struct page *page, int refs) 40 { 41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 42 VM_BUG_ON_PAGE(page != compound_head(page), page); 43 44 atomic_sub(refs, compound_pincount_ptr(page)); 45 } 46 47 /* 48 * Return the compound head page with ref appropriately incremented, 49 * or NULL if that failed. 50 */ 51 static inline struct page *try_get_compound_head(struct page *page, int refs) 52 { 53 struct page *head = compound_head(page); 54 55 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 56 return NULL; 57 if (unlikely(!page_cache_add_speculative(head, refs))) 58 return NULL; 59 return head; 60 } 61 62 /* 63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 64 * flags-dependent amount. 65 * 66 * "grab" names in this file mean, "look at flags to decide whether to use 67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 68 * 69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 70 * same time. (That's true throughout the get_user_pages*() and 71 * pin_user_pages*() APIs.) Cases: 72 * 73 * FOLL_GET: page's refcount will be incremented by 1. 74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 75 * 76 * Return: head page (with refcount appropriately incremented) for success, or 77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 78 * considered failure, and furthermore, a likely bug in the caller, so a warning 79 * is also emitted. 80 */ 81 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 82 int refs, 83 unsigned int flags) 84 { 85 if (flags & FOLL_GET) 86 return try_get_compound_head(page, refs); 87 else if (flags & FOLL_PIN) { 88 int orig_refs = refs; 89 90 /* 91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 92 * path, so fail and let the caller fall back to the slow path. 93 */ 94 if (unlikely(flags & FOLL_LONGTERM) && 95 is_migrate_cma_page(page)) 96 return NULL; 97 98 /* 99 * When pinning a compound page of order > 1 (which is what 100 * hpage_pincount_available() checks for), use an exact count to 101 * track it, via hpage_pincount_add/_sub(). 102 * 103 * However, be sure to *also* increment the normal page refcount 104 * field at least once, so that the page really is pinned. 105 */ 106 if (!hpage_pincount_available(page)) 107 refs *= GUP_PIN_COUNTING_BIAS; 108 109 page = try_get_compound_head(page, refs); 110 if (!page) 111 return NULL; 112 113 if (hpage_pincount_available(page)) 114 hpage_pincount_add(page, refs); 115 116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 117 orig_refs); 118 119 return page; 120 } 121 122 WARN_ON_ONCE(1); 123 return NULL; 124 } 125 126 /** 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 128 * 129 * This might not do anything at all, depending on the flags argument. 130 * 131 * "grab" names in this file mean, "look at flags to decide whether to use 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 133 * 134 * @page: pointer to page to be grabbed 135 * @flags: gup flags: these are the FOLL_* flag values. 136 * 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 138 * time. Cases: 139 * 140 * FOLL_GET: page's refcount will be incremented by 1. 141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 142 * 143 * Return: true for success, or if no action was required (if neither FOLL_PIN 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 145 * FOLL_PIN was set, but the page could not be grabbed. 146 */ 147 bool __must_check try_grab_page(struct page *page, unsigned int flags) 148 { 149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 150 151 if (flags & FOLL_GET) 152 return try_get_page(page); 153 else if (flags & FOLL_PIN) { 154 int refs = 1; 155 156 page = compound_head(page); 157 158 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 159 return false; 160 161 if (hpage_pincount_available(page)) 162 hpage_pincount_add(page, 1); 163 else 164 refs = GUP_PIN_COUNTING_BIAS; 165 166 /* 167 * Similar to try_grab_compound_head(): even if using the 168 * hpage_pincount_add/_sub() routines, be sure to 169 * *also* increment the normal page refcount field at least 170 * once, so that the page really is pinned. 171 */ 172 page_ref_add(page, refs); 173 174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 175 } 176 177 return true; 178 } 179 180 #ifdef CONFIG_DEV_PAGEMAP_OPS 181 static bool __unpin_devmap_managed_user_page(struct page *page) 182 { 183 int count, refs = 1; 184 185 if (!page_is_devmap_managed(page)) 186 return false; 187 188 if (hpage_pincount_available(page)) 189 hpage_pincount_sub(page, 1); 190 else 191 refs = GUP_PIN_COUNTING_BIAS; 192 193 count = page_ref_sub_return(page, refs); 194 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 196 /* 197 * devmap page refcounts are 1-based, rather than 0-based: if 198 * refcount is 1, then the page is free and the refcount is 199 * stable because nobody holds a reference on the page. 200 */ 201 if (count == 1) 202 free_devmap_managed_page(page); 203 else if (!count) 204 __put_page(page); 205 206 return true; 207 } 208 #else 209 static bool __unpin_devmap_managed_user_page(struct page *page) 210 { 211 return false; 212 } 213 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 214 215 /** 216 * unpin_user_page() - release a dma-pinned page 217 * @page: pointer to page to be released 218 * 219 * Pages that were pinned via pin_user_pages*() must be released via either 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 221 * that such pages can be separately tracked and uniquely handled. In 222 * particular, interactions with RDMA and filesystems need special handling. 223 */ 224 void unpin_user_page(struct page *page) 225 { 226 int refs = 1; 227 228 page = compound_head(page); 229 230 /* 231 * For devmap managed pages we need to catch refcount transition from 232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 233 * page is free and we need to inform the device driver through 234 * callback. See include/linux/memremap.h and HMM for details. 235 */ 236 if (__unpin_devmap_managed_user_page(page)) 237 return; 238 239 if (hpage_pincount_available(page)) 240 hpage_pincount_sub(page, 1); 241 else 242 refs = GUP_PIN_COUNTING_BIAS; 243 244 if (page_ref_sub_and_test(page, refs)) 245 __put_page(page); 246 247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 248 } 249 EXPORT_SYMBOL(unpin_user_page); 250 251 /** 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 253 * @pages: array of pages to be maybe marked dirty, and definitely released. 254 * @npages: number of pages in the @pages array. 255 * @make_dirty: whether to mark the pages dirty 256 * 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 258 * variants called on that page. 259 * 260 * For each page in the @pages array, make that page (or its head page, if a 261 * compound page) dirty, if @make_dirty is true, and if the page was previously 262 * listed as clean. In any case, releases all pages using unpin_user_page(), 263 * possibly via unpin_user_pages(), for the non-dirty case. 264 * 265 * Please see the unpin_user_page() documentation for details. 266 * 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 268 * required, then the caller should a) verify that this is really correct, 269 * because _lock() is usually required, and b) hand code it: 270 * set_page_dirty_lock(), unpin_user_page(). 271 * 272 */ 273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 274 bool make_dirty) 275 { 276 unsigned long index; 277 278 /* 279 * TODO: this can be optimized for huge pages: if a series of pages is 280 * physically contiguous and part of the same compound page, then a 281 * single operation to the head page should suffice. 282 */ 283 284 if (!make_dirty) { 285 unpin_user_pages(pages, npages); 286 return; 287 } 288 289 for (index = 0; index < npages; index++) { 290 struct page *page = compound_head(pages[index]); 291 /* 292 * Checking PageDirty at this point may race with 293 * clear_page_dirty_for_io(), but that's OK. Two key 294 * cases: 295 * 296 * 1) This code sees the page as already dirty, so it 297 * skips the call to set_page_dirty(). That could happen 298 * because clear_page_dirty_for_io() called 299 * page_mkclean(), followed by set_page_dirty(). 300 * However, now the page is going to get written back, 301 * which meets the original intention of setting it 302 * dirty, so all is well: clear_page_dirty_for_io() goes 303 * on to call TestClearPageDirty(), and write the page 304 * back. 305 * 306 * 2) This code sees the page as clean, so it calls 307 * set_page_dirty(). The page stays dirty, despite being 308 * written back, so it gets written back again in the 309 * next writeback cycle. This is harmless. 310 */ 311 if (!PageDirty(page)) 312 set_page_dirty_lock(page); 313 unpin_user_page(page); 314 } 315 } 316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 317 318 /** 319 * unpin_user_pages() - release an array of gup-pinned pages. 320 * @pages: array of pages to be marked dirty and released. 321 * @npages: number of pages in the @pages array. 322 * 323 * For each page in the @pages array, release the page using unpin_user_page(). 324 * 325 * Please see the unpin_user_page() documentation for details. 326 */ 327 void unpin_user_pages(struct page **pages, unsigned long npages) 328 { 329 unsigned long index; 330 331 /* 332 * If this WARN_ON() fires, then the system *might* be leaking pages (by 333 * leaving them pinned), but probably not. More likely, gup/pup returned 334 * a hard -ERRNO error to the caller, who erroneously passed it here. 335 */ 336 if (WARN_ON(IS_ERR_VALUE(npages))) 337 return; 338 /* 339 * TODO: this can be optimized for huge pages: if a series of pages is 340 * physically contiguous and part of the same compound page, then a 341 * single operation to the head page should suffice. 342 */ 343 for (index = 0; index < npages; index++) 344 unpin_user_page(pages[index]); 345 } 346 EXPORT_SYMBOL(unpin_user_pages); 347 348 #ifdef CONFIG_MMU 349 static struct page *no_page_table(struct vm_area_struct *vma, 350 unsigned int flags) 351 { 352 /* 353 * When core dumping an enormous anonymous area that nobody 354 * has touched so far, we don't want to allocate unnecessary pages or 355 * page tables. Return error instead of NULL to skip handle_mm_fault, 356 * then get_dump_page() will return NULL to leave a hole in the dump. 357 * But we can only make this optimization where a hole would surely 358 * be zero-filled if handle_mm_fault() actually did handle it. 359 */ 360 if ((flags & FOLL_DUMP) && 361 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 362 return ERR_PTR(-EFAULT); 363 return NULL; 364 } 365 366 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 367 pte_t *pte, unsigned int flags) 368 { 369 /* No page to get reference */ 370 if (flags & FOLL_GET) 371 return -EFAULT; 372 373 if (flags & FOLL_TOUCH) { 374 pte_t entry = *pte; 375 376 if (flags & FOLL_WRITE) 377 entry = pte_mkdirty(entry); 378 entry = pte_mkyoung(entry); 379 380 if (!pte_same(*pte, entry)) { 381 set_pte_at(vma->vm_mm, address, pte, entry); 382 update_mmu_cache(vma, address, pte); 383 } 384 } 385 386 /* Proper page table entry exists, but no corresponding struct page */ 387 return -EEXIST; 388 } 389 390 /* 391 * FOLL_FORCE can write to even unwritable pte's, but only 392 * after we've gone through a COW cycle and they are dirty. 393 */ 394 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 395 { 396 return pte_write(pte) || 397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 398 } 399 400 static struct page *follow_page_pte(struct vm_area_struct *vma, 401 unsigned long address, pmd_t *pmd, unsigned int flags, 402 struct dev_pagemap **pgmap) 403 { 404 struct mm_struct *mm = vma->vm_mm; 405 struct page *page; 406 spinlock_t *ptl; 407 pte_t *ptep, pte; 408 int ret; 409 410 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 411 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 412 (FOLL_PIN | FOLL_GET))) 413 return ERR_PTR(-EINVAL); 414 retry: 415 if (unlikely(pmd_bad(*pmd))) 416 return no_page_table(vma, flags); 417 418 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 419 pte = *ptep; 420 if (!pte_present(pte)) { 421 swp_entry_t entry; 422 /* 423 * KSM's break_ksm() relies upon recognizing a ksm page 424 * even while it is being migrated, so for that case we 425 * need migration_entry_wait(). 426 */ 427 if (likely(!(flags & FOLL_MIGRATION))) 428 goto no_page; 429 if (pte_none(pte)) 430 goto no_page; 431 entry = pte_to_swp_entry(pte); 432 if (!is_migration_entry(entry)) 433 goto no_page; 434 pte_unmap_unlock(ptep, ptl); 435 migration_entry_wait(mm, pmd, address); 436 goto retry; 437 } 438 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 439 goto no_page; 440 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 441 pte_unmap_unlock(ptep, ptl); 442 return NULL; 443 } 444 445 page = vm_normal_page(vma, address, pte); 446 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 447 /* 448 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 449 * case since they are only valid while holding the pgmap 450 * reference. 451 */ 452 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 453 if (*pgmap) 454 page = pte_page(pte); 455 else 456 goto no_page; 457 } else if (unlikely(!page)) { 458 if (flags & FOLL_DUMP) { 459 /* Avoid special (like zero) pages in core dumps */ 460 page = ERR_PTR(-EFAULT); 461 goto out; 462 } 463 464 if (is_zero_pfn(pte_pfn(pte))) { 465 page = pte_page(pte); 466 } else { 467 ret = follow_pfn_pte(vma, address, ptep, flags); 468 page = ERR_PTR(ret); 469 goto out; 470 } 471 } 472 473 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 474 get_page(page); 475 pte_unmap_unlock(ptep, ptl); 476 lock_page(page); 477 ret = split_huge_page(page); 478 unlock_page(page); 479 put_page(page); 480 if (ret) 481 return ERR_PTR(ret); 482 goto retry; 483 } 484 485 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 486 if (unlikely(!try_grab_page(page, flags))) { 487 page = ERR_PTR(-ENOMEM); 488 goto out; 489 } 490 /* 491 * We need to make the page accessible if and only if we are going 492 * to access its content (the FOLL_PIN case). Please see 493 * Documentation/core-api/pin_user_pages.rst for details. 494 */ 495 if (flags & FOLL_PIN) { 496 ret = arch_make_page_accessible(page); 497 if (ret) { 498 unpin_user_page(page); 499 page = ERR_PTR(ret); 500 goto out; 501 } 502 } 503 if (flags & FOLL_TOUCH) { 504 if ((flags & FOLL_WRITE) && 505 !pte_dirty(pte) && !PageDirty(page)) 506 set_page_dirty(page); 507 /* 508 * pte_mkyoung() would be more correct here, but atomic care 509 * is needed to avoid losing the dirty bit: it is easier to use 510 * mark_page_accessed(). 511 */ 512 mark_page_accessed(page); 513 } 514 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 515 /* Do not mlock pte-mapped THP */ 516 if (PageTransCompound(page)) 517 goto out; 518 519 /* 520 * The preliminary mapping check is mainly to avoid the 521 * pointless overhead of lock_page on the ZERO_PAGE 522 * which might bounce very badly if there is contention. 523 * 524 * If the page is already locked, we don't need to 525 * handle it now - vmscan will handle it later if and 526 * when it attempts to reclaim the page. 527 */ 528 if (page->mapping && trylock_page(page)) { 529 lru_add_drain(); /* push cached pages to LRU */ 530 /* 531 * Because we lock page here, and migration is 532 * blocked by the pte's page reference, and we 533 * know the page is still mapped, we don't even 534 * need to check for file-cache page truncation. 535 */ 536 mlock_vma_page(page); 537 unlock_page(page); 538 } 539 } 540 out: 541 pte_unmap_unlock(ptep, ptl); 542 return page; 543 no_page: 544 pte_unmap_unlock(ptep, ptl); 545 if (!pte_none(pte)) 546 return NULL; 547 return no_page_table(vma, flags); 548 } 549 550 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 551 unsigned long address, pud_t *pudp, 552 unsigned int flags, 553 struct follow_page_context *ctx) 554 { 555 pmd_t *pmd, pmdval; 556 spinlock_t *ptl; 557 struct page *page; 558 struct mm_struct *mm = vma->vm_mm; 559 560 pmd = pmd_offset(pudp, address); 561 /* 562 * The READ_ONCE() will stabilize the pmdval in a register or 563 * on the stack so that it will stop changing under the code. 564 */ 565 pmdval = READ_ONCE(*pmd); 566 if (pmd_none(pmdval)) 567 return no_page_table(vma, flags); 568 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 569 page = follow_huge_pmd(mm, address, pmd, flags); 570 if (page) 571 return page; 572 return no_page_table(vma, flags); 573 } 574 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 575 page = follow_huge_pd(vma, address, 576 __hugepd(pmd_val(pmdval)), flags, 577 PMD_SHIFT); 578 if (page) 579 return page; 580 return no_page_table(vma, flags); 581 } 582 retry: 583 if (!pmd_present(pmdval)) { 584 if (likely(!(flags & FOLL_MIGRATION))) 585 return no_page_table(vma, flags); 586 VM_BUG_ON(thp_migration_supported() && 587 !is_pmd_migration_entry(pmdval)); 588 if (is_pmd_migration_entry(pmdval)) 589 pmd_migration_entry_wait(mm, pmd); 590 pmdval = READ_ONCE(*pmd); 591 /* 592 * MADV_DONTNEED may convert the pmd to null because 593 * mmap_lock is held in read mode 594 */ 595 if (pmd_none(pmdval)) 596 return no_page_table(vma, flags); 597 goto retry; 598 } 599 if (pmd_devmap(pmdval)) { 600 ptl = pmd_lock(mm, pmd); 601 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 602 spin_unlock(ptl); 603 if (page) 604 return page; 605 } 606 if (likely(!pmd_trans_huge(pmdval))) 607 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 608 609 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 610 return no_page_table(vma, flags); 611 612 retry_locked: 613 ptl = pmd_lock(mm, pmd); 614 if (unlikely(pmd_none(*pmd))) { 615 spin_unlock(ptl); 616 return no_page_table(vma, flags); 617 } 618 if (unlikely(!pmd_present(*pmd))) { 619 spin_unlock(ptl); 620 if (likely(!(flags & FOLL_MIGRATION))) 621 return no_page_table(vma, flags); 622 pmd_migration_entry_wait(mm, pmd); 623 goto retry_locked; 624 } 625 if (unlikely(!pmd_trans_huge(*pmd))) { 626 spin_unlock(ptl); 627 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 628 } 629 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 630 int ret; 631 page = pmd_page(*pmd); 632 if (is_huge_zero_page(page)) { 633 spin_unlock(ptl); 634 ret = 0; 635 split_huge_pmd(vma, pmd, address); 636 if (pmd_trans_unstable(pmd)) 637 ret = -EBUSY; 638 } else if (flags & FOLL_SPLIT) { 639 if (unlikely(!try_get_page(page))) { 640 spin_unlock(ptl); 641 return ERR_PTR(-ENOMEM); 642 } 643 spin_unlock(ptl); 644 lock_page(page); 645 ret = split_huge_page(page); 646 unlock_page(page); 647 put_page(page); 648 if (pmd_none(*pmd)) 649 return no_page_table(vma, flags); 650 } else { /* flags & FOLL_SPLIT_PMD */ 651 spin_unlock(ptl); 652 split_huge_pmd(vma, pmd, address); 653 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 654 } 655 656 return ret ? ERR_PTR(ret) : 657 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 658 } 659 page = follow_trans_huge_pmd(vma, address, pmd, flags); 660 spin_unlock(ptl); 661 ctx->page_mask = HPAGE_PMD_NR - 1; 662 return page; 663 } 664 665 static struct page *follow_pud_mask(struct vm_area_struct *vma, 666 unsigned long address, p4d_t *p4dp, 667 unsigned int flags, 668 struct follow_page_context *ctx) 669 { 670 pud_t *pud; 671 spinlock_t *ptl; 672 struct page *page; 673 struct mm_struct *mm = vma->vm_mm; 674 675 pud = pud_offset(p4dp, address); 676 if (pud_none(*pud)) 677 return no_page_table(vma, flags); 678 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 679 page = follow_huge_pud(mm, address, pud, flags); 680 if (page) 681 return page; 682 return no_page_table(vma, flags); 683 } 684 if (is_hugepd(__hugepd(pud_val(*pud)))) { 685 page = follow_huge_pd(vma, address, 686 __hugepd(pud_val(*pud)), flags, 687 PUD_SHIFT); 688 if (page) 689 return page; 690 return no_page_table(vma, flags); 691 } 692 if (pud_devmap(*pud)) { 693 ptl = pud_lock(mm, pud); 694 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 695 spin_unlock(ptl); 696 if (page) 697 return page; 698 } 699 if (unlikely(pud_bad(*pud))) 700 return no_page_table(vma, flags); 701 702 return follow_pmd_mask(vma, address, pud, flags, ctx); 703 } 704 705 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 706 unsigned long address, pgd_t *pgdp, 707 unsigned int flags, 708 struct follow_page_context *ctx) 709 { 710 p4d_t *p4d; 711 struct page *page; 712 713 p4d = p4d_offset(pgdp, address); 714 if (p4d_none(*p4d)) 715 return no_page_table(vma, flags); 716 BUILD_BUG_ON(p4d_huge(*p4d)); 717 if (unlikely(p4d_bad(*p4d))) 718 return no_page_table(vma, flags); 719 720 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 721 page = follow_huge_pd(vma, address, 722 __hugepd(p4d_val(*p4d)), flags, 723 P4D_SHIFT); 724 if (page) 725 return page; 726 return no_page_table(vma, flags); 727 } 728 return follow_pud_mask(vma, address, p4d, flags, ctx); 729 } 730 731 /** 732 * follow_page_mask - look up a page descriptor from a user-virtual address 733 * @vma: vm_area_struct mapping @address 734 * @address: virtual address to look up 735 * @flags: flags modifying lookup behaviour 736 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 737 * pointer to output page_mask 738 * 739 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 740 * 741 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 742 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 743 * 744 * On output, the @ctx->page_mask is set according to the size of the page. 745 * 746 * Return: the mapped (struct page *), %NULL if no mapping exists, or 747 * an error pointer if there is a mapping to something not represented 748 * by a page descriptor (see also vm_normal_page()). 749 */ 750 static struct page *follow_page_mask(struct vm_area_struct *vma, 751 unsigned long address, unsigned int flags, 752 struct follow_page_context *ctx) 753 { 754 pgd_t *pgd; 755 struct page *page; 756 struct mm_struct *mm = vma->vm_mm; 757 758 ctx->page_mask = 0; 759 760 /* make this handle hugepd */ 761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 762 if (!IS_ERR(page)) { 763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 764 return page; 765 } 766 767 pgd = pgd_offset(mm, address); 768 769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 770 return no_page_table(vma, flags); 771 772 if (pgd_huge(*pgd)) { 773 page = follow_huge_pgd(mm, address, pgd, flags); 774 if (page) 775 return page; 776 return no_page_table(vma, flags); 777 } 778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 779 page = follow_huge_pd(vma, address, 780 __hugepd(pgd_val(*pgd)), flags, 781 PGDIR_SHIFT); 782 if (page) 783 return page; 784 return no_page_table(vma, flags); 785 } 786 787 return follow_p4d_mask(vma, address, pgd, flags, ctx); 788 } 789 790 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 791 unsigned int foll_flags) 792 { 793 struct follow_page_context ctx = { NULL }; 794 struct page *page; 795 796 page = follow_page_mask(vma, address, foll_flags, &ctx); 797 if (ctx.pgmap) 798 put_dev_pagemap(ctx.pgmap); 799 return page; 800 } 801 802 static int get_gate_page(struct mm_struct *mm, unsigned long address, 803 unsigned int gup_flags, struct vm_area_struct **vma, 804 struct page **page) 805 { 806 pgd_t *pgd; 807 p4d_t *p4d; 808 pud_t *pud; 809 pmd_t *pmd; 810 pte_t *pte; 811 int ret = -EFAULT; 812 813 /* user gate pages are read-only */ 814 if (gup_flags & FOLL_WRITE) 815 return -EFAULT; 816 if (address > TASK_SIZE) 817 pgd = pgd_offset_k(address); 818 else 819 pgd = pgd_offset_gate(mm, address); 820 if (pgd_none(*pgd)) 821 return -EFAULT; 822 p4d = p4d_offset(pgd, address); 823 if (p4d_none(*p4d)) 824 return -EFAULT; 825 pud = pud_offset(p4d, address); 826 if (pud_none(*pud)) 827 return -EFAULT; 828 pmd = pmd_offset(pud, address); 829 if (!pmd_present(*pmd)) 830 return -EFAULT; 831 VM_BUG_ON(pmd_trans_huge(*pmd)); 832 pte = pte_offset_map(pmd, address); 833 if (pte_none(*pte)) 834 goto unmap; 835 *vma = get_gate_vma(mm); 836 if (!page) 837 goto out; 838 *page = vm_normal_page(*vma, address, *pte); 839 if (!*page) { 840 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 841 goto unmap; 842 *page = pte_page(*pte); 843 } 844 if (unlikely(!try_grab_page(*page, gup_flags))) { 845 ret = -ENOMEM; 846 goto unmap; 847 } 848 out: 849 ret = 0; 850 unmap: 851 pte_unmap(pte); 852 return ret; 853 } 854 855 /* 856 * mmap_lock must be held on entry. If @locked != NULL and *@flags 857 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 858 * is, *@locked will be set to 0 and -EBUSY returned. 859 */ 860 static int faultin_page(struct vm_area_struct *vma, 861 unsigned long address, unsigned int *flags, int *locked) 862 { 863 unsigned int fault_flags = 0; 864 vm_fault_t ret; 865 866 /* mlock all present pages, but do not fault in new pages */ 867 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 868 return -ENOENT; 869 if (*flags & FOLL_WRITE) 870 fault_flags |= FAULT_FLAG_WRITE; 871 if (*flags & FOLL_REMOTE) 872 fault_flags |= FAULT_FLAG_REMOTE; 873 if (locked) 874 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 875 if (*flags & FOLL_NOWAIT) 876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 877 if (*flags & FOLL_TRIED) { 878 /* 879 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 880 * can co-exist 881 */ 882 fault_flags |= FAULT_FLAG_TRIED; 883 } 884 885 ret = handle_mm_fault(vma, address, fault_flags, NULL); 886 if (ret & VM_FAULT_ERROR) { 887 int err = vm_fault_to_errno(ret, *flags); 888 889 if (err) 890 return err; 891 BUG(); 892 } 893 894 if (ret & VM_FAULT_RETRY) { 895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 896 *locked = 0; 897 return -EBUSY; 898 } 899 900 /* 901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 902 * necessary, even if maybe_mkwrite decided not to set pte_write. We 903 * can thus safely do subsequent page lookups as if they were reads. 904 * But only do so when looping for pte_write is futile: in some cases 905 * userspace may also be wanting to write to the gotten user page, 906 * which a read fault here might prevent (a readonly page might get 907 * reCOWed by userspace write). 908 */ 909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 910 *flags |= FOLL_COW; 911 return 0; 912 } 913 914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 915 { 916 vm_flags_t vm_flags = vma->vm_flags; 917 int write = (gup_flags & FOLL_WRITE); 918 int foreign = (gup_flags & FOLL_REMOTE); 919 920 if (vm_flags & (VM_IO | VM_PFNMAP)) 921 return -EFAULT; 922 923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 924 return -EFAULT; 925 926 if (write) { 927 if (!(vm_flags & VM_WRITE)) { 928 if (!(gup_flags & FOLL_FORCE)) 929 return -EFAULT; 930 /* 931 * We used to let the write,force case do COW in a 932 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 933 * set a breakpoint in a read-only mapping of an 934 * executable, without corrupting the file (yet only 935 * when that file had been opened for writing!). 936 * Anon pages in shared mappings are surprising: now 937 * just reject it. 938 */ 939 if (!is_cow_mapping(vm_flags)) 940 return -EFAULT; 941 } 942 } else if (!(vm_flags & VM_READ)) { 943 if (!(gup_flags & FOLL_FORCE)) 944 return -EFAULT; 945 /* 946 * Is there actually any vma we can reach here which does not 947 * have VM_MAYREAD set? 948 */ 949 if (!(vm_flags & VM_MAYREAD)) 950 return -EFAULT; 951 } 952 /* 953 * gups are always data accesses, not instruction 954 * fetches, so execute=false here 955 */ 956 if (!arch_vma_access_permitted(vma, write, false, foreign)) 957 return -EFAULT; 958 return 0; 959 } 960 961 /** 962 * __get_user_pages() - pin user pages in memory 963 * @mm: mm_struct of target mm 964 * @start: starting user address 965 * @nr_pages: number of pages from start to pin 966 * @gup_flags: flags modifying pin behaviour 967 * @pages: array that receives pointers to the pages pinned. 968 * Should be at least nr_pages long. Or NULL, if caller 969 * only intends to ensure the pages are faulted in. 970 * @vmas: array of pointers to vmas corresponding to each page. 971 * Or NULL if the caller does not require them. 972 * @locked: whether we're still with the mmap_lock held 973 * 974 * Returns either number of pages pinned (which may be less than the 975 * number requested), or an error. Details about the return value: 976 * 977 * -- If nr_pages is 0, returns 0. 978 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 979 * -- If nr_pages is >0, and some pages were pinned, returns the number of 980 * pages pinned. Again, this may be less than nr_pages. 981 * -- 0 return value is possible when the fault would need to be retried. 982 * 983 * The caller is responsible for releasing returned @pages, via put_page(). 984 * 985 * @vmas are valid only as long as mmap_lock is held. 986 * 987 * Must be called with mmap_lock held. It may be released. See below. 988 * 989 * __get_user_pages walks a process's page tables and takes a reference to 990 * each struct page that each user address corresponds to at a given 991 * instant. That is, it takes the page that would be accessed if a user 992 * thread accesses the given user virtual address at that instant. 993 * 994 * This does not guarantee that the page exists in the user mappings when 995 * __get_user_pages returns, and there may even be a completely different 996 * page there in some cases (eg. if mmapped pagecache has been invalidated 997 * and subsequently re faulted). However it does guarantee that the page 998 * won't be freed completely. And mostly callers simply care that the page 999 * contains data that was valid *at some point in time*. Typically, an IO 1000 * or similar operation cannot guarantee anything stronger anyway because 1001 * locks can't be held over the syscall boundary. 1002 * 1003 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1004 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1005 * appropriate) must be called after the page is finished with, and 1006 * before put_page is called. 1007 * 1008 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1009 * released by an up_read(). That can happen if @gup_flags does not 1010 * have FOLL_NOWAIT. 1011 * 1012 * A caller using such a combination of @locked and @gup_flags 1013 * must therefore hold the mmap_lock for reading only, and recognize 1014 * when it's been released. Otherwise, it must be held for either 1015 * reading or writing and will not be released. 1016 * 1017 * In most cases, get_user_pages or get_user_pages_fast should be used 1018 * instead of __get_user_pages. __get_user_pages should be used only if 1019 * you need some special @gup_flags. 1020 */ 1021 static long __get_user_pages(struct mm_struct *mm, 1022 unsigned long start, unsigned long nr_pages, 1023 unsigned int gup_flags, struct page **pages, 1024 struct vm_area_struct **vmas, int *locked) 1025 { 1026 long ret = 0, i = 0; 1027 struct vm_area_struct *vma = NULL; 1028 struct follow_page_context ctx = { NULL }; 1029 1030 if (!nr_pages) 1031 return 0; 1032 1033 start = untagged_addr(start); 1034 1035 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1036 1037 /* 1038 * If FOLL_FORCE is set then do not force a full fault as the hinting 1039 * fault information is unrelated to the reference behaviour of a task 1040 * using the address space 1041 */ 1042 if (!(gup_flags & FOLL_FORCE)) 1043 gup_flags |= FOLL_NUMA; 1044 1045 do { 1046 struct page *page; 1047 unsigned int foll_flags = gup_flags; 1048 unsigned int page_increm; 1049 1050 /* first iteration or cross vma bound */ 1051 if (!vma || start >= vma->vm_end) { 1052 vma = find_extend_vma(mm, start); 1053 if (!vma && in_gate_area(mm, start)) { 1054 ret = get_gate_page(mm, start & PAGE_MASK, 1055 gup_flags, &vma, 1056 pages ? &pages[i] : NULL); 1057 if (ret) 1058 goto out; 1059 ctx.page_mask = 0; 1060 goto next_page; 1061 } 1062 1063 if (!vma || check_vma_flags(vma, gup_flags)) { 1064 ret = -EFAULT; 1065 goto out; 1066 } 1067 if (is_vm_hugetlb_page(vma)) { 1068 i = follow_hugetlb_page(mm, vma, pages, vmas, 1069 &start, &nr_pages, i, 1070 gup_flags, locked); 1071 if (locked && *locked == 0) { 1072 /* 1073 * We've got a VM_FAULT_RETRY 1074 * and we've lost mmap_lock. 1075 * We must stop here. 1076 */ 1077 BUG_ON(gup_flags & FOLL_NOWAIT); 1078 BUG_ON(ret != 0); 1079 goto out; 1080 } 1081 continue; 1082 } 1083 } 1084 retry: 1085 /* 1086 * If we have a pending SIGKILL, don't keep faulting pages and 1087 * potentially allocating memory. 1088 */ 1089 if (fatal_signal_pending(current)) { 1090 ret = -EINTR; 1091 goto out; 1092 } 1093 cond_resched(); 1094 1095 page = follow_page_mask(vma, start, foll_flags, &ctx); 1096 if (!page) { 1097 ret = faultin_page(vma, start, &foll_flags, locked); 1098 switch (ret) { 1099 case 0: 1100 goto retry; 1101 case -EBUSY: 1102 ret = 0; 1103 fallthrough; 1104 case -EFAULT: 1105 case -ENOMEM: 1106 case -EHWPOISON: 1107 goto out; 1108 case -ENOENT: 1109 goto next_page; 1110 } 1111 BUG(); 1112 } else if (PTR_ERR(page) == -EEXIST) { 1113 /* 1114 * Proper page table entry exists, but no corresponding 1115 * struct page. 1116 */ 1117 goto next_page; 1118 } else if (IS_ERR(page)) { 1119 ret = PTR_ERR(page); 1120 goto out; 1121 } 1122 if (pages) { 1123 pages[i] = page; 1124 flush_anon_page(vma, page, start); 1125 flush_dcache_page(page); 1126 ctx.page_mask = 0; 1127 } 1128 next_page: 1129 if (vmas) { 1130 vmas[i] = vma; 1131 ctx.page_mask = 0; 1132 } 1133 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1134 if (page_increm > nr_pages) 1135 page_increm = nr_pages; 1136 i += page_increm; 1137 start += page_increm * PAGE_SIZE; 1138 nr_pages -= page_increm; 1139 } while (nr_pages); 1140 out: 1141 if (ctx.pgmap) 1142 put_dev_pagemap(ctx.pgmap); 1143 return i ? i : ret; 1144 } 1145 1146 static bool vma_permits_fault(struct vm_area_struct *vma, 1147 unsigned int fault_flags) 1148 { 1149 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1150 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1151 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1152 1153 if (!(vm_flags & vma->vm_flags)) 1154 return false; 1155 1156 /* 1157 * The architecture might have a hardware protection 1158 * mechanism other than read/write that can deny access. 1159 * 1160 * gup always represents data access, not instruction 1161 * fetches, so execute=false here: 1162 */ 1163 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1164 return false; 1165 1166 return true; 1167 } 1168 1169 /** 1170 * fixup_user_fault() - manually resolve a user page fault 1171 * @mm: mm_struct of target mm 1172 * @address: user address 1173 * @fault_flags:flags to pass down to handle_mm_fault() 1174 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1175 * does not allow retry. If NULL, the caller must guarantee 1176 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1177 * 1178 * This is meant to be called in the specific scenario where for locking reasons 1179 * we try to access user memory in atomic context (within a pagefault_disable() 1180 * section), this returns -EFAULT, and we want to resolve the user fault before 1181 * trying again. 1182 * 1183 * Typically this is meant to be used by the futex code. 1184 * 1185 * The main difference with get_user_pages() is that this function will 1186 * unconditionally call handle_mm_fault() which will in turn perform all the 1187 * necessary SW fixup of the dirty and young bits in the PTE, while 1188 * get_user_pages() only guarantees to update these in the struct page. 1189 * 1190 * This is important for some architectures where those bits also gate the 1191 * access permission to the page because they are maintained in software. On 1192 * such architectures, gup() will not be enough to make a subsequent access 1193 * succeed. 1194 * 1195 * This function will not return with an unlocked mmap_lock. So it has not the 1196 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1197 */ 1198 int fixup_user_fault(struct mm_struct *mm, 1199 unsigned long address, unsigned int fault_flags, 1200 bool *unlocked) 1201 { 1202 struct vm_area_struct *vma; 1203 vm_fault_t ret, major = 0; 1204 1205 address = untagged_addr(address); 1206 1207 if (unlocked) 1208 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1209 1210 retry: 1211 vma = find_extend_vma(mm, address); 1212 if (!vma || address < vma->vm_start) 1213 return -EFAULT; 1214 1215 if (!vma_permits_fault(vma, fault_flags)) 1216 return -EFAULT; 1217 1218 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1219 fatal_signal_pending(current)) 1220 return -EINTR; 1221 1222 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1223 major |= ret & VM_FAULT_MAJOR; 1224 if (ret & VM_FAULT_ERROR) { 1225 int err = vm_fault_to_errno(ret, 0); 1226 1227 if (err) 1228 return err; 1229 BUG(); 1230 } 1231 1232 if (ret & VM_FAULT_RETRY) { 1233 mmap_read_lock(mm); 1234 *unlocked = true; 1235 fault_flags |= FAULT_FLAG_TRIED; 1236 goto retry; 1237 } 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(fixup_user_fault); 1242 1243 /* 1244 * Please note that this function, unlike __get_user_pages will not 1245 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1246 */ 1247 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1248 unsigned long start, 1249 unsigned long nr_pages, 1250 struct page **pages, 1251 struct vm_area_struct **vmas, 1252 int *locked, 1253 unsigned int flags) 1254 { 1255 long ret, pages_done; 1256 bool lock_dropped; 1257 1258 if (locked) { 1259 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1260 BUG_ON(vmas); 1261 /* check caller initialized locked */ 1262 BUG_ON(*locked != 1); 1263 } 1264 1265 if (flags & FOLL_PIN) 1266 atomic_set(&mm->has_pinned, 1); 1267 1268 /* 1269 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1270 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1271 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1272 * for FOLL_GET, not for the newer FOLL_PIN. 1273 * 1274 * FOLL_PIN always expects pages to be non-null, but no need to assert 1275 * that here, as any failures will be obvious enough. 1276 */ 1277 if (pages && !(flags & FOLL_PIN)) 1278 flags |= FOLL_GET; 1279 1280 pages_done = 0; 1281 lock_dropped = false; 1282 for (;;) { 1283 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1284 vmas, locked); 1285 if (!locked) 1286 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1287 return ret; 1288 1289 /* VM_FAULT_RETRY cannot return errors */ 1290 if (!*locked) { 1291 BUG_ON(ret < 0); 1292 BUG_ON(ret >= nr_pages); 1293 } 1294 1295 if (ret > 0) { 1296 nr_pages -= ret; 1297 pages_done += ret; 1298 if (!nr_pages) 1299 break; 1300 } 1301 if (*locked) { 1302 /* 1303 * VM_FAULT_RETRY didn't trigger or it was a 1304 * FOLL_NOWAIT. 1305 */ 1306 if (!pages_done) 1307 pages_done = ret; 1308 break; 1309 } 1310 /* 1311 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1312 * For the prefault case (!pages) we only update counts. 1313 */ 1314 if (likely(pages)) 1315 pages += ret; 1316 start += ret << PAGE_SHIFT; 1317 lock_dropped = true; 1318 1319 retry: 1320 /* 1321 * Repeat on the address that fired VM_FAULT_RETRY 1322 * with both FAULT_FLAG_ALLOW_RETRY and 1323 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1324 * by fatal signals, so we need to check it before we 1325 * start trying again otherwise it can loop forever. 1326 */ 1327 1328 if (fatal_signal_pending(current)) { 1329 if (!pages_done) 1330 pages_done = -EINTR; 1331 break; 1332 } 1333 1334 ret = mmap_read_lock_killable(mm); 1335 if (ret) { 1336 BUG_ON(ret > 0); 1337 if (!pages_done) 1338 pages_done = ret; 1339 break; 1340 } 1341 1342 *locked = 1; 1343 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1344 pages, NULL, locked); 1345 if (!*locked) { 1346 /* Continue to retry until we succeeded */ 1347 BUG_ON(ret != 0); 1348 goto retry; 1349 } 1350 if (ret != 1) { 1351 BUG_ON(ret > 1); 1352 if (!pages_done) 1353 pages_done = ret; 1354 break; 1355 } 1356 nr_pages--; 1357 pages_done++; 1358 if (!nr_pages) 1359 break; 1360 if (likely(pages)) 1361 pages++; 1362 start += PAGE_SIZE; 1363 } 1364 if (lock_dropped && *locked) { 1365 /* 1366 * We must let the caller know we temporarily dropped the lock 1367 * and so the critical section protected by it was lost. 1368 */ 1369 mmap_read_unlock(mm); 1370 *locked = 0; 1371 } 1372 return pages_done; 1373 } 1374 1375 /** 1376 * populate_vma_page_range() - populate a range of pages in the vma. 1377 * @vma: target vma 1378 * @start: start address 1379 * @end: end address 1380 * @locked: whether the mmap_lock is still held 1381 * 1382 * This takes care of mlocking the pages too if VM_LOCKED is set. 1383 * 1384 * Return either number of pages pinned in the vma, or a negative error 1385 * code on error. 1386 * 1387 * vma->vm_mm->mmap_lock must be held. 1388 * 1389 * If @locked is NULL, it may be held for read or write and will 1390 * be unperturbed. 1391 * 1392 * If @locked is non-NULL, it must held for read only and may be 1393 * released. If it's released, *@locked will be set to 0. 1394 */ 1395 long populate_vma_page_range(struct vm_area_struct *vma, 1396 unsigned long start, unsigned long end, int *locked) 1397 { 1398 struct mm_struct *mm = vma->vm_mm; 1399 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1400 int gup_flags; 1401 1402 VM_BUG_ON(start & ~PAGE_MASK); 1403 VM_BUG_ON(end & ~PAGE_MASK); 1404 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1405 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1406 mmap_assert_locked(mm); 1407 1408 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1409 if (vma->vm_flags & VM_LOCKONFAULT) 1410 gup_flags &= ~FOLL_POPULATE; 1411 /* 1412 * We want to touch writable mappings with a write fault in order 1413 * to break COW, except for shared mappings because these don't COW 1414 * and we would not want to dirty them for nothing. 1415 */ 1416 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1417 gup_flags |= FOLL_WRITE; 1418 1419 /* 1420 * We want mlock to succeed for regions that have any permissions 1421 * other than PROT_NONE. 1422 */ 1423 if (vma_is_accessible(vma)) 1424 gup_flags |= FOLL_FORCE; 1425 1426 /* 1427 * We made sure addr is within a VMA, so the following will 1428 * not result in a stack expansion that recurses back here. 1429 */ 1430 return __get_user_pages(mm, start, nr_pages, gup_flags, 1431 NULL, NULL, locked); 1432 } 1433 1434 /* 1435 * __mm_populate - populate and/or mlock pages within a range of address space. 1436 * 1437 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1438 * flags. VMAs must be already marked with the desired vm_flags, and 1439 * mmap_lock must not be held. 1440 */ 1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1442 { 1443 struct mm_struct *mm = current->mm; 1444 unsigned long end, nstart, nend; 1445 struct vm_area_struct *vma = NULL; 1446 int locked = 0; 1447 long ret = 0; 1448 1449 end = start + len; 1450 1451 for (nstart = start; nstart < end; nstart = nend) { 1452 /* 1453 * We want to fault in pages for [nstart; end) address range. 1454 * Find first corresponding VMA. 1455 */ 1456 if (!locked) { 1457 locked = 1; 1458 mmap_read_lock(mm); 1459 vma = find_vma(mm, nstart); 1460 } else if (nstart >= vma->vm_end) 1461 vma = vma->vm_next; 1462 if (!vma || vma->vm_start >= end) 1463 break; 1464 /* 1465 * Set [nstart; nend) to intersection of desired address 1466 * range with the first VMA. Also, skip undesirable VMA types. 1467 */ 1468 nend = min(end, vma->vm_end); 1469 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1470 continue; 1471 if (nstart < vma->vm_start) 1472 nstart = vma->vm_start; 1473 /* 1474 * Now fault in a range of pages. populate_vma_page_range() 1475 * double checks the vma flags, so that it won't mlock pages 1476 * if the vma was already munlocked. 1477 */ 1478 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1479 if (ret < 0) { 1480 if (ignore_errors) { 1481 ret = 0; 1482 continue; /* continue at next VMA */ 1483 } 1484 break; 1485 } 1486 nend = nstart + ret * PAGE_SIZE; 1487 ret = 0; 1488 } 1489 if (locked) 1490 mmap_read_unlock(mm); 1491 return ret; /* 0 or negative error code */ 1492 } 1493 1494 /** 1495 * get_dump_page() - pin user page in memory while writing it to core dump 1496 * @addr: user address 1497 * 1498 * Returns struct page pointer of user page pinned for dump, 1499 * to be freed afterwards by put_page(). 1500 * 1501 * Returns NULL on any kind of failure - a hole must then be inserted into 1502 * the corefile, to preserve alignment with its headers; and also returns 1503 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1504 * allowing a hole to be left in the corefile to save diskspace. 1505 * 1506 * Called without mmap_lock, but after all other threads have been killed. 1507 */ 1508 #ifdef CONFIG_ELF_CORE 1509 struct page *get_dump_page(unsigned long addr) 1510 { 1511 struct vm_area_struct *vma; 1512 struct page *page; 1513 1514 if (__get_user_pages(current->mm, addr, 1, 1515 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1516 NULL) < 1) 1517 return NULL; 1518 flush_cache_page(vma, addr, page_to_pfn(page)); 1519 return page; 1520 } 1521 #endif /* CONFIG_ELF_CORE */ 1522 #else /* CONFIG_MMU */ 1523 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1524 unsigned long nr_pages, struct page **pages, 1525 struct vm_area_struct **vmas, int *locked, 1526 unsigned int foll_flags) 1527 { 1528 struct vm_area_struct *vma; 1529 unsigned long vm_flags; 1530 int i; 1531 1532 /* calculate required read or write permissions. 1533 * If FOLL_FORCE is set, we only require the "MAY" flags. 1534 */ 1535 vm_flags = (foll_flags & FOLL_WRITE) ? 1536 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1537 vm_flags &= (foll_flags & FOLL_FORCE) ? 1538 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1539 1540 for (i = 0; i < nr_pages; i++) { 1541 vma = find_vma(mm, start); 1542 if (!vma) 1543 goto finish_or_fault; 1544 1545 /* protect what we can, including chardevs */ 1546 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1547 !(vm_flags & vma->vm_flags)) 1548 goto finish_or_fault; 1549 1550 if (pages) { 1551 pages[i] = virt_to_page(start); 1552 if (pages[i]) 1553 get_page(pages[i]); 1554 } 1555 if (vmas) 1556 vmas[i] = vma; 1557 start = (start + PAGE_SIZE) & PAGE_MASK; 1558 } 1559 1560 return i; 1561 1562 finish_or_fault: 1563 return i ? : -EFAULT; 1564 } 1565 #endif /* !CONFIG_MMU */ 1566 1567 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1568 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1569 { 1570 long i; 1571 struct vm_area_struct *vma_prev = NULL; 1572 1573 for (i = 0; i < nr_pages; i++) { 1574 struct vm_area_struct *vma = vmas[i]; 1575 1576 if (vma == vma_prev) 1577 continue; 1578 1579 vma_prev = vma; 1580 1581 if (vma_is_fsdax(vma)) 1582 return true; 1583 } 1584 return false; 1585 } 1586 1587 #ifdef CONFIG_CMA 1588 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1589 unsigned long start, 1590 unsigned long nr_pages, 1591 struct page **pages, 1592 struct vm_area_struct **vmas, 1593 unsigned int gup_flags) 1594 { 1595 unsigned long i; 1596 unsigned long step; 1597 bool drain_allow = true; 1598 bool migrate_allow = true; 1599 LIST_HEAD(cma_page_list); 1600 long ret = nr_pages; 1601 struct migration_target_control mtc = { 1602 .nid = NUMA_NO_NODE, 1603 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN, 1604 }; 1605 1606 check_again: 1607 for (i = 0; i < nr_pages;) { 1608 1609 struct page *head = compound_head(pages[i]); 1610 1611 /* 1612 * gup may start from a tail page. Advance step by the left 1613 * part. 1614 */ 1615 step = compound_nr(head) - (pages[i] - head); 1616 /* 1617 * If we get a page from the CMA zone, since we are going to 1618 * be pinning these entries, we might as well move them out 1619 * of the CMA zone if possible. 1620 */ 1621 if (is_migrate_cma_page(head)) { 1622 if (PageHuge(head)) 1623 isolate_huge_page(head, &cma_page_list); 1624 else { 1625 if (!PageLRU(head) && drain_allow) { 1626 lru_add_drain_all(); 1627 drain_allow = false; 1628 } 1629 1630 if (!isolate_lru_page(head)) { 1631 list_add_tail(&head->lru, &cma_page_list); 1632 mod_node_page_state(page_pgdat(head), 1633 NR_ISOLATED_ANON + 1634 page_is_file_lru(head), 1635 thp_nr_pages(head)); 1636 } 1637 } 1638 } 1639 1640 i += step; 1641 } 1642 1643 if (!list_empty(&cma_page_list)) { 1644 /* 1645 * drop the above get_user_pages reference. 1646 */ 1647 for (i = 0; i < nr_pages; i++) 1648 put_page(pages[i]); 1649 1650 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL, 1651 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1652 /* 1653 * some of the pages failed migration. Do get_user_pages 1654 * without migration. 1655 */ 1656 migrate_allow = false; 1657 1658 if (!list_empty(&cma_page_list)) 1659 putback_movable_pages(&cma_page_list); 1660 } 1661 /* 1662 * We did migrate all the pages, Try to get the page references 1663 * again migrating any new CMA pages which we failed to isolate 1664 * earlier. 1665 */ 1666 ret = __get_user_pages_locked(mm, start, nr_pages, 1667 pages, vmas, NULL, 1668 gup_flags); 1669 1670 if ((ret > 0) && migrate_allow) { 1671 nr_pages = ret; 1672 drain_allow = true; 1673 goto check_again; 1674 } 1675 } 1676 1677 return ret; 1678 } 1679 #else 1680 static long check_and_migrate_cma_pages(struct mm_struct *mm, 1681 unsigned long start, 1682 unsigned long nr_pages, 1683 struct page **pages, 1684 struct vm_area_struct **vmas, 1685 unsigned int gup_flags) 1686 { 1687 return nr_pages; 1688 } 1689 #endif /* CONFIG_CMA */ 1690 1691 /* 1692 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1693 * allows us to process the FOLL_LONGTERM flag. 1694 */ 1695 static long __gup_longterm_locked(struct mm_struct *mm, 1696 unsigned long start, 1697 unsigned long nr_pages, 1698 struct page **pages, 1699 struct vm_area_struct **vmas, 1700 unsigned int gup_flags) 1701 { 1702 struct vm_area_struct **vmas_tmp = vmas; 1703 unsigned long flags = 0; 1704 long rc, i; 1705 1706 if (gup_flags & FOLL_LONGTERM) { 1707 if (!pages) 1708 return -EINVAL; 1709 1710 if (!vmas_tmp) { 1711 vmas_tmp = kcalloc(nr_pages, 1712 sizeof(struct vm_area_struct *), 1713 GFP_KERNEL); 1714 if (!vmas_tmp) 1715 return -ENOMEM; 1716 } 1717 flags = memalloc_nocma_save(); 1718 } 1719 1720 rc = __get_user_pages_locked(mm, start, nr_pages, pages, 1721 vmas_tmp, NULL, gup_flags); 1722 1723 if (gup_flags & FOLL_LONGTERM) { 1724 if (rc < 0) 1725 goto out; 1726 1727 if (check_dax_vmas(vmas_tmp, rc)) { 1728 for (i = 0; i < rc; i++) 1729 put_page(pages[i]); 1730 rc = -EOPNOTSUPP; 1731 goto out; 1732 } 1733 1734 rc = check_and_migrate_cma_pages(mm, start, rc, pages, 1735 vmas_tmp, gup_flags); 1736 out: 1737 memalloc_nocma_restore(flags); 1738 } 1739 1740 if (vmas_tmp != vmas) 1741 kfree(vmas_tmp); 1742 return rc; 1743 } 1744 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1745 static __always_inline long __gup_longterm_locked(struct mm_struct *mm, 1746 unsigned long start, 1747 unsigned long nr_pages, 1748 struct page **pages, 1749 struct vm_area_struct **vmas, 1750 unsigned int flags) 1751 { 1752 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1753 NULL, flags); 1754 } 1755 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1756 1757 static bool is_valid_gup_flags(unsigned int gup_flags) 1758 { 1759 /* 1760 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1761 * never directly by the caller, so enforce that with an assertion: 1762 */ 1763 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1764 return false; 1765 /* 1766 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1767 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1768 * FOLL_PIN. 1769 */ 1770 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1771 return false; 1772 1773 return true; 1774 } 1775 1776 #ifdef CONFIG_MMU 1777 static long __get_user_pages_remote(struct mm_struct *mm, 1778 unsigned long start, unsigned long nr_pages, 1779 unsigned int gup_flags, struct page **pages, 1780 struct vm_area_struct **vmas, int *locked) 1781 { 1782 /* 1783 * Parts of FOLL_LONGTERM behavior are incompatible with 1784 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1785 * vmas. However, this only comes up if locked is set, and there are 1786 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1787 * allow what we can. 1788 */ 1789 if (gup_flags & FOLL_LONGTERM) { 1790 if (WARN_ON_ONCE(locked)) 1791 return -EINVAL; 1792 /* 1793 * This will check the vmas (even if our vmas arg is NULL) 1794 * and return -ENOTSUPP if DAX isn't allowed in this case: 1795 */ 1796 return __gup_longterm_locked(mm, start, nr_pages, pages, 1797 vmas, gup_flags | FOLL_TOUCH | 1798 FOLL_REMOTE); 1799 } 1800 1801 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1802 locked, 1803 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1804 } 1805 1806 /** 1807 * get_user_pages_remote() - pin user pages in memory 1808 * @mm: mm_struct of target mm 1809 * @start: starting user address 1810 * @nr_pages: number of pages from start to pin 1811 * @gup_flags: flags modifying lookup behaviour 1812 * @pages: array that receives pointers to the pages pinned. 1813 * Should be at least nr_pages long. Or NULL, if caller 1814 * only intends to ensure the pages are faulted in. 1815 * @vmas: array of pointers to vmas corresponding to each page. 1816 * Or NULL if the caller does not require them. 1817 * @locked: pointer to lock flag indicating whether lock is held and 1818 * subsequently whether VM_FAULT_RETRY functionality can be 1819 * utilised. Lock must initially be held. 1820 * 1821 * Returns either number of pages pinned (which may be less than the 1822 * number requested), or an error. Details about the return value: 1823 * 1824 * -- If nr_pages is 0, returns 0. 1825 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1826 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1827 * pages pinned. Again, this may be less than nr_pages. 1828 * 1829 * The caller is responsible for releasing returned @pages, via put_page(). 1830 * 1831 * @vmas are valid only as long as mmap_lock is held. 1832 * 1833 * Must be called with mmap_lock held for read or write. 1834 * 1835 * get_user_pages_remote walks a process's page tables and takes a reference 1836 * to each struct page that each user address corresponds to at a given 1837 * instant. That is, it takes the page that would be accessed if a user 1838 * thread accesses the given user virtual address at that instant. 1839 * 1840 * This does not guarantee that the page exists in the user mappings when 1841 * get_user_pages_remote returns, and there may even be a completely different 1842 * page there in some cases (eg. if mmapped pagecache has been invalidated 1843 * and subsequently re faulted). However it does guarantee that the page 1844 * won't be freed completely. And mostly callers simply care that the page 1845 * contains data that was valid *at some point in time*. Typically, an IO 1846 * or similar operation cannot guarantee anything stronger anyway because 1847 * locks can't be held over the syscall boundary. 1848 * 1849 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1850 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1851 * be called after the page is finished with, and before put_page is called. 1852 * 1853 * get_user_pages_remote is typically used for fewer-copy IO operations, 1854 * to get a handle on the memory by some means other than accesses 1855 * via the user virtual addresses. The pages may be submitted for 1856 * DMA to devices or accessed via their kernel linear mapping (via the 1857 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1858 * 1859 * See also get_user_pages_fast, for performance critical applications. 1860 * 1861 * get_user_pages_remote should be phased out in favor of 1862 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1863 * should use get_user_pages_remote because it cannot pass 1864 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1865 */ 1866 long get_user_pages_remote(struct mm_struct *mm, 1867 unsigned long start, unsigned long nr_pages, 1868 unsigned int gup_flags, struct page **pages, 1869 struct vm_area_struct **vmas, int *locked) 1870 { 1871 if (!is_valid_gup_flags(gup_flags)) 1872 return -EINVAL; 1873 1874 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1875 pages, vmas, locked); 1876 } 1877 EXPORT_SYMBOL(get_user_pages_remote); 1878 1879 #else /* CONFIG_MMU */ 1880 long get_user_pages_remote(struct mm_struct *mm, 1881 unsigned long start, unsigned long nr_pages, 1882 unsigned int gup_flags, struct page **pages, 1883 struct vm_area_struct **vmas, int *locked) 1884 { 1885 return 0; 1886 } 1887 1888 static long __get_user_pages_remote(struct mm_struct *mm, 1889 unsigned long start, unsigned long nr_pages, 1890 unsigned int gup_flags, struct page **pages, 1891 struct vm_area_struct **vmas, int *locked) 1892 { 1893 return 0; 1894 } 1895 #endif /* !CONFIG_MMU */ 1896 1897 /** 1898 * get_user_pages() - pin user pages in memory 1899 * @start: starting user address 1900 * @nr_pages: number of pages from start to pin 1901 * @gup_flags: flags modifying lookup behaviour 1902 * @pages: array that receives pointers to the pages pinned. 1903 * Should be at least nr_pages long. Or NULL, if caller 1904 * only intends to ensure the pages are faulted in. 1905 * @vmas: array of pointers to vmas corresponding to each page. 1906 * Or NULL if the caller does not require them. 1907 * 1908 * This is the same as get_user_pages_remote(), just with a less-flexible 1909 * calling convention where we assume that the mm being operated on belongs to 1910 * the current task, and doesn't allow passing of a locked parameter. We also 1911 * obviously don't pass FOLL_REMOTE in here. 1912 */ 1913 long get_user_pages(unsigned long start, unsigned long nr_pages, 1914 unsigned int gup_flags, struct page **pages, 1915 struct vm_area_struct **vmas) 1916 { 1917 if (!is_valid_gup_flags(gup_flags)) 1918 return -EINVAL; 1919 1920 return __gup_longterm_locked(current->mm, start, nr_pages, 1921 pages, vmas, gup_flags | FOLL_TOUCH); 1922 } 1923 EXPORT_SYMBOL(get_user_pages); 1924 1925 /** 1926 * get_user_pages_locked() is suitable to replace the form: 1927 * 1928 * mmap_read_lock(mm); 1929 * do_something() 1930 * get_user_pages(mm, ..., pages, NULL); 1931 * mmap_read_unlock(mm); 1932 * 1933 * to: 1934 * 1935 * int locked = 1; 1936 * mmap_read_lock(mm); 1937 * do_something() 1938 * get_user_pages_locked(mm, ..., pages, &locked); 1939 * if (locked) 1940 * mmap_read_unlock(mm); 1941 * 1942 * @start: starting user address 1943 * @nr_pages: number of pages from start to pin 1944 * @gup_flags: flags modifying lookup behaviour 1945 * @pages: array that receives pointers to the pages pinned. 1946 * Should be at least nr_pages long. Or NULL, if caller 1947 * only intends to ensure the pages are faulted in. 1948 * @locked: pointer to lock flag indicating whether lock is held and 1949 * subsequently whether VM_FAULT_RETRY functionality can be 1950 * utilised. Lock must initially be held. 1951 * 1952 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1953 * paths better by using either get_user_pages_locked() or 1954 * get_user_pages_unlocked(). 1955 * 1956 */ 1957 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1958 unsigned int gup_flags, struct page **pages, 1959 int *locked) 1960 { 1961 /* 1962 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1963 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1964 * vmas. As there are no users of this flag in this call we simply 1965 * disallow this option for now. 1966 */ 1967 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1968 return -EINVAL; 1969 /* 1970 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1971 * never directly by the caller, so enforce that: 1972 */ 1973 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1974 return -EINVAL; 1975 1976 return __get_user_pages_locked(current->mm, start, nr_pages, 1977 pages, NULL, locked, 1978 gup_flags | FOLL_TOUCH); 1979 } 1980 EXPORT_SYMBOL(get_user_pages_locked); 1981 1982 /* 1983 * get_user_pages_unlocked() is suitable to replace the form: 1984 * 1985 * mmap_read_lock(mm); 1986 * get_user_pages(mm, ..., pages, NULL); 1987 * mmap_read_unlock(mm); 1988 * 1989 * with: 1990 * 1991 * get_user_pages_unlocked(mm, ..., pages); 1992 * 1993 * It is functionally equivalent to get_user_pages_fast so 1994 * get_user_pages_fast should be used instead if specific gup_flags 1995 * (e.g. FOLL_FORCE) are not required. 1996 */ 1997 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1998 struct page **pages, unsigned int gup_flags) 1999 { 2000 struct mm_struct *mm = current->mm; 2001 int locked = 1; 2002 long ret; 2003 2004 /* 2005 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2006 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2007 * vmas. As there are no users of this flag in this call we simply 2008 * disallow this option for now. 2009 */ 2010 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2011 return -EINVAL; 2012 2013 mmap_read_lock(mm); 2014 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2015 &locked, gup_flags | FOLL_TOUCH); 2016 if (locked) 2017 mmap_read_unlock(mm); 2018 return ret; 2019 } 2020 EXPORT_SYMBOL(get_user_pages_unlocked); 2021 2022 /* 2023 * Fast GUP 2024 * 2025 * get_user_pages_fast attempts to pin user pages by walking the page 2026 * tables directly and avoids taking locks. Thus the walker needs to be 2027 * protected from page table pages being freed from under it, and should 2028 * block any THP splits. 2029 * 2030 * One way to achieve this is to have the walker disable interrupts, and 2031 * rely on IPIs from the TLB flushing code blocking before the page table 2032 * pages are freed. This is unsuitable for architectures that do not need 2033 * to broadcast an IPI when invalidating TLBs. 2034 * 2035 * Another way to achieve this is to batch up page table containing pages 2036 * belonging to more than one mm_user, then rcu_sched a callback to free those 2037 * pages. Disabling interrupts will allow the fast_gup walker to both block 2038 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2039 * (which is a relatively rare event). The code below adopts this strategy. 2040 * 2041 * Before activating this code, please be aware that the following assumptions 2042 * are currently made: 2043 * 2044 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2045 * free pages containing page tables or TLB flushing requires IPI broadcast. 2046 * 2047 * *) ptes can be read atomically by the architecture. 2048 * 2049 * *) access_ok is sufficient to validate userspace address ranges. 2050 * 2051 * The last two assumptions can be relaxed by the addition of helper functions. 2052 * 2053 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2054 */ 2055 #ifdef CONFIG_HAVE_FAST_GUP 2056 2057 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2058 { 2059 if (flags & FOLL_PIN) { 2060 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2061 refs); 2062 2063 if (hpage_pincount_available(page)) 2064 hpage_pincount_sub(page, refs); 2065 else 2066 refs *= GUP_PIN_COUNTING_BIAS; 2067 } 2068 2069 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2070 /* 2071 * Calling put_page() for each ref is unnecessarily slow. Only the last 2072 * ref needs a put_page(). 2073 */ 2074 if (refs > 1) 2075 page_ref_sub(page, refs - 1); 2076 put_page(page); 2077 } 2078 2079 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2080 2081 /* 2082 * WARNING: only to be used in the get_user_pages_fast() implementation. 2083 * 2084 * With get_user_pages_fast(), we walk down the pagetables without taking any 2085 * locks. For this we would like to load the pointers atomically, but sometimes 2086 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2087 * we do have is the guarantee that a PTE will only either go from not present 2088 * to present, or present to not present or both -- it will not switch to a 2089 * completely different present page without a TLB flush in between; something 2090 * that we are blocking by holding interrupts off. 2091 * 2092 * Setting ptes from not present to present goes: 2093 * 2094 * ptep->pte_high = h; 2095 * smp_wmb(); 2096 * ptep->pte_low = l; 2097 * 2098 * And present to not present goes: 2099 * 2100 * ptep->pte_low = 0; 2101 * smp_wmb(); 2102 * ptep->pte_high = 0; 2103 * 2104 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2105 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2106 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2107 * picked up a changed pte high. We might have gotten rubbish values from 2108 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2109 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2110 * operates on present ptes we're safe. 2111 */ 2112 static inline pte_t gup_get_pte(pte_t *ptep) 2113 { 2114 pte_t pte; 2115 2116 do { 2117 pte.pte_low = ptep->pte_low; 2118 smp_rmb(); 2119 pte.pte_high = ptep->pte_high; 2120 smp_rmb(); 2121 } while (unlikely(pte.pte_low != ptep->pte_low)); 2122 2123 return pte; 2124 } 2125 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2126 /* 2127 * We require that the PTE can be read atomically. 2128 */ 2129 static inline pte_t gup_get_pte(pte_t *ptep) 2130 { 2131 return ptep_get(ptep); 2132 } 2133 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2134 2135 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2136 unsigned int flags, 2137 struct page **pages) 2138 { 2139 while ((*nr) - nr_start) { 2140 struct page *page = pages[--(*nr)]; 2141 2142 ClearPageReferenced(page); 2143 if (flags & FOLL_PIN) 2144 unpin_user_page(page); 2145 else 2146 put_page(page); 2147 } 2148 } 2149 2150 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2151 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2152 unsigned int flags, struct page **pages, int *nr) 2153 { 2154 struct dev_pagemap *pgmap = NULL; 2155 int nr_start = *nr, ret = 0; 2156 pte_t *ptep, *ptem; 2157 2158 ptem = ptep = pte_offset_map(&pmd, addr); 2159 do { 2160 pte_t pte = gup_get_pte(ptep); 2161 struct page *head, *page; 2162 2163 /* 2164 * Similar to the PMD case below, NUMA hinting must take slow 2165 * path using the pte_protnone check. 2166 */ 2167 if (pte_protnone(pte)) 2168 goto pte_unmap; 2169 2170 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2171 goto pte_unmap; 2172 2173 if (pte_devmap(pte)) { 2174 if (unlikely(flags & FOLL_LONGTERM)) 2175 goto pte_unmap; 2176 2177 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2178 if (unlikely(!pgmap)) { 2179 undo_dev_pagemap(nr, nr_start, flags, pages); 2180 goto pte_unmap; 2181 } 2182 } else if (pte_special(pte)) 2183 goto pte_unmap; 2184 2185 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2186 page = pte_page(pte); 2187 2188 head = try_grab_compound_head(page, 1, flags); 2189 if (!head) 2190 goto pte_unmap; 2191 2192 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2193 put_compound_head(head, 1, flags); 2194 goto pte_unmap; 2195 } 2196 2197 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2198 2199 /* 2200 * We need to make the page accessible if and only if we are 2201 * going to access its content (the FOLL_PIN case). Please 2202 * see Documentation/core-api/pin_user_pages.rst for 2203 * details. 2204 */ 2205 if (flags & FOLL_PIN) { 2206 ret = arch_make_page_accessible(page); 2207 if (ret) { 2208 unpin_user_page(page); 2209 goto pte_unmap; 2210 } 2211 } 2212 SetPageReferenced(page); 2213 pages[*nr] = page; 2214 (*nr)++; 2215 2216 } while (ptep++, addr += PAGE_SIZE, addr != end); 2217 2218 ret = 1; 2219 2220 pte_unmap: 2221 if (pgmap) 2222 put_dev_pagemap(pgmap); 2223 pte_unmap(ptem); 2224 return ret; 2225 } 2226 #else 2227 2228 /* 2229 * If we can't determine whether or not a pte is special, then fail immediately 2230 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2231 * to be special. 2232 * 2233 * For a futex to be placed on a THP tail page, get_futex_key requires a 2234 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2235 * useful to have gup_huge_pmd even if we can't operate on ptes. 2236 */ 2237 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2238 unsigned int flags, struct page **pages, int *nr) 2239 { 2240 return 0; 2241 } 2242 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2243 2244 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2245 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2246 unsigned long end, unsigned int flags, 2247 struct page **pages, int *nr) 2248 { 2249 int nr_start = *nr; 2250 struct dev_pagemap *pgmap = NULL; 2251 2252 do { 2253 struct page *page = pfn_to_page(pfn); 2254 2255 pgmap = get_dev_pagemap(pfn, pgmap); 2256 if (unlikely(!pgmap)) { 2257 undo_dev_pagemap(nr, nr_start, flags, pages); 2258 return 0; 2259 } 2260 SetPageReferenced(page); 2261 pages[*nr] = page; 2262 if (unlikely(!try_grab_page(page, flags))) { 2263 undo_dev_pagemap(nr, nr_start, flags, pages); 2264 return 0; 2265 } 2266 (*nr)++; 2267 pfn++; 2268 } while (addr += PAGE_SIZE, addr != end); 2269 2270 if (pgmap) 2271 put_dev_pagemap(pgmap); 2272 return 1; 2273 } 2274 2275 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2276 unsigned long end, unsigned int flags, 2277 struct page **pages, int *nr) 2278 { 2279 unsigned long fault_pfn; 2280 int nr_start = *nr; 2281 2282 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2283 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2284 return 0; 2285 2286 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2287 undo_dev_pagemap(nr, nr_start, flags, pages); 2288 return 0; 2289 } 2290 return 1; 2291 } 2292 2293 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2294 unsigned long end, unsigned int flags, 2295 struct page **pages, int *nr) 2296 { 2297 unsigned long fault_pfn; 2298 int nr_start = *nr; 2299 2300 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2301 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2302 return 0; 2303 2304 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2305 undo_dev_pagemap(nr, nr_start, flags, pages); 2306 return 0; 2307 } 2308 return 1; 2309 } 2310 #else 2311 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2312 unsigned long end, unsigned int flags, 2313 struct page **pages, int *nr) 2314 { 2315 BUILD_BUG(); 2316 return 0; 2317 } 2318 2319 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2320 unsigned long end, unsigned int flags, 2321 struct page **pages, int *nr) 2322 { 2323 BUILD_BUG(); 2324 return 0; 2325 } 2326 #endif 2327 2328 static int record_subpages(struct page *page, unsigned long addr, 2329 unsigned long end, struct page **pages) 2330 { 2331 int nr; 2332 2333 for (nr = 0; addr != end; addr += PAGE_SIZE) 2334 pages[nr++] = page++; 2335 2336 return nr; 2337 } 2338 2339 #ifdef CONFIG_ARCH_HAS_HUGEPD 2340 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2341 unsigned long sz) 2342 { 2343 unsigned long __boundary = (addr + sz) & ~(sz-1); 2344 return (__boundary - 1 < end - 1) ? __boundary : end; 2345 } 2346 2347 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2348 unsigned long end, unsigned int flags, 2349 struct page **pages, int *nr) 2350 { 2351 unsigned long pte_end; 2352 struct page *head, *page; 2353 pte_t pte; 2354 int refs; 2355 2356 pte_end = (addr + sz) & ~(sz-1); 2357 if (pte_end < end) 2358 end = pte_end; 2359 2360 pte = huge_ptep_get(ptep); 2361 2362 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2363 return 0; 2364 2365 /* hugepages are never "special" */ 2366 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2367 2368 head = pte_page(pte); 2369 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2370 refs = record_subpages(page, addr, end, pages + *nr); 2371 2372 head = try_grab_compound_head(head, refs, flags); 2373 if (!head) 2374 return 0; 2375 2376 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2377 put_compound_head(head, refs, flags); 2378 return 0; 2379 } 2380 2381 *nr += refs; 2382 SetPageReferenced(head); 2383 return 1; 2384 } 2385 2386 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2387 unsigned int pdshift, unsigned long end, unsigned int flags, 2388 struct page **pages, int *nr) 2389 { 2390 pte_t *ptep; 2391 unsigned long sz = 1UL << hugepd_shift(hugepd); 2392 unsigned long next; 2393 2394 ptep = hugepte_offset(hugepd, addr, pdshift); 2395 do { 2396 next = hugepte_addr_end(addr, end, sz); 2397 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2398 return 0; 2399 } while (ptep++, addr = next, addr != end); 2400 2401 return 1; 2402 } 2403 #else 2404 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2405 unsigned int pdshift, unsigned long end, unsigned int flags, 2406 struct page **pages, int *nr) 2407 { 2408 return 0; 2409 } 2410 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2411 2412 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2413 unsigned long end, unsigned int flags, 2414 struct page **pages, int *nr) 2415 { 2416 struct page *head, *page; 2417 int refs; 2418 2419 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2420 return 0; 2421 2422 if (pmd_devmap(orig)) { 2423 if (unlikely(flags & FOLL_LONGTERM)) 2424 return 0; 2425 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2426 pages, nr); 2427 } 2428 2429 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2430 refs = record_subpages(page, addr, end, pages + *nr); 2431 2432 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2433 if (!head) 2434 return 0; 2435 2436 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2437 put_compound_head(head, refs, flags); 2438 return 0; 2439 } 2440 2441 *nr += refs; 2442 SetPageReferenced(head); 2443 return 1; 2444 } 2445 2446 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2447 unsigned long end, unsigned int flags, 2448 struct page **pages, int *nr) 2449 { 2450 struct page *head, *page; 2451 int refs; 2452 2453 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2454 return 0; 2455 2456 if (pud_devmap(orig)) { 2457 if (unlikely(flags & FOLL_LONGTERM)) 2458 return 0; 2459 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2460 pages, nr); 2461 } 2462 2463 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2464 refs = record_subpages(page, addr, end, pages + *nr); 2465 2466 head = try_grab_compound_head(pud_page(orig), refs, flags); 2467 if (!head) 2468 return 0; 2469 2470 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2471 put_compound_head(head, refs, flags); 2472 return 0; 2473 } 2474 2475 *nr += refs; 2476 SetPageReferenced(head); 2477 return 1; 2478 } 2479 2480 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2481 unsigned long end, unsigned int flags, 2482 struct page **pages, int *nr) 2483 { 2484 int refs; 2485 struct page *head, *page; 2486 2487 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2488 return 0; 2489 2490 BUILD_BUG_ON(pgd_devmap(orig)); 2491 2492 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2493 refs = record_subpages(page, addr, end, pages + *nr); 2494 2495 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2496 if (!head) 2497 return 0; 2498 2499 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2500 put_compound_head(head, refs, flags); 2501 return 0; 2502 } 2503 2504 *nr += refs; 2505 SetPageReferenced(head); 2506 return 1; 2507 } 2508 2509 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2510 unsigned int flags, struct page **pages, int *nr) 2511 { 2512 unsigned long next; 2513 pmd_t *pmdp; 2514 2515 pmdp = pmd_offset_lockless(pudp, pud, addr); 2516 do { 2517 pmd_t pmd = READ_ONCE(*pmdp); 2518 2519 next = pmd_addr_end(addr, end); 2520 if (!pmd_present(pmd)) 2521 return 0; 2522 2523 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2524 pmd_devmap(pmd))) { 2525 /* 2526 * NUMA hinting faults need to be handled in the GUP 2527 * slowpath for accounting purposes and so that they 2528 * can be serialised against THP migration. 2529 */ 2530 if (pmd_protnone(pmd)) 2531 return 0; 2532 2533 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2534 pages, nr)) 2535 return 0; 2536 2537 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2538 /* 2539 * architecture have different format for hugetlbfs 2540 * pmd format and THP pmd format 2541 */ 2542 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2543 PMD_SHIFT, next, flags, pages, nr)) 2544 return 0; 2545 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2546 return 0; 2547 } while (pmdp++, addr = next, addr != end); 2548 2549 return 1; 2550 } 2551 2552 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2553 unsigned int flags, struct page **pages, int *nr) 2554 { 2555 unsigned long next; 2556 pud_t *pudp; 2557 2558 pudp = pud_offset_lockless(p4dp, p4d, addr); 2559 do { 2560 pud_t pud = READ_ONCE(*pudp); 2561 2562 next = pud_addr_end(addr, end); 2563 if (unlikely(!pud_present(pud))) 2564 return 0; 2565 if (unlikely(pud_huge(pud))) { 2566 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2567 pages, nr)) 2568 return 0; 2569 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2570 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2571 PUD_SHIFT, next, flags, pages, nr)) 2572 return 0; 2573 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2574 return 0; 2575 } while (pudp++, addr = next, addr != end); 2576 2577 return 1; 2578 } 2579 2580 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2581 unsigned int flags, struct page **pages, int *nr) 2582 { 2583 unsigned long next; 2584 p4d_t *p4dp; 2585 2586 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2587 do { 2588 p4d_t p4d = READ_ONCE(*p4dp); 2589 2590 next = p4d_addr_end(addr, end); 2591 if (p4d_none(p4d)) 2592 return 0; 2593 BUILD_BUG_ON(p4d_huge(p4d)); 2594 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2595 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2596 P4D_SHIFT, next, flags, pages, nr)) 2597 return 0; 2598 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2599 return 0; 2600 } while (p4dp++, addr = next, addr != end); 2601 2602 return 1; 2603 } 2604 2605 static void gup_pgd_range(unsigned long addr, unsigned long end, 2606 unsigned int flags, struct page **pages, int *nr) 2607 { 2608 unsigned long next; 2609 pgd_t *pgdp; 2610 2611 pgdp = pgd_offset(current->mm, addr); 2612 do { 2613 pgd_t pgd = READ_ONCE(*pgdp); 2614 2615 next = pgd_addr_end(addr, end); 2616 if (pgd_none(pgd)) 2617 return; 2618 if (unlikely(pgd_huge(pgd))) { 2619 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2620 pages, nr)) 2621 return; 2622 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2623 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2624 PGDIR_SHIFT, next, flags, pages, nr)) 2625 return; 2626 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2627 return; 2628 } while (pgdp++, addr = next, addr != end); 2629 } 2630 #else 2631 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2632 unsigned int flags, struct page **pages, int *nr) 2633 { 2634 } 2635 #endif /* CONFIG_HAVE_FAST_GUP */ 2636 2637 #ifndef gup_fast_permitted 2638 /* 2639 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2640 * we need to fall back to the slow version: 2641 */ 2642 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2643 { 2644 return true; 2645 } 2646 #endif 2647 2648 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2649 unsigned int gup_flags, struct page **pages) 2650 { 2651 int ret; 2652 2653 /* 2654 * FIXME: FOLL_LONGTERM does not work with 2655 * get_user_pages_unlocked() (see comments in that function) 2656 */ 2657 if (gup_flags & FOLL_LONGTERM) { 2658 mmap_read_lock(current->mm); 2659 ret = __gup_longterm_locked(current->mm, 2660 start, nr_pages, 2661 pages, NULL, gup_flags); 2662 mmap_read_unlock(current->mm); 2663 } else { 2664 ret = get_user_pages_unlocked(start, nr_pages, 2665 pages, gup_flags); 2666 } 2667 2668 return ret; 2669 } 2670 2671 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2672 unsigned int gup_flags, 2673 struct page **pages) 2674 { 2675 unsigned long addr, len, end; 2676 unsigned long flags; 2677 int nr_pinned = 0, ret = 0; 2678 2679 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2680 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2681 FOLL_FAST_ONLY))) 2682 return -EINVAL; 2683 2684 if (gup_flags & FOLL_PIN) 2685 atomic_set(¤t->mm->has_pinned, 1); 2686 2687 if (!(gup_flags & FOLL_FAST_ONLY)) 2688 might_lock_read(¤t->mm->mmap_lock); 2689 2690 start = untagged_addr(start) & PAGE_MASK; 2691 addr = start; 2692 len = (unsigned long) nr_pages << PAGE_SHIFT; 2693 end = start + len; 2694 2695 if (end <= start) 2696 return 0; 2697 if (unlikely(!access_ok((void __user *)start, len))) 2698 return -EFAULT; 2699 2700 /* 2701 * Disable interrupts. The nested form is used, in order to allow 2702 * full, general purpose use of this routine. 2703 * 2704 * With interrupts disabled, we block page table pages from being 2705 * freed from under us. See struct mmu_table_batch comments in 2706 * include/asm-generic/tlb.h for more details. 2707 * 2708 * We do not adopt an rcu_read_lock(.) here as we also want to 2709 * block IPIs that come from THPs splitting. 2710 */ 2711 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) { 2712 unsigned long fast_flags = gup_flags; 2713 2714 local_irq_save(flags); 2715 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned); 2716 local_irq_restore(flags); 2717 ret = nr_pinned; 2718 } 2719 2720 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) { 2721 /* Try to get the remaining pages with get_user_pages */ 2722 start += nr_pinned << PAGE_SHIFT; 2723 pages += nr_pinned; 2724 2725 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2726 gup_flags, pages); 2727 2728 /* Have to be a bit careful with return values */ 2729 if (nr_pinned > 0) { 2730 if (ret < 0) 2731 ret = nr_pinned; 2732 else 2733 ret += nr_pinned; 2734 } 2735 } 2736 2737 return ret; 2738 } 2739 /** 2740 * get_user_pages_fast_only() - pin user pages in memory 2741 * @start: starting user address 2742 * @nr_pages: number of pages from start to pin 2743 * @gup_flags: flags modifying pin behaviour 2744 * @pages: array that receives pointers to the pages pinned. 2745 * Should be at least nr_pages long. 2746 * 2747 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2748 * the regular GUP. 2749 * Note a difference with get_user_pages_fast: this always returns the 2750 * number of pages pinned, 0 if no pages were pinned. 2751 * 2752 * If the architecture does not support this function, simply return with no 2753 * pages pinned. 2754 * 2755 * Careful, careful! COW breaking can go either way, so a non-write 2756 * access can get ambiguous page results. If you call this function without 2757 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2758 */ 2759 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2760 unsigned int gup_flags, struct page **pages) 2761 { 2762 int nr_pinned; 2763 /* 2764 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2765 * because gup fast is always a "pin with a +1 page refcount" request. 2766 * 2767 * FOLL_FAST_ONLY is required in order to match the API description of 2768 * this routine: no fall back to regular ("slow") GUP. 2769 */ 2770 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2771 2772 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2773 pages); 2774 2775 /* 2776 * As specified in the API description above, this routine is not 2777 * allowed to return negative values. However, the common core 2778 * routine internal_get_user_pages_fast() *can* return -errno. 2779 * Therefore, correct for that here: 2780 */ 2781 if (nr_pinned < 0) 2782 nr_pinned = 0; 2783 2784 return nr_pinned; 2785 } 2786 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2787 2788 /** 2789 * get_user_pages_fast() - pin user pages in memory 2790 * @start: starting user address 2791 * @nr_pages: number of pages from start to pin 2792 * @gup_flags: flags modifying pin behaviour 2793 * @pages: array that receives pointers to the pages pinned. 2794 * Should be at least nr_pages long. 2795 * 2796 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2797 * If not successful, it will fall back to taking the lock and 2798 * calling get_user_pages(). 2799 * 2800 * Returns number of pages pinned. This may be fewer than the number requested. 2801 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2802 * -errno. 2803 */ 2804 int get_user_pages_fast(unsigned long start, int nr_pages, 2805 unsigned int gup_flags, struct page **pages) 2806 { 2807 if (!is_valid_gup_flags(gup_flags)) 2808 return -EINVAL; 2809 2810 /* 2811 * The caller may or may not have explicitly set FOLL_GET; either way is 2812 * OK. However, internally (within mm/gup.c), gup fast variants must set 2813 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2814 * request. 2815 */ 2816 gup_flags |= FOLL_GET; 2817 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2818 } 2819 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2820 2821 /** 2822 * pin_user_pages_fast() - pin user pages in memory without taking locks 2823 * 2824 * @start: starting user address 2825 * @nr_pages: number of pages from start to pin 2826 * @gup_flags: flags modifying pin behaviour 2827 * @pages: array that receives pointers to the pages pinned. 2828 * Should be at least nr_pages long. 2829 * 2830 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2831 * get_user_pages_fast() for documentation on the function arguments, because 2832 * the arguments here are identical. 2833 * 2834 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2835 * see Documentation/core-api/pin_user_pages.rst for further details. 2836 */ 2837 int pin_user_pages_fast(unsigned long start, int nr_pages, 2838 unsigned int gup_flags, struct page **pages) 2839 { 2840 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2841 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2842 return -EINVAL; 2843 2844 gup_flags |= FOLL_PIN; 2845 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2846 } 2847 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2848 2849 /* 2850 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2851 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2852 * 2853 * The API rules are the same, too: no negative values may be returned. 2854 */ 2855 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2856 unsigned int gup_flags, struct page **pages) 2857 { 2858 int nr_pinned; 2859 2860 /* 2861 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2862 * rules require returning 0, rather than -errno: 2863 */ 2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2865 return 0; 2866 /* 2867 * FOLL_FAST_ONLY is required in order to match the API description of 2868 * this routine: no fall back to regular ("slow") GUP. 2869 */ 2870 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2871 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2872 pages); 2873 /* 2874 * This routine is not allowed to return negative values. However, 2875 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2876 * correct for that here: 2877 */ 2878 if (nr_pinned < 0) 2879 nr_pinned = 0; 2880 2881 return nr_pinned; 2882 } 2883 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2884 2885 /** 2886 * pin_user_pages_remote() - pin pages of a remote process 2887 * 2888 * @mm: mm_struct of target mm 2889 * @start: starting user address 2890 * @nr_pages: number of pages from start to pin 2891 * @gup_flags: flags modifying lookup behaviour 2892 * @pages: array that receives pointers to the pages pinned. 2893 * Should be at least nr_pages long. Or NULL, if caller 2894 * only intends to ensure the pages are faulted in. 2895 * @vmas: array of pointers to vmas corresponding to each page. 2896 * Or NULL if the caller does not require them. 2897 * @locked: pointer to lock flag indicating whether lock is held and 2898 * subsequently whether VM_FAULT_RETRY functionality can be 2899 * utilised. Lock must initially be held. 2900 * 2901 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2902 * get_user_pages_remote() for documentation on the function arguments, because 2903 * the arguments here are identical. 2904 * 2905 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2906 * see Documentation/core-api/pin_user_pages.rst for details. 2907 */ 2908 long pin_user_pages_remote(struct mm_struct *mm, 2909 unsigned long start, unsigned long nr_pages, 2910 unsigned int gup_flags, struct page **pages, 2911 struct vm_area_struct **vmas, int *locked) 2912 { 2913 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2914 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2915 return -EINVAL; 2916 2917 gup_flags |= FOLL_PIN; 2918 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2919 pages, vmas, locked); 2920 } 2921 EXPORT_SYMBOL(pin_user_pages_remote); 2922 2923 /** 2924 * pin_user_pages() - pin user pages in memory for use by other devices 2925 * 2926 * @start: starting user address 2927 * @nr_pages: number of pages from start to pin 2928 * @gup_flags: flags modifying lookup behaviour 2929 * @pages: array that receives pointers to the pages pinned. 2930 * Should be at least nr_pages long. Or NULL, if caller 2931 * only intends to ensure the pages are faulted in. 2932 * @vmas: array of pointers to vmas corresponding to each page. 2933 * Or NULL if the caller does not require them. 2934 * 2935 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2936 * FOLL_PIN is set. 2937 * 2938 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2939 * see Documentation/core-api/pin_user_pages.rst for details. 2940 */ 2941 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2942 unsigned int gup_flags, struct page **pages, 2943 struct vm_area_struct **vmas) 2944 { 2945 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2946 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2947 return -EINVAL; 2948 2949 gup_flags |= FOLL_PIN; 2950 return __gup_longterm_locked(current->mm, start, nr_pages, 2951 pages, vmas, gup_flags); 2952 } 2953 EXPORT_SYMBOL(pin_user_pages); 2954 2955 /* 2956 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2957 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2958 * FOLL_PIN and rejects FOLL_GET. 2959 */ 2960 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2961 struct page **pages, unsigned int gup_flags) 2962 { 2963 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2964 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2965 return -EINVAL; 2966 2967 gup_flags |= FOLL_PIN; 2968 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2969 } 2970 EXPORT_SYMBOL(pin_user_pages_unlocked); 2971 2972 /* 2973 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2974 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2975 * FOLL_GET. 2976 */ 2977 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 2978 unsigned int gup_flags, struct page **pages, 2979 int *locked) 2980 { 2981 /* 2982 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2983 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2984 * vmas. As there are no users of this flag in this call we simply 2985 * disallow this option for now. 2986 */ 2987 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2988 return -EINVAL; 2989 2990 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2991 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2992 return -EINVAL; 2993 2994 gup_flags |= FOLL_PIN; 2995 return __get_user_pages_locked(current->mm, start, nr_pages, 2996 pages, NULL, locked, 2997 gup_flags | FOLL_TOUCH); 2998 } 2999 EXPORT_SYMBOL(pin_user_pages_locked); 3000