xref: /openbmc/linux/mm/gup.c (revision b296a6d5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
333 	 * leaving them pinned), but probably not. More likely, gup/pup returned
334 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
335 	 */
336 	if (WARN_ON(IS_ERR_VALUE(npages)))
337 		return;
338 	/*
339 	 * TODO: this can be optimized for huge pages: if a series of pages is
340 	 * physically contiguous and part of the same compound page, then a
341 	 * single operation to the head page should suffice.
342 	 */
343 	for (index = 0; index < npages; index++)
344 		unpin_user_page(pages[index]);
345 }
346 EXPORT_SYMBOL(unpin_user_pages);
347 
348 #ifdef CONFIG_MMU
349 static struct page *no_page_table(struct vm_area_struct *vma,
350 		unsigned int flags)
351 {
352 	/*
353 	 * When core dumping an enormous anonymous area that nobody
354 	 * has touched so far, we don't want to allocate unnecessary pages or
355 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
356 	 * then get_dump_page() will return NULL to leave a hole in the dump.
357 	 * But we can only make this optimization where a hole would surely
358 	 * be zero-filled if handle_mm_fault() actually did handle it.
359 	 */
360 	if ((flags & FOLL_DUMP) &&
361 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
362 		return ERR_PTR(-EFAULT);
363 	return NULL;
364 }
365 
366 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
367 		pte_t *pte, unsigned int flags)
368 {
369 	/* No page to get reference */
370 	if (flags & FOLL_GET)
371 		return -EFAULT;
372 
373 	if (flags & FOLL_TOUCH) {
374 		pte_t entry = *pte;
375 
376 		if (flags & FOLL_WRITE)
377 			entry = pte_mkdirty(entry);
378 		entry = pte_mkyoung(entry);
379 
380 		if (!pte_same(*pte, entry)) {
381 			set_pte_at(vma->vm_mm, address, pte, entry);
382 			update_mmu_cache(vma, address, pte);
383 		}
384 	}
385 
386 	/* Proper page table entry exists, but no corresponding struct page */
387 	return -EEXIST;
388 }
389 
390 /*
391  * FOLL_FORCE can write to even unwritable pte's, but only
392  * after we've gone through a COW cycle and they are dirty.
393  */
394 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
395 {
396 	return pte_write(pte) ||
397 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
398 }
399 
400 static struct page *follow_page_pte(struct vm_area_struct *vma,
401 		unsigned long address, pmd_t *pmd, unsigned int flags,
402 		struct dev_pagemap **pgmap)
403 {
404 	struct mm_struct *mm = vma->vm_mm;
405 	struct page *page;
406 	spinlock_t *ptl;
407 	pte_t *ptep, pte;
408 	int ret;
409 
410 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
411 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
412 			 (FOLL_PIN | FOLL_GET)))
413 		return ERR_PTR(-EINVAL);
414 retry:
415 	if (unlikely(pmd_bad(*pmd)))
416 		return no_page_table(vma, flags);
417 
418 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
419 	pte = *ptep;
420 	if (!pte_present(pte)) {
421 		swp_entry_t entry;
422 		/*
423 		 * KSM's break_ksm() relies upon recognizing a ksm page
424 		 * even while it is being migrated, so for that case we
425 		 * need migration_entry_wait().
426 		 */
427 		if (likely(!(flags & FOLL_MIGRATION)))
428 			goto no_page;
429 		if (pte_none(pte))
430 			goto no_page;
431 		entry = pte_to_swp_entry(pte);
432 		if (!is_migration_entry(entry))
433 			goto no_page;
434 		pte_unmap_unlock(ptep, ptl);
435 		migration_entry_wait(mm, pmd, address);
436 		goto retry;
437 	}
438 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
439 		goto no_page;
440 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
441 		pte_unmap_unlock(ptep, ptl);
442 		return NULL;
443 	}
444 
445 	page = vm_normal_page(vma, address, pte);
446 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
447 		/*
448 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
449 		 * case since they are only valid while holding the pgmap
450 		 * reference.
451 		 */
452 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
453 		if (*pgmap)
454 			page = pte_page(pte);
455 		else
456 			goto no_page;
457 	} else if (unlikely(!page)) {
458 		if (flags & FOLL_DUMP) {
459 			/* Avoid special (like zero) pages in core dumps */
460 			page = ERR_PTR(-EFAULT);
461 			goto out;
462 		}
463 
464 		if (is_zero_pfn(pte_pfn(pte))) {
465 			page = pte_page(pte);
466 		} else {
467 			ret = follow_pfn_pte(vma, address, ptep, flags);
468 			page = ERR_PTR(ret);
469 			goto out;
470 		}
471 	}
472 
473 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
474 		get_page(page);
475 		pte_unmap_unlock(ptep, ptl);
476 		lock_page(page);
477 		ret = split_huge_page(page);
478 		unlock_page(page);
479 		put_page(page);
480 		if (ret)
481 			return ERR_PTR(ret);
482 		goto retry;
483 	}
484 
485 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
486 	if (unlikely(!try_grab_page(page, flags))) {
487 		page = ERR_PTR(-ENOMEM);
488 		goto out;
489 	}
490 	/*
491 	 * We need to make the page accessible if and only if we are going
492 	 * to access its content (the FOLL_PIN case).  Please see
493 	 * Documentation/core-api/pin_user_pages.rst for details.
494 	 */
495 	if (flags & FOLL_PIN) {
496 		ret = arch_make_page_accessible(page);
497 		if (ret) {
498 			unpin_user_page(page);
499 			page = ERR_PTR(ret);
500 			goto out;
501 		}
502 	}
503 	if (flags & FOLL_TOUCH) {
504 		if ((flags & FOLL_WRITE) &&
505 		    !pte_dirty(pte) && !PageDirty(page))
506 			set_page_dirty(page);
507 		/*
508 		 * pte_mkyoung() would be more correct here, but atomic care
509 		 * is needed to avoid losing the dirty bit: it is easier to use
510 		 * mark_page_accessed().
511 		 */
512 		mark_page_accessed(page);
513 	}
514 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
515 		/* Do not mlock pte-mapped THP */
516 		if (PageTransCompound(page))
517 			goto out;
518 
519 		/*
520 		 * The preliminary mapping check is mainly to avoid the
521 		 * pointless overhead of lock_page on the ZERO_PAGE
522 		 * which might bounce very badly if there is contention.
523 		 *
524 		 * If the page is already locked, we don't need to
525 		 * handle it now - vmscan will handle it later if and
526 		 * when it attempts to reclaim the page.
527 		 */
528 		if (page->mapping && trylock_page(page)) {
529 			lru_add_drain();  /* push cached pages to LRU */
530 			/*
531 			 * Because we lock page here, and migration is
532 			 * blocked by the pte's page reference, and we
533 			 * know the page is still mapped, we don't even
534 			 * need to check for file-cache page truncation.
535 			 */
536 			mlock_vma_page(page);
537 			unlock_page(page);
538 		}
539 	}
540 out:
541 	pte_unmap_unlock(ptep, ptl);
542 	return page;
543 no_page:
544 	pte_unmap_unlock(ptep, ptl);
545 	if (!pte_none(pte))
546 		return NULL;
547 	return no_page_table(vma, flags);
548 }
549 
550 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
551 				    unsigned long address, pud_t *pudp,
552 				    unsigned int flags,
553 				    struct follow_page_context *ctx)
554 {
555 	pmd_t *pmd, pmdval;
556 	spinlock_t *ptl;
557 	struct page *page;
558 	struct mm_struct *mm = vma->vm_mm;
559 
560 	pmd = pmd_offset(pudp, address);
561 	/*
562 	 * The READ_ONCE() will stabilize the pmdval in a register or
563 	 * on the stack so that it will stop changing under the code.
564 	 */
565 	pmdval = READ_ONCE(*pmd);
566 	if (pmd_none(pmdval))
567 		return no_page_table(vma, flags);
568 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
569 		page = follow_huge_pmd(mm, address, pmd, flags);
570 		if (page)
571 			return page;
572 		return no_page_table(vma, flags);
573 	}
574 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
575 		page = follow_huge_pd(vma, address,
576 				      __hugepd(pmd_val(pmdval)), flags,
577 				      PMD_SHIFT);
578 		if (page)
579 			return page;
580 		return no_page_table(vma, flags);
581 	}
582 retry:
583 	if (!pmd_present(pmdval)) {
584 		if (likely(!(flags & FOLL_MIGRATION)))
585 			return no_page_table(vma, flags);
586 		VM_BUG_ON(thp_migration_supported() &&
587 				  !is_pmd_migration_entry(pmdval));
588 		if (is_pmd_migration_entry(pmdval))
589 			pmd_migration_entry_wait(mm, pmd);
590 		pmdval = READ_ONCE(*pmd);
591 		/*
592 		 * MADV_DONTNEED may convert the pmd to null because
593 		 * mmap_lock is held in read mode
594 		 */
595 		if (pmd_none(pmdval))
596 			return no_page_table(vma, flags);
597 		goto retry;
598 	}
599 	if (pmd_devmap(pmdval)) {
600 		ptl = pmd_lock(mm, pmd);
601 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
602 		spin_unlock(ptl);
603 		if (page)
604 			return page;
605 	}
606 	if (likely(!pmd_trans_huge(pmdval)))
607 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
608 
609 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
610 		return no_page_table(vma, flags);
611 
612 retry_locked:
613 	ptl = pmd_lock(mm, pmd);
614 	if (unlikely(pmd_none(*pmd))) {
615 		spin_unlock(ptl);
616 		return no_page_table(vma, flags);
617 	}
618 	if (unlikely(!pmd_present(*pmd))) {
619 		spin_unlock(ptl);
620 		if (likely(!(flags & FOLL_MIGRATION)))
621 			return no_page_table(vma, flags);
622 		pmd_migration_entry_wait(mm, pmd);
623 		goto retry_locked;
624 	}
625 	if (unlikely(!pmd_trans_huge(*pmd))) {
626 		spin_unlock(ptl);
627 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
628 	}
629 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
630 		int ret;
631 		page = pmd_page(*pmd);
632 		if (is_huge_zero_page(page)) {
633 			spin_unlock(ptl);
634 			ret = 0;
635 			split_huge_pmd(vma, pmd, address);
636 			if (pmd_trans_unstable(pmd))
637 				ret = -EBUSY;
638 		} else if (flags & FOLL_SPLIT) {
639 			if (unlikely(!try_get_page(page))) {
640 				spin_unlock(ptl);
641 				return ERR_PTR(-ENOMEM);
642 			}
643 			spin_unlock(ptl);
644 			lock_page(page);
645 			ret = split_huge_page(page);
646 			unlock_page(page);
647 			put_page(page);
648 			if (pmd_none(*pmd))
649 				return no_page_table(vma, flags);
650 		} else {  /* flags & FOLL_SPLIT_PMD */
651 			spin_unlock(ptl);
652 			split_huge_pmd(vma, pmd, address);
653 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
654 		}
655 
656 		return ret ? ERR_PTR(ret) :
657 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
658 	}
659 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
660 	spin_unlock(ptl);
661 	ctx->page_mask = HPAGE_PMD_NR - 1;
662 	return page;
663 }
664 
665 static struct page *follow_pud_mask(struct vm_area_struct *vma,
666 				    unsigned long address, p4d_t *p4dp,
667 				    unsigned int flags,
668 				    struct follow_page_context *ctx)
669 {
670 	pud_t *pud;
671 	spinlock_t *ptl;
672 	struct page *page;
673 	struct mm_struct *mm = vma->vm_mm;
674 
675 	pud = pud_offset(p4dp, address);
676 	if (pud_none(*pud))
677 		return no_page_table(vma, flags);
678 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
679 		page = follow_huge_pud(mm, address, pud, flags);
680 		if (page)
681 			return page;
682 		return no_page_table(vma, flags);
683 	}
684 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
685 		page = follow_huge_pd(vma, address,
686 				      __hugepd(pud_val(*pud)), flags,
687 				      PUD_SHIFT);
688 		if (page)
689 			return page;
690 		return no_page_table(vma, flags);
691 	}
692 	if (pud_devmap(*pud)) {
693 		ptl = pud_lock(mm, pud);
694 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
695 		spin_unlock(ptl);
696 		if (page)
697 			return page;
698 	}
699 	if (unlikely(pud_bad(*pud)))
700 		return no_page_table(vma, flags);
701 
702 	return follow_pmd_mask(vma, address, pud, flags, ctx);
703 }
704 
705 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
706 				    unsigned long address, pgd_t *pgdp,
707 				    unsigned int flags,
708 				    struct follow_page_context *ctx)
709 {
710 	p4d_t *p4d;
711 	struct page *page;
712 
713 	p4d = p4d_offset(pgdp, address);
714 	if (p4d_none(*p4d))
715 		return no_page_table(vma, flags);
716 	BUILD_BUG_ON(p4d_huge(*p4d));
717 	if (unlikely(p4d_bad(*p4d)))
718 		return no_page_table(vma, flags);
719 
720 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
721 		page = follow_huge_pd(vma, address,
722 				      __hugepd(p4d_val(*p4d)), flags,
723 				      P4D_SHIFT);
724 		if (page)
725 			return page;
726 		return no_page_table(vma, flags);
727 	}
728 	return follow_pud_mask(vma, address, p4d, flags, ctx);
729 }
730 
731 /**
732  * follow_page_mask - look up a page descriptor from a user-virtual address
733  * @vma: vm_area_struct mapping @address
734  * @address: virtual address to look up
735  * @flags: flags modifying lookup behaviour
736  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
737  *       pointer to output page_mask
738  *
739  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
740  *
741  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
742  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
743  *
744  * On output, the @ctx->page_mask is set according to the size of the page.
745  *
746  * Return: the mapped (struct page *), %NULL if no mapping exists, or
747  * an error pointer if there is a mapping to something not represented
748  * by a page descriptor (see also vm_normal_page()).
749  */
750 static struct page *follow_page_mask(struct vm_area_struct *vma,
751 			      unsigned long address, unsigned int flags,
752 			      struct follow_page_context *ctx)
753 {
754 	pgd_t *pgd;
755 	struct page *page;
756 	struct mm_struct *mm = vma->vm_mm;
757 
758 	ctx->page_mask = 0;
759 
760 	/* make this handle hugepd */
761 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
762 	if (!IS_ERR(page)) {
763 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
764 		return page;
765 	}
766 
767 	pgd = pgd_offset(mm, address);
768 
769 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770 		return no_page_table(vma, flags);
771 
772 	if (pgd_huge(*pgd)) {
773 		page = follow_huge_pgd(mm, address, pgd, flags);
774 		if (page)
775 			return page;
776 		return no_page_table(vma, flags);
777 	}
778 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779 		page = follow_huge_pd(vma, address,
780 				      __hugepd(pgd_val(*pgd)), flags,
781 				      PGDIR_SHIFT);
782 		if (page)
783 			return page;
784 		return no_page_table(vma, flags);
785 	}
786 
787 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
788 }
789 
790 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791 			 unsigned int foll_flags)
792 {
793 	struct follow_page_context ctx = { NULL };
794 	struct page *page;
795 
796 	page = follow_page_mask(vma, address, foll_flags, &ctx);
797 	if (ctx.pgmap)
798 		put_dev_pagemap(ctx.pgmap);
799 	return page;
800 }
801 
802 static int get_gate_page(struct mm_struct *mm, unsigned long address,
803 		unsigned int gup_flags, struct vm_area_struct **vma,
804 		struct page **page)
805 {
806 	pgd_t *pgd;
807 	p4d_t *p4d;
808 	pud_t *pud;
809 	pmd_t *pmd;
810 	pte_t *pte;
811 	int ret = -EFAULT;
812 
813 	/* user gate pages are read-only */
814 	if (gup_flags & FOLL_WRITE)
815 		return -EFAULT;
816 	if (address > TASK_SIZE)
817 		pgd = pgd_offset_k(address);
818 	else
819 		pgd = pgd_offset_gate(mm, address);
820 	if (pgd_none(*pgd))
821 		return -EFAULT;
822 	p4d = p4d_offset(pgd, address);
823 	if (p4d_none(*p4d))
824 		return -EFAULT;
825 	pud = pud_offset(p4d, address);
826 	if (pud_none(*pud))
827 		return -EFAULT;
828 	pmd = pmd_offset(pud, address);
829 	if (!pmd_present(*pmd))
830 		return -EFAULT;
831 	VM_BUG_ON(pmd_trans_huge(*pmd));
832 	pte = pte_offset_map(pmd, address);
833 	if (pte_none(*pte))
834 		goto unmap;
835 	*vma = get_gate_vma(mm);
836 	if (!page)
837 		goto out;
838 	*page = vm_normal_page(*vma, address, *pte);
839 	if (!*page) {
840 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
841 			goto unmap;
842 		*page = pte_page(*pte);
843 	}
844 	if (unlikely(!try_grab_page(*page, gup_flags))) {
845 		ret = -ENOMEM;
846 		goto unmap;
847 	}
848 out:
849 	ret = 0;
850 unmap:
851 	pte_unmap(pte);
852 	return ret;
853 }
854 
855 /*
856  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
857  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
858  * is, *@locked will be set to 0 and -EBUSY returned.
859  */
860 static int faultin_page(struct vm_area_struct *vma,
861 		unsigned long address, unsigned int *flags, int *locked)
862 {
863 	unsigned int fault_flags = 0;
864 	vm_fault_t ret;
865 
866 	/* mlock all present pages, but do not fault in new pages */
867 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
868 		return -ENOENT;
869 	if (*flags & FOLL_WRITE)
870 		fault_flags |= FAULT_FLAG_WRITE;
871 	if (*flags & FOLL_REMOTE)
872 		fault_flags |= FAULT_FLAG_REMOTE;
873 	if (locked)
874 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
875 	if (*flags & FOLL_NOWAIT)
876 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
877 	if (*flags & FOLL_TRIED) {
878 		/*
879 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
880 		 * can co-exist
881 		 */
882 		fault_flags |= FAULT_FLAG_TRIED;
883 	}
884 
885 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
886 	if (ret & VM_FAULT_ERROR) {
887 		int err = vm_fault_to_errno(ret, *flags);
888 
889 		if (err)
890 			return err;
891 		BUG();
892 	}
893 
894 	if (ret & VM_FAULT_RETRY) {
895 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896 			*locked = 0;
897 		return -EBUSY;
898 	}
899 
900 	/*
901 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903 	 * can thus safely do subsequent page lookups as if they were reads.
904 	 * But only do so when looping for pte_write is futile: in some cases
905 	 * userspace may also be wanting to write to the gotten user page,
906 	 * which a read fault here might prevent (a readonly page might get
907 	 * reCOWed by userspace write).
908 	 */
909 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
910 		*flags |= FOLL_COW;
911 	return 0;
912 }
913 
914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915 {
916 	vm_flags_t vm_flags = vma->vm_flags;
917 	int write = (gup_flags & FOLL_WRITE);
918 	int foreign = (gup_flags & FOLL_REMOTE);
919 
920 	if (vm_flags & (VM_IO | VM_PFNMAP))
921 		return -EFAULT;
922 
923 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924 		return -EFAULT;
925 
926 	if (write) {
927 		if (!(vm_flags & VM_WRITE)) {
928 			if (!(gup_flags & FOLL_FORCE))
929 				return -EFAULT;
930 			/*
931 			 * We used to let the write,force case do COW in a
932 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
933 			 * set a breakpoint in a read-only mapping of an
934 			 * executable, without corrupting the file (yet only
935 			 * when that file had been opened for writing!).
936 			 * Anon pages in shared mappings are surprising: now
937 			 * just reject it.
938 			 */
939 			if (!is_cow_mapping(vm_flags))
940 				return -EFAULT;
941 		}
942 	} else if (!(vm_flags & VM_READ)) {
943 		if (!(gup_flags & FOLL_FORCE))
944 			return -EFAULT;
945 		/*
946 		 * Is there actually any vma we can reach here which does not
947 		 * have VM_MAYREAD set?
948 		 */
949 		if (!(vm_flags & VM_MAYREAD))
950 			return -EFAULT;
951 	}
952 	/*
953 	 * gups are always data accesses, not instruction
954 	 * fetches, so execute=false here
955 	 */
956 	if (!arch_vma_access_permitted(vma, write, false, foreign))
957 		return -EFAULT;
958 	return 0;
959 }
960 
961 /**
962  * __get_user_pages() - pin user pages in memory
963  * @mm:		mm_struct of target mm
964  * @start:	starting user address
965  * @nr_pages:	number of pages from start to pin
966  * @gup_flags:	flags modifying pin behaviour
967  * @pages:	array that receives pointers to the pages pinned.
968  *		Should be at least nr_pages long. Or NULL, if caller
969  *		only intends to ensure the pages are faulted in.
970  * @vmas:	array of pointers to vmas corresponding to each page.
971  *		Or NULL if the caller does not require them.
972  * @locked:     whether we're still with the mmap_lock held
973  *
974  * Returns either number of pages pinned (which may be less than the
975  * number requested), or an error. Details about the return value:
976  *
977  * -- If nr_pages is 0, returns 0.
978  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
979  * -- If nr_pages is >0, and some pages were pinned, returns the number of
980  *    pages pinned. Again, this may be less than nr_pages.
981  * -- 0 return value is possible when the fault would need to be retried.
982  *
983  * The caller is responsible for releasing returned @pages, via put_page().
984  *
985  * @vmas are valid only as long as mmap_lock is held.
986  *
987  * Must be called with mmap_lock held.  It may be released.  See below.
988  *
989  * __get_user_pages walks a process's page tables and takes a reference to
990  * each struct page that each user address corresponds to at a given
991  * instant. That is, it takes the page that would be accessed if a user
992  * thread accesses the given user virtual address at that instant.
993  *
994  * This does not guarantee that the page exists in the user mappings when
995  * __get_user_pages returns, and there may even be a completely different
996  * page there in some cases (eg. if mmapped pagecache has been invalidated
997  * and subsequently re faulted). However it does guarantee that the page
998  * won't be freed completely. And mostly callers simply care that the page
999  * contains data that was valid *at some point in time*. Typically, an IO
1000  * or similar operation cannot guarantee anything stronger anyway because
1001  * locks can't be held over the syscall boundary.
1002  *
1003  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1004  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1005  * appropriate) must be called after the page is finished with, and
1006  * before put_page is called.
1007  *
1008  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1009  * released by an up_read().  That can happen if @gup_flags does not
1010  * have FOLL_NOWAIT.
1011  *
1012  * A caller using such a combination of @locked and @gup_flags
1013  * must therefore hold the mmap_lock for reading only, and recognize
1014  * when it's been released.  Otherwise, it must be held for either
1015  * reading or writing and will not be released.
1016  *
1017  * In most cases, get_user_pages or get_user_pages_fast should be used
1018  * instead of __get_user_pages. __get_user_pages should be used only if
1019  * you need some special @gup_flags.
1020  */
1021 static long __get_user_pages(struct mm_struct *mm,
1022 		unsigned long start, unsigned long nr_pages,
1023 		unsigned int gup_flags, struct page **pages,
1024 		struct vm_area_struct **vmas, int *locked)
1025 {
1026 	long ret = 0, i = 0;
1027 	struct vm_area_struct *vma = NULL;
1028 	struct follow_page_context ctx = { NULL };
1029 
1030 	if (!nr_pages)
1031 		return 0;
1032 
1033 	start = untagged_addr(start);
1034 
1035 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1036 
1037 	/*
1038 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1039 	 * fault information is unrelated to the reference behaviour of a task
1040 	 * using the address space
1041 	 */
1042 	if (!(gup_flags & FOLL_FORCE))
1043 		gup_flags |= FOLL_NUMA;
1044 
1045 	do {
1046 		struct page *page;
1047 		unsigned int foll_flags = gup_flags;
1048 		unsigned int page_increm;
1049 
1050 		/* first iteration or cross vma bound */
1051 		if (!vma || start >= vma->vm_end) {
1052 			vma = find_extend_vma(mm, start);
1053 			if (!vma && in_gate_area(mm, start)) {
1054 				ret = get_gate_page(mm, start & PAGE_MASK,
1055 						gup_flags, &vma,
1056 						pages ? &pages[i] : NULL);
1057 				if (ret)
1058 					goto out;
1059 				ctx.page_mask = 0;
1060 				goto next_page;
1061 			}
1062 
1063 			if (!vma || check_vma_flags(vma, gup_flags)) {
1064 				ret = -EFAULT;
1065 				goto out;
1066 			}
1067 			if (is_vm_hugetlb_page(vma)) {
1068 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1069 						&start, &nr_pages, i,
1070 						gup_flags, locked);
1071 				if (locked && *locked == 0) {
1072 					/*
1073 					 * We've got a VM_FAULT_RETRY
1074 					 * and we've lost mmap_lock.
1075 					 * We must stop here.
1076 					 */
1077 					BUG_ON(gup_flags & FOLL_NOWAIT);
1078 					BUG_ON(ret != 0);
1079 					goto out;
1080 				}
1081 				continue;
1082 			}
1083 		}
1084 retry:
1085 		/*
1086 		 * If we have a pending SIGKILL, don't keep faulting pages and
1087 		 * potentially allocating memory.
1088 		 */
1089 		if (fatal_signal_pending(current)) {
1090 			ret = -EINTR;
1091 			goto out;
1092 		}
1093 		cond_resched();
1094 
1095 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1096 		if (!page) {
1097 			ret = faultin_page(vma, start, &foll_flags, locked);
1098 			switch (ret) {
1099 			case 0:
1100 				goto retry;
1101 			case -EBUSY:
1102 				ret = 0;
1103 				fallthrough;
1104 			case -EFAULT:
1105 			case -ENOMEM:
1106 			case -EHWPOISON:
1107 				goto out;
1108 			case -ENOENT:
1109 				goto next_page;
1110 			}
1111 			BUG();
1112 		} else if (PTR_ERR(page) == -EEXIST) {
1113 			/*
1114 			 * Proper page table entry exists, but no corresponding
1115 			 * struct page.
1116 			 */
1117 			goto next_page;
1118 		} else if (IS_ERR(page)) {
1119 			ret = PTR_ERR(page);
1120 			goto out;
1121 		}
1122 		if (pages) {
1123 			pages[i] = page;
1124 			flush_anon_page(vma, page, start);
1125 			flush_dcache_page(page);
1126 			ctx.page_mask = 0;
1127 		}
1128 next_page:
1129 		if (vmas) {
1130 			vmas[i] = vma;
1131 			ctx.page_mask = 0;
1132 		}
1133 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1134 		if (page_increm > nr_pages)
1135 			page_increm = nr_pages;
1136 		i += page_increm;
1137 		start += page_increm * PAGE_SIZE;
1138 		nr_pages -= page_increm;
1139 	} while (nr_pages);
1140 out:
1141 	if (ctx.pgmap)
1142 		put_dev_pagemap(ctx.pgmap);
1143 	return i ? i : ret;
1144 }
1145 
1146 static bool vma_permits_fault(struct vm_area_struct *vma,
1147 			      unsigned int fault_flags)
1148 {
1149 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1150 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1151 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1152 
1153 	if (!(vm_flags & vma->vm_flags))
1154 		return false;
1155 
1156 	/*
1157 	 * The architecture might have a hardware protection
1158 	 * mechanism other than read/write that can deny access.
1159 	 *
1160 	 * gup always represents data access, not instruction
1161 	 * fetches, so execute=false here:
1162 	 */
1163 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1164 		return false;
1165 
1166 	return true;
1167 }
1168 
1169 /**
1170  * fixup_user_fault() - manually resolve a user page fault
1171  * @mm:		mm_struct of target mm
1172  * @address:	user address
1173  * @fault_flags:flags to pass down to handle_mm_fault()
1174  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1175  *		does not allow retry. If NULL, the caller must guarantee
1176  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1177  *
1178  * This is meant to be called in the specific scenario where for locking reasons
1179  * we try to access user memory in atomic context (within a pagefault_disable()
1180  * section), this returns -EFAULT, and we want to resolve the user fault before
1181  * trying again.
1182  *
1183  * Typically this is meant to be used by the futex code.
1184  *
1185  * The main difference with get_user_pages() is that this function will
1186  * unconditionally call handle_mm_fault() which will in turn perform all the
1187  * necessary SW fixup of the dirty and young bits in the PTE, while
1188  * get_user_pages() only guarantees to update these in the struct page.
1189  *
1190  * This is important for some architectures where those bits also gate the
1191  * access permission to the page because they are maintained in software.  On
1192  * such architectures, gup() will not be enough to make a subsequent access
1193  * succeed.
1194  *
1195  * This function will not return with an unlocked mmap_lock. So it has not the
1196  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1197  */
1198 int fixup_user_fault(struct mm_struct *mm,
1199 		     unsigned long address, unsigned int fault_flags,
1200 		     bool *unlocked)
1201 {
1202 	struct vm_area_struct *vma;
1203 	vm_fault_t ret, major = 0;
1204 
1205 	address = untagged_addr(address);
1206 
1207 	if (unlocked)
1208 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1209 
1210 retry:
1211 	vma = find_extend_vma(mm, address);
1212 	if (!vma || address < vma->vm_start)
1213 		return -EFAULT;
1214 
1215 	if (!vma_permits_fault(vma, fault_flags))
1216 		return -EFAULT;
1217 
1218 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1219 	    fatal_signal_pending(current))
1220 		return -EINTR;
1221 
1222 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1223 	major |= ret & VM_FAULT_MAJOR;
1224 	if (ret & VM_FAULT_ERROR) {
1225 		int err = vm_fault_to_errno(ret, 0);
1226 
1227 		if (err)
1228 			return err;
1229 		BUG();
1230 	}
1231 
1232 	if (ret & VM_FAULT_RETRY) {
1233 		mmap_read_lock(mm);
1234 		*unlocked = true;
1235 		fault_flags |= FAULT_FLAG_TRIED;
1236 		goto retry;
1237 	}
1238 
1239 	return 0;
1240 }
1241 EXPORT_SYMBOL_GPL(fixup_user_fault);
1242 
1243 /*
1244  * Please note that this function, unlike __get_user_pages will not
1245  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1246  */
1247 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1248 						unsigned long start,
1249 						unsigned long nr_pages,
1250 						struct page **pages,
1251 						struct vm_area_struct **vmas,
1252 						int *locked,
1253 						unsigned int flags)
1254 {
1255 	long ret, pages_done;
1256 	bool lock_dropped;
1257 
1258 	if (locked) {
1259 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1260 		BUG_ON(vmas);
1261 		/* check caller initialized locked */
1262 		BUG_ON(*locked != 1);
1263 	}
1264 
1265 	if (flags & FOLL_PIN)
1266 		atomic_set(&mm->has_pinned, 1);
1267 
1268 	/*
1269 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1270 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1271 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1272 	 * for FOLL_GET, not for the newer FOLL_PIN.
1273 	 *
1274 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1275 	 * that here, as any failures will be obvious enough.
1276 	 */
1277 	if (pages && !(flags & FOLL_PIN))
1278 		flags |= FOLL_GET;
1279 
1280 	pages_done = 0;
1281 	lock_dropped = false;
1282 	for (;;) {
1283 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1284 				       vmas, locked);
1285 		if (!locked)
1286 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1287 			return ret;
1288 
1289 		/* VM_FAULT_RETRY cannot return errors */
1290 		if (!*locked) {
1291 			BUG_ON(ret < 0);
1292 			BUG_ON(ret >= nr_pages);
1293 		}
1294 
1295 		if (ret > 0) {
1296 			nr_pages -= ret;
1297 			pages_done += ret;
1298 			if (!nr_pages)
1299 				break;
1300 		}
1301 		if (*locked) {
1302 			/*
1303 			 * VM_FAULT_RETRY didn't trigger or it was a
1304 			 * FOLL_NOWAIT.
1305 			 */
1306 			if (!pages_done)
1307 				pages_done = ret;
1308 			break;
1309 		}
1310 		/*
1311 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1312 		 * For the prefault case (!pages) we only update counts.
1313 		 */
1314 		if (likely(pages))
1315 			pages += ret;
1316 		start += ret << PAGE_SHIFT;
1317 		lock_dropped = true;
1318 
1319 retry:
1320 		/*
1321 		 * Repeat on the address that fired VM_FAULT_RETRY
1322 		 * with both FAULT_FLAG_ALLOW_RETRY and
1323 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1324 		 * by fatal signals, so we need to check it before we
1325 		 * start trying again otherwise it can loop forever.
1326 		 */
1327 
1328 		if (fatal_signal_pending(current)) {
1329 			if (!pages_done)
1330 				pages_done = -EINTR;
1331 			break;
1332 		}
1333 
1334 		ret = mmap_read_lock_killable(mm);
1335 		if (ret) {
1336 			BUG_ON(ret > 0);
1337 			if (!pages_done)
1338 				pages_done = ret;
1339 			break;
1340 		}
1341 
1342 		*locked = 1;
1343 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1344 				       pages, NULL, locked);
1345 		if (!*locked) {
1346 			/* Continue to retry until we succeeded */
1347 			BUG_ON(ret != 0);
1348 			goto retry;
1349 		}
1350 		if (ret != 1) {
1351 			BUG_ON(ret > 1);
1352 			if (!pages_done)
1353 				pages_done = ret;
1354 			break;
1355 		}
1356 		nr_pages--;
1357 		pages_done++;
1358 		if (!nr_pages)
1359 			break;
1360 		if (likely(pages))
1361 			pages++;
1362 		start += PAGE_SIZE;
1363 	}
1364 	if (lock_dropped && *locked) {
1365 		/*
1366 		 * We must let the caller know we temporarily dropped the lock
1367 		 * and so the critical section protected by it was lost.
1368 		 */
1369 		mmap_read_unlock(mm);
1370 		*locked = 0;
1371 	}
1372 	return pages_done;
1373 }
1374 
1375 /**
1376  * populate_vma_page_range() -  populate a range of pages in the vma.
1377  * @vma:   target vma
1378  * @start: start address
1379  * @end:   end address
1380  * @locked: whether the mmap_lock is still held
1381  *
1382  * This takes care of mlocking the pages too if VM_LOCKED is set.
1383  *
1384  * Return either number of pages pinned in the vma, or a negative error
1385  * code on error.
1386  *
1387  * vma->vm_mm->mmap_lock must be held.
1388  *
1389  * If @locked is NULL, it may be held for read or write and will
1390  * be unperturbed.
1391  *
1392  * If @locked is non-NULL, it must held for read only and may be
1393  * released.  If it's released, *@locked will be set to 0.
1394  */
1395 long populate_vma_page_range(struct vm_area_struct *vma,
1396 		unsigned long start, unsigned long end, int *locked)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400 	int gup_flags;
1401 
1402 	VM_BUG_ON(start & ~PAGE_MASK);
1403 	VM_BUG_ON(end   & ~PAGE_MASK);
1404 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1406 	mmap_assert_locked(mm);
1407 
1408 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409 	if (vma->vm_flags & VM_LOCKONFAULT)
1410 		gup_flags &= ~FOLL_POPULATE;
1411 	/*
1412 	 * We want to touch writable mappings with a write fault in order
1413 	 * to break COW, except for shared mappings because these don't COW
1414 	 * and we would not want to dirty them for nothing.
1415 	 */
1416 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417 		gup_flags |= FOLL_WRITE;
1418 
1419 	/*
1420 	 * We want mlock to succeed for regions that have any permissions
1421 	 * other than PROT_NONE.
1422 	 */
1423 	if (vma_is_accessible(vma))
1424 		gup_flags |= FOLL_FORCE;
1425 
1426 	/*
1427 	 * We made sure addr is within a VMA, so the following will
1428 	 * not result in a stack expansion that recurses back here.
1429 	 */
1430 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1431 				NULL, NULL, locked);
1432 }
1433 
1434 /*
1435  * __mm_populate - populate and/or mlock pages within a range of address space.
1436  *
1437  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438  * flags. VMAs must be already marked with the desired vm_flags, and
1439  * mmap_lock must not be held.
1440  */
1441 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1442 {
1443 	struct mm_struct *mm = current->mm;
1444 	unsigned long end, nstart, nend;
1445 	struct vm_area_struct *vma = NULL;
1446 	int locked = 0;
1447 	long ret = 0;
1448 
1449 	end = start + len;
1450 
1451 	for (nstart = start; nstart < end; nstart = nend) {
1452 		/*
1453 		 * We want to fault in pages for [nstart; end) address range.
1454 		 * Find first corresponding VMA.
1455 		 */
1456 		if (!locked) {
1457 			locked = 1;
1458 			mmap_read_lock(mm);
1459 			vma = find_vma(mm, nstart);
1460 		} else if (nstart >= vma->vm_end)
1461 			vma = vma->vm_next;
1462 		if (!vma || vma->vm_start >= end)
1463 			break;
1464 		/*
1465 		 * Set [nstart; nend) to intersection of desired address
1466 		 * range with the first VMA. Also, skip undesirable VMA types.
1467 		 */
1468 		nend = min(end, vma->vm_end);
1469 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470 			continue;
1471 		if (nstart < vma->vm_start)
1472 			nstart = vma->vm_start;
1473 		/*
1474 		 * Now fault in a range of pages. populate_vma_page_range()
1475 		 * double checks the vma flags, so that it won't mlock pages
1476 		 * if the vma was already munlocked.
1477 		 */
1478 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479 		if (ret < 0) {
1480 			if (ignore_errors) {
1481 				ret = 0;
1482 				continue;	/* continue at next VMA */
1483 			}
1484 			break;
1485 		}
1486 		nend = nstart + ret * PAGE_SIZE;
1487 		ret = 0;
1488 	}
1489 	if (locked)
1490 		mmap_read_unlock(mm);
1491 	return ret;	/* 0 or negative error code */
1492 }
1493 
1494 /**
1495  * get_dump_page() - pin user page in memory while writing it to core dump
1496  * @addr: user address
1497  *
1498  * Returns struct page pointer of user page pinned for dump,
1499  * to be freed afterwards by put_page().
1500  *
1501  * Returns NULL on any kind of failure - a hole must then be inserted into
1502  * the corefile, to preserve alignment with its headers; and also returns
1503  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1504  * allowing a hole to be left in the corefile to save diskspace.
1505  *
1506  * Called without mmap_lock, but after all other threads have been killed.
1507  */
1508 #ifdef CONFIG_ELF_CORE
1509 struct page *get_dump_page(unsigned long addr)
1510 {
1511 	struct vm_area_struct *vma;
1512 	struct page *page;
1513 
1514 	if (__get_user_pages(current->mm, addr, 1,
1515 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1516 			     NULL) < 1)
1517 		return NULL;
1518 	flush_cache_page(vma, addr, page_to_pfn(page));
1519 	return page;
1520 }
1521 #endif /* CONFIG_ELF_CORE */
1522 #else /* CONFIG_MMU */
1523 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1524 		unsigned long nr_pages, struct page **pages,
1525 		struct vm_area_struct **vmas, int *locked,
1526 		unsigned int foll_flags)
1527 {
1528 	struct vm_area_struct *vma;
1529 	unsigned long vm_flags;
1530 	int i;
1531 
1532 	/* calculate required read or write permissions.
1533 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1534 	 */
1535 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1536 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1537 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1538 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1539 
1540 	for (i = 0; i < nr_pages; i++) {
1541 		vma = find_vma(mm, start);
1542 		if (!vma)
1543 			goto finish_or_fault;
1544 
1545 		/* protect what we can, including chardevs */
1546 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1547 		    !(vm_flags & vma->vm_flags))
1548 			goto finish_or_fault;
1549 
1550 		if (pages) {
1551 			pages[i] = virt_to_page(start);
1552 			if (pages[i])
1553 				get_page(pages[i]);
1554 		}
1555 		if (vmas)
1556 			vmas[i] = vma;
1557 		start = (start + PAGE_SIZE) & PAGE_MASK;
1558 	}
1559 
1560 	return i;
1561 
1562 finish_or_fault:
1563 	return i ? : -EFAULT;
1564 }
1565 #endif /* !CONFIG_MMU */
1566 
1567 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1568 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1569 {
1570 	long i;
1571 	struct vm_area_struct *vma_prev = NULL;
1572 
1573 	for (i = 0; i < nr_pages; i++) {
1574 		struct vm_area_struct *vma = vmas[i];
1575 
1576 		if (vma == vma_prev)
1577 			continue;
1578 
1579 		vma_prev = vma;
1580 
1581 		if (vma_is_fsdax(vma))
1582 			return true;
1583 	}
1584 	return false;
1585 }
1586 
1587 #ifdef CONFIG_CMA
1588 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1589 					unsigned long start,
1590 					unsigned long nr_pages,
1591 					struct page **pages,
1592 					struct vm_area_struct **vmas,
1593 					unsigned int gup_flags)
1594 {
1595 	unsigned long i;
1596 	unsigned long step;
1597 	bool drain_allow = true;
1598 	bool migrate_allow = true;
1599 	LIST_HEAD(cma_page_list);
1600 	long ret = nr_pages;
1601 	struct migration_target_control mtc = {
1602 		.nid = NUMA_NO_NODE,
1603 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1604 	};
1605 
1606 check_again:
1607 	for (i = 0; i < nr_pages;) {
1608 
1609 		struct page *head = compound_head(pages[i]);
1610 
1611 		/*
1612 		 * gup may start from a tail page. Advance step by the left
1613 		 * part.
1614 		 */
1615 		step = compound_nr(head) - (pages[i] - head);
1616 		/*
1617 		 * If we get a page from the CMA zone, since we are going to
1618 		 * be pinning these entries, we might as well move them out
1619 		 * of the CMA zone if possible.
1620 		 */
1621 		if (is_migrate_cma_page(head)) {
1622 			if (PageHuge(head))
1623 				isolate_huge_page(head, &cma_page_list);
1624 			else {
1625 				if (!PageLRU(head) && drain_allow) {
1626 					lru_add_drain_all();
1627 					drain_allow = false;
1628 				}
1629 
1630 				if (!isolate_lru_page(head)) {
1631 					list_add_tail(&head->lru, &cma_page_list);
1632 					mod_node_page_state(page_pgdat(head),
1633 							    NR_ISOLATED_ANON +
1634 							    page_is_file_lru(head),
1635 							    thp_nr_pages(head));
1636 				}
1637 			}
1638 		}
1639 
1640 		i += step;
1641 	}
1642 
1643 	if (!list_empty(&cma_page_list)) {
1644 		/*
1645 		 * drop the above get_user_pages reference.
1646 		 */
1647 		for (i = 0; i < nr_pages; i++)
1648 			put_page(pages[i]);
1649 
1650 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1651 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1652 			/*
1653 			 * some of the pages failed migration. Do get_user_pages
1654 			 * without migration.
1655 			 */
1656 			migrate_allow = false;
1657 
1658 			if (!list_empty(&cma_page_list))
1659 				putback_movable_pages(&cma_page_list);
1660 		}
1661 		/*
1662 		 * We did migrate all the pages, Try to get the page references
1663 		 * again migrating any new CMA pages which we failed to isolate
1664 		 * earlier.
1665 		 */
1666 		ret = __get_user_pages_locked(mm, start, nr_pages,
1667 						   pages, vmas, NULL,
1668 						   gup_flags);
1669 
1670 		if ((ret > 0) && migrate_allow) {
1671 			nr_pages = ret;
1672 			drain_allow = true;
1673 			goto check_again;
1674 		}
1675 	}
1676 
1677 	return ret;
1678 }
1679 #else
1680 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1681 					unsigned long start,
1682 					unsigned long nr_pages,
1683 					struct page **pages,
1684 					struct vm_area_struct **vmas,
1685 					unsigned int gup_flags)
1686 {
1687 	return nr_pages;
1688 }
1689 #endif /* CONFIG_CMA */
1690 
1691 /*
1692  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1693  * allows us to process the FOLL_LONGTERM flag.
1694  */
1695 static long __gup_longterm_locked(struct mm_struct *mm,
1696 				  unsigned long start,
1697 				  unsigned long nr_pages,
1698 				  struct page **pages,
1699 				  struct vm_area_struct **vmas,
1700 				  unsigned int gup_flags)
1701 {
1702 	struct vm_area_struct **vmas_tmp = vmas;
1703 	unsigned long flags = 0;
1704 	long rc, i;
1705 
1706 	if (gup_flags & FOLL_LONGTERM) {
1707 		if (!pages)
1708 			return -EINVAL;
1709 
1710 		if (!vmas_tmp) {
1711 			vmas_tmp = kcalloc(nr_pages,
1712 					   sizeof(struct vm_area_struct *),
1713 					   GFP_KERNEL);
1714 			if (!vmas_tmp)
1715 				return -ENOMEM;
1716 		}
1717 		flags = memalloc_nocma_save();
1718 	}
1719 
1720 	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1721 				     vmas_tmp, NULL, gup_flags);
1722 
1723 	if (gup_flags & FOLL_LONGTERM) {
1724 		if (rc < 0)
1725 			goto out;
1726 
1727 		if (check_dax_vmas(vmas_tmp, rc)) {
1728 			for (i = 0; i < rc; i++)
1729 				put_page(pages[i]);
1730 			rc = -EOPNOTSUPP;
1731 			goto out;
1732 		}
1733 
1734 		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1735 						 vmas_tmp, gup_flags);
1736 out:
1737 		memalloc_nocma_restore(flags);
1738 	}
1739 
1740 	if (vmas_tmp != vmas)
1741 		kfree(vmas_tmp);
1742 	return rc;
1743 }
1744 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1745 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1746 						  unsigned long start,
1747 						  unsigned long nr_pages,
1748 						  struct page **pages,
1749 						  struct vm_area_struct **vmas,
1750 						  unsigned int flags)
1751 {
1752 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1753 				       NULL, flags);
1754 }
1755 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1756 
1757 static bool is_valid_gup_flags(unsigned int gup_flags)
1758 {
1759 	/*
1760 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1761 	 * never directly by the caller, so enforce that with an assertion:
1762 	 */
1763 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1764 		return false;
1765 	/*
1766 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1767 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1768 	 * FOLL_PIN.
1769 	 */
1770 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1771 		return false;
1772 
1773 	return true;
1774 }
1775 
1776 #ifdef CONFIG_MMU
1777 static long __get_user_pages_remote(struct mm_struct *mm,
1778 				    unsigned long start, unsigned long nr_pages,
1779 				    unsigned int gup_flags, struct page **pages,
1780 				    struct vm_area_struct **vmas, int *locked)
1781 {
1782 	/*
1783 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1784 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1785 	 * vmas. However, this only comes up if locked is set, and there are
1786 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1787 	 * allow what we can.
1788 	 */
1789 	if (gup_flags & FOLL_LONGTERM) {
1790 		if (WARN_ON_ONCE(locked))
1791 			return -EINVAL;
1792 		/*
1793 		 * This will check the vmas (even if our vmas arg is NULL)
1794 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1795 		 */
1796 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1797 					     vmas, gup_flags | FOLL_TOUCH |
1798 					     FOLL_REMOTE);
1799 	}
1800 
1801 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1802 				       locked,
1803 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1804 }
1805 
1806 /**
1807  * get_user_pages_remote() - pin user pages in memory
1808  * @mm:		mm_struct of target mm
1809  * @start:	starting user address
1810  * @nr_pages:	number of pages from start to pin
1811  * @gup_flags:	flags modifying lookup behaviour
1812  * @pages:	array that receives pointers to the pages pinned.
1813  *		Should be at least nr_pages long. Or NULL, if caller
1814  *		only intends to ensure the pages are faulted in.
1815  * @vmas:	array of pointers to vmas corresponding to each page.
1816  *		Or NULL if the caller does not require them.
1817  * @locked:	pointer to lock flag indicating whether lock is held and
1818  *		subsequently whether VM_FAULT_RETRY functionality can be
1819  *		utilised. Lock must initially be held.
1820  *
1821  * Returns either number of pages pinned (which may be less than the
1822  * number requested), or an error. Details about the return value:
1823  *
1824  * -- If nr_pages is 0, returns 0.
1825  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1826  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1827  *    pages pinned. Again, this may be less than nr_pages.
1828  *
1829  * The caller is responsible for releasing returned @pages, via put_page().
1830  *
1831  * @vmas are valid only as long as mmap_lock is held.
1832  *
1833  * Must be called with mmap_lock held for read or write.
1834  *
1835  * get_user_pages_remote walks a process's page tables and takes a reference
1836  * to each struct page that each user address corresponds to at a given
1837  * instant. That is, it takes the page that would be accessed if a user
1838  * thread accesses the given user virtual address at that instant.
1839  *
1840  * This does not guarantee that the page exists in the user mappings when
1841  * get_user_pages_remote returns, and there may even be a completely different
1842  * page there in some cases (eg. if mmapped pagecache has been invalidated
1843  * and subsequently re faulted). However it does guarantee that the page
1844  * won't be freed completely. And mostly callers simply care that the page
1845  * contains data that was valid *at some point in time*. Typically, an IO
1846  * or similar operation cannot guarantee anything stronger anyway because
1847  * locks can't be held over the syscall boundary.
1848  *
1849  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1850  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1851  * be called after the page is finished with, and before put_page is called.
1852  *
1853  * get_user_pages_remote is typically used for fewer-copy IO operations,
1854  * to get a handle on the memory by some means other than accesses
1855  * via the user virtual addresses. The pages may be submitted for
1856  * DMA to devices or accessed via their kernel linear mapping (via the
1857  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1858  *
1859  * See also get_user_pages_fast, for performance critical applications.
1860  *
1861  * get_user_pages_remote should be phased out in favor of
1862  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1863  * should use get_user_pages_remote because it cannot pass
1864  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1865  */
1866 long get_user_pages_remote(struct mm_struct *mm,
1867 		unsigned long start, unsigned long nr_pages,
1868 		unsigned int gup_flags, struct page **pages,
1869 		struct vm_area_struct **vmas, int *locked)
1870 {
1871 	if (!is_valid_gup_flags(gup_flags))
1872 		return -EINVAL;
1873 
1874 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1875 				       pages, vmas, locked);
1876 }
1877 EXPORT_SYMBOL(get_user_pages_remote);
1878 
1879 #else /* CONFIG_MMU */
1880 long get_user_pages_remote(struct mm_struct *mm,
1881 			   unsigned long start, unsigned long nr_pages,
1882 			   unsigned int gup_flags, struct page **pages,
1883 			   struct vm_area_struct **vmas, int *locked)
1884 {
1885 	return 0;
1886 }
1887 
1888 static long __get_user_pages_remote(struct mm_struct *mm,
1889 				    unsigned long start, unsigned long nr_pages,
1890 				    unsigned int gup_flags, struct page **pages,
1891 				    struct vm_area_struct **vmas, int *locked)
1892 {
1893 	return 0;
1894 }
1895 #endif /* !CONFIG_MMU */
1896 
1897 /**
1898  * get_user_pages() - pin user pages in memory
1899  * @start:      starting user address
1900  * @nr_pages:   number of pages from start to pin
1901  * @gup_flags:  flags modifying lookup behaviour
1902  * @pages:      array that receives pointers to the pages pinned.
1903  *              Should be at least nr_pages long. Or NULL, if caller
1904  *              only intends to ensure the pages are faulted in.
1905  * @vmas:       array of pointers to vmas corresponding to each page.
1906  *              Or NULL if the caller does not require them.
1907  *
1908  * This is the same as get_user_pages_remote(), just with a less-flexible
1909  * calling convention where we assume that the mm being operated on belongs to
1910  * the current task, and doesn't allow passing of a locked parameter.  We also
1911  * obviously don't pass FOLL_REMOTE in here.
1912  */
1913 long get_user_pages(unsigned long start, unsigned long nr_pages,
1914 		unsigned int gup_flags, struct page **pages,
1915 		struct vm_area_struct **vmas)
1916 {
1917 	if (!is_valid_gup_flags(gup_flags))
1918 		return -EINVAL;
1919 
1920 	return __gup_longterm_locked(current->mm, start, nr_pages,
1921 				     pages, vmas, gup_flags | FOLL_TOUCH);
1922 }
1923 EXPORT_SYMBOL(get_user_pages);
1924 
1925 /**
1926  * get_user_pages_locked() is suitable to replace the form:
1927  *
1928  *      mmap_read_lock(mm);
1929  *      do_something()
1930  *      get_user_pages(mm, ..., pages, NULL);
1931  *      mmap_read_unlock(mm);
1932  *
1933  *  to:
1934  *
1935  *      int locked = 1;
1936  *      mmap_read_lock(mm);
1937  *      do_something()
1938  *      get_user_pages_locked(mm, ..., pages, &locked);
1939  *      if (locked)
1940  *          mmap_read_unlock(mm);
1941  *
1942  * @start:      starting user address
1943  * @nr_pages:   number of pages from start to pin
1944  * @gup_flags:  flags modifying lookup behaviour
1945  * @pages:      array that receives pointers to the pages pinned.
1946  *              Should be at least nr_pages long. Or NULL, if caller
1947  *              only intends to ensure the pages are faulted in.
1948  * @locked:     pointer to lock flag indicating whether lock is held and
1949  *              subsequently whether VM_FAULT_RETRY functionality can be
1950  *              utilised. Lock must initially be held.
1951  *
1952  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1953  * paths better by using either get_user_pages_locked() or
1954  * get_user_pages_unlocked().
1955  *
1956  */
1957 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1958 			   unsigned int gup_flags, struct page **pages,
1959 			   int *locked)
1960 {
1961 	/*
1962 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1963 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1964 	 * vmas.  As there are no users of this flag in this call we simply
1965 	 * disallow this option for now.
1966 	 */
1967 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1968 		return -EINVAL;
1969 	/*
1970 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1971 	 * never directly by the caller, so enforce that:
1972 	 */
1973 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1974 		return -EINVAL;
1975 
1976 	return __get_user_pages_locked(current->mm, start, nr_pages,
1977 				       pages, NULL, locked,
1978 				       gup_flags | FOLL_TOUCH);
1979 }
1980 EXPORT_SYMBOL(get_user_pages_locked);
1981 
1982 /*
1983  * get_user_pages_unlocked() is suitable to replace the form:
1984  *
1985  *      mmap_read_lock(mm);
1986  *      get_user_pages(mm, ..., pages, NULL);
1987  *      mmap_read_unlock(mm);
1988  *
1989  *  with:
1990  *
1991  *      get_user_pages_unlocked(mm, ..., pages);
1992  *
1993  * It is functionally equivalent to get_user_pages_fast so
1994  * get_user_pages_fast should be used instead if specific gup_flags
1995  * (e.g. FOLL_FORCE) are not required.
1996  */
1997 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1998 			     struct page **pages, unsigned int gup_flags)
1999 {
2000 	struct mm_struct *mm = current->mm;
2001 	int locked = 1;
2002 	long ret;
2003 
2004 	/*
2005 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2006 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2007 	 * vmas.  As there are no users of this flag in this call we simply
2008 	 * disallow this option for now.
2009 	 */
2010 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2011 		return -EINVAL;
2012 
2013 	mmap_read_lock(mm);
2014 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2015 				      &locked, gup_flags | FOLL_TOUCH);
2016 	if (locked)
2017 		mmap_read_unlock(mm);
2018 	return ret;
2019 }
2020 EXPORT_SYMBOL(get_user_pages_unlocked);
2021 
2022 /*
2023  * Fast GUP
2024  *
2025  * get_user_pages_fast attempts to pin user pages by walking the page
2026  * tables directly and avoids taking locks. Thus the walker needs to be
2027  * protected from page table pages being freed from under it, and should
2028  * block any THP splits.
2029  *
2030  * One way to achieve this is to have the walker disable interrupts, and
2031  * rely on IPIs from the TLB flushing code blocking before the page table
2032  * pages are freed. This is unsuitable for architectures that do not need
2033  * to broadcast an IPI when invalidating TLBs.
2034  *
2035  * Another way to achieve this is to batch up page table containing pages
2036  * belonging to more than one mm_user, then rcu_sched a callback to free those
2037  * pages. Disabling interrupts will allow the fast_gup walker to both block
2038  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2039  * (which is a relatively rare event). The code below adopts this strategy.
2040  *
2041  * Before activating this code, please be aware that the following assumptions
2042  * are currently made:
2043  *
2044  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2045  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2046  *
2047  *  *) ptes can be read atomically by the architecture.
2048  *
2049  *  *) access_ok is sufficient to validate userspace address ranges.
2050  *
2051  * The last two assumptions can be relaxed by the addition of helper functions.
2052  *
2053  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2054  */
2055 #ifdef CONFIG_HAVE_FAST_GUP
2056 
2057 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2058 {
2059 	if (flags & FOLL_PIN) {
2060 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2061 				    refs);
2062 
2063 		if (hpage_pincount_available(page))
2064 			hpage_pincount_sub(page, refs);
2065 		else
2066 			refs *= GUP_PIN_COUNTING_BIAS;
2067 	}
2068 
2069 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2070 	/*
2071 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2072 	 * ref needs a put_page().
2073 	 */
2074 	if (refs > 1)
2075 		page_ref_sub(page, refs - 1);
2076 	put_page(page);
2077 }
2078 
2079 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2080 
2081 /*
2082  * WARNING: only to be used in the get_user_pages_fast() implementation.
2083  *
2084  * With get_user_pages_fast(), we walk down the pagetables without taking any
2085  * locks.  For this we would like to load the pointers atomically, but sometimes
2086  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2087  * we do have is the guarantee that a PTE will only either go from not present
2088  * to present, or present to not present or both -- it will not switch to a
2089  * completely different present page without a TLB flush in between; something
2090  * that we are blocking by holding interrupts off.
2091  *
2092  * Setting ptes from not present to present goes:
2093  *
2094  *   ptep->pte_high = h;
2095  *   smp_wmb();
2096  *   ptep->pte_low = l;
2097  *
2098  * And present to not present goes:
2099  *
2100  *   ptep->pte_low = 0;
2101  *   smp_wmb();
2102  *   ptep->pte_high = 0;
2103  *
2104  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2105  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2106  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2107  * picked up a changed pte high. We might have gotten rubbish values from
2108  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2109  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2110  * operates on present ptes we're safe.
2111  */
2112 static inline pte_t gup_get_pte(pte_t *ptep)
2113 {
2114 	pte_t pte;
2115 
2116 	do {
2117 		pte.pte_low = ptep->pte_low;
2118 		smp_rmb();
2119 		pte.pte_high = ptep->pte_high;
2120 		smp_rmb();
2121 	} while (unlikely(pte.pte_low != ptep->pte_low));
2122 
2123 	return pte;
2124 }
2125 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2126 /*
2127  * We require that the PTE can be read atomically.
2128  */
2129 static inline pte_t gup_get_pte(pte_t *ptep)
2130 {
2131 	return ptep_get(ptep);
2132 }
2133 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2134 
2135 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2136 					    unsigned int flags,
2137 					    struct page **pages)
2138 {
2139 	while ((*nr) - nr_start) {
2140 		struct page *page = pages[--(*nr)];
2141 
2142 		ClearPageReferenced(page);
2143 		if (flags & FOLL_PIN)
2144 			unpin_user_page(page);
2145 		else
2146 			put_page(page);
2147 	}
2148 }
2149 
2150 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2151 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2152 			 unsigned int flags, struct page **pages, int *nr)
2153 {
2154 	struct dev_pagemap *pgmap = NULL;
2155 	int nr_start = *nr, ret = 0;
2156 	pte_t *ptep, *ptem;
2157 
2158 	ptem = ptep = pte_offset_map(&pmd, addr);
2159 	do {
2160 		pte_t pte = gup_get_pte(ptep);
2161 		struct page *head, *page;
2162 
2163 		/*
2164 		 * Similar to the PMD case below, NUMA hinting must take slow
2165 		 * path using the pte_protnone check.
2166 		 */
2167 		if (pte_protnone(pte))
2168 			goto pte_unmap;
2169 
2170 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2171 			goto pte_unmap;
2172 
2173 		if (pte_devmap(pte)) {
2174 			if (unlikely(flags & FOLL_LONGTERM))
2175 				goto pte_unmap;
2176 
2177 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2178 			if (unlikely(!pgmap)) {
2179 				undo_dev_pagemap(nr, nr_start, flags, pages);
2180 				goto pte_unmap;
2181 			}
2182 		} else if (pte_special(pte))
2183 			goto pte_unmap;
2184 
2185 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2186 		page = pte_page(pte);
2187 
2188 		head = try_grab_compound_head(page, 1, flags);
2189 		if (!head)
2190 			goto pte_unmap;
2191 
2192 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2193 			put_compound_head(head, 1, flags);
2194 			goto pte_unmap;
2195 		}
2196 
2197 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2198 
2199 		/*
2200 		 * We need to make the page accessible if and only if we are
2201 		 * going to access its content (the FOLL_PIN case).  Please
2202 		 * see Documentation/core-api/pin_user_pages.rst for
2203 		 * details.
2204 		 */
2205 		if (flags & FOLL_PIN) {
2206 			ret = arch_make_page_accessible(page);
2207 			if (ret) {
2208 				unpin_user_page(page);
2209 				goto pte_unmap;
2210 			}
2211 		}
2212 		SetPageReferenced(page);
2213 		pages[*nr] = page;
2214 		(*nr)++;
2215 
2216 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2217 
2218 	ret = 1;
2219 
2220 pte_unmap:
2221 	if (pgmap)
2222 		put_dev_pagemap(pgmap);
2223 	pte_unmap(ptem);
2224 	return ret;
2225 }
2226 #else
2227 
2228 /*
2229  * If we can't determine whether or not a pte is special, then fail immediately
2230  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2231  * to be special.
2232  *
2233  * For a futex to be placed on a THP tail page, get_futex_key requires a
2234  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2235  * useful to have gup_huge_pmd even if we can't operate on ptes.
2236  */
2237 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2238 			 unsigned int flags, struct page **pages, int *nr)
2239 {
2240 	return 0;
2241 }
2242 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2243 
2244 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2245 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2246 			     unsigned long end, unsigned int flags,
2247 			     struct page **pages, int *nr)
2248 {
2249 	int nr_start = *nr;
2250 	struct dev_pagemap *pgmap = NULL;
2251 
2252 	do {
2253 		struct page *page = pfn_to_page(pfn);
2254 
2255 		pgmap = get_dev_pagemap(pfn, pgmap);
2256 		if (unlikely(!pgmap)) {
2257 			undo_dev_pagemap(nr, nr_start, flags, pages);
2258 			return 0;
2259 		}
2260 		SetPageReferenced(page);
2261 		pages[*nr] = page;
2262 		if (unlikely(!try_grab_page(page, flags))) {
2263 			undo_dev_pagemap(nr, nr_start, flags, pages);
2264 			return 0;
2265 		}
2266 		(*nr)++;
2267 		pfn++;
2268 	} while (addr += PAGE_SIZE, addr != end);
2269 
2270 	if (pgmap)
2271 		put_dev_pagemap(pgmap);
2272 	return 1;
2273 }
2274 
2275 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2276 				 unsigned long end, unsigned int flags,
2277 				 struct page **pages, int *nr)
2278 {
2279 	unsigned long fault_pfn;
2280 	int nr_start = *nr;
2281 
2282 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2283 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284 		return 0;
2285 
2286 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2287 		undo_dev_pagemap(nr, nr_start, flags, pages);
2288 		return 0;
2289 	}
2290 	return 1;
2291 }
2292 
2293 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2294 				 unsigned long end, unsigned int flags,
2295 				 struct page **pages, int *nr)
2296 {
2297 	unsigned long fault_pfn;
2298 	int nr_start = *nr;
2299 
2300 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2301 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2302 		return 0;
2303 
2304 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2305 		undo_dev_pagemap(nr, nr_start, flags, pages);
2306 		return 0;
2307 	}
2308 	return 1;
2309 }
2310 #else
2311 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2312 				 unsigned long end, unsigned int flags,
2313 				 struct page **pages, int *nr)
2314 {
2315 	BUILD_BUG();
2316 	return 0;
2317 }
2318 
2319 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2320 				 unsigned long end, unsigned int flags,
2321 				 struct page **pages, int *nr)
2322 {
2323 	BUILD_BUG();
2324 	return 0;
2325 }
2326 #endif
2327 
2328 static int record_subpages(struct page *page, unsigned long addr,
2329 			   unsigned long end, struct page **pages)
2330 {
2331 	int nr;
2332 
2333 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2334 		pages[nr++] = page++;
2335 
2336 	return nr;
2337 }
2338 
2339 #ifdef CONFIG_ARCH_HAS_HUGEPD
2340 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2341 				      unsigned long sz)
2342 {
2343 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2344 	return (__boundary - 1 < end - 1) ? __boundary : end;
2345 }
2346 
2347 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2348 		       unsigned long end, unsigned int flags,
2349 		       struct page **pages, int *nr)
2350 {
2351 	unsigned long pte_end;
2352 	struct page *head, *page;
2353 	pte_t pte;
2354 	int refs;
2355 
2356 	pte_end = (addr + sz) & ~(sz-1);
2357 	if (pte_end < end)
2358 		end = pte_end;
2359 
2360 	pte = huge_ptep_get(ptep);
2361 
2362 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2363 		return 0;
2364 
2365 	/* hugepages are never "special" */
2366 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2367 
2368 	head = pte_page(pte);
2369 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2370 	refs = record_subpages(page, addr, end, pages + *nr);
2371 
2372 	head = try_grab_compound_head(head, refs, flags);
2373 	if (!head)
2374 		return 0;
2375 
2376 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2377 		put_compound_head(head, refs, flags);
2378 		return 0;
2379 	}
2380 
2381 	*nr += refs;
2382 	SetPageReferenced(head);
2383 	return 1;
2384 }
2385 
2386 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387 		unsigned int pdshift, unsigned long end, unsigned int flags,
2388 		struct page **pages, int *nr)
2389 {
2390 	pte_t *ptep;
2391 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2392 	unsigned long next;
2393 
2394 	ptep = hugepte_offset(hugepd, addr, pdshift);
2395 	do {
2396 		next = hugepte_addr_end(addr, end, sz);
2397 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2398 			return 0;
2399 	} while (ptep++, addr = next, addr != end);
2400 
2401 	return 1;
2402 }
2403 #else
2404 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2405 		unsigned int pdshift, unsigned long end, unsigned int flags,
2406 		struct page **pages, int *nr)
2407 {
2408 	return 0;
2409 }
2410 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2411 
2412 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2413 			unsigned long end, unsigned int flags,
2414 			struct page **pages, int *nr)
2415 {
2416 	struct page *head, *page;
2417 	int refs;
2418 
2419 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2420 		return 0;
2421 
2422 	if (pmd_devmap(orig)) {
2423 		if (unlikely(flags & FOLL_LONGTERM))
2424 			return 0;
2425 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2426 					     pages, nr);
2427 	}
2428 
2429 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2430 	refs = record_subpages(page, addr, end, pages + *nr);
2431 
2432 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2433 	if (!head)
2434 		return 0;
2435 
2436 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2437 		put_compound_head(head, refs, flags);
2438 		return 0;
2439 	}
2440 
2441 	*nr += refs;
2442 	SetPageReferenced(head);
2443 	return 1;
2444 }
2445 
2446 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2447 			unsigned long end, unsigned int flags,
2448 			struct page **pages, int *nr)
2449 {
2450 	struct page *head, *page;
2451 	int refs;
2452 
2453 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2454 		return 0;
2455 
2456 	if (pud_devmap(orig)) {
2457 		if (unlikely(flags & FOLL_LONGTERM))
2458 			return 0;
2459 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2460 					     pages, nr);
2461 	}
2462 
2463 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2464 	refs = record_subpages(page, addr, end, pages + *nr);
2465 
2466 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2467 	if (!head)
2468 		return 0;
2469 
2470 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2471 		put_compound_head(head, refs, flags);
2472 		return 0;
2473 	}
2474 
2475 	*nr += refs;
2476 	SetPageReferenced(head);
2477 	return 1;
2478 }
2479 
2480 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2481 			unsigned long end, unsigned int flags,
2482 			struct page **pages, int *nr)
2483 {
2484 	int refs;
2485 	struct page *head, *page;
2486 
2487 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2488 		return 0;
2489 
2490 	BUILD_BUG_ON(pgd_devmap(orig));
2491 
2492 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2493 	refs = record_subpages(page, addr, end, pages + *nr);
2494 
2495 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2496 	if (!head)
2497 		return 0;
2498 
2499 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2500 		put_compound_head(head, refs, flags);
2501 		return 0;
2502 	}
2503 
2504 	*nr += refs;
2505 	SetPageReferenced(head);
2506 	return 1;
2507 }
2508 
2509 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2510 		unsigned int flags, struct page **pages, int *nr)
2511 {
2512 	unsigned long next;
2513 	pmd_t *pmdp;
2514 
2515 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2516 	do {
2517 		pmd_t pmd = READ_ONCE(*pmdp);
2518 
2519 		next = pmd_addr_end(addr, end);
2520 		if (!pmd_present(pmd))
2521 			return 0;
2522 
2523 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2524 			     pmd_devmap(pmd))) {
2525 			/*
2526 			 * NUMA hinting faults need to be handled in the GUP
2527 			 * slowpath for accounting purposes and so that they
2528 			 * can be serialised against THP migration.
2529 			 */
2530 			if (pmd_protnone(pmd))
2531 				return 0;
2532 
2533 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2534 				pages, nr))
2535 				return 0;
2536 
2537 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2538 			/*
2539 			 * architecture have different format for hugetlbfs
2540 			 * pmd format and THP pmd format
2541 			 */
2542 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2543 					 PMD_SHIFT, next, flags, pages, nr))
2544 				return 0;
2545 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2546 			return 0;
2547 	} while (pmdp++, addr = next, addr != end);
2548 
2549 	return 1;
2550 }
2551 
2552 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2553 			 unsigned int flags, struct page **pages, int *nr)
2554 {
2555 	unsigned long next;
2556 	pud_t *pudp;
2557 
2558 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2559 	do {
2560 		pud_t pud = READ_ONCE(*pudp);
2561 
2562 		next = pud_addr_end(addr, end);
2563 		if (unlikely(!pud_present(pud)))
2564 			return 0;
2565 		if (unlikely(pud_huge(pud))) {
2566 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2567 					  pages, nr))
2568 				return 0;
2569 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2570 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2571 					 PUD_SHIFT, next, flags, pages, nr))
2572 				return 0;
2573 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2574 			return 0;
2575 	} while (pudp++, addr = next, addr != end);
2576 
2577 	return 1;
2578 }
2579 
2580 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2581 			 unsigned int flags, struct page **pages, int *nr)
2582 {
2583 	unsigned long next;
2584 	p4d_t *p4dp;
2585 
2586 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2587 	do {
2588 		p4d_t p4d = READ_ONCE(*p4dp);
2589 
2590 		next = p4d_addr_end(addr, end);
2591 		if (p4d_none(p4d))
2592 			return 0;
2593 		BUILD_BUG_ON(p4d_huge(p4d));
2594 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2595 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2596 					 P4D_SHIFT, next, flags, pages, nr))
2597 				return 0;
2598 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2599 			return 0;
2600 	} while (p4dp++, addr = next, addr != end);
2601 
2602 	return 1;
2603 }
2604 
2605 static void gup_pgd_range(unsigned long addr, unsigned long end,
2606 		unsigned int flags, struct page **pages, int *nr)
2607 {
2608 	unsigned long next;
2609 	pgd_t *pgdp;
2610 
2611 	pgdp = pgd_offset(current->mm, addr);
2612 	do {
2613 		pgd_t pgd = READ_ONCE(*pgdp);
2614 
2615 		next = pgd_addr_end(addr, end);
2616 		if (pgd_none(pgd))
2617 			return;
2618 		if (unlikely(pgd_huge(pgd))) {
2619 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2620 					  pages, nr))
2621 				return;
2622 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2623 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2624 					 PGDIR_SHIFT, next, flags, pages, nr))
2625 				return;
2626 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2627 			return;
2628 	} while (pgdp++, addr = next, addr != end);
2629 }
2630 #else
2631 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2632 		unsigned int flags, struct page **pages, int *nr)
2633 {
2634 }
2635 #endif /* CONFIG_HAVE_FAST_GUP */
2636 
2637 #ifndef gup_fast_permitted
2638 /*
2639  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2640  * we need to fall back to the slow version:
2641  */
2642 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2643 {
2644 	return true;
2645 }
2646 #endif
2647 
2648 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2649 				   unsigned int gup_flags, struct page **pages)
2650 {
2651 	int ret;
2652 
2653 	/*
2654 	 * FIXME: FOLL_LONGTERM does not work with
2655 	 * get_user_pages_unlocked() (see comments in that function)
2656 	 */
2657 	if (gup_flags & FOLL_LONGTERM) {
2658 		mmap_read_lock(current->mm);
2659 		ret = __gup_longterm_locked(current->mm,
2660 					    start, nr_pages,
2661 					    pages, NULL, gup_flags);
2662 		mmap_read_unlock(current->mm);
2663 	} else {
2664 		ret = get_user_pages_unlocked(start, nr_pages,
2665 					      pages, gup_flags);
2666 	}
2667 
2668 	return ret;
2669 }
2670 
2671 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2672 					unsigned int gup_flags,
2673 					struct page **pages)
2674 {
2675 	unsigned long addr, len, end;
2676 	unsigned long flags;
2677 	int nr_pinned = 0, ret = 0;
2678 
2679 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2680 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2681 				       FOLL_FAST_ONLY)))
2682 		return -EINVAL;
2683 
2684 	if (gup_flags & FOLL_PIN)
2685 		atomic_set(&current->mm->has_pinned, 1);
2686 
2687 	if (!(gup_flags & FOLL_FAST_ONLY))
2688 		might_lock_read(&current->mm->mmap_lock);
2689 
2690 	start = untagged_addr(start) & PAGE_MASK;
2691 	addr = start;
2692 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2693 	end = start + len;
2694 
2695 	if (end <= start)
2696 		return 0;
2697 	if (unlikely(!access_ok((void __user *)start, len)))
2698 		return -EFAULT;
2699 
2700 	/*
2701 	 * Disable interrupts. The nested form is used, in order to allow
2702 	 * full, general purpose use of this routine.
2703 	 *
2704 	 * With interrupts disabled, we block page table pages from being
2705 	 * freed from under us. See struct mmu_table_batch comments in
2706 	 * include/asm-generic/tlb.h for more details.
2707 	 *
2708 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2709 	 * block IPIs that come from THPs splitting.
2710 	 */
2711 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2712 		unsigned long fast_flags = gup_flags;
2713 
2714 		local_irq_save(flags);
2715 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2716 		local_irq_restore(flags);
2717 		ret = nr_pinned;
2718 	}
2719 
2720 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2721 		/* Try to get the remaining pages with get_user_pages */
2722 		start += nr_pinned << PAGE_SHIFT;
2723 		pages += nr_pinned;
2724 
2725 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2726 					      gup_flags, pages);
2727 
2728 		/* Have to be a bit careful with return values */
2729 		if (nr_pinned > 0) {
2730 			if (ret < 0)
2731 				ret = nr_pinned;
2732 			else
2733 				ret += nr_pinned;
2734 		}
2735 	}
2736 
2737 	return ret;
2738 }
2739 /**
2740  * get_user_pages_fast_only() - pin user pages in memory
2741  * @start:      starting user address
2742  * @nr_pages:   number of pages from start to pin
2743  * @gup_flags:  flags modifying pin behaviour
2744  * @pages:      array that receives pointers to the pages pinned.
2745  *              Should be at least nr_pages long.
2746  *
2747  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2748  * the regular GUP.
2749  * Note a difference with get_user_pages_fast: this always returns the
2750  * number of pages pinned, 0 if no pages were pinned.
2751  *
2752  * If the architecture does not support this function, simply return with no
2753  * pages pinned.
2754  *
2755  * Careful, careful! COW breaking can go either way, so a non-write
2756  * access can get ambiguous page results. If you call this function without
2757  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2758  */
2759 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2760 			     unsigned int gup_flags, struct page **pages)
2761 {
2762 	int nr_pinned;
2763 	/*
2764 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2765 	 * because gup fast is always a "pin with a +1 page refcount" request.
2766 	 *
2767 	 * FOLL_FAST_ONLY is required in order to match the API description of
2768 	 * this routine: no fall back to regular ("slow") GUP.
2769 	 */
2770 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2771 
2772 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2773 						 pages);
2774 
2775 	/*
2776 	 * As specified in the API description above, this routine is not
2777 	 * allowed to return negative values. However, the common core
2778 	 * routine internal_get_user_pages_fast() *can* return -errno.
2779 	 * Therefore, correct for that here:
2780 	 */
2781 	if (nr_pinned < 0)
2782 		nr_pinned = 0;
2783 
2784 	return nr_pinned;
2785 }
2786 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2787 
2788 /**
2789  * get_user_pages_fast() - pin user pages in memory
2790  * @start:      starting user address
2791  * @nr_pages:   number of pages from start to pin
2792  * @gup_flags:  flags modifying pin behaviour
2793  * @pages:      array that receives pointers to the pages pinned.
2794  *              Should be at least nr_pages long.
2795  *
2796  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2797  * If not successful, it will fall back to taking the lock and
2798  * calling get_user_pages().
2799  *
2800  * Returns number of pages pinned. This may be fewer than the number requested.
2801  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2802  * -errno.
2803  */
2804 int get_user_pages_fast(unsigned long start, int nr_pages,
2805 			unsigned int gup_flags, struct page **pages)
2806 {
2807 	if (!is_valid_gup_flags(gup_flags))
2808 		return -EINVAL;
2809 
2810 	/*
2811 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2812 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2813 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2814 	 * request.
2815 	 */
2816 	gup_flags |= FOLL_GET;
2817 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2818 }
2819 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2820 
2821 /**
2822  * pin_user_pages_fast() - pin user pages in memory without taking locks
2823  *
2824  * @start:      starting user address
2825  * @nr_pages:   number of pages from start to pin
2826  * @gup_flags:  flags modifying pin behaviour
2827  * @pages:      array that receives pointers to the pages pinned.
2828  *              Should be at least nr_pages long.
2829  *
2830  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2831  * get_user_pages_fast() for documentation on the function arguments, because
2832  * the arguments here are identical.
2833  *
2834  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2835  * see Documentation/core-api/pin_user_pages.rst for further details.
2836  */
2837 int pin_user_pages_fast(unsigned long start, int nr_pages,
2838 			unsigned int gup_flags, struct page **pages)
2839 {
2840 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2841 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2842 		return -EINVAL;
2843 
2844 	gup_flags |= FOLL_PIN;
2845 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2846 }
2847 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2848 
2849 /*
2850  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2851  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2852  *
2853  * The API rules are the same, too: no negative values may be returned.
2854  */
2855 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2856 			     unsigned int gup_flags, struct page **pages)
2857 {
2858 	int nr_pinned;
2859 
2860 	/*
2861 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2862 	 * rules require returning 0, rather than -errno:
2863 	 */
2864 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2865 		return 0;
2866 	/*
2867 	 * FOLL_FAST_ONLY is required in order to match the API description of
2868 	 * this routine: no fall back to regular ("slow") GUP.
2869 	 */
2870 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2871 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2872 						 pages);
2873 	/*
2874 	 * This routine is not allowed to return negative values. However,
2875 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2876 	 * correct for that here:
2877 	 */
2878 	if (nr_pinned < 0)
2879 		nr_pinned = 0;
2880 
2881 	return nr_pinned;
2882 }
2883 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2884 
2885 /**
2886  * pin_user_pages_remote() - pin pages of a remote process
2887  *
2888  * @mm:		mm_struct of target mm
2889  * @start:	starting user address
2890  * @nr_pages:	number of pages from start to pin
2891  * @gup_flags:	flags modifying lookup behaviour
2892  * @pages:	array that receives pointers to the pages pinned.
2893  *		Should be at least nr_pages long. Or NULL, if caller
2894  *		only intends to ensure the pages are faulted in.
2895  * @vmas:	array of pointers to vmas corresponding to each page.
2896  *		Or NULL if the caller does not require them.
2897  * @locked:	pointer to lock flag indicating whether lock is held and
2898  *		subsequently whether VM_FAULT_RETRY functionality can be
2899  *		utilised. Lock must initially be held.
2900  *
2901  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2902  * get_user_pages_remote() for documentation on the function arguments, because
2903  * the arguments here are identical.
2904  *
2905  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2906  * see Documentation/core-api/pin_user_pages.rst for details.
2907  */
2908 long pin_user_pages_remote(struct mm_struct *mm,
2909 			   unsigned long start, unsigned long nr_pages,
2910 			   unsigned int gup_flags, struct page **pages,
2911 			   struct vm_area_struct **vmas, int *locked)
2912 {
2913 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2914 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2915 		return -EINVAL;
2916 
2917 	gup_flags |= FOLL_PIN;
2918 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2919 				       pages, vmas, locked);
2920 }
2921 EXPORT_SYMBOL(pin_user_pages_remote);
2922 
2923 /**
2924  * pin_user_pages() - pin user pages in memory for use by other devices
2925  *
2926  * @start:	starting user address
2927  * @nr_pages:	number of pages from start to pin
2928  * @gup_flags:	flags modifying lookup behaviour
2929  * @pages:	array that receives pointers to the pages pinned.
2930  *		Should be at least nr_pages long. Or NULL, if caller
2931  *		only intends to ensure the pages are faulted in.
2932  * @vmas:	array of pointers to vmas corresponding to each page.
2933  *		Or NULL if the caller does not require them.
2934  *
2935  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2936  * FOLL_PIN is set.
2937  *
2938  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2939  * see Documentation/core-api/pin_user_pages.rst for details.
2940  */
2941 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2942 		    unsigned int gup_flags, struct page **pages,
2943 		    struct vm_area_struct **vmas)
2944 {
2945 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2946 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2947 		return -EINVAL;
2948 
2949 	gup_flags |= FOLL_PIN;
2950 	return __gup_longterm_locked(current->mm, start, nr_pages,
2951 				     pages, vmas, gup_flags);
2952 }
2953 EXPORT_SYMBOL(pin_user_pages);
2954 
2955 /*
2956  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2957  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2958  * FOLL_PIN and rejects FOLL_GET.
2959  */
2960 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2961 			     struct page **pages, unsigned int gup_flags)
2962 {
2963 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2964 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2965 		return -EINVAL;
2966 
2967 	gup_flags |= FOLL_PIN;
2968 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2969 }
2970 EXPORT_SYMBOL(pin_user_pages_unlocked);
2971 
2972 /*
2973  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2974  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2975  * FOLL_GET.
2976  */
2977 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2978 			   unsigned int gup_flags, struct page **pages,
2979 			   int *locked)
2980 {
2981 	/*
2982 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2983 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2984 	 * vmas.  As there are no users of this flag in this call we simply
2985 	 * disallow this option for now.
2986 	 */
2987 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2988 		return -EINVAL;
2989 
2990 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2991 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2992 		return -EINVAL;
2993 
2994 	gup_flags |= FOLL_PIN;
2995 	return __get_user_pages_locked(current->mm, start, nr_pages,
2996 				       pages, NULL, locked,
2997 				       gup_flags | FOLL_TOUCH);
2998 }
2999 EXPORT_SYMBOL(pin_user_pages_locked);
3000