xref: /openbmc/linux/mm/gup.c (revision b03afaa8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * TODO: this can be optimized for huge pages: if a series of pages is
333 	 * physically contiguous and part of the same compound page, then a
334 	 * single operation to the head page should suffice.
335 	 */
336 	for (index = 0; index < npages; index++)
337 		unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340 
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 		unsigned int flags)
344 {
345 	/*
346 	 * When core dumping an enormous anonymous area that nobody
347 	 * has touched so far, we don't want to allocate unnecessary pages or
348 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349 	 * then get_dump_page() will return NULL to leave a hole in the dump.
350 	 * But we can only make this optimization where a hole would surely
351 	 * be zero-filled if handle_mm_fault() actually did handle it.
352 	 */
353 	if ((flags & FOLL_DUMP) &&
354 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385  * but only after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
390 }
391 
392 /*
393  * A (separate) COW fault might break the page the other way and
394  * get_user_pages() would return the page from what is now the wrong
395  * VM. So we need to force a COW break at GUP time even for reads.
396  */
397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
398 {
399 	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
400 }
401 
402 static struct page *follow_page_pte(struct vm_area_struct *vma,
403 		unsigned long address, pmd_t *pmd, unsigned int flags,
404 		struct dev_pagemap **pgmap)
405 {
406 	struct mm_struct *mm = vma->vm_mm;
407 	struct page *page;
408 	spinlock_t *ptl;
409 	pte_t *ptep, pte;
410 	int ret;
411 
412 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414 			 (FOLL_PIN | FOLL_GET)))
415 		return ERR_PTR(-EINVAL);
416 retry:
417 	if (unlikely(pmd_bad(*pmd)))
418 		return no_page_table(vma, flags);
419 
420 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
421 	pte = *ptep;
422 	if (!pte_present(pte)) {
423 		swp_entry_t entry;
424 		/*
425 		 * KSM's break_ksm() relies upon recognizing a ksm page
426 		 * even while it is being migrated, so for that case we
427 		 * need migration_entry_wait().
428 		 */
429 		if (likely(!(flags & FOLL_MIGRATION)))
430 			goto no_page;
431 		if (pte_none(pte))
432 			goto no_page;
433 		entry = pte_to_swp_entry(pte);
434 		if (!is_migration_entry(entry))
435 			goto no_page;
436 		pte_unmap_unlock(ptep, ptl);
437 		migration_entry_wait(mm, pmd, address);
438 		goto retry;
439 	}
440 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
441 		goto no_page;
442 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
443 		pte_unmap_unlock(ptep, ptl);
444 		return NULL;
445 	}
446 
447 	page = vm_normal_page(vma, address, pte);
448 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
449 		/*
450 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 		 * case since they are only valid while holding the pgmap
452 		 * reference.
453 		 */
454 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455 		if (*pgmap)
456 			page = pte_page(pte);
457 		else
458 			goto no_page;
459 	} else if (unlikely(!page)) {
460 		if (flags & FOLL_DUMP) {
461 			/* Avoid special (like zero) pages in core dumps */
462 			page = ERR_PTR(-EFAULT);
463 			goto out;
464 		}
465 
466 		if (is_zero_pfn(pte_pfn(pte))) {
467 			page = pte_page(pte);
468 		} else {
469 			ret = follow_pfn_pte(vma, address, ptep, flags);
470 			page = ERR_PTR(ret);
471 			goto out;
472 		}
473 	}
474 
475 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
476 		get_page(page);
477 		pte_unmap_unlock(ptep, ptl);
478 		lock_page(page);
479 		ret = split_huge_page(page);
480 		unlock_page(page);
481 		put_page(page);
482 		if (ret)
483 			return ERR_PTR(ret);
484 		goto retry;
485 	}
486 
487 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 	if (unlikely(!try_grab_page(page, flags))) {
489 		page = ERR_PTR(-ENOMEM);
490 		goto out;
491 	}
492 	/*
493 	 * We need to make the page accessible if and only if we are going
494 	 * to access its content (the FOLL_PIN case).  Please see
495 	 * Documentation/core-api/pin_user_pages.rst for details.
496 	 */
497 	if (flags & FOLL_PIN) {
498 		ret = arch_make_page_accessible(page);
499 		if (ret) {
500 			unpin_user_page(page);
501 			page = ERR_PTR(ret);
502 			goto out;
503 		}
504 	}
505 	if (flags & FOLL_TOUCH) {
506 		if ((flags & FOLL_WRITE) &&
507 		    !pte_dirty(pte) && !PageDirty(page))
508 			set_page_dirty(page);
509 		/*
510 		 * pte_mkyoung() would be more correct here, but atomic care
511 		 * is needed to avoid losing the dirty bit: it is easier to use
512 		 * mark_page_accessed().
513 		 */
514 		mark_page_accessed(page);
515 	}
516 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
517 		/* Do not mlock pte-mapped THP */
518 		if (PageTransCompound(page))
519 			goto out;
520 
521 		/*
522 		 * The preliminary mapping check is mainly to avoid the
523 		 * pointless overhead of lock_page on the ZERO_PAGE
524 		 * which might bounce very badly if there is contention.
525 		 *
526 		 * If the page is already locked, we don't need to
527 		 * handle it now - vmscan will handle it later if and
528 		 * when it attempts to reclaim the page.
529 		 */
530 		if (page->mapping && trylock_page(page)) {
531 			lru_add_drain();  /* push cached pages to LRU */
532 			/*
533 			 * Because we lock page here, and migration is
534 			 * blocked by the pte's page reference, and we
535 			 * know the page is still mapped, we don't even
536 			 * need to check for file-cache page truncation.
537 			 */
538 			mlock_vma_page(page);
539 			unlock_page(page);
540 		}
541 	}
542 out:
543 	pte_unmap_unlock(ptep, ptl);
544 	return page;
545 no_page:
546 	pte_unmap_unlock(ptep, ptl);
547 	if (!pte_none(pte))
548 		return NULL;
549 	return no_page_table(vma, flags);
550 }
551 
552 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 				    unsigned long address, pud_t *pudp,
554 				    unsigned int flags,
555 				    struct follow_page_context *ctx)
556 {
557 	pmd_t *pmd, pmdval;
558 	spinlock_t *ptl;
559 	struct page *page;
560 	struct mm_struct *mm = vma->vm_mm;
561 
562 	pmd = pmd_offset(pudp, address);
563 	/*
564 	 * The READ_ONCE() will stabilize the pmdval in a register or
565 	 * on the stack so that it will stop changing under the code.
566 	 */
567 	pmdval = READ_ONCE(*pmd);
568 	if (pmd_none(pmdval))
569 		return no_page_table(vma, flags);
570 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571 		page = follow_huge_pmd(mm, address, pmd, flags);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577 		page = follow_huge_pd(vma, address,
578 				      __hugepd(pmd_val(pmdval)), flags,
579 				      PMD_SHIFT);
580 		if (page)
581 			return page;
582 		return no_page_table(vma, flags);
583 	}
584 retry:
585 	if (!pmd_present(pmdval)) {
586 		if (likely(!(flags & FOLL_MIGRATION)))
587 			return no_page_table(vma, flags);
588 		VM_BUG_ON(thp_migration_supported() &&
589 				  !is_pmd_migration_entry(pmdval));
590 		if (is_pmd_migration_entry(pmdval))
591 			pmd_migration_entry_wait(mm, pmd);
592 		pmdval = READ_ONCE(*pmd);
593 		/*
594 		 * MADV_DONTNEED may convert the pmd to null because
595 		 * mmap_lock is held in read mode
596 		 */
597 		if (pmd_none(pmdval))
598 			return no_page_table(vma, flags);
599 		goto retry;
600 	}
601 	if (pmd_devmap(pmdval)) {
602 		ptl = pmd_lock(mm, pmd);
603 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
604 		spin_unlock(ptl);
605 		if (page)
606 			return page;
607 	}
608 	if (likely(!pmd_trans_huge(pmdval)))
609 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
610 
611 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
612 		return no_page_table(vma, flags);
613 
614 retry_locked:
615 	ptl = pmd_lock(mm, pmd);
616 	if (unlikely(pmd_none(*pmd))) {
617 		spin_unlock(ptl);
618 		return no_page_table(vma, flags);
619 	}
620 	if (unlikely(!pmd_present(*pmd))) {
621 		spin_unlock(ptl);
622 		if (likely(!(flags & FOLL_MIGRATION)))
623 			return no_page_table(vma, flags);
624 		pmd_migration_entry_wait(mm, pmd);
625 		goto retry_locked;
626 	}
627 	if (unlikely(!pmd_trans_huge(*pmd))) {
628 		spin_unlock(ptl);
629 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
630 	}
631 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
632 		int ret;
633 		page = pmd_page(*pmd);
634 		if (is_huge_zero_page(page)) {
635 			spin_unlock(ptl);
636 			ret = 0;
637 			split_huge_pmd(vma, pmd, address);
638 			if (pmd_trans_unstable(pmd))
639 				ret = -EBUSY;
640 		} else if (flags & FOLL_SPLIT) {
641 			if (unlikely(!try_get_page(page))) {
642 				spin_unlock(ptl);
643 				return ERR_PTR(-ENOMEM);
644 			}
645 			spin_unlock(ptl);
646 			lock_page(page);
647 			ret = split_huge_page(page);
648 			unlock_page(page);
649 			put_page(page);
650 			if (pmd_none(*pmd))
651 				return no_page_table(vma, flags);
652 		} else {  /* flags & FOLL_SPLIT_PMD */
653 			spin_unlock(ptl);
654 			split_huge_pmd(vma, pmd, address);
655 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
656 		}
657 
658 		return ret ? ERR_PTR(ret) :
659 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
660 	}
661 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
662 	spin_unlock(ptl);
663 	ctx->page_mask = HPAGE_PMD_NR - 1;
664 	return page;
665 }
666 
667 static struct page *follow_pud_mask(struct vm_area_struct *vma,
668 				    unsigned long address, p4d_t *p4dp,
669 				    unsigned int flags,
670 				    struct follow_page_context *ctx)
671 {
672 	pud_t *pud;
673 	spinlock_t *ptl;
674 	struct page *page;
675 	struct mm_struct *mm = vma->vm_mm;
676 
677 	pud = pud_offset(p4dp, address);
678 	if (pud_none(*pud))
679 		return no_page_table(vma, flags);
680 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
681 		page = follow_huge_pud(mm, address, pud, flags);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
687 		page = follow_huge_pd(vma, address,
688 				      __hugepd(pud_val(*pud)), flags,
689 				      PUD_SHIFT);
690 		if (page)
691 			return page;
692 		return no_page_table(vma, flags);
693 	}
694 	if (pud_devmap(*pud)) {
695 		ptl = pud_lock(mm, pud);
696 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
697 		spin_unlock(ptl);
698 		if (page)
699 			return page;
700 	}
701 	if (unlikely(pud_bad(*pud)))
702 		return no_page_table(vma, flags);
703 
704 	return follow_pmd_mask(vma, address, pud, flags, ctx);
705 }
706 
707 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708 				    unsigned long address, pgd_t *pgdp,
709 				    unsigned int flags,
710 				    struct follow_page_context *ctx)
711 {
712 	p4d_t *p4d;
713 	struct page *page;
714 
715 	p4d = p4d_offset(pgdp, address);
716 	if (p4d_none(*p4d))
717 		return no_page_table(vma, flags);
718 	BUILD_BUG_ON(p4d_huge(*p4d));
719 	if (unlikely(p4d_bad(*p4d)))
720 		return no_page_table(vma, flags);
721 
722 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723 		page = follow_huge_pd(vma, address,
724 				      __hugepd(p4d_val(*p4d)), flags,
725 				      P4D_SHIFT);
726 		if (page)
727 			return page;
728 		return no_page_table(vma, flags);
729 	}
730 	return follow_pud_mask(vma, address, p4d, flags, ctx);
731 }
732 
733 /**
734  * follow_page_mask - look up a page descriptor from a user-virtual address
735  * @vma: vm_area_struct mapping @address
736  * @address: virtual address to look up
737  * @flags: flags modifying lookup behaviour
738  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739  *       pointer to output page_mask
740  *
741  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
742  *
743  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
745  *
746  * On output, the @ctx->page_mask is set according to the size of the page.
747  *
748  * Return: the mapped (struct page *), %NULL if no mapping exists, or
749  * an error pointer if there is a mapping to something not represented
750  * by a page descriptor (see also vm_normal_page()).
751  */
752 static struct page *follow_page_mask(struct vm_area_struct *vma,
753 			      unsigned long address, unsigned int flags,
754 			      struct follow_page_context *ctx)
755 {
756 	pgd_t *pgd;
757 	struct page *page;
758 	struct mm_struct *mm = vma->vm_mm;
759 
760 	ctx->page_mask = 0;
761 
762 	/* make this handle hugepd */
763 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764 	if (!IS_ERR(page)) {
765 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
766 		return page;
767 	}
768 
769 	pgd = pgd_offset(mm, address);
770 
771 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772 		return no_page_table(vma, flags);
773 
774 	if (pgd_huge(*pgd)) {
775 		page = follow_huge_pgd(mm, address, pgd, flags);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781 		page = follow_huge_pd(vma, address,
782 				      __hugepd(pgd_val(*pgd)), flags,
783 				      PGDIR_SHIFT);
784 		if (page)
785 			return page;
786 		return no_page_table(vma, flags);
787 	}
788 
789 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
790 }
791 
792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793 			 unsigned int foll_flags)
794 {
795 	struct follow_page_context ctx = { NULL };
796 	struct page *page;
797 
798 	page = follow_page_mask(vma, address, foll_flags, &ctx);
799 	if (ctx.pgmap)
800 		put_dev_pagemap(ctx.pgmap);
801 	return page;
802 }
803 
804 static int get_gate_page(struct mm_struct *mm, unsigned long address,
805 		unsigned int gup_flags, struct vm_area_struct **vma,
806 		struct page **page)
807 {
808 	pgd_t *pgd;
809 	p4d_t *p4d;
810 	pud_t *pud;
811 	pmd_t *pmd;
812 	pte_t *pte;
813 	int ret = -EFAULT;
814 
815 	/* user gate pages are read-only */
816 	if (gup_flags & FOLL_WRITE)
817 		return -EFAULT;
818 	if (address > TASK_SIZE)
819 		pgd = pgd_offset_k(address);
820 	else
821 		pgd = pgd_offset_gate(mm, address);
822 	if (pgd_none(*pgd))
823 		return -EFAULT;
824 	p4d = p4d_offset(pgd, address);
825 	if (p4d_none(*p4d))
826 		return -EFAULT;
827 	pud = pud_offset(p4d, address);
828 	if (pud_none(*pud))
829 		return -EFAULT;
830 	pmd = pmd_offset(pud, address);
831 	if (!pmd_present(*pmd))
832 		return -EFAULT;
833 	VM_BUG_ON(pmd_trans_huge(*pmd));
834 	pte = pte_offset_map(pmd, address);
835 	if (pte_none(*pte))
836 		goto unmap;
837 	*vma = get_gate_vma(mm);
838 	if (!page)
839 		goto out;
840 	*page = vm_normal_page(*vma, address, *pte);
841 	if (!*page) {
842 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843 			goto unmap;
844 		*page = pte_page(*pte);
845 	}
846 	if (unlikely(!try_get_page(*page))) {
847 		ret = -ENOMEM;
848 		goto unmap;
849 	}
850 out:
851 	ret = 0;
852 unmap:
853 	pte_unmap(pte);
854 	return ret;
855 }
856 
857 /*
858  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
859  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
860  * is, *@locked will be set to 0 and -EBUSY returned.
861  */
862 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
863 		unsigned long address, unsigned int *flags, int *locked)
864 {
865 	unsigned int fault_flags = 0;
866 	vm_fault_t ret;
867 
868 	/* mlock all present pages, but do not fault in new pages */
869 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870 		return -ENOENT;
871 	if (*flags & FOLL_WRITE)
872 		fault_flags |= FAULT_FLAG_WRITE;
873 	if (*flags & FOLL_REMOTE)
874 		fault_flags |= FAULT_FLAG_REMOTE;
875 	if (locked)
876 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
877 	if (*flags & FOLL_NOWAIT)
878 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
879 	if (*flags & FOLL_TRIED) {
880 		/*
881 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882 		 * can co-exist
883 		 */
884 		fault_flags |= FAULT_FLAG_TRIED;
885 	}
886 
887 	ret = handle_mm_fault(vma, address, fault_flags);
888 	if (ret & VM_FAULT_ERROR) {
889 		int err = vm_fault_to_errno(ret, *flags);
890 
891 		if (err)
892 			return err;
893 		BUG();
894 	}
895 
896 	if (tsk) {
897 		if (ret & VM_FAULT_MAJOR)
898 			tsk->maj_flt++;
899 		else
900 			tsk->min_flt++;
901 	}
902 
903 	if (ret & VM_FAULT_RETRY) {
904 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
905 			*locked = 0;
906 		return -EBUSY;
907 	}
908 
909 	/*
910 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
911 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
912 	 * can thus safely do subsequent page lookups as if they were reads.
913 	 * But only do so when looping for pte_write is futile: in some cases
914 	 * userspace may also be wanting to write to the gotten user page,
915 	 * which a read fault here might prevent (a readonly page might get
916 	 * reCOWed by userspace write).
917 	 */
918 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
919 		*flags |= FOLL_COW;
920 	return 0;
921 }
922 
923 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
924 {
925 	vm_flags_t vm_flags = vma->vm_flags;
926 	int write = (gup_flags & FOLL_WRITE);
927 	int foreign = (gup_flags & FOLL_REMOTE);
928 
929 	if (vm_flags & (VM_IO | VM_PFNMAP))
930 		return -EFAULT;
931 
932 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
933 		return -EFAULT;
934 
935 	if (write) {
936 		if (!(vm_flags & VM_WRITE)) {
937 			if (!(gup_flags & FOLL_FORCE))
938 				return -EFAULT;
939 			/*
940 			 * We used to let the write,force case do COW in a
941 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
942 			 * set a breakpoint in a read-only mapping of an
943 			 * executable, without corrupting the file (yet only
944 			 * when that file had been opened for writing!).
945 			 * Anon pages in shared mappings are surprising: now
946 			 * just reject it.
947 			 */
948 			if (!is_cow_mapping(vm_flags))
949 				return -EFAULT;
950 		}
951 	} else if (!(vm_flags & VM_READ)) {
952 		if (!(gup_flags & FOLL_FORCE))
953 			return -EFAULT;
954 		/*
955 		 * Is there actually any vma we can reach here which does not
956 		 * have VM_MAYREAD set?
957 		 */
958 		if (!(vm_flags & VM_MAYREAD))
959 			return -EFAULT;
960 	}
961 	/*
962 	 * gups are always data accesses, not instruction
963 	 * fetches, so execute=false here
964 	 */
965 	if (!arch_vma_access_permitted(vma, write, false, foreign))
966 		return -EFAULT;
967 	return 0;
968 }
969 
970 /**
971  * __get_user_pages() - pin user pages in memory
972  * @tsk:	task_struct of target task
973  * @mm:		mm_struct of target mm
974  * @start:	starting user address
975  * @nr_pages:	number of pages from start to pin
976  * @gup_flags:	flags modifying pin behaviour
977  * @pages:	array that receives pointers to the pages pinned.
978  *		Should be at least nr_pages long. Or NULL, if caller
979  *		only intends to ensure the pages are faulted in.
980  * @vmas:	array of pointers to vmas corresponding to each page.
981  *		Or NULL if the caller does not require them.
982  * @locked:     whether we're still with the mmap_lock held
983  *
984  * Returns either number of pages pinned (which may be less than the
985  * number requested), or an error. Details about the return value:
986  *
987  * -- If nr_pages is 0, returns 0.
988  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
989  * -- If nr_pages is >0, and some pages were pinned, returns the number of
990  *    pages pinned. Again, this may be less than nr_pages.
991  * -- 0 return value is possible when the fault would need to be retried.
992  *
993  * The caller is responsible for releasing returned @pages, via put_page().
994  *
995  * @vmas are valid only as long as mmap_lock is held.
996  *
997  * Must be called with mmap_lock held.  It may be released.  See below.
998  *
999  * __get_user_pages walks a process's page tables and takes a reference to
1000  * each struct page that each user address corresponds to at a given
1001  * instant. That is, it takes the page that would be accessed if a user
1002  * thread accesses the given user virtual address at that instant.
1003  *
1004  * This does not guarantee that the page exists in the user mappings when
1005  * __get_user_pages returns, and there may even be a completely different
1006  * page there in some cases (eg. if mmapped pagecache has been invalidated
1007  * and subsequently re faulted). However it does guarantee that the page
1008  * won't be freed completely. And mostly callers simply care that the page
1009  * contains data that was valid *at some point in time*. Typically, an IO
1010  * or similar operation cannot guarantee anything stronger anyway because
1011  * locks can't be held over the syscall boundary.
1012  *
1013  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015  * appropriate) must be called after the page is finished with, and
1016  * before put_page is called.
1017  *
1018  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1019  * released by an up_read().  That can happen if @gup_flags does not
1020  * have FOLL_NOWAIT.
1021  *
1022  * A caller using such a combination of @locked and @gup_flags
1023  * must therefore hold the mmap_lock for reading only, and recognize
1024  * when it's been released.  Otherwise, it must be held for either
1025  * reading or writing and will not be released.
1026  *
1027  * In most cases, get_user_pages or get_user_pages_fast should be used
1028  * instead of __get_user_pages. __get_user_pages should be used only if
1029  * you need some special @gup_flags.
1030  */
1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 		unsigned long start, unsigned long nr_pages,
1033 		unsigned int gup_flags, struct page **pages,
1034 		struct vm_area_struct **vmas, int *locked)
1035 {
1036 	long ret = 0, i = 0;
1037 	struct vm_area_struct *vma = NULL;
1038 	struct follow_page_context ctx = { NULL };
1039 
1040 	if (!nr_pages)
1041 		return 0;
1042 
1043 	start = untagged_addr(start);
1044 
1045 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1046 
1047 	/*
1048 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 	 * fault information is unrelated to the reference behaviour of a task
1050 	 * using the address space
1051 	 */
1052 	if (!(gup_flags & FOLL_FORCE))
1053 		gup_flags |= FOLL_NUMA;
1054 
1055 	do {
1056 		struct page *page;
1057 		unsigned int foll_flags = gup_flags;
1058 		unsigned int page_increm;
1059 
1060 		/* first iteration or cross vma bound */
1061 		if (!vma || start >= vma->vm_end) {
1062 			vma = find_extend_vma(mm, start);
1063 			if (!vma && in_gate_area(mm, start)) {
1064 				ret = get_gate_page(mm, start & PAGE_MASK,
1065 						gup_flags, &vma,
1066 						pages ? &pages[i] : NULL);
1067 				if (ret)
1068 					goto out;
1069 				ctx.page_mask = 0;
1070 				goto next_page;
1071 			}
1072 
1073 			if (!vma || check_vma_flags(vma, gup_flags)) {
1074 				ret = -EFAULT;
1075 				goto out;
1076 			}
1077 			if (is_vm_hugetlb_page(vma)) {
1078 				if (should_force_cow_break(vma, foll_flags))
1079 					foll_flags |= FOLL_WRITE;
1080 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 						&start, &nr_pages, i,
1082 						foll_flags, locked);
1083 				if (locked && *locked == 0) {
1084 					/*
1085 					 * We've got a VM_FAULT_RETRY
1086 					 * and we've lost mmap_lock.
1087 					 * We must stop here.
1088 					 */
1089 					BUG_ON(gup_flags & FOLL_NOWAIT);
1090 					BUG_ON(ret != 0);
1091 					goto out;
1092 				}
1093 				continue;
1094 			}
1095 		}
1096 
1097 		if (should_force_cow_break(vma, foll_flags))
1098 			foll_flags |= FOLL_WRITE;
1099 
1100 retry:
1101 		/*
1102 		 * If we have a pending SIGKILL, don't keep faulting pages and
1103 		 * potentially allocating memory.
1104 		 */
1105 		if (fatal_signal_pending(current)) {
1106 			ret = -EINTR;
1107 			goto out;
1108 		}
1109 		cond_resched();
1110 
1111 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 		if (!page) {
1113 			ret = faultin_page(tsk, vma, start, &foll_flags,
1114 					   locked);
1115 			switch (ret) {
1116 			case 0:
1117 				goto retry;
1118 			case -EBUSY:
1119 				ret = 0;
1120 				fallthrough;
1121 			case -EFAULT:
1122 			case -ENOMEM:
1123 			case -EHWPOISON:
1124 				goto out;
1125 			case -ENOENT:
1126 				goto next_page;
1127 			}
1128 			BUG();
1129 		} else if (PTR_ERR(page) == -EEXIST) {
1130 			/*
1131 			 * Proper page table entry exists, but no corresponding
1132 			 * struct page.
1133 			 */
1134 			goto next_page;
1135 		} else if (IS_ERR(page)) {
1136 			ret = PTR_ERR(page);
1137 			goto out;
1138 		}
1139 		if (pages) {
1140 			pages[i] = page;
1141 			flush_anon_page(vma, page, start);
1142 			flush_dcache_page(page);
1143 			ctx.page_mask = 0;
1144 		}
1145 next_page:
1146 		if (vmas) {
1147 			vmas[i] = vma;
1148 			ctx.page_mask = 0;
1149 		}
1150 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 		if (page_increm > nr_pages)
1152 			page_increm = nr_pages;
1153 		i += page_increm;
1154 		start += page_increm * PAGE_SIZE;
1155 		nr_pages -= page_increm;
1156 	} while (nr_pages);
1157 out:
1158 	if (ctx.pgmap)
1159 		put_dev_pagemap(ctx.pgmap);
1160 	return i ? i : ret;
1161 }
1162 
1163 static bool vma_permits_fault(struct vm_area_struct *vma,
1164 			      unsigned int fault_flags)
1165 {
1166 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1167 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1169 
1170 	if (!(vm_flags & vma->vm_flags))
1171 		return false;
1172 
1173 	/*
1174 	 * The architecture might have a hardware protection
1175 	 * mechanism other than read/write that can deny access.
1176 	 *
1177 	 * gup always represents data access, not instruction
1178 	 * fetches, so execute=false here:
1179 	 */
1180 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 		return false;
1182 
1183 	return true;
1184 }
1185 
1186 /**
1187  * fixup_user_fault() - manually resolve a user page fault
1188  * @tsk:	the task_struct to use for page fault accounting, or
1189  *		NULL if faults are not to be recorded.
1190  * @mm:		mm_struct of target mm
1191  * @address:	user address
1192  * @fault_flags:flags to pass down to handle_mm_fault()
1193  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1194  *		does not allow retry. If NULL, the caller must guarantee
1195  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1196  *
1197  * This is meant to be called in the specific scenario where for locking reasons
1198  * we try to access user memory in atomic context (within a pagefault_disable()
1199  * section), this returns -EFAULT, and we want to resolve the user fault before
1200  * trying again.
1201  *
1202  * Typically this is meant to be used by the futex code.
1203  *
1204  * The main difference with get_user_pages() is that this function will
1205  * unconditionally call handle_mm_fault() which will in turn perform all the
1206  * necessary SW fixup of the dirty and young bits in the PTE, while
1207  * get_user_pages() only guarantees to update these in the struct page.
1208  *
1209  * This is important for some architectures where those bits also gate the
1210  * access permission to the page because they are maintained in software.  On
1211  * such architectures, gup() will not be enough to make a subsequent access
1212  * succeed.
1213  *
1214  * This function will not return with an unlocked mmap_lock. So it has not the
1215  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1216  */
1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1218 		     unsigned long address, unsigned int fault_flags,
1219 		     bool *unlocked)
1220 {
1221 	struct vm_area_struct *vma;
1222 	vm_fault_t ret, major = 0;
1223 
1224 	address = untagged_addr(address);
1225 
1226 	if (unlocked)
1227 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1228 
1229 retry:
1230 	vma = find_extend_vma(mm, address);
1231 	if (!vma || address < vma->vm_start)
1232 		return -EFAULT;
1233 
1234 	if (!vma_permits_fault(vma, fault_flags))
1235 		return -EFAULT;
1236 
1237 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1238 	    fatal_signal_pending(current))
1239 		return -EINTR;
1240 
1241 	ret = handle_mm_fault(vma, address, fault_flags);
1242 	major |= ret & VM_FAULT_MAJOR;
1243 	if (ret & VM_FAULT_ERROR) {
1244 		int err = vm_fault_to_errno(ret, 0);
1245 
1246 		if (err)
1247 			return err;
1248 		BUG();
1249 	}
1250 
1251 	if (ret & VM_FAULT_RETRY) {
1252 		mmap_read_lock(mm);
1253 		*unlocked = true;
1254 		fault_flags |= FAULT_FLAG_TRIED;
1255 		goto retry;
1256 	}
1257 
1258 	if (tsk) {
1259 		if (major)
1260 			tsk->maj_flt++;
1261 		else
1262 			tsk->min_flt++;
1263 	}
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(fixup_user_fault);
1267 
1268 /*
1269  * Please note that this function, unlike __get_user_pages will not
1270  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1271  */
1272 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1273 						struct mm_struct *mm,
1274 						unsigned long start,
1275 						unsigned long nr_pages,
1276 						struct page **pages,
1277 						struct vm_area_struct **vmas,
1278 						int *locked,
1279 						unsigned int flags)
1280 {
1281 	long ret, pages_done;
1282 	bool lock_dropped;
1283 
1284 	if (locked) {
1285 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1286 		BUG_ON(vmas);
1287 		/* check caller initialized locked */
1288 		BUG_ON(*locked != 1);
1289 	}
1290 
1291 	/*
1292 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1293 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1294 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1295 	 * for FOLL_GET, not for the newer FOLL_PIN.
1296 	 *
1297 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1298 	 * that here, as any failures will be obvious enough.
1299 	 */
1300 	if (pages && !(flags & FOLL_PIN))
1301 		flags |= FOLL_GET;
1302 
1303 	pages_done = 0;
1304 	lock_dropped = false;
1305 	for (;;) {
1306 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1307 				       vmas, locked);
1308 		if (!locked)
1309 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1310 			return ret;
1311 
1312 		/* VM_FAULT_RETRY cannot return errors */
1313 		if (!*locked) {
1314 			BUG_ON(ret < 0);
1315 			BUG_ON(ret >= nr_pages);
1316 		}
1317 
1318 		if (ret > 0) {
1319 			nr_pages -= ret;
1320 			pages_done += ret;
1321 			if (!nr_pages)
1322 				break;
1323 		}
1324 		if (*locked) {
1325 			/*
1326 			 * VM_FAULT_RETRY didn't trigger or it was a
1327 			 * FOLL_NOWAIT.
1328 			 */
1329 			if (!pages_done)
1330 				pages_done = ret;
1331 			break;
1332 		}
1333 		/*
1334 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1335 		 * For the prefault case (!pages) we only update counts.
1336 		 */
1337 		if (likely(pages))
1338 			pages += ret;
1339 		start += ret << PAGE_SHIFT;
1340 		lock_dropped = true;
1341 
1342 retry:
1343 		/*
1344 		 * Repeat on the address that fired VM_FAULT_RETRY
1345 		 * with both FAULT_FLAG_ALLOW_RETRY and
1346 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1347 		 * by fatal signals, so we need to check it before we
1348 		 * start trying again otherwise it can loop forever.
1349 		 */
1350 
1351 		if (fatal_signal_pending(current)) {
1352 			if (!pages_done)
1353 				pages_done = -EINTR;
1354 			break;
1355 		}
1356 
1357 		ret = mmap_read_lock_killable(mm);
1358 		if (ret) {
1359 			BUG_ON(ret > 0);
1360 			if (!pages_done)
1361 				pages_done = ret;
1362 			break;
1363 		}
1364 
1365 		*locked = 1;
1366 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1367 				       pages, NULL, locked);
1368 		if (!*locked) {
1369 			/* Continue to retry until we succeeded */
1370 			BUG_ON(ret != 0);
1371 			goto retry;
1372 		}
1373 		if (ret != 1) {
1374 			BUG_ON(ret > 1);
1375 			if (!pages_done)
1376 				pages_done = ret;
1377 			break;
1378 		}
1379 		nr_pages--;
1380 		pages_done++;
1381 		if (!nr_pages)
1382 			break;
1383 		if (likely(pages))
1384 			pages++;
1385 		start += PAGE_SIZE;
1386 	}
1387 	if (lock_dropped && *locked) {
1388 		/*
1389 		 * We must let the caller know we temporarily dropped the lock
1390 		 * and so the critical section protected by it was lost.
1391 		 */
1392 		mmap_read_unlock(mm);
1393 		*locked = 0;
1394 	}
1395 	return pages_done;
1396 }
1397 
1398 /**
1399  * populate_vma_page_range() -  populate a range of pages in the vma.
1400  * @vma:   target vma
1401  * @start: start address
1402  * @end:   end address
1403  * @locked: whether the mmap_lock is still held
1404  *
1405  * This takes care of mlocking the pages too if VM_LOCKED is set.
1406  *
1407  * return 0 on success, negative error code on error.
1408  *
1409  * vma->vm_mm->mmap_lock must be held.
1410  *
1411  * If @locked is NULL, it may be held for read or write and will
1412  * be unperturbed.
1413  *
1414  * If @locked is non-NULL, it must held for read only and may be
1415  * released.  If it's released, *@locked will be set to 0.
1416  */
1417 long populate_vma_page_range(struct vm_area_struct *vma,
1418 		unsigned long start, unsigned long end, int *locked)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1422 	int gup_flags;
1423 
1424 	VM_BUG_ON(start & ~PAGE_MASK);
1425 	VM_BUG_ON(end   & ~PAGE_MASK);
1426 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1427 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1428 	mmap_assert_locked(mm);
1429 
1430 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1431 	if (vma->vm_flags & VM_LOCKONFAULT)
1432 		gup_flags &= ~FOLL_POPULATE;
1433 	/*
1434 	 * We want to touch writable mappings with a write fault in order
1435 	 * to break COW, except for shared mappings because these don't COW
1436 	 * and we would not want to dirty them for nothing.
1437 	 */
1438 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1439 		gup_flags |= FOLL_WRITE;
1440 
1441 	/*
1442 	 * We want mlock to succeed for regions that have any permissions
1443 	 * other than PROT_NONE.
1444 	 */
1445 	if (vma_is_accessible(vma))
1446 		gup_flags |= FOLL_FORCE;
1447 
1448 	/*
1449 	 * We made sure addr is within a VMA, so the following will
1450 	 * not result in a stack expansion that recurses back here.
1451 	 */
1452 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1453 				NULL, NULL, locked);
1454 }
1455 
1456 /*
1457  * __mm_populate - populate and/or mlock pages within a range of address space.
1458  *
1459  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1460  * flags. VMAs must be already marked with the desired vm_flags, and
1461  * mmap_lock must not be held.
1462  */
1463 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1464 {
1465 	struct mm_struct *mm = current->mm;
1466 	unsigned long end, nstart, nend;
1467 	struct vm_area_struct *vma = NULL;
1468 	int locked = 0;
1469 	long ret = 0;
1470 
1471 	end = start + len;
1472 
1473 	for (nstart = start; nstart < end; nstart = nend) {
1474 		/*
1475 		 * We want to fault in pages for [nstart; end) address range.
1476 		 * Find first corresponding VMA.
1477 		 */
1478 		if (!locked) {
1479 			locked = 1;
1480 			mmap_read_lock(mm);
1481 			vma = find_vma(mm, nstart);
1482 		} else if (nstart >= vma->vm_end)
1483 			vma = vma->vm_next;
1484 		if (!vma || vma->vm_start >= end)
1485 			break;
1486 		/*
1487 		 * Set [nstart; nend) to intersection of desired address
1488 		 * range with the first VMA. Also, skip undesirable VMA types.
1489 		 */
1490 		nend = min(end, vma->vm_end);
1491 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1492 			continue;
1493 		if (nstart < vma->vm_start)
1494 			nstart = vma->vm_start;
1495 		/*
1496 		 * Now fault in a range of pages. populate_vma_page_range()
1497 		 * double checks the vma flags, so that it won't mlock pages
1498 		 * if the vma was already munlocked.
1499 		 */
1500 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1501 		if (ret < 0) {
1502 			if (ignore_errors) {
1503 				ret = 0;
1504 				continue;	/* continue at next VMA */
1505 			}
1506 			break;
1507 		}
1508 		nend = nstart + ret * PAGE_SIZE;
1509 		ret = 0;
1510 	}
1511 	if (locked)
1512 		mmap_read_unlock(mm);
1513 	return ret;	/* 0 or negative error code */
1514 }
1515 
1516 /**
1517  * get_dump_page() - pin user page in memory while writing it to core dump
1518  * @addr: user address
1519  *
1520  * Returns struct page pointer of user page pinned for dump,
1521  * to be freed afterwards by put_page().
1522  *
1523  * Returns NULL on any kind of failure - a hole must then be inserted into
1524  * the corefile, to preserve alignment with its headers; and also returns
1525  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1526  * allowing a hole to be left in the corefile to save diskspace.
1527  *
1528  * Called without mmap_lock, but after all other threads have been killed.
1529  */
1530 #ifdef CONFIG_ELF_CORE
1531 struct page *get_dump_page(unsigned long addr)
1532 {
1533 	struct vm_area_struct *vma;
1534 	struct page *page;
1535 
1536 	if (__get_user_pages(current, current->mm, addr, 1,
1537 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1538 			     NULL) < 1)
1539 		return NULL;
1540 	flush_cache_page(vma, addr, page_to_pfn(page));
1541 	return page;
1542 }
1543 #endif /* CONFIG_ELF_CORE */
1544 #else /* CONFIG_MMU */
1545 static long __get_user_pages_locked(struct task_struct *tsk,
1546 		struct mm_struct *mm, unsigned long start,
1547 		unsigned long nr_pages, struct page **pages,
1548 		struct vm_area_struct **vmas, int *locked,
1549 		unsigned int foll_flags)
1550 {
1551 	struct vm_area_struct *vma;
1552 	unsigned long vm_flags;
1553 	int i;
1554 
1555 	/* calculate required read or write permissions.
1556 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1557 	 */
1558 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1559 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1560 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1561 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1562 
1563 	for (i = 0; i < nr_pages; i++) {
1564 		vma = find_vma(mm, start);
1565 		if (!vma)
1566 			goto finish_or_fault;
1567 
1568 		/* protect what we can, including chardevs */
1569 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1570 		    !(vm_flags & vma->vm_flags))
1571 			goto finish_or_fault;
1572 
1573 		if (pages) {
1574 			pages[i] = virt_to_page(start);
1575 			if (pages[i])
1576 				get_page(pages[i]);
1577 		}
1578 		if (vmas)
1579 			vmas[i] = vma;
1580 		start = (start + PAGE_SIZE) & PAGE_MASK;
1581 	}
1582 
1583 	return i;
1584 
1585 finish_or_fault:
1586 	return i ? : -EFAULT;
1587 }
1588 #endif /* !CONFIG_MMU */
1589 
1590 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1591 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1592 {
1593 	long i;
1594 	struct vm_area_struct *vma_prev = NULL;
1595 
1596 	for (i = 0; i < nr_pages; i++) {
1597 		struct vm_area_struct *vma = vmas[i];
1598 
1599 		if (vma == vma_prev)
1600 			continue;
1601 
1602 		vma_prev = vma;
1603 
1604 		if (vma_is_fsdax(vma))
1605 			return true;
1606 	}
1607 	return false;
1608 }
1609 
1610 #ifdef CONFIG_CMA
1611 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1612 {
1613 	/*
1614 	 * We want to make sure we allocate the new page from the same node
1615 	 * as the source page.
1616 	 */
1617 	int nid = page_to_nid(page);
1618 	/*
1619 	 * Trying to allocate a page for migration. Ignore allocation
1620 	 * failure warnings. We don't force __GFP_THISNODE here because
1621 	 * this node here is the node where we have CMA reservation and
1622 	 * in some case these nodes will have really less non movable
1623 	 * allocation memory.
1624 	 */
1625 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1626 
1627 	if (PageHighMem(page))
1628 		gfp_mask |= __GFP_HIGHMEM;
1629 
1630 #ifdef CONFIG_HUGETLB_PAGE
1631 	if (PageHuge(page)) {
1632 		struct hstate *h = page_hstate(page);
1633 		/*
1634 		 * We don't want to dequeue from the pool because pool pages will
1635 		 * mostly be from the CMA region.
1636 		 */
1637 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1638 	}
1639 #endif
1640 	if (PageTransHuge(page)) {
1641 		struct page *thp;
1642 		/*
1643 		 * ignore allocation failure warnings
1644 		 */
1645 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1646 
1647 		/*
1648 		 * Remove the movable mask so that we don't allocate from
1649 		 * CMA area again.
1650 		 */
1651 		thp_gfpmask &= ~__GFP_MOVABLE;
1652 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1653 		if (!thp)
1654 			return NULL;
1655 		prep_transhuge_page(thp);
1656 		return thp;
1657 	}
1658 
1659 	return __alloc_pages_node(nid, gfp_mask, 0);
1660 }
1661 
1662 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1663 					struct mm_struct *mm,
1664 					unsigned long start,
1665 					unsigned long nr_pages,
1666 					struct page **pages,
1667 					struct vm_area_struct **vmas,
1668 					unsigned int gup_flags)
1669 {
1670 	unsigned long i;
1671 	unsigned long step;
1672 	bool drain_allow = true;
1673 	bool migrate_allow = true;
1674 	LIST_HEAD(cma_page_list);
1675 	long ret = nr_pages;
1676 
1677 check_again:
1678 	for (i = 0; i < nr_pages;) {
1679 
1680 		struct page *head = compound_head(pages[i]);
1681 
1682 		/*
1683 		 * gup may start from a tail page. Advance step by the left
1684 		 * part.
1685 		 */
1686 		step = compound_nr(head) - (pages[i] - head);
1687 		/*
1688 		 * If we get a page from the CMA zone, since we are going to
1689 		 * be pinning these entries, we might as well move them out
1690 		 * of the CMA zone if possible.
1691 		 */
1692 		if (is_migrate_cma_page(head)) {
1693 			if (PageHuge(head))
1694 				isolate_huge_page(head, &cma_page_list);
1695 			else {
1696 				if (!PageLRU(head) && drain_allow) {
1697 					lru_add_drain_all();
1698 					drain_allow = false;
1699 				}
1700 
1701 				if (!isolate_lru_page(head)) {
1702 					list_add_tail(&head->lru, &cma_page_list);
1703 					mod_node_page_state(page_pgdat(head),
1704 							    NR_ISOLATED_ANON +
1705 							    page_is_file_lru(head),
1706 							    hpage_nr_pages(head));
1707 				}
1708 			}
1709 		}
1710 
1711 		i += step;
1712 	}
1713 
1714 	if (!list_empty(&cma_page_list)) {
1715 		/*
1716 		 * drop the above get_user_pages reference.
1717 		 */
1718 		for (i = 0; i < nr_pages; i++)
1719 			put_page(pages[i]);
1720 
1721 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1722 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1723 			/*
1724 			 * some of the pages failed migration. Do get_user_pages
1725 			 * without migration.
1726 			 */
1727 			migrate_allow = false;
1728 
1729 			if (!list_empty(&cma_page_list))
1730 				putback_movable_pages(&cma_page_list);
1731 		}
1732 		/*
1733 		 * We did migrate all the pages, Try to get the page references
1734 		 * again migrating any new CMA pages which we failed to isolate
1735 		 * earlier.
1736 		 */
1737 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1738 						   pages, vmas, NULL,
1739 						   gup_flags);
1740 
1741 		if ((ret > 0) && migrate_allow) {
1742 			nr_pages = ret;
1743 			drain_allow = true;
1744 			goto check_again;
1745 		}
1746 	}
1747 
1748 	return ret;
1749 }
1750 #else
1751 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1752 					struct mm_struct *mm,
1753 					unsigned long start,
1754 					unsigned long nr_pages,
1755 					struct page **pages,
1756 					struct vm_area_struct **vmas,
1757 					unsigned int gup_flags)
1758 {
1759 	return nr_pages;
1760 }
1761 #endif /* CONFIG_CMA */
1762 
1763 /*
1764  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1765  * allows us to process the FOLL_LONGTERM flag.
1766  */
1767 static long __gup_longterm_locked(struct task_struct *tsk,
1768 				  struct mm_struct *mm,
1769 				  unsigned long start,
1770 				  unsigned long nr_pages,
1771 				  struct page **pages,
1772 				  struct vm_area_struct **vmas,
1773 				  unsigned int gup_flags)
1774 {
1775 	struct vm_area_struct **vmas_tmp = vmas;
1776 	unsigned long flags = 0;
1777 	long rc, i;
1778 
1779 	if (gup_flags & FOLL_LONGTERM) {
1780 		if (!pages)
1781 			return -EINVAL;
1782 
1783 		if (!vmas_tmp) {
1784 			vmas_tmp = kcalloc(nr_pages,
1785 					   sizeof(struct vm_area_struct *),
1786 					   GFP_KERNEL);
1787 			if (!vmas_tmp)
1788 				return -ENOMEM;
1789 		}
1790 		flags = memalloc_nocma_save();
1791 	}
1792 
1793 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1794 				     vmas_tmp, NULL, gup_flags);
1795 
1796 	if (gup_flags & FOLL_LONGTERM) {
1797 		memalloc_nocma_restore(flags);
1798 		if (rc < 0)
1799 			goto out;
1800 
1801 		if (check_dax_vmas(vmas_tmp, rc)) {
1802 			for (i = 0; i < rc; i++)
1803 				put_page(pages[i]);
1804 			rc = -EOPNOTSUPP;
1805 			goto out;
1806 		}
1807 
1808 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1809 						 vmas_tmp, gup_flags);
1810 	}
1811 
1812 out:
1813 	if (vmas_tmp != vmas)
1814 		kfree(vmas_tmp);
1815 	return rc;
1816 }
1817 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1818 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1819 						  struct mm_struct *mm,
1820 						  unsigned long start,
1821 						  unsigned long nr_pages,
1822 						  struct page **pages,
1823 						  struct vm_area_struct **vmas,
1824 						  unsigned int flags)
1825 {
1826 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1827 				       NULL, flags);
1828 }
1829 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1830 
1831 #ifdef CONFIG_MMU
1832 static long __get_user_pages_remote(struct task_struct *tsk,
1833 				    struct mm_struct *mm,
1834 				    unsigned long start, unsigned long nr_pages,
1835 				    unsigned int gup_flags, struct page **pages,
1836 				    struct vm_area_struct **vmas, int *locked)
1837 {
1838 	/*
1839 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1840 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1841 	 * vmas. However, this only comes up if locked is set, and there are
1842 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1843 	 * allow what we can.
1844 	 */
1845 	if (gup_flags & FOLL_LONGTERM) {
1846 		if (WARN_ON_ONCE(locked))
1847 			return -EINVAL;
1848 		/*
1849 		 * This will check the vmas (even if our vmas arg is NULL)
1850 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1851 		 */
1852 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1853 					     vmas, gup_flags | FOLL_TOUCH |
1854 					     FOLL_REMOTE);
1855 	}
1856 
1857 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1858 				       locked,
1859 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1860 }
1861 
1862 /**
1863  * get_user_pages_remote() - pin user pages in memory
1864  * @tsk:	the task_struct to use for page fault accounting, or
1865  *		NULL if faults are not to be recorded.
1866  * @mm:		mm_struct of target mm
1867  * @start:	starting user address
1868  * @nr_pages:	number of pages from start to pin
1869  * @gup_flags:	flags modifying lookup behaviour
1870  * @pages:	array that receives pointers to the pages pinned.
1871  *		Should be at least nr_pages long. Or NULL, if caller
1872  *		only intends to ensure the pages are faulted in.
1873  * @vmas:	array of pointers to vmas corresponding to each page.
1874  *		Or NULL if the caller does not require them.
1875  * @locked:	pointer to lock flag indicating whether lock is held and
1876  *		subsequently whether VM_FAULT_RETRY functionality can be
1877  *		utilised. Lock must initially be held.
1878  *
1879  * Returns either number of pages pinned (which may be less than the
1880  * number requested), or an error. Details about the return value:
1881  *
1882  * -- If nr_pages is 0, returns 0.
1883  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1884  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1885  *    pages pinned. Again, this may be less than nr_pages.
1886  *
1887  * The caller is responsible for releasing returned @pages, via put_page().
1888  *
1889  * @vmas are valid only as long as mmap_lock is held.
1890  *
1891  * Must be called with mmap_lock held for read or write.
1892  *
1893  * get_user_pages_remote walks a process's page tables and takes a reference
1894  * to each struct page that each user address corresponds to at a given
1895  * instant. That is, it takes the page that would be accessed if a user
1896  * thread accesses the given user virtual address at that instant.
1897  *
1898  * This does not guarantee that the page exists in the user mappings when
1899  * get_user_pages_remote returns, and there may even be a completely different
1900  * page there in some cases (eg. if mmapped pagecache has been invalidated
1901  * and subsequently re faulted). However it does guarantee that the page
1902  * won't be freed completely. And mostly callers simply care that the page
1903  * contains data that was valid *at some point in time*. Typically, an IO
1904  * or similar operation cannot guarantee anything stronger anyway because
1905  * locks can't be held over the syscall boundary.
1906  *
1907  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1908  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1909  * be called after the page is finished with, and before put_page is called.
1910  *
1911  * get_user_pages_remote is typically used for fewer-copy IO operations,
1912  * to get a handle on the memory by some means other than accesses
1913  * via the user virtual addresses. The pages may be submitted for
1914  * DMA to devices or accessed via their kernel linear mapping (via the
1915  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1916  *
1917  * See also get_user_pages_fast, for performance critical applications.
1918  *
1919  * get_user_pages_remote should be phased out in favor of
1920  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1921  * should use get_user_pages_remote because it cannot pass
1922  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1923  */
1924 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1925 		unsigned long start, unsigned long nr_pages,
1926 		unsigned int gup_flags, struct page **pages,
1927 		struct vm_area_struct **vmas, int *locked)
1928 {
1929 	/*
1930 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1931 	 * never directly by the caller, so enforce that with an assertion:
1932 	 */
1933 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1934 		return -EINVAL;
1935 
1936 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1937 				       pages, vmas, locked);
1938 }
1939 EXPORT_SYMBOL(get_user_pages_remote);
1940 
1941 #else /* CONFIG_MMU */
1942 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1943 			   unsigned long start, unsigned long nr_pages,
1944 			   unsigned int gup_flags, struct page **pages,
1945 			   struct vm_area_struct **vmas, int *locked)
1946 {
1947 	return 0;
1948 }
1949 
1950 static long __get_user_pages_remote(struct task_struct *tsk,
1951 				    struct mm_struct *mm,
1952 				    unsigned long start, unsigned long nr_pages,
1953 				    unsigned int gup_flags, struct page **pages,
1954 				    struct vm_area_struct **vmas, int *locked)
1955 {
1956 	return 0;
1957 }
1958 #endif /* !CONFIG_MMU */
1959 
1960 /**
1961  * get_user_pages() - pin user pages in memory
1962  * @start:      starting user address
1963  * @nr_pages:   number of pages from start to pin
1964  * @gup_flags:  flags modifying lookup behaviour
1965  * @pages:      array that receives pointers to the pages pinned.
1966  *              Should be at least nr_pages long. Or NULL, if caller
1967  *              only intends to ensure the pages are faulted in.
1968  * @vmas:       array of pointers to vmas corresponding to each page.
1969  *              Or NULL if the caller does not require them.
1970  *
1971  * This is the same as get_user_pages_remote(), just with a
1972  * less-flexible calling convention where we assume that the task
1973  * and mm being operated on are the current task's and don't allow
1974  * passing of a locked parameter.  We also obviously don't pass
1975  * FOLL_REMOTE in here.
1976  */
1977 long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 		unsigned int gup_flags, struct page **pages,
1979 		struct vm_area_struct **vmas)
1980 {
1981 	/*
1982 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1983 	 * never directly by the caller, so enforce that with an assertion:
1984 	 */
1985 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1986 		return -EINVAL;
1987 
1988 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1989 				     pages, vmas, gup_flags | FOLL_TOUCH);
1990 }
1991 EXPORT_SYMBOL(get_user_pages);
1992 
1993 /**
1994  * get_user_pages_locked() is suitable to replace the form:
1995  *
1996  *      mmap_read_lock(mm);
1997  *      do_something()
1998  *      get_user_pages(tsk, mm, ..., pages, NULL);
1999  *      mmap_read_unlock(mm);
2000  *
2001  *  to:
2002  *
2003  *      int locked = 1;
2004  *      mmap_read_lock(mm);
2005  *      do_something()
2006  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
2007  *      if (locked)
2008  *          mmap_read_unlock(mm);
2009  *
2010  * @start:      starting user address
2011  * @nr_pages:   number of pages from start to pin
2012  * @gup_flags:  flags modifying lookup behaviour
2013  * @pages:      array that receives pointers to the pages pinned.
2014  *              Should be at least nr_pages long. Or NULL, if caller
2015  *              only intends to ensure the pages are faulted in.
2016  * @locked:     pointer to lock flag indicating whether lock is held and
2017  *              subsequently whether VM_FAULT_RETRY functionality can be
2018  *              utilised. Lock must initially be held.
2019  *
2020  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2021  * paths better by using either get_user_pages_locked() or
2022  * get_user_pages_unlocked().
2023  *
2024  */
2025 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2026 			   unsigned int gup_flags, struct page **pages,
2027 			   int *locked)
2028 {
2029 	/*
2030 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2031 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2032 	 * vmas.  As there are no users of this flag in this call we simply
2033 	 * disallow this option for now.
2034 	 */
2035 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2036 		return -EINVAL;
2037 	/*
2038 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2039 	 * never directly by the caller, so enforce that:
2040 	 */
2041 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2042 		return -EINVAL;
2043 
2044 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
2045 				       pages, NULL, locked,
2046 				       gup_flags | FOLL_TOUCH);
2047 }
2048 EXPORT_SYMBOL(get_user_pages_locked);
2049 
2050 /*
2051  * get_user_pages_unlocked() is suitable to replace the form:
2052  *
2053  *      mmap_read_lock(mm);
2054  *      get_user_pages(tsk, mm, ..., pages, NULL);
2055  *      mmap_read_unlock(mm);
2056  *
2057  *  with:
2058  *
2059  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2060  *
2061  * It is functionally equivalent to get_user_pages_fast so
2062  * get_user_pages_fast should be used instead if specific gup_flags
2063  * (e.g. FOLL_FORCE) are not required.
2064  */
2065 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2066 			     struct page **pages, unsigned int gup_flags)
2067 {
2068 	struct mm_struct *mm = current->mm;
2069 	int locked = 1;
2070 	long ret;
2071 
2072 	/*
2073 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2074 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2075 	 * vmas.  As there are no users of this flag in this call we simply
2076 	 * disallow this option for now.
2077 	 */
2078 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2079 		return -EINVAL;
2080 
2081 	mmap_read_lock(mm);
2082 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2083 				      &locked, gup_flags | FOLL_TOUCH);
2084 	if (locked)
2085 		mmap_read_unlock(mm);
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL(get_user_pages_unlocked);
2089 
2090 /*
2091  * Fast GUP
2092  *
2093  * get_user_pages_fast attempts to pin user pages by walking the page
2094  * tables directly and avoids taking locks. Thus the walker needs to be
2095  * protected from page table pages being freed from under it, and should
2096  * block any THP splits.
2097  *
2098  * One way to achieve this is to have the walker disable interrupts, and
2099  * rely on IPIs from the TLB flushing code blocking before the page table
2100  * pages are freed. This is unsuitable for architectures that do not need
2101  * to broadcast an IPI when invalidating TLBs.
2102  *
2103  * Another way to achieve this is to batch up page table containing pages
2104  * belonging to more than one mm_user, then rcu_sched a callback to free those
2105  * pages. Disabling interrupts will allow the fast_gup walker to both block
2106  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2107  * (which is a relatively rare event). The code below adopts this strategy.
2108  *
2109  * Before activating this code, please be aware that the following assumptions
2110  * are currently made:
2111  *
2112  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2113  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2114  *
2115  *  *) ptes can be read atomically by the architecture.
2116  *
2117  *  *) access_ok is sufficient to validate userspace address ranges.
2118  *
2119  * The last two assumptions can be relaxed by the addition of helper functions.
2120  *
2121  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2122  */
2123 #ifdef CONFIG_HAVE_FAST_GUP
2124 
2125 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2126 {
2127 	if (flags & FOLL_PIN) {
2128 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2129 				    refs);
2130 
2131 		if (hpage_pincount_available(page))
2132 			hpage_pincount_sub(page, refs);
2133 		else
2134 			refs *= GUP_PIN_COUNTING_BIAS;
2135 	}
2136 
2137 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2138 	/*
2139 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2140 	 * ref needs a put_page().
2141 	 */
2142 	if (refs > 1)
2143 		page_ref_sub(page, refs - 1);
2144 	put_page(page);
2145 }
2146 
2147 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2148 
2149 /*
2150  * WARNING: only to be used in the get_user_pages_fast() implementation.
2151  *
2152  * With get_user_pages_fast(), we walk down the pagetables without taking any
2153  * locks.  For this we would like to load the pointers atomically, but sometimes
2154  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2155  * we do have is the guarantee that a PTE will only either go from not present
2156  * to present, or present to not present or both -- it will not switch to a
2157  * completely different present page without a TLB flush in between; something
2158  * that we are blocking by holding interrupts off.
2159  *
2160  * Setting ptes from not present to present goes:
2161  *
2162  *   ptep->pte_high = h;
2163  *   smp_wmb();
2164  *   ptep->pte_low = l;
2165  *
2166  * And present to not present goes:
2167  *
2168  *   ptep->pte_low = 0;
2169  *   smp_wmb();
2170  *   ptep->pte_high = 0;
2171  *
2172  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2173  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2174  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2175  * picked up a changed pte high. We might have gotten rubbish values from
2176  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2177  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2178  * operates on present ptes we're safe.
2179  */
2180 static inline pte_t gup_get_pte(pte_t *ptep)
2181 {
2182 	pte_t pte;
2183 
2184 	do {
2185 		pte.pte_low = ptep->pte_low;
2186 		smp_rmb();
2187 		pte.pte_high = ptep->pte_high;
2188 		smp_rmb();
2189 	} while (unlikely(pte.pte_low != ptep->pte_low));
2190 
2191 	return pte;
2192 }
2193 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2194 /*
2195  * We require that the PTE can be read atomically.
2196  */
2197 static inline pte_t gup_get_pte(pte_t *ptep)
2198 {
2199 	return ptep_get(ptep);
2200 }
2201 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2202 
2203 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2204 					    unsigned int flags,
2205 					    struct page **pages)
2206 {
2207 	while ((*nr) - nr_start) {
2208 		struct page *page = pages[--(*nr)];
2209 
2210 		ClearPageReferenced(page);
2211 		if (flags & FOLL_PIN)
2212 			unpin_user_page(page);
2213 		else
2214 			put_page(page);
2215 	}
2216 }
2217 
2218 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2219 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220 			 unsigned int flags, struct page **pages, int *nr)
2221 {
2222 	struct dev_pagemap *pgmap = NULL;
2223 	int nr_start = *nr, ret = 0;
2224 	pte_t *ptep, *ptem;
2225 
2226 	ptem = ptep = pte_offset_map(&pmd, addr);
2227 	do {
2228 		pte_t pte = gup_get_pte(ptep);
2229 		struct page *head, *page;
2230 
2231 		/*
2232 		 * Similar to the PMD case below, NUMA hinting must take slow
2233 		 * path using the pte_protnone check.
2234 		 */
2235 		if (pte_protnone(pte))
2236 			goto pte_unmap;
2237 
2238 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2239 			goto pte_unmap;
2240 
2241 		if (pte_devmap(pte)) {
2242 			if (unlikely(flags & FOLL_LONGTERM))
2243 				goto pte_unmap;
2244 
2245 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2246 			if (unlikely(!pgmap)) {
2247 				undo_dev_pagemap(nr, nr_start, flags, pages);
2248 				goto pte_unmap;
2249 			}
2250 		} else if (pte_special(pte))
2251 			goto pte_unmap;
2252 
2253 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2254 		page = pte_page(pte);
2255 
2256 		head = try_grab_compound_head(page, 1, flags);
2257 		if (!head)
2258 			goto pte_unmap;
2259 
2260 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2261 			put_compound_head(head, 1, flags);
2262 			goto pte_unmap;
2263 		}
2264 
2265 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2266 
2267 		/*
2268 		 * We need to make the page accessible if and only if we are
2269 		 * going to access its content (the FOLL_PIN case).  Please
2270 		 * see Documentation/core-api/pin_user_pages.rst for
2271 		 * details.
2272 		 */
2273 		if (flags & FOLL_PIN) {
2274 			ret = arch_make_page_accessible(page);
2275 			if (ret) {
2276 				unpin_user_page(page);
2277 				goto pte_unmap;
2278 			}
2279 		}
2280 		SetPageReferenced(page);
2281 		pages[*nr] = page;
2282 		(*nr)++;
2283 
2284 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2285 
2286 	ret = 1;
2287 
2288 pte_unmap:
2289 	if (pgmap)
2290 		put_dev_pagemap(pgmap);
2291 	pte_unmap(ptem);
2292 	return ret;
2293 }
2294 #else
2295 
2296 /*
2297  * If we can't determine whether or not a pte is special, then fail immediately
2298  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2299  * to be special.
2300  *
2301  * For a futex to be placed on a THP tail page, get_futex_key requires a
2302  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2303  * useful to have gup_huge_pmd even if we can't operate on ptes.
2304  */
2305 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2306 			 unsigned int flags, struct page **pages, int *nr)
2307 {
2308 	return 0;
2309 }
2310 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2311 
2312 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2313 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2314 			     unsigned long end, unsigned int flags,
2315 			     struct page **pages, int *nr)
2316 {
2317 	int nr_start = *nr;
2318 	struct dev_pagemap *pgmap = NULL;
2319 
2320 	do {
2321 		struct page *page = pfn_to_page(pfn);
2322 
2323 		pgmap = get_dev_pagemap(pfn, pgmap);
2324 		if (unlikely(!pgmap)) {
2325 			undo_dev_pagemap(nr, nr_start, flags, pages);
2326 			return 0;
2327 		}
2328 		SetPageReferenced(page);
2329 		pages[*nr] = page;
2330 		if (unlikely(!try_grab_page(page, flags))) {
2331 			undo_dev_pagemap(nr, nr_start, flags, pages);
2332 			return 0;
2333 		}
2334 		(*nr)++;
2335 		pfn++;
2336 	} while (addr += PAGE_SIZE, addr != end);
2337 
2338 	if (pgmap)
2339 		put_dev_pagemap(pgmap);
2340 	return 1;
2341 }
2342 
2343 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2344 				 unsigned long end, unsigned int flags,
2345 				 struct page **pages, int *nr)
2346 {
2347 	unsigned long fault_pfn;
2348 	int nr_start = *nr;
2349 
2350 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2351 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2352 		return 0;
2353 
2354 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2355 		undo_dev_pagemap(nr, nr_start, flags, pages);
2356 		return 0;
2357 	}
2358 	return 1;
2359 }
2360 
2361 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2362 				 unsigned long end, unsigned int flags,
2363 				 struct page **pages, int *nr)
2364 {
2365 	unsigned long fault_pfn;
2366 	int nr_start = *nr;
2367 
2368 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2369 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2370 		return 0;
2371 
2372 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2373 		undo_dev_pagemap(nr, nr_start, flags, pages);
2374 		return 0;
2375 	}
2376 	return 1;
2377 }
2378 #else
2379 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2380 				 unsigned long end, unsigned int flags,
2381 				 struct page **pages, int *nr)
2382 {
2383 	BUILD_BUG();
2384 	return 0;
2385 }
2386 
2387 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2388 				 unsigned long end, unsigned int flags,
2389 				 struct page **pages, int *nr)
2390 {
2391 	BUILD_BUG();
2392 	return 0;
2393 }
2394 #endif
2395 
2396 static int record_subpages(struct page *page, unsigned long addr,
2397 			   unsigned long end, struct page **pages)
2398 {
2399 	int nr;
2400 
2401 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2402 		pages[nr++] = page++;
2403 
2404 	return nr;
2405 }
2406 
2407 #ifdef CONFIG_ARCH_HAS_HUGEPD
2408 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2409 				      unsigned long sz)
2410 {
2411 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2412 	return (__boundary - 1 < end - 1) ? __boundary : end;
2413 }
2414 
2415 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2416 		       unsigned long end, unsigned int flags,
2417 		       struct page **pages, int *nr)
2418 {
2419 	unsigned long pte_end;
2420 	struct page *head, *page;
2421 	pte_t pte;
2422 	int refs;
2423 
2424 	pte_end = (addr + sz) & ~(sz-1);
2425 	if (pte_end < end)
2426 		end = pte_end;
2427 
2428 	pte = huge_ptep_get(ptep);
2429 
2430 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2431 		return 0;
2432 
2433 	/* hugepages are never "special" */
2434 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2435 
2436 	head = pte_page(pte);
2437 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2438 	refs = record_subpages(page, addr, end, pages + *nr);
2439 
2440 	head = try_grab_compound_head(head, refs, flags);
2441 	if (!head)
2442 		return 0;
2443 
2444 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2445 		put_compound_head(head, refs, flags);
2446 		return 0;
2447 	}
2448 
2449 	*nr += refs;
2450 	SetPageReferenced(head);
2451 	return 1;
2452 }
2453 
2454 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2455 		unsigned int pdshift, unsigned long end, unsigned int flags,
2456 		struct page **pages, int *nr)
2457 {
2458 	pte_t *ptep;
2459 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2460 	unsigned long next;
2461 
2462 	ptep = hugepte_offset(hugepd, addr, pdshift);
2463 	do {
2464 		next = hugepte_addr_end(addr, end, sz);
2465 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2466 			return 0;
2467 	} while (ptep++, addr = next, addr != end);
2468 
2469 	return 1;
2470 }
2471 #else
2472 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2473 		unsigned int pdshift, unsigned long end, unsigned int flags,
2474 		struct page **pages, int *nr)
2475 {
2476 	return 0;
2477 }
2478 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2479 
2480 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2481 			unsigned long end, unsigned int flags,
2482 			struct page **pages, int *nr)
2483 {
2484 	struct page *head, *page;
2485 	int refs;
2486 
2487 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2488 		return 0;
2489 
2490 	if (pmd_devmap(orig)) {
2491 		if (unlikely(flags & FOLL_LONGTERM))
2492 			return 0;
2493 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2494 					     pages, nr);
2495 	}
2496 
2497 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2498 	refs = record_subpages(page, addr, end, pages + *nr);
2499 
2500 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2501 	if (!head)
2502 		return 0;
2503 
2504 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2505 		put_compound_head(head, refs, flags);
2506 		return 0;
2507 	}
2508 
2509 	*nr += refs;
2510 	SetPageReferenced(head);
2511 	return 1;
2512 }
2513 
2514 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2515 			unsigned long end, unsigned int flags,
2516 			struct page **pages, int *nr)
2517 {
2518 	struct page *head, *page;
2519 	int refs;
2520 
2521 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2522 		return 0;
2523 
2524 	if (pud_devmap(orig)) {
2525 		if (unlikely(flags & FOLL_LONGTERM))
2526 			return 0;
2527 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2528 					     pages, nr);
2529 	}
2530 
2531 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2532 	refs = record_subpages(page, addr, end, pages + *nr);
2533 
2534 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2535 	if (!head)
2536 		return 0;
2537 
2538 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2539 		put_compound_head(head, refs, flags);
2540 		return 0;
2541 	}
2542 
2543 	*nr += refs;
2544 	SetPageReferenced(head);
2545 	return 1;
2546 }
2547 
2548 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2549 			unsigned long end, unsigned int flags,
2550 			struct page **pages, int *nr)
2551 {
2552 	int refs;
2553 	struct page *head, *page;
2554 
2555 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2556 		return 0;
2557 
2558 	BUILD_BUG_ON(pgd_devmap(orig));
2559 
2560 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2561 	refs = record_subpages(page, addr, end, pages + *nr);
2562 
2563 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2564 	if (!head)
2565 		return 0;
2566 
2567 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2568 		put_compound_head(head, refs, flags);
2569 		return 0;
2570 	}
2571 
2572 	*nr += refs;
2573 	SetPageReferenced(head);
2574 	return 1;
2575 }
2576 
2577 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2578 		unsigned int flags, struct page **pages, int *nr)
2579 {
2580 	unsigned long next;
2581 	pmd_t *pmdp;
2582 
2583 	pmdp = pmd_offset(&pud, addr);
2584 	do {
2585 		pmd_t pmd = READ_ONCE(*pmdp);
2586 
2587 		next = pmd_addr_end(addr, end);
2588 		if (!pmd_present(pmd))
2589 			return 0;
2590 
2591 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2592 			     pmd_devmap(pmd))) {
2593 			/*
2594 			 * NUMA hinting faults need to be handled in the GUP
2595 			 * slowpath for accounting purposes and so that they
2596 			 * can be serialised against THP migration.
2597 			 */
2598 			if (pmd_protnone(pmd))
2599 				return 0;
2600 
2601 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2602 				pages, nr))
2603 				return 0;
2604 
2605 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2606 			/*
2607 			 * architecture have different format for hugetlbfs
2608 			 * pmd format and THP pmd format
2609 			 */
2610 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2611 					 PMD_SHIFT, next, flags, pages, nr))
2612 				return 0;
2613 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2614 			return 0;
2615 	} while (pmdp++, addr = next, addr != end);
2616 
2617 	return 1;
2618 }
2619 
2620 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2621 			 unsigned int flags, struct page **pages, int *nr)
2622 {
2623 	unsigned long next;
2624 	pud_t *pudp;
2625 
2626 	pudp = pud_offset(&p4d, addr);
2627 	do {
2628 		pud_t pud = READ_ONCE(*pudp);
2629 
2630 		next = pud_addr_end(addr, end);
2631 		if (unlikely(!pud_present(pud)))
2632 			return 0;
2633 		if (unlikely(pud_huge(pud))) {
2634 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2635 					  pages, nr))
2636 				return 0;
2637 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2638 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2639 					 PUD_SHIFT, next, flags, pages, nr))
2640 				return 0;
2641 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2642 			return 0;
2643 	} while (pudp++, addr = next, addr != end);
2644 
2645 	return 1;
2646 }
2647 
2648 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2649 			 unsigned int flags, struct page **pages, int *nr)
2650 {
2651 	unsigned long next;
2652 	p4d_t *p4dp;
2653 
2654 	p4dp = p4d_offset(&pgd, addr);
2655 	do {
2656 		p4d_t p4d = READ_ONCE(*p4dp);
2657 
2658 		next = p4d_addr_end(addr, end);
2659 		if (p4d_none(p4d))
2660 			return 0;
2661 		BUILD_BUG_ON(p4d_huge(p4d));
2662 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2663 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2664 					 P4D_SHIFT, next, flags, pages, nr))
2665 				return 0;
2666 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2667 			return 0;
2668 	} while (p4dp++, addr = next, addr != end);
2669 
2670 	return 1;
2671 }
2672 
2673 static void gup_pgd_range(unsigned long addr, unsigned long end,
2674 		unsigned int flags, struct page **pages, int *nr)
2675 {
2676 	unsigned long next;
2677 	pgd_t *pgdp;
2678 
2679 	pgdp = pgd_offset(current->mm, addr);
2680 	do {
2681 		pgd_t pgd = READ_ONCE(*pgdp);
2682 
2683 		next = pgd_addr_end(addr, end);
2684 		if (pgd_none(pgd))
2685 			return;
2686 		if (unlikely(pgd_huge(pgd))) {
2687 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2688 					  pages, nr))
2689 				return;
2690 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2691 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2692 					 PGDIR_SHIFT, next, flags, pages, nr))
2693 				return;
2694 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2695 			return;
2696 	} while (pgdp++, addr = next, addr != end);
2697 }
2698 #else
2699 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2700 		unsigned int flags, struct page **pages, int *nr)
2701 {
2702 }
2703 #endif /* CONFIG_HAVE_FAST_GUP */
2704 
2705 #ifndef gup_fast_permitted
2706 /*
2707  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2708  * we need to fall back to the slow version:
2709  */
2710 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2711 {
2712 	return true;
2713 }
2714 #endif
2715 
2716 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2717 				   unsigned int gup_flags, struct page **pages)
2718 {
2719 	int ret;
2720 
2721 	/*
2722 	 * FIXME: FOLL_LONGTERM does not work with
2723 	 * get_user_pages_unlocked() (see comments in that function)
2724 	 */
2725 	if (gup_flags & FOLL_LONGTERM) {
2726 		mmap_read_lock(current->mm);
2727 		ret = __gup_longterm_locked(current, current->mm,
2728 					    start, nr_pages,
2729 					    pages, NULL, gup_flags);
2730 		mmap_read_unlock(current->mm);
2731 	} else {
2732 		ret = get_user_pages_unlocked(start, nr_pages,
2733 					      pages, gup_flags);
2734 	}
2735 
2736 	return ret;
2737 }
2738 
2739 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2740 					unsigned int gup_flags,
2741 					struct page **pages)
2742 {
2743 	unsigned long addr, len, end;
2744 	unsigned long flags;
2745 	int nr_pinned = 0, ret = 0;
2746 
2747 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2748 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2749 				       FOLL_FAST_ONLY)))
2750 		return -EINVAL;
2751 
2752 	if (!(gup_flags & FOLL_FAST_ONLY))
2753 		might_lock_read(&current->mm->mmap_lock);
2754 
2755 	start = untagged_addr(start) & PAGE_MASK;
2756 	addr = start;
2757 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2758 	end = start + len;
2759 
2760 	if (end <= start)
2761 		return 0;
2762 	if (unlikely(!access_ok((void __user *)start, len)))
2763 		return -EFAULT;
2764 
2765 	/*
2766 	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2767 	 * because get_user_pages() may need to cause an early COW in
2768 	 * order to avoid confusing the normal COW routines. So only
2769 	 * targets that are already writable are safe to do by just
2770 	 * looking at the page tables.
2771 	 *
2772 	 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2773 	 * because there is no slow path to fall back on. But you'd
2774 	 * better be careful about possible COW pages - you'll get _a_
2775 	 * COW page, but not necessarily the one you intended to get
2776 	 * depending on what COW event happens after this. COW may break
2777 	 * the page copy in a random direction.
2778 	 *
2779 	 * Disable interrupts. The nested form is used, in order to allow
2780 	 * full, general purpose use of this routine.
2781 	 *
2782 	 * With interrupts disabled, we block page table pages from being
2783 	 * freed from under us. See struct mmu_table_batch comments in
2784 	 * include/asm-generic/tlb.h for more details.
2785 	 *
2786 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2787 	 * block IPIs that come from THPs splitting.
2788 	 */
2789 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2790 		unsigned long fast_flags = gup_flags;
2791 		if (!(gup_flags & FOLL_FAST_ONLY))
2792 			fast_flags |= FOLL_WRITE;
2793 
2794 		local_irq_save(flags);
2795 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2796 		local_irq_restore(flags);
2797 		ret = nr_pinned;
2798 	}
2799 
2800 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2801 		/* Try to get the remaining pages with get_user_pages */
2802 		start += nr_pinned << PAGE_SHIFT;
2803 		pages += nr_pinned;
2804 
2805 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2806 					      gup_flags, pages);
2807 
2808 		/* Have to be a bit careful with return values */
2809 		if (nr_pinned > 0) {
2810 			if (ret < 0)
2811 				ret = nr_pinned;
2812 			else
2813 				ret += nr_pinned;
2814 		}
2815 	}
2816 
2817 	return ret;
2818 }
2819 /**
2820  * get_user_pages_fast_only() - pin user pages in memory
2821  * @start:      starting user address
2822  * @nr_pages:   number of pages from start to pin
2823  * @gup_flags:  flags modifying pin behaviour
2824  * @pages:      array that receives pointers to the pages pinned.
2825  *              Should be at least nr_pages long.
2826  *
2827  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2828  * the regular GUP.
2829  * Note a difference with get_user_pages_fast: this always returns the
2830  * number of pages pinned, 0 if no pages were pinned.
2831  *
2832  * If the architecture does not support this function, simply return with no
2833  * pages pinned.
2834  *
2835  * Careful, careful! COW breaking can go either way, so a non-write
2836  * access can get ambiguous page results. If you call this function without
2837  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2838  */
2839 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2840 			     unsigned int gup_flags, struct page **pages)
2841 {
2842 	int nr_pinned;
2843 	/*
2844 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2845 	 * because gup fast is always a "pin with a +1 page refcount" request.
2846 	 *
2847 	 * FOLL_FAST_ONLY is required in order to match the API description of
2848 	 * this routine: no fall back to regular ("slow") GUP.
2849 	 */
2850 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2851 
2852 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2853 						 pages);
2854 
2855 	/*
2856 	 * As specified in the API description above, this routine is not
2857 	 * allowed to return negative values. However, the common core
2858 	 * routine internal_get_user_pages_fast() *can* return -errno.
2859 	 * Therefore, correct for that here:
2860 	 */
2861 	if (nr_pinned < 0)
2862 		nr_pinned = 0;
2863 
2864 	return nr_pinned;
2865 }
2866 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2867 
2868 /**
2869  * get_user_pages_fast() - pin user pages in memory
2870  * @start:      starting user address
2871  * @nr_pages:   number of pages from start to pin
2872  * @gup_flags:  flags modifying pin behaviour
2873  * @pages:      array that receives pointers to the pages pinned.
2874  *              Should be at least nr_pages long.
2875  *
2876  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2877  * If not successful, it will fall back to taking the lock and
2878  * calling get_user_pages().
2879  *
2880  * Returns number of pages pinned. This may be fewer than the number requested.
2881  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2882  * -errno.
2883  */
2884 int get_user_pages_fast(unsigned long start, int nr_pages,
2885 			unsigned int gup_flags, struct page **pages)
2886 {
2887 	/*
2888 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2889 	 * never directly by the caller, so enforce that:
2890 	 */
2891 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2892 		return -EINVAL;
2893 
2894 	/*
2895 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2896 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2897 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2898 	 * request.
2899 	 */
2900 	gup_flags |= FOLL_GET;
2901 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2902 }
2903 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2904 
2905 /**
2906  * pin_user_pages_fast() - pin user pages in memory without taking locks
2907  *
2908  * @start:      starting user address
2909  * @nr_pages:   number of pages from start to pin
2910  * @gup_flags:  flags modifying pin behaviour
2911  * @pages:      array that receives pointers to the pages pinned.
2912  *              Should be at least nr_pages long.
2913  *
2914  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2915  * get_user_pages_fast() for documentation on the function arguments, because
2916  * the arguments here are identical.
2917  *
2918  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919  * see Documentation/core-api/pin_user_pages.rst for further details.
2920  */
2921 int pin_user_pages_fast(unsigned long start, int nr_pages,
2922 			unsigned int gup_flags, struct page **pages)
2923 {
2924 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2925 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2926 		return -EINVAL;
2927 
2928 	gup_flags |= FOLL_PIN;
2929 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2930 }
2931 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2932 
2933 /*
2934  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2935  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2936  *
2937  * The API rules are the same, too: no negative values may be returned.
2938  */
2939 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2940 			     unsigned int gup_flags, struct page **pages)
2941 {
2942 	int nr_pinned;
2943 
2944 	/*
2945 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2946 	 * rules require returning 0, rather than -errno:
2947 	 */
2948 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2949 		return 0;
2950 	/*
2951 	 * FOLL_FAST_ONLY is required in order to match the API description of
2952 	 * this routine: no fall back to regular ("slow") GUP.
2953 	 */
2954 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2955 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2956 						 pages);
2957 	/*
2958 	 * This routine is not allowed to return negative values. However,
2959 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2960 	 * correct for that here:
2961 	 */
2962 	if (nr_pinned < 0)
2963 		nr_pinned = 0;
2964 
2965 	return nr_pinned;
2966 }
2967 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2968 
2969 /**
2970  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2971  *
2972  * @tsk:	the task_struct to use for page fault accounting, or
2973  *		NULL if faults are not to be recorded.
2974  * @mm:		mm_struct of target mm
2975  * @start:	starting user address
2976  * @nr_pages:	number of pages from start to pin
2977  * @gup_flags:	flags modifying lookup behaviour
2978  * @pages:	array that receives pointers to the pages pinned.
2979  *		Should be at least nr_pages long. Or NULL, if caller
2980  *		only intends to ensure the pages are faulted in.
2981  * @vmas:	array of pointers to vmas corresponding to each page.
2982  *		Or NULL if the caller does not require them.
2983  * @locked:	pointer to lock flag indicating whether lock is held and
2984  *		subsequently whether VM_FAULT_RETRY functionality can be
2985  *		utilised. Lock must initially be held.
2986  *
2987  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2988  * get_user_pages_remote() for documentation on the function arguments, because
2989  * the arguments here are identical.
2990  *
2991  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2992  * see Documentation/core-api/pin_user_pages.rst for details.
2993  */
2994 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2995 			   unsigned long start, unsigned long nr_pages,
2996 			   unsigned int gup_flags, struct page **pages,
2997 			   struct vm_area_struct **vmas, int *locked)
2998 {
2999 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3000 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3001 		return -EINVAL;
3002 
3003 	gup_flags |= FOLL_PIN;
3004 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3005 				       pages, vmas, locked);
3006 }
3007 EXPORT_SYMBOL(pin_user_pages_remote);
3008 
3009 /**
3010  * pin_user_pages() - pin user pages in memory for use by other devices
3011  *
3012  * @start:	starting user address
3013  * @nr_pages:	number of pages from start to pin
3014  * @gup_flags:	flags modifying lookup behaviour
3015  * @pages:	array that receives pointers to the pages pinned.
3016  *		Should be at least nr_pages long. Or NULL, if caller
3017  *		only intends to ensure the pages are faulted in.
3018  * @vmas:	array of pointers to vmas corresponding to each page.
3019  *		Or NULL if the caller does not require them.
3020  *
3021  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3022  * FOLL_PIN is set.
3023  *
3024  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3025  * see Documentation/core-api/pin_user_pages.rst for details.
3026  */
3027 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3028 		    unsigned int gup_flags, struct page **pages,
3029 		    struct vm_area_struct **vmas)
3030 {
3031 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3032 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3033 		return -EINVAL;
3034 
3035 	gup_flags |= FOLL_PIN;
3036 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
3037 				     pages, vmas, gup_flags);
3038 }
3039 EXPORT_SYMBOL(pin_user_pages);
3040 
3041 /*
3042  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3043  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3044  * FOLL_PIN and rejects FOLL_GET.
3045  */
3046 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3047 			     struct page **pages, unsigned int gup_flags)
3048 {
3049 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3050 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3051 		return -EINVAL;
3052 
3053 	gup_flags |= FOLL_PIN;
3054 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3055 }
3056 EXPORT_SYMBOL(pin_user_pages_unlocked);
3057 
3058 /*
3059  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3060  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3061  * FOLL_GET.
3062  */
3063 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3064 			   unsigned int gup_flags, struct page **pages,
3065 			   int *locked)
3066 {
3067 	/*
3068 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3069 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3070 	 * vmas.  As there are no users of this flag in this call we simply
3071 	 * disallow this option for now.
3072 	 */
3073 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3074 		return -EINVAL;
3075 
3076 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3077 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078 		return -EINVAL;
3079 
3080 	gup_flags |= FOLL_PIN;
3081 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
3082 				       pages, NULL, locked,
3083 				       gup_flags | FOLL_TOUCH);
3084 }
3085 EXPORT_SYMBOL(pin_user_pages_locked);
3086