1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/hugetlb.h> 7 #include <linux/mm.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include "internal.h" 14 15 static struct page *no_page_table(struct vm_area_struct *vma, 16 unsigned int flags) 17 { 18 /* 19 * When core dumping an enormous anonymous area that nobody 20 * has touched so far, we don't want to allocate unnecessary pages or 21 * page tables. Return error instead of NULL to skip handle_mm_fault, 22 * then get_dump_page() will return NULL to leave a hole in the dump. 23 * But we can only make this optimization where a hole would surely 24 * be zero-filled if handle_mm_fault() actually did handle it. 25 */ 26 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 27 return ERR_PTR(-EFAULT); 28 return NULL; 29 } 30 31 static struct page *follow_page_pte(struct vm_area_struct *vma, 32 unsigned long address, pmd_t *pmd, unsigned int flags) 33 { 34 struct mm_struct *mm = vma->vm_mm; 35 struct page *page; 36 spinlock_t *ptl; 37 pte_t *ptep, pte; 38 39 retry: 40 if (unlikely(pmd_bad(*pmd))) 41 return no_page_table(vma, flags); 42 43 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 44 pte = *ptep; 45 if (!pte_present(pte)) { 46 swp_entry_t entry; 47 /* 48 * KSM's break_ksm() relies upon recognizing a ksm page 49 * even while it is being migrated, so for that case we 50 * need migration_entry_wait(). 51 */ 52 if (likely(!(flags & FOLL_MIGRATION))) 53 goto no_page; 54 if (pte_none(pte) || pte_file(pte)) 55 goto no_page; 56 entry = pte_to_swp_entry(pte); 57 if (!is_migration_entry(entry)) 58 goto no_page; 59 pte_unmap_unlock(ptep, ptl); 60 migration_entry_wait(mm, pmd, address); 61 goto retry; 62 } 63 if ((flags & FOLL_NUMA) && pte_numa(pte)) 64 goto no_page; 65 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 66 pte_unmap_unlock(ptep, ptl); 67 return NULL; 68 } 69 70 page = vm_normal_page(vma, address, pte); 71 if (unlikely(!page)) { 72 if ((flags & FOLL_DUMP) || 73 !is_zero_pfn(pte_pfn(pte))) 74 goto bad_page; 75 page = pte_page(pte); 76 } 77 78 if (flags & FOLL_GET) 79 get_page_foll(page); 80 if (flags & FOLL_TOUCH) { 81 if ((flags & FOLL_WRITE) && 82 !pte_dirty(pte) && !PageDirty(page)) 83 set_page_dirty(page); 84 /* 85 * pte_mkyoung() would be more correct here, but atomic care 86 * is needed to avoid losing the dirty bit: it is easier to use 87 * mark_page_accessed(). 88 */ 89 mark_page_accessed(page); 90 } 91 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 92 /* 93 * The preliminary mapping check is mainly to avoid the 94 * pointless overhead of lock_page on the ZERO_PAGE 95 * which might bounce very badly if there is contention. 96 * 97 * If the page is already locked, we don't need to 98 * handle it now - vmscan will handle it later if and 99 * when it attempts to reclaim the page. 100 */ 101 if (page->mapping && trylock_page(page)) { 102 lru_add_drain(); /* push cached pages to LRU */ 103 /* 104 * Because we lock page here, and migration is 105 * blocked by the pte's page reference, and we 106 * know the page is still mapped, we don't even 107 * need to check for file-cache page truncation. 108 */ 109 mlock_vma_page(page); 110 unlock_page(page); 111 } 112 } 113 pte_unmap_unlock(ptep, ptl); 114 return page; 115 bad_page: 116 pte_unmap_unlock(ptep, ptl); 117 return ERR_PTR(-EFAULT); 118 119 no_page: 120 pte_unmap_unlock(ptep, ptl); 121 if (!pte_none(pte)) 122 return NULL; 123 return no_page_table(vma, flags); 124 } 125 126 /** 127 * follow_page_mask - look up a page descriptor from a user-virtual address 128 * @vma: vm_area_struct mapping @address 129 * @address: virtual address to look up 130 * @flags: flags modifying lookup behaviour 131 * @page_mask: on output, *page_mask is set according to the size of the page 132 * 133 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 134 * 135 * Returns the mapped (struct page *), %NULL if no mapping exists, or 136 * an error pointer if there is a mapping to something not represented 137 * by a page descriptor (see also vm_normal_page()). 138 */ 139 struct page *follow_page_mask(struct vm_area_struct *vma, 140 unsigned long address, unsigned int flags, 141 unsigned int *page_mask) 142 { 143 pgd_t *pgd; 144 pud_t *pud; 145 pmd_t *pmd; 146 spinlock_t *ptl; 147 struct page *page; 148 struct mm_struct *mm = vma->vm_mm; 149 150 *page_mask = 0; 151 152 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 153 if (!IS_ERR(page)) { 154 BUG_ON(flags & FOLL_GET); 155 return page; 156 } 157 158 pgd = pgd_offset(mm, address); 159 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 160 return no_page_table(vma, flags); 161 162 pud = pud_offset(pgd, address); 163 if (pud_none(*pud)) 164 return no_page_table(vma, flags); 165 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 166 if (flags & FOLL_GET) 167 return NULL; 168 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 169 return page; 170 } 171 if (unlikely(pud_bad(*pud))) 172 return no_page_table(vma, flags); 173 174 pmd = pmd_offset(pud, address); 175 if (pmd_none(*pmd)) 176 return no_page_table(vma, flags); 177 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 178 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 179 if (flags & FOLL_GET) { 180 /* 181 * Refcount on tail pages are not well-defined and 182 * shouldn't be taken. The caller should handle a NULL 183 * return when trying to follow tail pages. 184 */ 185 if (PageHead(page)) 186 get_page(page); 187 else 188 page = NULL; 189 } 190 return page; 191 } 192 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 193 return no_page_table(vma, flags); 194 if (pmd_trans_huge(*pmd)) { 195 if (flags & FOLL_SPLIT) { 196 split_huge_page_pmd(vma, address, pmd); 197 return follow_page_pte(vma, address, pmd, flags); 198 } 199 ptl = pmd_lock(mm, pmd); 200 if (likely(pmd_trans_huge(*pmd))) { 201 if (unlikely(pmd_trans_splitting(*pmd))) { 202 spin_unlock(ptl); 203 wait_split_huge_page(vma->anon_vma, pmd); 204 } else { 205 page = follow_trans_huge_pmd(vma, address, 206 pmd, flags); 207 spin_unlock(ptl); 208 *page_mask = HPAGE_PMD_NR - 1; 209 return page; 210 } 211 } else 212 spin_unlock(ptl); 213 } 214 return follow_page_pte(vma, address, pmd, flags); 215 } 216 217 static int get_gate_page(struct mm_struct *mm, unsigned long address, 218 unsigned int gup_flags, struct vm_area_struct **vma, 219 struct page **page) 220 { 221 pgd_t *pgd; 222 pud_t *pud; 223 pmd_t *pmd; 224 pte_t *pte; 225 int ret = -EFAULT; 226 227 /* user gate pages are read-only */ 228 if (gup_flags & FOLL_WRITE) 229 return -EFAULT; 230 if (address > TASK_SIZE) 231 pgd = pgd_offset_k(address); 232 else 233 pgd = pgd_offset_gate(mm, address); 234 BUG_ON(pgd_none(*pgd)); 235 pud = pud_offset(pgd, address); 236 BUG_ON(pud_none(*pud)); 237 pmd = pmd_offset(pud, address); 238 if (pmd_none(*pmd)) 239 return -EFAULT; 240 VM_BUG_ON(pmd_trans_huge(*pmd)); 241 pte = pte_offset_map(pmd, address); 242 if (pte_none(*pte)) 243 goto unmap; 244 *vma = get_gate_vma(mm); 245 if (!page) 246 goto out; 247 *page = vm_normal_page(*vma, address, *pte); 248 if (!*page) { 249 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 250 goto unmap; 251 *page = pte_page(*pte); 252 } 253 get_page(*page); 254 out: 255 ret = 0; 256 unmap: 257 pte_unmap(pte); 258 return ret; 259 } 260 261 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 262 unsigned long address, unsigned int *flags, int *nonblocking) 263 { 264 struct mm_struct *mm = vma->vm_mm; 265 unsigned int fault_flags = 0; 266 int ret; 267 268 /* For mlock, just skip the stack guard page. */ 269 if ((*flags & FOLL_MLOCK) && 270 (stack_guard_page_start(vma, address) || 271 stack_guard_page_end(vma, address + PAGE_SIZE))) 272 return -ENOENT; 273 if (*flags & FOLL_WRITE) 274 fault_flags |= FAULT_FLAG_WRITE; 275 if (nonblocking) 276 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 277 if (*flags & FOLL_NOWAIT) 278 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 279 280 ret = handle_mm_fault(mm, vma, address, fault_flags); 281 if (ret & VM_FAULT_ERROR) { 282 if (ret & VM_FAULT_OOM) 283 return -ENOMEM; 284 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 285 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 286 if (ret & VM_FAULT_SIGBUS) 287 return -EFAULT; 288 BUG(); 289 } 290 291 if (tsk) { 292 if (ret & VM_FAULT_MAJOR) 293 tsk->maj_flt++; 294 else 295 tsk->min_flt++; 296 } 297 298 if (ret & VM_FAULT_RETRY) { 299 if (nonblocking) 300 *nonblocking = 0; 301 return -EBUSY; 302 } 303 304 /* 305 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 306 * necessary, even if maybe_mkwrite decided not to set pte_write. We 307 * can thus safely do subsequent page lookups as if they were reads. 308 * But only do so when looping for pte_write is futile: in some cases 309 * userspace may also be wanting to write to the gotten user page, 310 * which a read fault here might prevent (a readonly page might get 311 * reCOWed by userspace write). 312 */ 313 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 314 *flags &= ~FOLL_WRITE; 315 return 0; 316 } 317 318 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 319 { 320 vm_flags_t vm_flags = vma->vm_flags; 321 322 if (vm_flags & (VM_IO | VM_PFNMAP)) 323 return -EFAULT; 324 325 if (gup_flags & FOLL_WRITE) { 326 if (!(vm_flags & VM_WRITE)) { 327 if (!(gup_flags & FOLL_FORCE)) 328 return -EFAULT; 329 /* 330 * We used to let the write,force case do COW in a 331 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 332 * set a breakpoint in a read-only mapping of an 333 * executable, without corrupting the file (yet only 334 * when that file had been opened for writing!). 335 * Anon pages in shared mappings are surprising: now 336 * just reject it. 337 */ 338 if (!is_cow_mapping(vm_flags)) { 339 WARN_ON_ONCE(vm_flags & VM_MAYWRITE); 340 return -EFAULT; 341 } 342 } 343 } else if (!(vm_flags & VM_READ)) { 344 if (!(gup_flags & FOLL_FORCE)) 345 return -EFAULT; 346 /* 347 * Is there actually any vma we can reach here which does not 348 * have VM_MAYREAD set? 349 */ 350 if (!(vm_flags & VM_MAYREAD)) 351 return -EFAULT; 352 } 353 return 0; 354 } 355 356 /** 357 * __get_user_pages() - pin user pages in memory 358 * @tsk: task_struct of target task 359 * @mm: mm_struct of target mm 360 * @start: starting user address 361 * @nr_pages: number of pages from start to pin 362 * @gup_flags: flags modifying pin behaviour 363 * @pages: array that receives pointers to the pages pinned. 364 * Should be at least nr_pages long. Or NULL, if caller 365 * only intends to ensure the pages are faulted in. 366 * @vmas: array of pointers to vmas corresponding to each page. 367 * Or NULL if the caller does not require them. 368 * @nonblocking: whether waiting for disk IO or mmap_sem contention 369 * 370 * Returns number of pages pinned. This may be fewer than the number 371 * requested. If nr_pages is 0 or negative, returns 0. If no pages 372 * were pinned, returns -errno. Each page returned must be released 373 * with a put_page() call when it is finished with. vmas will only 374 * remain valid while mmap_sem is held. 375 * 376 * Must be called with mmap_sem held for read or write. 377 * 378 * __get_user_pages walks a process's page tables and takes a reference to 379 * each struct page that each user address corresponds to at a given 380 * instant. That is, it takes the page that would be accessed if a user 381 * thread accesses the given user virtual address at that instant. 382 * 383 * This does not guarantee that the page exists in the user mappings when 384 * __get_user_pages returns, and there may even be a completely different 385 * page there in some cases (eg. if mmapped pagecache has been invalidated 386 * and subsequently re faulted). However it does guarantee that the page 387 * won't be freed completely. And mostly callers simply care that the page 388 * contains data that was valid *at some point in time*. Typically, an IO 389 * or similar operation cannot guarantee anything stronger anyway because 390 * locks can't be held over the syscall boundary. 391 * 392 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 393 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 394 * appropriate) must be called after the page is finished with, and 395 * before put_page is called. 396 * 397 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 398 * or mmap_sem contention, and if waiting is needed to pin all pages, 399 * *@nonblocking will be set to 0. 400 * 401 * In most cases, get_user_pages or get_user_pages_fast should be used 402 * instead of __get_user_pages. __get_user_pages should be used only if 403 * you need some special @gup_flags. 404 */ 405 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 406 unsigned long start, unsigned long nr_pages, 407 unsigned int gup_flags, struct page **pages, 408 struct vm_area_struct **vmas, int *nonblocking) 409 { 410 long i = 0; 411 unsigned int page_mask; 412 struct vm_area_struct *vma = NULL; 413 414 if (!nr_pages) 415 return 0; 416 417 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 418 419 /* 420 * If FOLL_FORCE is set then do not force a full fault as the hinting 421 * fault information is unrelated to the reference behaviour of a task 422 * using the address space 423 */ 424 if (!(gup_flags & FOLL_FORCE)) 425 gup_flags |= FOLL_NUMA; 426 427 do { 428 struct page *page; 429 unsigned int foll_flags = gup_flags; 430 unsigned int page_increm; 431 432 /* first iteration or cross vma bound */ 433 if (!vma || start >= vma->vm_end) { 434 vma = find_extend_vma(mm, start); 435 if (!vma && in_gate_area(mm, start)) { 436 int ret; 437 ret = get_gate_page(mm, start & PAGE_MASK, 438 gup_flags, &vma, 439 pages ? &pages[i] : NULL); 440 if (ret) 441 return i ? : ret; 442 page_mask = 0; 443 goto next_page; 444 } 445 446 if (!vma || check_vma_flags(vma, gup_flags)) 447 return i ? : -EFAULT; 448 if (is_vm_hugetlb_page(vma)) { 449 i = follow_hugetlb_page(mm, vma, pages, vmas, 450 &start, &nr_pages, i, 451 gup_flags); 452 continue; 453 } 454 } 455 retry: 456 /* 457 * If we have a pending SIGKILL, don't keep faulting pages and 458 * potentially allocating memory. 459 */ 460 if (unlikely(fatal_signal_pending(current))) 461 return i ? i : -ERESTARTSYS; 462 cond_resched(); 463 page = follow_page_mask(vma, start, foll_flags, &page_mask); 464 if (!page) { 465 int ret; 466 ret = faultin_page(tsk, vma, start, &foll_flags, 467 nonblocking); 468 switch (ret) { 469 case 0: 470 goto retry; 471 case -EFAULT: 472 case -ENOMEM: 473 case -EHWPOISON: 474 return i ? i : ret; 475 case -EBUSY: 476 return i; 477 case -ENOENT: 478 goto next_page; 479 } 480 BUG(); 481 } 482 if (IS_ERR(page)) 483 return i ? i : PTR_ERR(page); 484 if (pages) { 485 pages[i] = page; 486 flush_anon_page(vma, page, start); 487 flush_dcache_page(page); 488 page_mask = 0; 489 } 490 next_page: 491 if (vmas) { 492 vmas[i] = vma; 493 page_mask = 0; 494 } 495 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 496 if (page_increm > nr_pages) 497 page_increm = nr_pages; 498 i += page_increm; 499 start += page_increm * PAGE_SIZE; 500 nr_pages -= page_increm; 501 } while (nr_pages); 502 return i; 503 } 504 EXPORT_SYMBOL(__get_user_pages); 505 506 /* 507 * fixup_user_fault() - manually resolve a user page fault 508 * @tsk: the task_struct to use for page fault accounting, or 509 * NULL if faults are not to be recorded. 510 * @mm: mm_struct of target mm 511 * @address: user address 512 * @fault_flags:flags to pass down to handle_mm_fault() 513 * 514 * This is meant to be called in the specific scenario where for locking reasons 515 * we try to access user memory in atomic context (within a pagefault_disable() 516 * section), this returns -EFAULT, and we want to resolve the user fault before 517 * trying again. 518 * 519 * Typically this is meant to be used by the futex code. 520 * 521 * The main difference with get_user_pages() is that this function will 522 * unconditionally call handle_mm_fault() which will in turn perform all the 523 * necessary SW fixup of the dirty and young bits in the PTE, while 524 * handle_mm_fault() only guarantees to update these in the struct page. 525 * 526 * This is important for some architectures where those bits also gate the 527 * access permission to the page because they are maintained in software. On 528 * such architectures, gup() will not be enough to make a subsequent access 529 * succeed. 530 * 531 * This should be called with the mm_sem held for read. 532 */ 533 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 534 unsigned long address, unsigned int fault_flags) 535 { 536 struct vm_area_struct *vma; 537 vm_flags_t vm_flags; 538 int ret; 539 540 vma = find_extend_vma(mm, address); 541 if (!vma || address < vma->vm_start) 542 return -EFAULT; 543 544 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; 545 if (!(vm_flags & vma->vm_flags)) 546 return -EFAULT; 547 548 ret = handle_mm_fault(mm, vma, address, fault_flags); 549 if (ret & VM_FAULT_ERROR) { 550 if (ret & VM_FAULT_OOM) 551 return -ENOMEM; 552 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 553 return -EHWPOISON; 554 if (ret & VM_FAULT_SIGBUS) 555 return -EFAULT; 556 BUG(); 557 } 558 if (tsk) { 559 if (ret & VM_FAULT_MAJOR) 560 tsk->maj_flt++; 561 else 562 tsk->min_flt++; 563 } 564 return 0; 565 } 566 567 /* 568 * get_user_pages() - pin user pages in memory 569 * @tsk: the task_struct to use for page fault accounting, or 570 * NULL if faults are not to be recorded. 571 * @mm: mm_struct of target mm 572 * @start: starting user address 573 * @nr_pages: number of pages from start to pin 574 * @write: whether pages will be written to by the caller 575 * @force: whether to force access even when user mapping is currently 576 * protected (but never forces write access to shared mapping). 577 * @pages: array that receives pointers to the pages pinned. 578 * Should be at least nr_pages long. Or NULL, if caller 579 * only intends to ensure the pages are faulted in. 580 * @vmas: array of pointers to vmas corresponding to each page. 581 * Or NULL if the caller does not require them. 582 * 583 * Returns number of pages pinned. This may be fewer than the number 584 * requested. If nr_pages is 0 or negative, returns 0. If no pages 585 * were pinned, returns -errno. Each page returned must be released 586 * with a put_page() call when it is finished with. vmas will only 587 * remain valid while mmap_sem is held. 588 * 589 * Must be called with mmap_sem held for read or write. 590 * 591 * get_user_pages walks a process's page tables and takes a reference to 592 * each struct page that each user address corresponds to at a given 593 * instant. That is, it takes the page that would be accessed if a user 594 * thread accesses the given user virtual address at that instant. 595 * 596 * This does not guarantee that the page exists in the user mappings when 597 * get_user_pages returns, and there may even be a completely different 598 * page there in some cases (eg. if mmapped pagecache has been invalidated 599 * and subsequently re faulted). However it does guarantee that the page 600 * won't be freed completely. And mostly callers simply care that the page 601 * contains data that was valid *at some point in time*. Typically, an IO 602 * or similar operation cannot guarantee anything stronger anyway because 603 * locks can't be held over the syscall boundary. 604 * 605 * If write=0, the page must not be written to. If the page is written to, 606 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 607 * after the page is finished with, and before put_page is called. 608 * 609 * get_user_pages is typically used for fewer-copy IO operations, to get a 610 * handle on the memory by some means other than accesses via the user virtual 611 * addresses. The pages may be submitted for DMA to devices or accessed via 612 * their kernel linear mapping (via the kmap APIs). Care should be taken to 613 * use the correct cache flushing APIs. 614 * 615 * See also get_user_pages_fast, for performance critical applications. 616 */ 617 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 618 unsigned long start, unsigned long nr_pages, int write, 619 int force, struct page **pages, struct vm_area_struct **vmas) 620 { 621 int flags = FOLL_TOUCH; 622 623 if (pages) 624 flags |= FOLL_GET; 625 if (write) 626 flags |= FOLL_WRITE; 627 if (force) 628 flags |= FOLL_FORCE; 629 630 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 631 NULL); 632 } 633 EXPORT_SYMBOL(get_user_pages); 634 635 /** 636 * get_dump_page() - pin user page in memory while writing it to core dump 637 * @addr: user address 638 * 639 * Returns struct page pointer of user page pinned for dump, 640 * to be freed afterwards by page_cache_release() or put_page(). 641 * 642 * Returns NULL on any kind of failure - a hole must then be inserted into 643 * the corefile, to preserve alignment with its headers; and also returns 644 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 645 * allowing a hole to be left in the corefile to save diskspace. 646 * 647 * Called without mmap_sem, but after all other threads have been killed. 648 */ 649 #ifdef CONFIG_ELF_CORE 650 struct page *get_dump_page(unsigned long addr) 651 { 652 struct vm_area_struct *vma; 653 struct page *page; 654 655 if (__get_user_pages(current, current->mm, addr, 1, 656 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 657 NULL) < 1) 658 return NULL; 659 flush_cache_page(vma, addr, page_to_pfn(page)); 660 return page; 661 } 662 #endif /* CONFIG_ELF_CORE */ 663