xref: /openbmc/linux/mm/gup.c (revision a61e365d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * TODO: this can be optimized for huge pages: if a series of pages is
333 	 * physically contiguous and part of the same compound page, then a
334 	 * single operation to the head page should suffice.
335 	 */
336 	for (index = 0; index < npages; index++)
337 		unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340 
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 		unsigned int flags)
344 {
345 	/*
346 	 * When core dumping an enormous anonymous area that nobody
347 	 * has touched so far, we don't want to allocate unnecessary pages or
348 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349 	 * then get_dump_page() will return NULL to leave a hole in the dump.
350 	 * But we can only make this optimization where a hole would surely
351 	 * be zero-filled if handle_mm_fault() actually did handle it.
352 	 */
353 	if ((flags & FOLL_DUMP) &&
354 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE can write to even unwritable pte's, but only
385  * after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) ||
390 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391 }
392 
393 static struct page *follow_page_pte(struct vm_area_struct *vma,
394 		unsigned long address, pmd_t *pmd, unsigned int flags,
395 		struct dev_pagemap **pgmap)
396 {
397 	struct mm_struct *mm = vma->vm_mm;
398 	struct page *page;
399 	spinlock_t *ptl;
400 	pte_t *ptep, pte;
401 	int ret;
402 
403 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 			 (FOLL_PIN | FOLL_GET)))
406 		return ERR_PTR(-EINVAL);
407 retry:
408 	if (unlikely(pmd_bad(*pmd)))
409 		return no_page_table(vma, flags);
410 
411 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
412 	pte = *ptep;
413 	if (!pte_present(pte)) {
414 		swp_entry_t entry;
415 		/*
416 		 * KSM's break_ksm() relies upon recognizing a ksm page
417 		 * even while it is being migrated, so for that case we
418 		 * need migration_entry_wait().
419 		 */
420 		if (likely(!(flags & FOLL_MIGRATION)))
421 			goto no_page;
422 		if (pte_none(pte))
423 			goto no_page;
424 		entry = pte_to_swp_entry(pte);
425 		if (!is_migration_entry(entry))
426 			goto no_page;
427 		pte_unmap_unlock(ptep, ptl);
428 		migration_entry_wait(mm, pmd, address);
429 		goto retry;
430 	}
431 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
432 		goto no_page;
433 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
434 		pte_unmap_unlock(ptep, ptl);
435 		return NULL;
436 	}
437 
438 	page = vm_normal_page(vma, address, pte);
439 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
440 		/*
441 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 		 * case since they are only valid while holding the pgmap
443 		 * reference.
444 		 */
445 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 		if (*pgmap)
447 			page = pte_page(pte);
448 		else
449 			goto no_page;
450 	} else if (unlikely(!page)) {
451 		if (flags & FOLL_DUMP) {
452 			/* Avoid special (like zero) pages in core dumps */
453 			page = ERR_PTR(-EFAULT);
454 			goto out;
455 		}
456 
457 		if (is_zero_pfn(pte_pfn(pte))) {
458 			page = pte_page(pte);
459 		} else {
460 			ret = follow_pfn_pte(vma, address, ptep, flags);
461 			page = ERR_PTR(ret);
462 			goto out;
463 		}
464 	}
465 
466 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
467 		get_page(page);
468 		pte_unmap_unlock(ptep, ptl);
469 		lock_page(page);
470 		ret = split_huge_page(page);
471 		unlock_page(page);
472 		put_page(page);
473 		if (ret)
474 			return ERR_PTR(ret);
475 		goto retry;
476 	}
477 
478 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 	if (unlikely(!try_grab_page(page, flags))) {
480 		page = ERR_PTR(-ENOMEM);
481 		goto out;
482 	}
483 	/*
484 	 * We need to make the page accessible if and only if we are going
485 	 * to access its content (the FOLL_PIN case).  Please see
486 	 * Documentation/core-api/pin_user_pages.rst for details.
487 	 */
488 	if (flags & FOLL_PIN) {
489 		ret = arch_make_page_accessible(page);
490 		if (ret) {
491 			unpin_user_page(page);
492 			page = ERR_PTR(ret);
493 			goto out;
494 		}
495 	}
496 	if (flags & FOLL_TOUCH) {
497 		if ((flags & FOLL_WRITE) &&
498 		    !pte_dirty(pte) && !PageDirty(page))
499 			set_page_dirty(page);
500 		/*
501 		 * pte_mkyoung() would be more correct here, but atomic care
502 		 * is needed to avoid losing the dirty bit: it is easier to use
503 		 * mark_page_accessed().
504 		 */
505 		mark_page_accessed(page);
506 	}
507 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
508 		/* Do not mlock pte-mapped THP */
509 		if (PageTransCompound(page))
510 			goto out;
511 
512 		/*
513 		 * The preliminary mapping check is mainly to avoid the
514 		 * pointless overhead of lock_page on the ZERO_PAGE
515 		 * which might bounce very badly if there is contention.
516 		 *
517 		 * If the page is already locked, we don't need to
518 		 * handle it now - vmscan will handle it later if and
519 		 * when it attempts to reclaim the page.
520 		 */
521 		if (page->mapping && trylock_page(page)) {
522 			lru_add_drain();  /* push cached pages to LRU */
523 			/*
524 			 * Because we lock page here, and migration is
525 			 * blocked by the pte's page reference, and we
526 			 * know the page is still mapped, we don't even
527 			 * need to check for file-cache page truncation.
528 			 */
529 			mlock_vma_page(page);
530 			unlock_page(page);
531 		}
532 	}
533 out:
534 	pte_unmap_unlock(ptep, ptl);
535 	return page;
536 no_page:
537 	pte_unmap_unlock(ptep, ptl);
538 	if (!pte_none(pte))
539 		return NULL;
540 	return no_page_table(vma, flags);
541 }
542 
543 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 				    unsigned long address, pud_t *pudp,
545 				    unsigned int flags,
546 				    struct follow_page_context *ctx)
547 {
548 	pmd_t *pmd, pmdval;
549 	spinlock_t *ptl;
550 	struct page *page;
551 	struct mm_struct *mm = vma->vm_mm;
552 
553 	pmd = pmd_offset(pudp, address);
554 	/*
555 	 * The READ_ONCE() will stabilize the pmdval in a register or
556 	 * on the stack so that it will stop changing under the code.
557 	 */
558 	pmdval = READ_ONCE(*pmd);
559 	if (pmd_none(pmdval))
560 		return no_page_table(vma, flags);
561 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
562 		page = follow_huge_pmd(mm, address, pmd, flags);
563 		if (page)
564 			return page;
565 		return no_page_table(vma, flags);
566 	}
567 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
568 		page = follow_huge_pd(vma, address,
569 				      __hugepd(pmd_val(pmdval)), flags,
570 				      PMD_SHIFT);
571 		if (page)
572 			return page;
573 		return no_page_table(vma, flags);
574 	}
575 retry:
576 	if (!pmd_present(pmdval)) {
577 		if (likely(!(flags & FOLL_MIGRATION)))
578 			return no_page_table(vma, flags);
579 		VM_BUG_ON(thp_migration_supported() &&
580 				  !is_pmd_migration_entry(pmdval));
581 		if (is_pmd_migration_entry(pmdval))
582 			pmd_migration_entry_wait(mm, pmd);
583 		pmdval = READ_ONCE(*pmd);
584 		/*
585 		 * MADV_DONTNEED may convert the pmd to null because
586 		 * mmap_lock is held in read mode
587 		 */
588 		if (pmd_none(pmdval))
589 			return no_page_table(vma, flags);
590 		goto retry;
591 	}
592 	if (pmd_devmap(pmdval)) {
593 		ptl = pmd_lock(mm, pmd);
594 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
595 		spin_unlock(ptl);
596 		if (page)
597 			return page;
598 	}
599 	if (likely(!pmd_trans_huge(pmdval)))
600 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
601 
602 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
603 		return no_page_table(vma, flags);
604 
605 retry_locked:
606 	ptl = pmd_lock(mm, pmd);
607 	if (unlikely(pmd_none(*pmd))) {
608 		spin_unlock(ptl);
609 		return no_page_table(vma, flags);
610 	}
611 	if (unlikely(!pmd_present(*pmd))) {
612 		spin_unlock(ptl);
613 		if (likely(!(flags & FOLL_MIGRATION)))
614 			return no_page_table(vma, flags);
615 		pmd_migration_entry_wait(mm, pmd);
616 		goto retry_locked;
617 	}
618 	if (unlikely(!pmd_trans_huge(*pmd))) {
619 		spin_unlock(ptl);
620 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
621 	}
622 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
623 		int ret;
624 		page = pmd_page(*pmd);
625 		if (is_huge_zero_page(page)) {
626 			spin_unlock(ptl);
627 			ret = 0;
628 			split_huge_pmd(vma, pmd, address);
629 			if (pmd_trans_unstable(pmd))
630 				ret = -EBUSY;
631 		} else if (flags & FOLL_SPLIT) {
632 			if (unlikely(!try_get_page(page))) {
633 				spin_unlock(ptl);
634 				return ERR_PTR(-ENOMEM);
635 			}
636 			spin_unlock(ptl);
637 			lock_page(page);
638 			ret = split_huge_page(page);
639 			unlock_page(page);
640 			put_page(page);
641 			if (pmd_none(*pmd))
642 				return no_page_table(vma, flags);
643 		} else {  /* flags & FOLL_SPLIT_PMD */
644 			spin_unlock(ptl);
645 			split_huge_pmd(vma, pmd, address);
646 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
647 		}
648 
649 		return ret ? ERR_PTR(ret) :
650 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
651 	}
652 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 	spin_unlock(ptl);
654 	ctx->page_mask = HPAGE_PMD_NR - 1;
655 	return page;
656 }
657 
658 static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 				    unsigned long address, p4d_t *p4dp,
660 				    unsigned int flags,
661 				    struct follow_page_context *ctx)
662 {
663 	pud_t *pud;
664 	spinlock_t *ptl;
665 	struct page *page;
666 	struct mm_struct *mm = vma->vm_mm;
667 
668 	pud = pud_offset(p4dp, address);
669 	if (pud_none(*pud))
670 		return no_page_table(vma, flags);
671 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
672 		page = follow_huge_pud(mm, address, pud, flags);
673 		if (page)
674 			return page;
675 		return no_page_table(vma, flags);
676 	}
677 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 		page = follow_huge_pd(vma, address,
679 				      __hugepd(pud_val(*pud)), flags,
680 				      PUD_SHIFT);
681 		if (page)
682 			return page;
683 		return no_page_table(vma, flags);
684 	}
685 	if (pud_devmap(*pud)) {
686 		ptl = pud_lock(mm, pud);
687 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
688 		spin_unlock(ptl);
689 		if (page)
690 			return page;
691 	}
692 	if (unlikely(pud_bad(*pud)))
693 		return no_page_table(vma, flags);
694 
695 	return follow_pmd_mask(vma, address, pud, flags, ctx);
696 }
697 
698 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 				    unsigned long address, pgd_t *pgdp,
700 				    unsigned int flags,
701 				    struct follow_page_context *ctx)
702 {
703 	p4d_t *p4d;
704 	struct page *page;
705 
706 	p4d = p4d_offset(pgdp, address);
707 	if (p4d_none(*p4d))
708 		return no_page_table(vma, flags);
709 	BUILD_BUG_ON(p4d_huge(*p4d));
710 	if (unlikely(p4d_bad(*p4d)))
711 		return no_page_table(vma, flags);
712 
713 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 		page = follow_huge_pd(vma, address,
715 				      __hugepd(p4d_val(*p4d)), flags,
716 				      P4D_SHIFT);
717 		if (page)
718 			return page;
719 		return no_page_table(vma, flags);
720 	}
721 	return follow_pud_mask(vma, address, p4d, flags, ctx);
722 }
723 
724 /**
725  * follow_page_mask - look up a page descriptor from a user-virtual address
726  * @vma: vm_area_struct mapping @address
727  * @address: virtual address to look up
728  * @flags: flags modifying lookup behaviour
729  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730  *       pointer to output page_mask
731  *
732  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733  *
734  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736  *
737  * On output, the @ctx->page_mask is set according to the size of the page.
738  *
739  * Return: the mapped (struct page *), %NULL if no mapping exists, or
740  * an error pointer if there is a mapping to something not represented
741  * by a page descriptor (see also vm_normal_page()).
742  */
743 static struct page *follow_page_mask(struct vm_area_struct *vma,
744 			      unsigned long address, unsigned int flags,
745 			      struct follow_page_context *ctx)
746 {
747 	pgd_t *pgd;
748 	struct page *page;
749 	struct mm_struct *mm = vma->vm_mm;
750 
751 	ctx->page_mask = 0;
752 
753 	/* make this handle hugepd */
754 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 	if (!IS_ERR(page)) {
756 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
757 		return page;
758 	}
759 
760 	pgd = pgd_offset(mm, address);
761 
762 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 		return no_page_table(vma, flags);
764 
765 	if (pgd_huge(*pgd)) {
766 		page = follow_huge_pgd(mm, address, pgd, flags);
767 		if (page)
768 			return page;
769 		return no_page_table(vma, flags);
770 	}
771 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 		page = follow_huge_pd(vma, address,
773 				      __hugepd(pgd_val(*pgd)), flags,
774 				      PGDIR_SHIFT);
775 		if (page)
776 			return page;
777 		return no_page_table(vma, flags);
778 	}
779 
780 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
781 }
782 
783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 			 unsigned int foll_flags)
785 {
786 	struct follow_page_context ctx = { NULL };
787 	struct page *page;
788 
789 	page = follow_page_mask(vma, address, foll_flags, &ctx);
790 	if (ctx.pgmap)
791 		put_dev_pagemap(ctx.pgmap);
792 	return page;
793 }
794 
795 static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 		unsigned int gup_flags, struct vm_area_struct **vma,
797 		struct page **page)
798 {
799 	pgd_t *pgd;
800 	p4d_t *p4d;
801 	pud_t *pud;
802 	pmd_t *pmd;
803 	pte_t *pte;
804 	int ret = -EFAULT;
805 
806 	/* user gate pages are read-only */
807 	if (gup_flags & FOLL_WRITE)
808 		return -EFAULT;
809 	if (address > TASK_SIZE)
810 		pgd = pgd_offset_k(address);
811 	else
812 		pgd = pgd_offset_gate(mm, address);
813 	if (pgd_none(*pgd))
814 		return -EFAULT;
815 	p4d = p4d_offset(pgd, address);
816 	if (p4d_none(*p4d))
817 		return -EFAULT;
818 	pud = pud_offset(p4d, address);
819 	if (pud_none(*pud))
820 		return -EFAULT;
821 	pmd = pmd_offset(pud, address);
822 	if (!pmd_present(*pmd))
823 		return -EFAULT;
824 	VM_BUG_ON(pmd_trans_huge(*pmd));
825 	pte = pte_offset_map(pmd, address);
826 	if (pte_none(*pte))
827 		goto unmap;
828 	*vma = get_gate_vma(mm);
829 	if (!page)
830 		goto out;
831 	*page = vm_normal_page(*vma, address, *pte);
832 	if (!*page) {
833 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 			goto unmap;
835 		*page = pte_page(*pte);
836 	}
837 	if (unlikely(!try_grab_page(*page, gup_flags))) {
838 		ret = -ENOMEM;
839 		goto unmap;
840 	}
841 out:
842 	ret = 0;
843 unmap:
844 	pte_unmap(pte);
845 	return ret;
846 }
847 
848 /*
849  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
850  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
851  * is, *@locked will be set to 0 and -EBUSY returned.
852  */
853 static int faultin_page(struct vm_area_struct *vma,
854 		unsigned long address, unsigned int *flags, int *locked)
855 {
856 	unsigned int fault_flags = 0;
857 	vm_fault_t ret;
858 
859 	/* mlock all present pages, but do not fault in new pages */
860 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 		return -ENOENT;
862 	if (*flags & FOLL_WRITE)
863 		fault_flags |= FAULT_FLAG_WRITE;
864 	if (*flags & FOLL_REMOTE)
865 		fault_flags |= FAULT_FLAG_REMOTE;
866 	if (locked)
867 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 	if (*flags & FOLL_NOWAIT)
869 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870 	if (*flags & FOLL_TRIED) {
871 		/*
872 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 		 * can co-exist
874 		 */
875 		fault_flags |= FAULT_FLAG_TRIED;
876 	}
877 
878 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
879 	if (ret & VM_FAULT_ERROR) {
880 		int err = vm_fault_to_errno(ret, *flags);
881 
882 		if (err)
883 			return err;
884 		BUG();
885 	}
886 
887 	if (ret & VM_FAULT_RETRY) {
888 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 			*locked = 0;
890 		return -EBUSY;
891 	}
892 
893 	/*
894 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 	 * can thus safely do subsequent page lookups as if they were reads.
897 	 * But only do so when looping for pte_write is futile: in some cases
898 	 * userspace may also be wanting to write to the gotten user page,
899 	 * which a read fault here might prevent (a readonly page might get
900 	 * reCOWed by userspace write).
901 	 */
902 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
903 		*flags |= FOLL_COW;
904 	return 0;
905 }
906 
907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908 {
909 	vm_flags_t vm_flags = vma->vm_flags;
910 	int write = (gup_flags & FOLL_WRITE);
911 	int foreign = (gup_flags & FOLL_REMOTE);
912 
913 	if (vm_flags & (VM_IO | VM_PFNMAP))
914 		return -EFAULT;
915 
916 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 		return -EFAULT;
918 
919 	if (write) {
920 		if (!(vm_flags & VM_WRITE)) {
921 			if (!(gup_flags & FOLL_FORCE))
922 				return -EFAULT;
923 			/*
924 			 * We used to let the write,force case do COW in a
925 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
926 			 * set a breakpoint in a read-only mapping of an
927 			 * executable, without corrupting the file (yet only
928 			 * when that file had been opened for writing!).
929 			 * Anon pages in shared mappings are surprising: now
930 			 * just reject it.
931 			 */
932 			if (!is_cow_mapping(vm_flags))
933 				return -EFAULT;
934 		}
935 	} else if (!(vm_flags & VM_READ)) {
936 		if (!(gup_flags & FOLL_FORCE))
937 			return -EFAULT;
938 		/*
939 		 * Is there actually any vma we can reach here which does not
940 		 * have VM_MAYREAD set?
941 		 */
942 		if (!(vm_flags & VM_MAYREAD))
943 			return -EFAULT;
944 	}
945 	/*
946 	 * gups are always data accesses, not instruction
947 	 * fetches, so execute=false here
948 	 */
949 	if (!arch_vma_access_permitted(vma, write, false, foreign))
950 		return -EFAULT;
951 	return 0;
952 }
953 
954 /**
955  * __get_user_pages() - pin user pages in memory
956  * @mm:		mm_struct of target mm
957  * @start:	starting user address
958  * @nr_pages:	number of pages from start to pin
959  * @gup_flags:	flags modifying pin behaviour
960  * @pages:	array that receives pointers to the pages pinned.
961  *		Should be at least nr_pages long. Or NULL, if caller
962  *		only intends to ensure the pages are faulted in.
963  * @vmas:	array of pointers to vmas corresponding to each page.
964  *		Or NULL if the caller does not require them.
965  * @locked:     whether we're still with the mmap_lock held
966  *
967  * Returns either number of pages pinned (which may be less than the
968  * number requested), or an error. Details about the return value:
969  *
970  * -- If nr_pages is 0, returns 0.
971  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
972  * -- If nr_pages is >0, and some pages were pinned, returns the number of
973  *    pages pinned. Again, this may be less than nr_pages.
974  * -- 0 return value is possible when the fault would need to be retried.
975  *
976  * The caller is responsible for releasing returned @pages, via put_page().
977  *
978  * @vmas are valid only as long as mmap_lock is held.
979  *
980  * Must be called with mmap_lock held.  It may be released.  See below.
981  *
982  * __get_user_pages walks a process's page tables and takes a reference to
983  * each struct page that each user address corresponds to at a given
984  * instant. That is, it takes the page that would be accessed if a user
985  * thread accesses the given user virtual address at that instant.
986  *
987  * This does not guarantee that the page exists in the user mappings when
988  * __get_user_pages returns, and there may even be a completely different
989  * page there in some cases (eg. if mmapped pagecache has been invalidated
990  * and subsequently re faulted). However it does guarantee that the page
991  * won't be freed completely. And mostly callers simply care that the page
992  * contains data that was valid *at some point in time*. Typically, an IO
993  * or similar operation cannot guarantee anything stronger anyway because
994  * locks can't be held over the syscall boundary.
995  *
996  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
997  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
998  * appropriate) must be called after the page is finished with, and
999  * before put_page is called.
1000  *
1001  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002  * released by an up_read().  That can happen if @gup_flags does not
1003  * have FOLL_NOWAIT.
1004  *
1005  * A caller using such a combination of @locked and @gup_flags
1006  * must therefore hold the mmap_lock for reading only, and recognize
1007  * when it's been released.  Otherwise, it must be held for either
1008  * reading or writing and will not be released.
1009  *
1010  * In most cases, get_user_pages or get_user_pages_fast should be used
1011  * instead of __get_user_pages. __get_user_pages should be used only if
1012  * you need some special @gup_flags.
1013  */
1014 static long __get_user_pages(struct mm_struct *mm,
1015 		unsigned long start, unsigned long nr_pages,
1016 		unsigned int gup_flags, struct page **pages,
1017 		struct vm_area_struct **vmas, int *locked)
1018 {
1019 	long ret = 0, i = 0;
1020 	struct vm_area_struct *vma = NULL;
1021 	struct follow_page_context ctx = { NULL };
1022 
1023 	if (!nr_pages)
1024 		return 0;
1025 
1026 	start = untagged_addr(start);
1027 
1028 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029 
1030 	/*
1031 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032 	 * fault information is unrelated to the reference behaviour of a task
1033 	 * using the address space
1034 	 */
1035 	if (!(gup_flags & FOLL_FORCE))
1036 		gup_flags |= FOLL_NUMA;
1037 
1038 	do {
1039 		struct page *page;
1040 		unsigned int foll_flags = gup_flags;
1041 		unsigned int page_increm;
1042 
1043 		/* first iteration or cross vma bound */
1044 		if (!vma || start >= vma->vm_end) {
1045 			vma = find_extend_vma(mm, start);
1046 			if (!vma && in_gate_area(mm, start)) {
1047 				ret = get_gate_page(mm, start & PAGE_MASK,
1048 						gup_flags, &vma,
1049 						pages ? &pages[i] : NULL);
1050 				if (ret)
1051 					goto out;
1052 				ctx.page_mask = 0;
1053 				goto next_page;
1054 			}
1055 
1056 			if (!vma || check_vma_flags(vma, gup_flags)) {
1057 				ret = -EFAULT;
1058 				goto out;
1059 			}
1060 			if (is_vm_hugetlb_page(vma)) {
1061 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1062 						&start, &nr_pages, i,
1063 						gup_flags, locked);
1064 				if (locked && *locked == 0) {
1065 					/*
1066 					 * We've got a VM_FAULT_RETRY
1067 					 * and we've lost mmap_lock.
1068 					 * We must stop here.
1069 					 */
1070 					BUG_ON(gup_flags & FOLL_NOWAIT);
1071 					BUG_ON(ret != 0);
1072 					goto out;
1073 				}
1074 				continue;
1075 			}
1076 		}
1077 retry:
1078 		/*
1079 		 * If we have a pending SIGKILL, don't keep faulting pages and
1080 		 * potentially allocating memory.
1081 		 */
1082 		if (fatal_signal_pending(current)) {
1083 			ret = -EINTR;
1084 			goto out;
1085 		}
1086 		cond_resched();
1087 
1088 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089 		if (!page) {
1090 			ret = faultin_page(vma, start, &foll_flags, locked);
1091 			switch (ret) {
1092 			case 0:
1093 				goto retry;
1094 			case -EBUSY:
1095 				ret = 0;
1096 				fallthrough;
1097 			case -EFAULT:
1098 			case -ENOMEM:
1099 			case -EHWPOISON:
1100 				goto out;
1101 			case -ENOENT:
1102 				goto next_page;
1103 			}
1104 			BUG();
1105 		} else if (PTR_ERR(page) == -EEXIST) {
1106 			/*
1107 			 * Proper page table entry exists, but no corresponding
1108 			 * struct page.
1109 			 */
1110 			goto next_page;
1111 		} else if (IS_ERR(page)) {
1112 			ret = PTR_ERR(page);
1113 			goto out;
1114 		}
1115 		if (pages) {
1116 			pages[i] = page;
1117 			flush_anon_page(vma, page, start);
1118 			flush_dcache_page(page);
1119 			ctx.page_mask = 0;
1120 		}
1121 next_page:
1122 		if (vmas) {
1123 			vmas[i] = vma;
1124 			ctx.page_mask = 0;
1125 		}
1126 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127 		if (page_increm > nr_pages)
1128 			page_increm = nr_pages;
1129 		i += page_increm;
1130 		start += page_increm * PAGE_SIZE;
1131 		nr_pages -= page_increm;
1132 	} while (nr_pages);
1133 out:
1134 	if (ctx.pgmap)
1135 		put_dev_pagemap(ctx.pgmap);
1136 	return i ? i : ret;
1137 }
1138 
1139 static bool vma_permits_fault(struct vm_area_struct *vma,
1140 			      unsigned int fault_flags)
1141 {
1142 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145 
1146 	if (!(vm_flags & vma->vm_flags))
1147 		return false;
1148 
1149 	/*
1150 	 * The architecture might have a hardware protection
1151 	 * mechanism other than read/write that can deny access.
1152 	 *
1153 	 * gup always represents data access, not instruction
1154 	 * fetches, so execute=false here:
1155 	 */
1156 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 /**
1163  * fixup_user_fault() - manually resolve a user page fault
1164  * @mm:		mm_struct of target mm
1165  * @address:	user address
1166  * @fault_flags:flags to pass down to handle_mm_fault()
1167  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168  *		does not allow retry. If NULL, the caller must guarantee
1169  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170  *
1171  * This is meant to be called in the specific scenario where for locking reasons
1172  * we try to access user memory in atomic context (within a pagefault_disable()
1173  * section), this returns -EFAULT, and we want to resolve the user fault before
1174  * trying again.
1175  *
1176  * Typically this is meant to be used by the futex code.
1177  *
1178  * The main difference with get_user_pages() is that this function will
1179  * unconditionally call handle_mm_fault() which will in turn perform all the
1180  * necessary SW fixup of the dirty and young bits in the PTE, while
1181  * get_user_pages() only guarantees to update these in the struct page.
1182  *
1183  * This is important for some architectures where those bits also gate the
1184  * access permission to the page because they are maintained in software.  On
1185  * such architectures, gup() will not be enough to make a subsequent access
1186  * succeed.
1187  *
1188  * This function will not return with an unlocked mmap_lock. So it has not the
1189  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190  */
1191 int fixup_user_fault(struct mm_struct *mm,
1192 		     unsigned long address, unsigned int fault_flags,
1193 		     bool *unlocked)
1194 {
1195 	struct vm_area_struct *vma;
1196 	vm_fault_t ret, major = 0;
1197 
1198 	address = untagged_addr(address);
1199 
1200 	if (unlocked)
1201 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202 
1203 retry:
1204 	vma = find_extend_vma(mm, address);
1205 	if (!vma || address < vma->vm_start)
1206 		return -EFAULT;
1207 
1208 	if (!vma_permits_fault(vma, fault_flags))
1209 		return -EFAULT;
1210 
1211 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212 	    fatal_signal_pending(current))
1213 		return -EINTR;
1214 
1215 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216 	major |= ret & VM_FAULT_MAJOR;
1217 	if (ret & VM_FAULT_ERROR) {
1218 		int err = vm_fault_to_errno(ret, 0);
1219 
1220 		if (err)
1221 			return err;
1222 		BUG();
1223 	}
1224 
1225 	if (ret & VM_FAULT_RETRY) {
1226 		mmap_read_lock(mm);
1227 		*unlocked = true;
1228 		fault_flags |= FAULT_FLAG_TRIED;
1229 		goto retry;
1230 	}
1231 
1232 	return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(fixup_user_fault);
1235 
1236 /*
1237  * Please note that this function, unlike __get_user_pages will not
1238  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239  */
1240 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241 						unsigned long start,
1242 						unsigned long nr_pages,
1243 						struct page **pages,
1244 						struct vm_area_struct **vmas,
1245 						int *locked,
1246 						unsigned int flags)
1247 {
1248 	long ret, pages_done;
1249 	bool lock_dropped;
1250 
1251 	if (locked) {
1252 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253 		BUG_ON(vmas);
1254 		/* check caller initialized locked */
1255 		BUG_ON(*locked != 1);
1256 	}
1257 
1258 	/*
1259 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1260 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1261 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1262 	 * for FOLL_GET, not for the newer FOLL_PIN.
1263 	 *
1264 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1265 	 * that here, as any failures will be obvious enough.
1266 	 */
1267 	if (pages && !(flags & FOLL_PIN))
1268 		flags |= FOLL_GET;
1269 
1270 	pages_done = 0;
1271 	lock_dropped = false;
1272 	for (;;) {
1273 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1274 				       vmas, locked);
1275 		if (!locked)
1276 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1277 			return ret;
1278 
1279 		/* VM_FAULT_RETRY cannot return errors */
1280 		if (!*locked) {
1281 			BUG_ON(ret < 0);
1282 			BUG_ON(ret >= nr_pages);
1283 		}
1284 
1285 		if (ret > 0) {
1286 			nr_pages -= ret;
1287 			pages_done += ret;
1288 			if (!nr_pages)
1289 				break;
1290 		}
1291 		if (*locked) {
1292 			/*
1293 			 * VM_FAULT_RETRY didn't trigger or it was a
1294 			 * FOLL_NOWAIT.
1295 			 */
1296 			if (!pages_done)
1297 				pages_done = ret;
1298 			break;
1299 		}
1300 		/*
1301 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1302 		 * For the prefault case (!pages) we only update counts.
1303 		 */
1304 		if (likely(pages))
1305 			pages += ret;
1306 		start += ret << PAGE_SHIFT;
1307 		lock_dropped = true;
1308 
1309 retry:
1310 		/*
1311 		 * Repeat on the address that fired VM_FAULT_RETRY
1312 		 * with both FAULT_FLAG_ALLOW_RETRY and
1313 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1314 		 * by fatal signals, so we need to check it before we
1315 		 * start trying again otherwise it can loop forever.
1316 		 */
1317 
1318 		if (fatal_signal_pending(current)) {
1319 			if (!pages_done)
1320 				pages_done = -EINTR;
1321 			break;
1322 		}
1323 
1324 		ret = mmap_read_lock_killable(mm);
1325 		if (ret) {
1326 			BUG_ON(ret > 0);
1327 			if (!pages_done)
1328 				pages_done = ret;
1329 			break;
1330 		}
1331 
1332 		*locked = 1;
1333 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1334 				       pages, NULL, locked);
1335 		if (!*locked) {
1336 			/* Continue to retry until we succeeded */
1337 			BUG_ON(ret != 0);
1338 			goto retry;
1339 		}
1340 		if (ret != 1) {
1341 			BUG_ON(ret > 1);
1342 			if (!pages_done)
1343 				pages_done = ret;
1344 			break;
1345 		}
1346 		nr_pages--;
1347 		pages_done++;
1348 		if (!nr_pages)
1349 			break;
1350 		if (likely(pages))
1351 			pages++;
1352 		start += PAGE_SIZE;
1353 	}
1354 	if (lock_dropped && *locked) {
1355 		/*
1356 		 * We must let the caller know we temporarily dropped the lock
1357 		 * and so the critical section protected by it was lost.
1358 		 */
1359 		mmap_read_unlock(mm);
1360 		*locked = 0;
1361 	}
1362 	return pages_done;
1363 }
1364 
1365 /**
1366  * populate_vma_page_range() -  populate a range of pages in the vma.
1367  * @vma:   target vma
1368  * @start: start address
1369  * @end:   end address
1370  * @locked: whether the mmap_lock is still held
1371  *
1372  * This takes care of mlocking the pages too if VM_LOCKED is set.
1373  *
1374  * Return either number of pages pinned in the vma, or a negative error
1375  * code on error.
1376  *
1377  * vma->vm_mm->mmap_lock must be held.
1378  *
1379  * If @locked is NULL, it may be held for read or write and will
1380  * be unperturbed.
1381  *
1382  * If @locked is non-NULL, it must held for read only and may be
1383  * released.  If it's released, *@locked will be set to 0.
1384  */
1385 long populate_vma_page_range(struct vm_area_struct *vma,
1386 		unsigned long start, unsigned long end, int *locked)
1387 {
1388 	struct mm_struct *mm = vma->vm_mm;
1389 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1390 	int gup_flags;
1391 
1392 	VM_BUG_ON(start & ~PAGE_MASK);
1393 	VM_BUG_ON(end   & ~PAGE_MASK);
1394 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1395 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1396 	mmap_assert_locked(mm);
1397 
1398 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1399 	if (vma->vm_flags & VM_LOCKONFAULT)
1400 		gup_flags &= ~FOLL_POPULATE;
1401 	/*
1402 	 * We want to touch writable mappings with a write fault in order
1403 	 * to break COW, except for shared mappings because these don't COW
1404 	 * and we would not want to dirty them for nothing.
1405 	 */
1406 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1407 		gup_flags |= FOLL_WRITE;
1408 
1409 	/*
1410 	 * We want mlock to succeed for regions that have any permissions
1411 	 * other than PROT_NONE.
1412 	 */
1413 	if (vma_is_accessible(vma))
1414 		gup_flags |= FOLL_FORCE;
1415 
1416 	/*
1417 	 * We made sure addr is within a VMA, so the following will
1418 	 * not result in a stack expansion that recurses back here.
1419 	 */
1420 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1421 				NULL, NULL, locked);
1422 }
1423 
1424 /*
1425  * __mm_populate - populate and/or mlock pages within a range of address space.
1426  *
1427  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1428  * flags. VMAs must be already marked with the desired vm_flags, and
1429  * mmap_lock must not be held.
1430  */
1431 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1432 {
1433 	struct mm_struct *mm = current->mm;
1434 	unsigned long end, nstart, nend;
1435 	struct vm_area_struct *vma = NULL;
1436 	int locked = 0;
1437 	long ret = 0;
1438 
1439 	end = start + len;
1440 
1441 	for (nstart = start; nstart < end; nstart = nend) {
1442 		/*
1443 		 * We want to fault in pages for [nstart; end) address range.
1444 		 * Find first corresponding VMA.
1445 		 */
1446 		if (!locked) {
1447 			locked = 1;
1448 			mmap_read_lock(mm);
1449 			vma = find_vma(mm, nstart);
1450 		} else if (nstart >= vma->vm_end)
1451 			vma = vma->vm_next;
1452 		if (!vma || vma->vm_start >= end)
1453 			break;
1454 		/*
1455 		 * Set [nstart; nend) to intersection of desired address
1456 		 * range with the first VMA. Also, skip undesirable VMA types.
1457 		 */
1458 		nend = min(end, vma->vm_end);
1459 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1460 			continue;
1461 		if (nstart < vma->vm_start)
1462 			nstart = vma->vm_start;
1463 		/*
1464 		 * Now fault in a range of pages. populate_vma_page_range()
1465 		 * double checks the vma flags, so that it won't mlock pages
1466 		 * if the vma was already munlocked.
1467 		 */
1468 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1469 		if (ret < 0) {
1470 			if (ignore_errors) {
1471 				ret = 0;
1472 				continue;	/* continue at next VMA */
1473 			}
1474 			break;
1475 		}
1476 		nend = nstart + ret * PAGE_SIZE;
1477 		ret = 0;
1478 	}
1479 	if (locked)
1480 		mmap_read_unlock(mm);
1481 	return ret;	/* 0 or negative error code */
1482 }
1483 
1484 /**
1485  * get_dump_page() - pin user page in memory while writing it to core dump
1486  * @addr: user address
1487  *
1488  * Returns struct page pointer of user page pinned for dump,
1489  * to be freed afterwards by put_page().
1490  *
1491  * Returns NULL on any kind of failure - a hole must then be inserted into
1492  * the corefile, to preserve alignment with its headers; and also returns
1493  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1494  * allowing a hole to be left in the corefile to save diskspace.
1495  *
1496  * Called without mmap_lock, but after all other threads have been killed.
1497  */
1498 #ifdef CONFIG_ELF_CORE
1499 struct page *get_dump_page(unsigned long addr)
1500 {
1501 	struct vm_area_struct *vma;
1502 	struct page *page;
1503 
1504 	if (__get_user_pages(current->mm, addr, 1,
1505 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1506 			     NULL) < 1)
1507 		return NULL;
1508 	flush_cache_page(vma, addr, page_to_pfn(page));
1509 	return page;
1510 }
1511 #endif /* CONFIG_ELF_CORE */
1512 #else /* CONFIG_MMU */
1513 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1514 		unsigned long nr_pages, struct page **pages,
1515 		struct vm_area_struct **vmas, int *locked,
1516 		unsigned int foll_flags)
1517 {
1518 	struct vm_area_struct *vma;
1519 	unsigned long vm_flags;
1520 	int i;
1521 
1522 	/* calculate required read or write permissions.
1523 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1524 	 */
1525 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1526 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1527 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1528 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1529 
1530 	for (i = 0; i < nr_pages; i++) {
1531 		vma = find_vma(mm, start);
1532 		if (!vma)
1533 			goto finish_or_fault;
1534 
1535 		/* protect what we can, including chardevs */
1536 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1537 		    !(vm_flags & vma->vm_flags))
1538 			goto finish_or_fault;
1539 
1540 		if (pages) {
1541 			pages[i] = virt_to_page(start);
1542 			if (pages[i])
1543 				get_page(pages[i]);
1544 		}
1545 		if (vmas)
1546 			vmas[i] = vma;
1547 		start = (start + PAGE_SIZE) & PAGE_MASK;
1548 	}
1549 
1550 	return i;
1551 
1552 finish_or_fault:
1553 	return i ? : -EFAULT;
1554 }
1555 #endif /* !CONFIG_MMU */
1556 
1557 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1558 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1559 {
1560 	long i;
1561 	struct vm_area_struct *vma_prev = NULL;
1562 
1563 	for (i = 0; i < nr_pages; i++) {
1564 		struct vm_area_struct *vma = vmas[i];
1565 
1566 		if (vma == vma_prev)
1567 			continue;
1568 
1569 		vma_prev = vma;
1570 
1571 		if (vma_is_fsdax(vma))
1572 			return true;
1573 	}
1574 	return false;
1575 }
1576 
1577 #ifdef CONFIG_CMA
1578 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1579 					unsigned long start,
1580 					unsigned long nr_pages,
1581 					struct page **pages,
1582 					struct vm_area_struct **vmas,
1583 					unsigned int gup_flags)
1584 {
1585 	unsigned long i;
1586 	unsigned long step;
1587 	bool drain_allow = true;
1588 	bool migrate_allow = true;
1589 	LIST_HEAD(cma_page_list);
1590 	long ret = nr_pages;
1591 	struct migration_target_control mtc = {
1592 		.nid = NUMA_NO_NODE,
1593 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1594 	};
1595 
1596 check_again:
1597 	for (i = 0; i < nr_pages;) {
1598 
1599 		struct page *head = compound_head(pages[i]);
1600 
1601 		/*
1602 		 * gup may start from a tail page. Advance step by the left
1603 		 * part.
1604 		 */
1605 		step = compound_nr(head) - (pages[i] - head);
1606 		/*
1607 		 * If we get a page from the CMA zone, since we are going to
1608 		 * be pinning these entries, we might as well move them out
1609 		 * of the CMA zone if possible.
1610 		 */
1611 		if (is_migrate_cma_page(head)) {
1612 			if (PageHuge(head))
1613 				isolate_huge_page(head, &cma_page_list);
1614 			else {
1615 				if (!PageLRU(head) && drain_allow) {
1616 					lru_add_drain_all();
1617 					drain_allow = false;
1618 				}
1619 
1620 				if (!isolate_lru_page(head)) {
1621 					list_add_tail(&head->lru, &cma_page_list);
1622 					mod_node_page_state(page_pgdat(head),
1623 							    NR_ISOLATED_ANON +
1624 							    page_is_file_lru(head),
1625 							    thp_nr_pages(head));
1626 				}
1627 			}
1628 		}
1629 
1630 		i += step;
1631 	}
1632 
1633 	if (!list_empty(&cma_page_list)) {
1634 		/*
1635 		 * drop the above get_user_pages reference.
1636 		 */
1637 		for (i = 0; i < nr_pages; i++)
1638 			put_page(pages[i]);
1639 
1640 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1641 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1642 			/*
1643 			 * some of the pages failed migration. Do get_user_pages
1644 			 * without migration.
1645 			 */
1646 			migrate_allow = false;
1647 
1648 			if (!list_empty(&cma_page_list))
1649 				putback_movable_pages(&cma_page_list);
1650 		}
1651 		/*
1652 		 * We did migrate all the pages, Try to get the page references
1653 		 * again migrating any new CMA pages which we failed to isolate
1654 		 * earlier.
1655 		 */
1656 		ret = __get_user_pages_locked(mm, start, nr_pages,
1657 						   pages, vmas, NULL,
1658 						   gup_flags);
1659 
1660 		if ((ret > 0) && migrate_allow) {
1661 			nr_pages = ret;
1662 			drain_allow = true;
1663 			goto check_again;
1664 		}
1665 	}
1666 
1667 	return ret;
1668 }
1669 #else
1670 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1671 					unsigned long start,
1672 					unsigned long nr_pages,
1673 					struct page **pages,
1674 					struct vm_area_struct **vmas,
1675 					unsigned int gup_flags)
1676 {
1677 	return nr_pages;
1678 }
1679 #endif /* CONFIG_CMA */
1680 
1681 /*
1682  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1683  * allows us to process the FOLL_LONGTERM flag.
1684  */
1685 static long __gup_longterm_locked(struct mm_struct *mm,
1686 				  unsigned long start,
1687 				  unsigned long nr_pages,
1688 				  struct page **pages,
1689 				  struct vm_area_struct **vmas,
1690 				  unsigned int gup_flags)
1691 {
1692 	struct vm_area_struct **vmas_tmp = vmas;
1693 	unsigned long flags = 0;
1694 	long rc, i;
1695 
1696 	if (gup_flags & FOLL_LONGTERM) {
1697 		if (!pages)
1698 			return -EINVAL;
1699 
1700 		if (!vmas_tmp) {
1701 			vmas_tmp = kcalloc(nr_pages,
1702 					   sizeof(struct vm_area_struct *),
1703 					   GFP_KERNEL);
1704 			if (!vmas_tmp)
1705 				return -ENOMEM;
1706 		}
1707 		flags = memalloc_nocma_save();
1708 	}
1709 
1710 	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1711 				     vmas_tmp, NULL, gup_flags);
1712 
1713 	if (gup_flags & FOLL_LONGTERM) {
1714 		if (rc < 0)
1715 			goto out;
1716 
1717 		if (check_dax_vmas(vmas_tmp, rc)) {
1718 			for (i = 0; i < rc; i++)
1719 				put_page(pages[i]);
1720 			rc = -EOPNOTSUPP;
1721 			goto out;
1722 		}
1723 
1724 		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1725 						 vmas_tmp, gup_flags);
1726 out:
1727 		memalloc_nocma_restore(flags);
1728 	}
1729 
1730 	if (vmas_tmp != vmas)
1731 		kfree(vmas_tmp);
1732 	return rc;
1733 }
1734 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1735 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1736 						  unsigned long start,
1737 						  unsigned long nr_pages,
1738 						  struct page **pages,
1739 						  struct vm_area_struct **vmas,
1740 						  unsigned int flags)
1741 {
1742 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1743 				       NULL, flags);
1744 }
1745 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1746 
1747 #ifdef CONFIG_MMU
1748 static long __get_user_pages_remote(struct mm_struct *mm,
1749 				    unsigned long start, unsigned long nr_pages,
1750 				    unsigned int gup_flags, struct page **pages,
1751 				    struct vm_area_struct **vmas, int *locked)
1752 {
1753 	/*
1754 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1755 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1756 	 * vmas. However, this only comes up if locked is set, and there are
1757 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1758 	 * allow what we can.
1759 	 */
1760 	if (gup_flags & FOLL_LONGTERM) {
1761 		if (WARN_ON_ONCE(locked))
1762 			return -EINVAL;
1763 		/*
1764 		 * This will check the vmas (even if our vmas arg is NULL)
1765 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1766 		 */
1767 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1768 					     vmas, gup_flags | FOLL_TOUCH |
1769 					     FOLL_REMOTE);
1770 	}
1771 
1772 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1773 				       locked,
1774 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1775 }
1776 
1777 /**
1778  * get_user_pages_remote() - pin user pages in memory
1779  * @mm:		mm_struct of target mm
1780  * @start:	starting user address
1781  * @nr_pages:	number of pages from start to pin
1782  * @gup_flags:	flags modifying lookup behaviour
1783  * @pages:	array that receives pointers to the pages pinned.
1784  *		Should be at least nr_pages long. Or NULL, if caller
1785  *		only intends to ensure the pages are faulted in.
1786  * @vmas:	array of pointers to vmas corresponding to each page.
1787  *		Or NULL if the caller does not require them.
1788  * @locked:	pointer to lock flag indicating whether lock is held and
1789  *		subsequently whether VM_FAULT_RETRY functionality can be
1790  *		utilised. Lock must initially be held.
1791  *
1792  * Returns either number of pages pinned (which may be less than the
1793  * number requested), or an error. Details about the return value:
1794  *
1795  * -- If nr_pages is 0, returns 0.
1796  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1797  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1798  *    pages pinned. Again, this may be less than nr_pages.
1799  *
1800  * The caller is responsible for releasing returned @pages, via put_page().
1801  *
1802  * @vmas are valid only as long as mmap_lock is held.
1803  *
1804  * Must be called with mmap_lock held for read or write.
1805  *
1806  * get_user_pages_remote walks a process's page tables and takes a reference
1807  * to each struct page that each user address corresponds to at a given
1808  * instant. That is, it takes the page that would be accessed if a user
1809  * thread accesses the given user virtual address at that instant.
1810  *
1811  * This does not guarantee that the page exists in the user mappings when
1812  * get_user_pages_remote returns, and there may even be a completely different
1813  * page there in some cases (eg. if mmapped pagecache has been invalidated
1814  * and subsequently re faulted). However it does guarantee that the page
1815  * won't be freed completely. And mostly callers simply care that the page
1816  * contains data that was valid *at some point in time*. Typically, an IO
1817  * or similar operation cannot guarantee anything stronger anyway because
1818  * locks can't be held over the syscall boundary.
1819  *
1820  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1821  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1822  * be called after the page is finished with, and before put_page is called.
1823  *
1824  * get_user_pages_remote is typically used for fewer-copy IO operations,
1825  * to get a handle on the memory by some means other than accesses
1826  * via the user virtual addresses. The pages may be submitted for
1827  * DMA to devices or accessed via their kernel linear mapping (via the
1828  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1829  *
1830  * See also get_user_pages_fast, for performance critical applications.
1831  *
1832  * get_user_pages_remote should be phased out in favor of
1833  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1834  * should use get_user_pages_remote because it cannot pass
1835  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1836  */
1837 long get_user_pages_remote(struct mm_struct *mm,
1838 		unsigned long start, unsigned long nr_pages,
1839 		unsigned int gup_flags, struct page **pages,
1840 		struct vm_area_struct **vmas, int *locked)
1841 {
1842 	/*
1843 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1844 	 * never directly by the caller, so enforce that with an assertion:
1845 	 */
1846 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1847 		return -EINVAL;
1848 
1849 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1850 				       pages, vmas, locked);
1851 }
1852 EXPORT_SYMBOL(get_user_pages_remote);
1853 
1854 #else /* CONFIG_MMU */
1855 long get_user_pages_remote(struct mm_struct *mm,
1856 			   unsigned long start, unsigned long nr_pages,
1857 			   unsigned int gup_flags, struct page **pages,
1858 			   struct vm_area_struct **vmas, int *locked)
1859 {
1860 	return 0;
1861 }
1862 
1863 static long __get_user_pages_remote(struct mm_struct *mm,
1864 				    unsigned long start, unsigned long nr_pages,
1865 				    unsigned int gup_flags, struct page **pages,
1866 				    struct vm_area_struct **vmas, int *locked)
1867 {
1868 	return 0;
1869 }
1870 #endif /* !CONFIG_MMU */
1871 
1872 /**
1873  * get_user_pages() - pin user pages in memory
1874  * @start:      starting user address
1875  * @nr_pages:   number of pages from start to pin
1876  * @gup_flags:  flags modifying lookup behaviour
1877  * @pages:      array that receives pointers to the pages pinned.
1878  *              Should be at least nr_pages long. Or NULL, if caller
1879  *              only intends to ensure the pages are faulted in.
1880  * @vmas:       array of pointers to vmas corresponding to each page.
1881  *              Or NULL if the caller does not require them.
1882  *
1883  * This is the same as get_user_pages_remote(), just with a less-flexible
1884  * calling convention where we assume that the mm being operated on belongs to
1885  * the current task, and doesn't allow passing of a locked parameter.  We also
1886  * obviously don't pass FOLL_REMOTE in here.
1887  */
1888 long get_user_pages(unsigned long start, unsigned long nr_pages,
1889 		unsigned int gup_flags, struct page **pages,
1890 		struct vm_area_struct **vmas)
1891 {
1892 	/*
1893 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1894 	 * never directly by the caller, so enforce that with an assertion:
1895 	 */
1896 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1897 		return -EINVAL;
1898 
1899 	return __gup_longterm_locked(current->mm, start, nr_pages,
1900 				     pages, vmas, gup_flags | FOLL_TOUCH);
1901 }
1902 EXPORT_SYMBOL(get_user_pages);
1903 
1904 /**
1905  * get_user_pages_locked() is suitable to replace the form:
1906  *
1907  *      mmap_read_lock(mm);
1908  *      do_something()
1909  *      get_user_pages(mm, ..., pages, NULL);
1910  *      mmap_read_unlock(mm);
1911  *
1912  *  to:
1913  *
1914  *      int locked = 1;
1915  *      mmap_read_lock(mm);
1916  *      do_something()
1917  *      get_user_pages_locked(mm, ..., pages, &locked);
1918  *      if (locked)
1919  *          mmap_read_unlock(mm);
1920  *
1921  * @start:      starting user address
1922  * @nr_pages:   number of pages from start to pin
1923  * @gup_flags:  flags modifying lookup behaviour
1924  * @pages:      array that receives pointers to the pages pinned.
1925  *              Should be at least nr_pages long. Or NULL, if caller
1926  *              only intends to ensure the pages are faulted in.
1927  * @locked:     pointer to lock flag indicating whether lock is held and
1928  *              subsequently whether VM_FAULT_RETRY functionality can be
1929  *              utilised. Lock must initially be held.
1930  *
1931  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1932  * paths better by using either get_user_pages_locked() or
1933  * get_user_pages_unlocked().
1934  *
1935  */
1936 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1937 			   unsigned int gup_flags, struct page **pages,
1938 			   int *locked)
1939 {
1940 	/*
1941 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1942 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1943 	 * vmas.  As there are no users of this flag in this call we simply
1944 	 * disallow this option for now.
1945 	 */
1946 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1947 		return -EINVAL;
1948 	/*
1949 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1950 	 * never directly by the caller, so enforce that:
1951 	 */
1952 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1953 		return -EINVAL;
1954 
1955 	return __get_user_pages_locked(current->mm, start, nr_pages,
1956 				       pages, NULL, locked,
1957 				       gup_flags | FOLL_TOUCH);
1958 }
1959 EXPORT_SYMBOL(get_user_pages_locked);
1960 
1961 /*
1962  * get_user_pages_unlocked() is suitable to replace the form:
1963  *
1964  *      mmap_read_lock(mm);
1965  *      get_user_pages(mm, ..., pages, NULL);
1966  *      mmap_read_unlock(mm);
1967  *
1968  *  with:
1969  *
1970  *      get_user_pages_unlocked(mm, ..., pages);
1971  *
1972  * It is functionally equivalent to get_user_pages_fast so
1973  * get_user_pages_fast should be used instead if specific gup_flags
1974  * (e.g. FOLL_FORCE) are not required.
1975  */
1976 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1977 			     struct page **pages, unsigned int gup_flags)
1978 {
1979 	struct mm_struct *mm = current->mm;
1980 	int locked = 1;
1981 	long ret;
1982 
1983 	/*
1984 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1985 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1986 	 * vmas.  As there are no users of this flag in this call we simply
1987 	 * disallow this option for now.
1988 	 */
1989 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1990 		return -EINVAL;
1991 
1992 	mmap_read_lock(mm);
1993 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1994 				      &locked, gup_flags | FOLL_TOUCH);
1995 	if (locked)
1996 		mmap_read_unlock(mm);
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL(get_user_pages_unlocked);
2000 
2001 /*
2002  * Fast GUP
2003  *
2004  * get_user_pages_fast attempts to pin user pages by walking the page
2005  * tables directly and avoids taking locks. Thus the walker needs to be
2006  * protected from page table pages being freed from under it, and should
2007  * block any THP splits.
2008  *
2009  * One way to achieve this is to have the walker disable interrupts, and
2010  * rely on IPIs from the TLB flushing code blocking before the page table
2011  * pages are freed. This is unsuitable for architectures that do not need
2012  * to broadcast an IPI when invalidating TLBs.
2013  *
2014  * Another way to achieve this is to batch up page table containing pages
2015  * belonging to more than one mm_user, then rcu_sched a callback to free those
2016  * pages. Disabling interrupts will allow the fast_gup walker to both block
2017  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2018  * (which is a relatively rare event). The code below adopts this strategy.
2019  *
2020  * Before activating this code, please be aware that the following assumptions
2021  * are currently made:
2022  *
2023  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2024  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2025  *
2026  *  *) ptes can be read atomically by the architecture.
2027  *
2028  *  *) access_ok is sufficient to validate userspace address ranges.
2029  *
2030  * The last two assumptions can be relaxed by the addition of helper functions.
2031  *
2032  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2033  */
2034 #ifdef CONFIG_HAVE_FAST_GUP
2035 
2036 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2037 {
2038 	if (flags & FOLL_PIN) {
2039 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2040 				    refs);
2041 
2042 		if (hpage_pincount_available(page))
2043 			hpage_pincount_sub(page, refs);
2044 		else
2045 			refs *= GUP_PIN_COUNTING_BIAS;
2046 	}
2047 
2048 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2049 	/*
2050 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2051 	 * ref needs a put_page().
2052 	 */
2053 	if (refs > 1)
2054 		page_ref_sub(page, refs - 1);
2055 	put_page(page);
2056 }
2057 
2058 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2059 
2060 /*
2061  * WARNING: only to be used in the get_user_pages_fast() implementation.
2062  *
2063  * With get_user_pages_fast(), we walk down the pagetables without taking any
2064  * locks.  For this we would like to load the pointers atomically, but sometimes
2065  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2066  * we do have is the guarantee that a PTE will only either go from not present
2067  * to present, or present to not present or both -- it will not switch to a
2068  * completely different present page without a TLB flush in between; something
2069  * that we are blocking by holding interrupts off.
2070  *
2071  * Setting ptes from not present to present goes:
2072  *
2073  *   ptep->pte_high = h;
2074  *   smp_wmb();
2075  *   ptep->pte_low = l;
2076  *
2077  * And present to not present goes:
2078  *
2079  *   ptep->pte_low = 0;
2080  *   smp_wmb();
2081  *   ptep->pte_high = 0;
2082  *
2083  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2084  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2085  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2086  * picked up a changed pte high. We might have gotten rubbish values from
2087  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2088  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2089  * operates on present ptes we're safe.
2090  */
2091 static inline pte_t gup_get_pte(pte_t *ptep)
2092 {
2093 	pte_t pte;
2094 
2095 	do {
2096 		pte.pte_low = ptep->pte_low;
2097 		smp_rmb();
2098 		pte.pte_high = ptep->pte_high;
2099 		smp_rmb();
2100 	} while (unlikely(pte.pte_low != ptep->pte_low));
2101 
2102 	return pte;
2103 }
2104 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2105 /*
2106  * We require that the PTE can be read atomically.
2107  */
2108 static inline pte_t gup_get_pte(pte_t *ptep)
2109 {
2110 	return ptep_get(ptep);
2111 }
2112 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2113 
2114 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2115 					    unsigned int flags,
2116 					    struct page **pages)
2117 {
2118 	while ((*nr) - nr_start) {
2119 		struct page *page = pages[--(*nr)];
2120 
2121 		ClearPageReferenced(page);
2122 		if (flags & FOLL_PIN)
2123 			unpin_user_page(page);
2124 		else
2125 			put_page(page);
2126 	}
2127 }
2128 
2129 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2130 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2131 			 unsigned int flags, struct page **pages, int *nr)
2132 {
2133 	struct dev_pagemap *pgmap = NULL;
2134 	int nr_start = *nr, ret = 0;
2135 	pte_t *ptep, *ptem;
2136 
2137 	ptem = ptep = pte_offset_map(&pmd, addr);
2138 	do {
2139 		pte_t pte = gup_get_pte(ptep);
2140 		struct page *head, *page;
2141 
2142 		/*
2143 		 * Similar to the PMD case below, NUMA hinting must take slow
2144 		 * path using the pte_protnone check.
2145 		 */
2146 		if (pte_protnone(pte))
2147 			goto pte_unmap;
2148 
2149 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2150 			goto pte_unmap;
2151 
2152 		if (pte_devmap(pte)) {
2153 			if (unlikely(flags & FOLL_LONGTERM))
2154 				goto pte_unmap;
2155 
2156 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2157 			if (unlikely(!pgmap)) {
2158 				undo_dev_pagemap(nr, nr_start, flags, pages);
2159 				goto pte_unmap;
2160 			}
2161 		} else if (pte_special(pte))
2162 			goto pte_unmap;
2163 
2164 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2165 		page = pte_page(pte);
2166 
2167 		head = try_grab_compound_head(page, 1, flags);
2168 		if (!head)
2169 			goto pte_unmap;
2170 
2171 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2172 			put_compound_head(head, 1, flags);
2173 			goto pte_unmap;
2174 		}
2175 
2176 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2177 
2178 		/*
2179 		 * We need to make the page accessible if and only if we are
2180 		 * going to access its content (the FOLL_PIN case).  Please
2181 		 * see Documentation/core-api/pin_user_pages.rst for
2182 		 * details.
2183 		 */
2184 		if (flags & FOLL_PIN) {
2185 			ret = arch_make_page_accessible(page);
2186 			if (ret) {
2187 				unpin_user_page(page);
2188 				goto pte_unmap;
2189 			}
2190 		}
2191 		SetPageReferenced(page);
2192 		pages[*nr] = page;
2193 		(*nr)++;
2194 
2195 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2196 
2197 	ret = 1;
2198 
2199 pte_unmap:
2200 	if (pgmap)
2201 		put_dev_pagemap(pgmap);
2202 	pte_unmap(ptem);
2203 	return ret;
2204 }
2205 #else
2206 
2207 /*
2208  * If we can't determine whether or not a pte is special, then fail immediately
2209  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2210  * to be special.
2211  *
2212  * For a futex to be placed on a THP tail page, get_futex_key requires a
2213  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2214  * useful to have gup_huge_pmd even if we can't operate on ptes.
2215  */
2216 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2217 			 unsigned int flags, struct page **pages, int *nr)
2218 {
2219 	return 0;
2220 }
2221 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2222 
2223 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2224 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2225 			     unsigned long end, unsigned int flags,
2226 			     struct page **pages, int *nr)
2227 {
2228 	int nr_start = *nr;
2229 	struct dev_pagemap *pgmap = NULL;
2230 
2231 	do {
2232 		struct page *page = pfn_to_page(pfn);
2233 
2234 		pgmap = get_dev_pagemap(pfn, pgmap);
2235 		if (unlikely(!pgmap)) {
2236 			undo_dev_pagemap(nr, nr_start, flags, pages);
2237 			return 0;
2238 		}
2239 		SetPageReferenced(page);
2240 		pages[*nr] = page;
2241 		if (unlikely(!try_grab_page(page, flags))) {
2242 			undo_dev_pagemap(nr, nr_start, flags, pages);
2243 			return 0;
2244 		}
2245 		(*nr)++;
2246 		pfn++;
2247 	} while (addr += PAGE_SIZE, addr != end);
2248 
2249 	if (pgmap)
2250 		put_dev_pagemap(pgmap);
2251 	return 1;
2252 }
2253 
2254 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2255 				 unsigned long end, unsigned int flags,
2256 				 struct page **pages, int *nr)
2257 {
2258 	unsigned long fault_pfn;
2259 	int nr_start = *nr;
2260 
2261 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2262 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2263 		return 0;
2264 
2265 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2266 		undo_dev_pagemap(nr, nr_start, flags, pages);
2267 		return 0;
2268 	}
2269 	return 1;
2270 }
2271 
2272 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2273 				 unsigned long end, unsigned int flags,
2274 				 struct page **pages, int *nr)
2275 {
2276 	unsigned long fault_pfn;
2277 	int nr_start = *nr;
2278 
2279 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2280 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2281 		return 0;
2282 
2283 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2284 		undo_dev_pagemap(nr, nr_start, flags, pages);
2285 		return 0;
2286 	}
2287 	return 1;
2288 }
2289 #else
2290 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2291 				 unsigned long end, unsigned int flags,
2292 				 struct page **pages, int *nr)
2293 {
2294 	BUILD_BUG();
2295 	return 0;
2296 }
2297 
2298 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2299 				 unsigned long end, unsigned int flags,
2300 				 struct page **pages, int *nr)
2301 {
2302 	BUILD_BUG();
2303 	return 0;
2304 }
2305 #endif
2306 
2307 static int record_subpages(struct page *page, unsigned long addr,
2308 			   unsigned long end, struct page **pages)
2309 {
2310 	int nr;
2311 
2312 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2313 		pages[nr++] = page++;
2314 
2315 	return nr;
2316 }
2317 
2318 #ifdef CONFIG_ARCH_HAS_HUGEPD
2319 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2320 				      unsigned long sz)
2321 {
2322 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2323 	return (__boundary - 1 < end - 1) ? __boundary : end;
2324 }
2325 
2326 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2327 		       unsigned long end, unsigned int flags,
2328 		       struct page **pages, int *nr)
2329 {
2330 	unsigned long pte_end;
2331 	struct page *head, *page;
2332 	pte_t pte;
2333 	int refs;
2334 
2335 	pte_end = (addr + sz) & ~(sz-1);
2336 	if (pte_end < end)
2337 		end = pte_end;
2338 
2339 	pte = huge_ptep_get(ptep);
2340 
2341 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2342 		return 0;
2343 
2344 	/* hugepages are never "special" */
2345 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2346 
2347 	head = pte_page(pte);
2348 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2349 	refs = record_subpages(page, addr, end, pages + *nr);
2350 
2351 	head = try_grab_compound_head(head, refs, flags);
2352 	if (!head)
2353 		return 0;
2354 
2355 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2356 		put_compound_head(head, refs, flags);
2357 		return 0;
2358 	}
2359 
2360 	*nr += refs;
2361 	SetPageReferenced(head);
2362 	return 1;
2363 }
2364 
2365 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2366 		unsigned int pdshift, unsigned long end, unsigned int flags,
2367 		struct page **pages, int *nr)
2368 {
2369 	pte_t *ptep;
2370 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2371 	unsigned long next;
2372 
2373 	ptep = hugepte_offset(hugepd, addr, pdshift);
2374 	do {
2375 		next = hugepte_addr_end(addr, end, sz);
2376 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2377 			return 0;
2378 	} while (ptep++, addr = next, addr != end);
2379 
2380 	return 1;
2381 }
2382 #else
2383 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2384 		unsigned int pdshift, unsigned long end, unsigned int flags,
2385 		struct page **pages, int *nr)
2386 {
2387 	return 0;
2388 }
2389 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2390 
2391 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2392 			unsigned long end, unsigned int flags,
2393 			struct page **pages, int *nr)
2394 {
2395 	struct page *head, *page;
2396 	int refs;
2397 
2398 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2399 		return 0;
2400 
2401 	if (pmd_devmap(orig)) {
2402 		if (unlikely(flags & FOLL_LONGTERM))
2403 			return 0;
2404 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2405 					     pages, nr);
2406 	}
2407 
2408 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2409 	refs = record_subpages(page, addr, end, pages + *nr);
2410 
2411 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2412 	if (!head)
2413 		return 0;
2414 
2415 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416 		put_compound_head(head, refs, flags);
2417 		return 0;
2418 	}
2419 
2420 	*nr += refs;
2421 	SetPageReferenced(head);
2422 	return 1;
2423 }
2424 
2425 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2426 			unsigned long end, unsigned int flags,
2427 			struct page **pages, int *nr)
2428 {
2429 	struct page *head, *page;
2430 	int refs;
2431 
2432 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2433 		return 0;
2434 
2435 	if (pud_devmap(orig)) {
2436 		if (unlikely(flags & FOLL_LONGTERM))
2437 			return 0;
2438 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2439 					     pages, nr);
2440 	}
2441 
2442 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2443 	refs = record_subpages(page, addr, end, pages + *nr);
2444 
2445 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2446 	if (!head)
2447 		return 0;
2448 
2449 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2450 		put_compound_head(head, refs, flags);
2451 		return 0;
2452 	}
2453 
2454 	*nr += refs;
2455 	SetPageReferenced(head);
2456 	return 1;
2457 }
2458 
2459 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2460 			unsigned long end, unsigned int flags,
2461 			struct page **pages, int *nr)
2462 {
2463 	int refs;
2464 	struct page *head, *page;
2465 
2466 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2467 		return 0;
2468 
2469 	BUILD_BUG_ON(pgd_devmap(orig));
2470 
2471 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2472 	refs = record_subpages(page, addr, end, pages + *nr);
2473 
2474 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2475 	if (!head)
2476 		return 0;
2477 
2478 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2479 		put_compound_head(head, refs, flags);
2480 		return 0;
2481 	}
2482 
2483 	*nr += refs;
2484 	SetPageReferenced(head);
2485 	return 1;
2486 }
2487 
2488 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2489 		unsigned int flags, struct page **pages, int *nr)
2490 {
2491 	unsigned long next;
2492 	pmd_t *pmdp;
2493 
2494 	pmdp = pmd_offset(&pud, addr);
2495 	do {
2496 		pmd_t pmd = READ_ONCE(*pmdp);
2497 
2498 		next = pmd_addr_end(addr, end);
2499 		if (!pmd_present(pmd))
2500 			return 0;
2501 
2502 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2503 			     pmd_devmap(pmd))) {
2504 			/*
2505 			 * NUMA hinting faults need to be handled in the GUP
2506 			 * slowpath for accounting purposes and so that they
2507 			 * can be serialised against THP migration.
2508 			 */
2509 			if (pmd_protnone(pmd))
2510 				return 0;
2511 
2512 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2513 				pages, nr))
2514 				return 0;
2515 
2516 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2517 			/*
2518 			 * architecture have different format for hugetlbfs
2519 			 * pmd format and THP pmd format
2520 			 */
2521 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2522 					 PMD_SHIFT, next, flags, pages, nr))
2523 				return 0;
2524 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2525 			return 0;
2526 	} while (pmdp++, addr = next, addr != end);
2527 
2528 	return 1;
2529 }
2530 
2531 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2532 			 unsigned int flags, struct page **pages, int *nr)
2533 {
2534 	unsigned long next;
2535 	pud_t *pudp;
2536 
2537 	pudp = pud_offset(&p4d, addr);
2538 	do {
2539 		pud_t pud = READ_ONCE(*pudp);
2540 
2541 		next = pud_addr_end(addr, end);
2542 		if (unlikely(!pud_present(pud)))
2543 			return 0;
2544 		if (unlikely(pud_huge(pud))) {
2545 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2546 					  pages, nr))
2547 				return 0;
2548 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2549 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2550 					 PUD_SHIFT, next, flags, pages, nr))
2551 				return 0;
2552 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2553 			return 0;
2554 	} while (pudp++, addr = next, addr != end);
2555 
2556 	return 1;
2557 }
2558 
2559 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2560 			 unsigned int flags, struct page **pages, int *nr)
2561 {
2562 	unsigned long next;
2563 	p4d_t *p4dp;
2564 
2565 	p4dp = p4d_offset(&pgd, addr);
2566 	do {
2567 		p4d_t p4d = READ_ONCE(*p4dp);
2568 
2569 		next = p4d_addr_end(addr, end);
2570 		if (p4d_none(p4d))
2571 			return 0;
2572 		BUILD_BUG_ON(p4d_huge(p4d));
2573 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2574 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2575 					 P4D_SHIFT, next, flags, pages, nr))
2576 				return 0;
2577 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2578 			return 0;
2579 	} while (p4dp++, addr = next, addr != end);
2580 
2581 	return 1;
2582 }
2583 
2584 static void gup_pgd_range(unsigned long addr, unsigned long end,
2585 		unsigned int flags, struct page **pages, int *nr)
2586 {
2587 	unsigned long next;
2588 	pgd_t *pgdp;
2589 
2590 	pgdp = pgd_offset(current->mm, addr);
2591 	do {
2592 		pgd_t pgd = READ_ONCE(*pgdp);
2593 
2594 		next = pgd_addr_end(addr, end);
2595 		if (pgd_none(pgd))
2596 			return;
2597 		if (unlikely(pgd_huge(pgd))) {
2598 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2599 					  pages, nr))
2600 				return;
2601 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2602 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2603 					 PGDIR_SHIFT, next, flags, pages, nr))
2604 				return;
2605 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2606 			return;
2607 	} while (pgdp++, addr = next, addr != end);
2608 }
2609 #else
2610 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2611 		unsigned int flags, struct page **pages, int *nr)
2612 {
2613 }
2614 #endif /* CONFIG_HAVE_FAST_GUP */
2615 
2616 #ifndef gup_fast_permitted
2617 /*
2618  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2619  * we need to fall back to the slow version:
2620  */
2621 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2622 {
2623 	return true;
2624 }
2625 #endif
2626 
2627 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2628 				   unsigned int gup_flags, struct page **pages)
2629 {
2630 	int ret;
2631 
2632 	/*
2633 	 * FIXME: FOLL_LONGTERM does not work with
2634 	 * get_user_pages_unlocked() (see comments in that function)
2635 	 */
2636 	if (gup_flags & FOLL_LONGTERM) {
2637 		mmap_read_lock(current->mm);
2638 		ret = __gup_longterm_locked(current->mm,
2639 					    start, nr_pages,
2640 					    pages, NULL, gup_flags);
2641 		mmap_read_unlock(current->mm);
2642 	} else {
2643 		ret = get_user_pages_unlocked(start, nr_pages,
2644 					      pages, gup_flags);
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2651 					unsigned int gup_flags,
2652 					struct page **pages)
2653 {
2654 	unsigned long addr, len, end;
2655 	unsigned long flags;
2656 	int nr_pinned = 0, ret = 0;
2657 
2658 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2659 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2660 				       FOLL_FAST_ONLY)))
2661 		return -EINVAL;
2662 
2663 	if (!(gup_flags & FOLL_FAST_ONLY))
2664 		might_lock_read(&current->mm->mmap_lock);
2665 
2666 	start = untagged_addr(start) & PAGE_MASK;
2667 	addr = start;
2668 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2669 	end = start + len;
2670 
2671 	if (end <= start)
2672 		return 0;
2673 	if (unlikely(!access_ok((void __user *)start, len)))
2674 		return -EFAULT;
2675 
2676 	/*
2677 	 * Disable interrupts. The nested form is used, in order to allow
2678 	 * full, general purpose use of this routine.
2679 	 *
2680 	 * With interrupts disabled, we block page table pages from being
2681 	 * freed from under us. See struct mmu_table_batch comments in
2682 	 * include/asm-generic/tlb.h for more details.
2683 	 *
2684 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2685 	 * block IPIs that come from THPs splitting.
2686 	 */
2687 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2688 		unsigned long fast_flags = gup_flags;
2689 
2690 		local_irq_save(flags);
2691 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2692 		local_irq_restore(flags);
2693 		ret = nr_pinned;
2694 	}
2695 
2696 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2697 		/* Try to get the remaining pages with get_user_pages */
2698 		start += nr_pinned << PAGE_SHIFT;
2699 		pages += nr_pinned;
2700 
2701 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2702 					      gup_flags, pages);
2703 
2704 		/* Have to be a bit careful with return values */
2705 		if (nr_pinned > 0) {
2706 			if (ret < 0)
2707 				ret = nr_pinned;
2708 			else
2709 				ret += nr_pinned;
2710 		}
2711 	}
2712 
2713 	return ret;
2714 }
2715 /**
2716  * get_user_pages_fast_only() - pin user pages in memory
2717  * @start:      starting user address
2718  * @nr_pages:   number of pages from start to pin
2719  * @gup_flags:  flags modifying pin behaviour
2720  * @pages:      array that receives pointers to the pages pinned.
2721  *              Should be at least nr_pages long.
2722  *
2723  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2724  * the regular GUP.
2725  * Note a difference with get_user_pages_fast: this always returns the
2726  * number of pages pinned, 0 if no pages were pinned.
2727  *
2728  * If the architecture does not support this function, simply return with no
2729  * pages pinned.
2730  *
2731  * Careful, careful! COW breaking can go either way, so a non-write
2732  * access can get ambiguous page results. If you call this function without
2733  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2734  */
2735 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2736 			     unsigned int gup_flags, struct page **pages)
2737 {
2738 	int nr_pinned;
2739 	/*
2740 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2741 	 * because gup fast is always a "pin with a +1 page refcount" request.
2742 	 *
2743 	 * FOLL_FAST_ONLY is required in order to match the API description of
2744 	 * this routine: no fall back to regular ("slow") GUP.
2745 	 */
2746 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2747 
2748 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2749 						 pages);
2750 
2751 	/*
2752 	 * As specified in the API description above, this routine is not
2753 	 * allowed to return negative values. However, the common core
2754 	 * routine internal_get_user_pages_fast() *can* return -errno.
2755 	 * Therefore, correct for that here:
2756 	 */
2757 	if (nr_pinned < 0)
2758 		nr_pinned = 0;
2759 
2760 	return nr_pinned;
2761 }
2762 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2763 
2764 /**
2765  * get_user_pages_fast() - pin user pages in memory
2766  * @start:      starting user address
2767  * @nr_pages:   number of pages from start to pin
2768  * @gup_flags:  flags modifying pin behaviour
2769  * @pages:      array that receives pointers to the pages pinned.
2770  *              Should be at least nr_pages long.
2771  *
2772  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2773  * If not successful, it will fall back to taking the lock and
2774  * calling get_user_pages().
2775  *
2776  * Returns number of pages pinned. This may be fewer than the number requested.
2777  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2778  * -errno.
2779  */
2780 int get_user_pages_fast(unsigned long start, int nr_pages,
2781 			unsigned int gup_flags, struct page **pages)
2782 {
2783 	/*
2784 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2785 	 * never directly by the caller, so enforce that:
2786 	 */
2787 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2788 		return -EINVAL;
2789 
2790 	/*
2791 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2792 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2793 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2794 	 * request.
2795 	 */
2796 	gup_flags |= FOLL_GET;
2797 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2798 }
2799 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2800 
2801 /**
2802  * pin_user_pages_fast() - pin user pages in memory without taking locks
2803  *
2804  * @start:      starting user address
2805  * @nr_pages:   number of pages from start to pin
2806  * @gup_flags:  flags modifying pin behaviour
2807  * @pages:      array that receives pointers to the pages pinned.
2808  *              Should be at least nr_pages long.
2809  *
2810  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2811  * get_user_pages_fast() for documentation on the function arguments, because
2812  * the arguments here are identical.
2813  *
2814  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2815  * see Documentation/core-api/pin_user_pages.rst for further details.
2816  */
2817 int pin_user_pages_fast(unsigned long start, int nr_pages,
2818 			unsigned int gup_flags, struct page **pages)
2819 {
2820 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2821 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2822 		return -EINVAL;
2823 
2824 	gup_flags |= FOLL_PIN;
2825 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2826 }
2827 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2828 
2829 /*
2830  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2831  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2832  *
2833  * The API rules are the same, too: no negative values may be returned.
2834  */
2835 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2836 			     unsigned int gup_flags, struct page **pages)
2837 {
2838 	int nr_pinned;
2839 
2840 	/*
2841 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2842 	 * rules require returning 0, rather than -errno:
2843 	 */
2844 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2845 		return 0;
2846 	/*
2847 	 * FOLL_FAST_ONLY is required in order to match the API description of
2848 	 * this routine: no fall back to regular ("slow") GUP.
2849 	 */
2850 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2851 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2852 						 pages);
2853 	/*
2854 	 * This routine is not allowed to return negative values. However,
2855 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2856 	 * correct for that here:
2857 	 */
2858 	if (nr_pinned < 0)
2859 		nr_pinned = 0;
2860 
2861 	return nr_pinned;
2862 }
2863 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2864 
2865 /**
2866  * pin_user_pages_remote() - pin pages of a remote process
2867  *
2868  * @mm:		mm_struct of target mm
2869  * @start:	starting user address
2870  * @nr_pages:	number of pages from start to pin
2871  * @gup_flags:	flags modifying lookup behaviour
2872  * @pages:	array that receives pointers to the pages pinned.
2873  *		Should be at least nr_pages long. Or NULL, if caller
2874  *		only intends to ensure the pages are faulted in.
2875  * @vmas:	array of pointers to vmas corresponding to each page.
2876  *		Or NULL if the caller does not require them.
2877  * @locked:	pointer to lock flag indicating whether lock is held and
2878  *		subsequently whether VM_FAULT_RETRY functionality can be
2879  *		utilised. Lock must initially be held.
2880  *
2881  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2882  * get_user_pages_remote() for documentation on the function arguments, because
2883  * the arguments here are identical.
2884  *
2885  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2886  * see Documentation/core-api/pin_user_pages.rst for details.
2887  */
2888 long pin_user_pages_remote(struct mm_struct *mm,
2889 			   unsigned long start, unsigned long nr_pages,
2890 			   unsigned int gup_flags, struct page **pages,
2891 			   struct vm_area_struct **vmas, int *locked)
2892 {
2893 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2894 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2895 		return -EINVAL;
2896 
2897 	gup_flags |= FOLL_PIN;
2898 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2899 				       pages, vmas, locked);
2900 }
2901 EXPORT_SYMBOL(pin_user_pages_remote);
2902 
2903 /**
2904  * pin_user_pages() - pin user pages in memory for use by other devices
2905  *
2906  * @start:	starting user address
2907  * @nr_pages:	number of pages from start to pin
2908  * @gup_flags:	flags modifying lookup behaviour
2909  * @pages:	array that receives pointers to the pages pinned.
2910  *		Should be at least nr_pages long. Or NULL, if caller
2911  *		only intends to ensure the pages are faulted in.
2912  * @vmas:	array of pointers to vmas corresponding to each page.
2913  *		Or NULL if the caller does not require them.
2914  *
2915  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2916  * FOLL_PIN is set.
2917  *
2918  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2919  * see Documentation/core-api/pin_user_pages.rst for details.
2920  */
2921 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2922 		    unsigned int gup_flags, struct page **pages,
2923 		    struct vm_area_struct **vmas)
2924 {
2925 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2926 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2927 		return -EINVAL;
2928 
2929 	gup_flags |= FOLL_PIN;
2930 	return __gup_longterm_locked(current->mm, start, nr_pages,
2931 				     pages, vmas, gup_flags);
2932 }
2933 EXPORT_SYMBOL(pin_user_pages);
2934 
2935 /*
2936  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2937  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2938  * FOLL_PIN and rejects FOLL_GET.
2939  */
2940 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2941 			     struct page **pages, unsigned int gup_flags)
2942 {
2943 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2944 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2945 		return -EINVAL;
2946 
2947 	gup_flags |= FOLL_PIN;
2948 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2949 }
2950 EXPORT_SYMBOL(pin_user_pages_unlocked);
2951 
2952 /*
2953  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2954  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2955  * FOLL_GET.
2956  */
2957 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2958 			   unsigned int gup_flags, struct page **pages,
2959 			   int *locked)
2960 {
2961 	/*
2962 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2963 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2964 	 * vmas.  As there are no users of this flag in this call we simply
2965 	 * disallow this option for now.
2966 	 */
2967 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2968 		return -EINVAL;
2969 
2970 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2971 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2972 		return -EINVAL;
2973 
2974 	gup_flags |= FOLL_PIN;
2975 	return __get_user_pages_locked(current->mm, start, nr_pages,
2976 				       pages, NULL, locked,
2977 				       gup_flags | FOLL_TOUCH);
2978 }
2979 EXPORT_SYMBOL(pin_user_pages_locked);
2980