xref: /openbmc/linux/mm/gup.c (revision a2cce7a9)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
15 
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
18 
19 #include "internal.h"
20 
21 static struct page *no_page_table(struct vm_area_struct *vma,
22 		unsigned int flags)
23 {
24 	/*
25 	 * When core dumping an enormous anonymous area that nobody
26 	 * has touched so far, we don't want to allocate unnecessary pages or
27 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
28 	 * then get_dump_page() will return NULL to leave a hole in the dump.
29 	 * But we can only make this optimization where a hole would surely
30 	 * be zero-filled if handle_mm_fault() actually did handle it.
31 	 */
32 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
33 		return ERR_PTR(-EFAULT);
34 	return NULL;
35 }
36 
37 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
38 		pte_t *pte, unsigned int flags)
39 {
40 	/* No page to get reference */
41 	if (flags & FOLL_GET)
42 		return -EFAULT;
43 
44 	if (flags & FOLL_TOUCH) {
45 		pte_t entry = *pte;
46 
47 		if (flags & FOLL_WRITE)
48 			entry = pte_mkdirty(entry);
49 		entry = pte_mkyoung(entry);
50 
51 		if (!pte_same(*pte, entry)) {
52 			set_pte_at(vma->vm_mm, address, pte, entry);
53 			update_mmu_cache(vma, address, pte);
54 		}
55 	}
56 
57 	/* Proper page table entry exists, but no corresponding struct page */
58 	return -EEXIST;
59 }
60 
61 static struct page *follow_page_pte(struct vm_area_struct *vma,
62 		unsigned long address, pmd_t *pmd, unsigned int flags)
63 {
64 	struct mm_struct *mm = vma->vm_mm;
65 	struct page *page;
66 	spinlock_t *ptl;
67 	pte_t *ptep, pte;
68 
69 retry:
70 	if (unlikely(pmd_bad(*pmd)))
71 		return no_page_table(vma, flags);
72 
73 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
74 	pte = *ptep;
75 	if (!pte_present(pte)) {
76 		swp_entry_t entry;
77 		/*
78 		 * KSM's break_ksm() relies upon recognizing a ksm page
79 		 * even while it is being migrated, so for that case we
80 		 * need migration_entry_wait().
81 		 */
82 		if (likely(!(flags & FOLL_MIGRATION)))
83 			goto no_page;
84 		if (pte_none(pte))
85 			goto no_page;
86 		entry = pte_to_swp_entry(pte);
87 		if (!is_migration_entry(entry))
88 			goto no_page;
89 		pte_unmap_unlock(ptep, ptl);
90 		migration_entry_wait(mm, pmd, address);
91 		goto retry;
92 	}
93 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
94 		goto no_page;
95 	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
96 		pte_unmap_unlock(ptep, ptl);
97 		return NULL;
98 	}
99 
100 	page = vm_normal_page(vma, address, pte);
101 	if (unlikely(!page)) {
102 		if (flags & FOLL_DUMP) {
103 			/* Avoid special (like zero) pages in core dumps */
104 			page = ERR_PTR(-EFAULT);
105 			goto out;
106 		}
107 
108 		if (is_zero_pfn(pte_pfn(pte))) {
109 			page = pte_page(pte);
110 		} else {
111 			int ret;
112 
113 			ret = follow_pfn_pte(vma, address, ptep, flags);
114 			page = ERR_PTR(ret);
115 			goto out;
116 		}
117 	}
118 
119 	if (flags & FOLL_GET)
120 		get_page_foll(page);
121 	if (flags & FOLL_TOUCH) {
122 		if ((flags & FOLL_WRITE) &&
123 		    !pte_dirty(pte) && !PageDirty(page))
124 			set_page_dirty(page);
125 		/*
126 		 * pte_mkyoung() would be more correct here, but atomic care
127 		 * is needed to avoid losing the dirty bit: it is easier to use
128 		 * mark_page_accessed().
129 		 */
130 		mark_page_accessed(page);
131 	}
132 	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
133 		/*
134 		 * The preliminary mapping check is mainly to avoid the
135 		 * pointless overhead of lock_page on the ZERO_PAGE
136 		 * which might bounce very badly if there is contention.
137 		 *
138 		 * If the page is already locked, we don't need to
139 		 * handle it now - vmscan will handle it later if and
140 		 * when it attempts to reclaim the page.
141 		 */
142 		if (page->mapping && trylock_page(page)) {
143 			lru_add_drain();  /* push cached pages to LRU */
144 			/*
145 			 * Because we lock page here, and migration is
146 			 * blocked by the pte's page reference, and we
147 			 * know the page is still mapped, we don't even
148 			 * need to check for file-cache page truncation.
149 			 */
150 			mlock_vma_page(page);
151 			unlock_page(page);
152 		}
153 	}
154 out:
155 	pte_unmap_unlock(ptep, ptl);
156 	return page;
157 no_page:
158 	pte_unmap_unlock(ptep, ptl);
159 	if (!pte_none(pte))
160 		return NULL;
161 	return no_page_table(vma, flags);
162 }
163 
164 /**
165  * follow_page_mask - look up a page descriptor from a user-virtual address
166  * @vma: vm_area_struct mapping @address
167  * @address: virtual address to look up
168  * @flags: flags modifying lookup behaviour
169  * @page_mask: on output, *page_mask is set according to the size of the page
170  *
171  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
172  *
173  * Returns the mapped (struct page *), %NULL if no mapping exists, or
174  * an error pointer if there is a mapping to something not represented
175  * by a page descriptor (see also vm_normal_page()).
176  */
177 struct page *follow_page_mask(struct vm_area_struct *vma,
178 			      unsigned long address, unsigned int flags,
179 			      unsigned int *page_mask)
180 {
181 	pgd_t *pgd;
182 	pud_t *pud;
183 	pmd_t *pmd;
184 	spinlock_t *ptl;
185 	struct page *page;
186 	struct mm_struct *mm = vma->vm_mm;
187 
188 	*page_mask = 0;
189 
190 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
191 	if (!IS_ERR(page)) {
192 		BUG_ON(flags & FOLL_GET);
193 		return page;
194 	}
195 
196 	pgd = pgd_offset(mm, address);
197 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
198 		return no_page_table(vma, flags);
199 
200 	pud = pud_offset(pgd, address);
201 	if (pud_none(*pud))
202 		return no_page_table(vma, flags);
203 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
204 		page = follow_huge_pud(mm, address, pud, flags);
205 		if (page)
206 			return page;
207 		return no_page_table(vma, flags);
208 	}
209 	if (unlikely(pud_bad(*pud)))
210 		return no_page_table(vma, flags);
211 
212 	pmd = pmd_offset(pud, address);
213 	if (pmd_none(*pmd))
214 		return no_page_table(vma, flags);
215 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
216 		page = follow_huge_pmd(mm, address, pmd, flags);
217 		if (page)
218 			return page;
219 		return no_page_table(vma, flags);
220 	}
221 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
222 		return no_page_table(vma, flags);
223 	if (pmd_trans_huge(*pmd)) {
224 		if (flags & FOLL_SPLIT) {
225 			split_huge_page_pmd(vma, address, pmd);
226 			return follow_page_pte(vma, address, pmd, flags);
227 		}
228 		ptl = pmd_lock(mm, pmd);
229 		if (likely(pmd_trans_huge(*pmd))) {
230 			if (unlikely(pmd_trans_splitting(*pmd))) {
231 				spin_unlock(ptl);
232 				wait_split_huge_page(vma->anon_vma, pmd);
233 			} else {
234 				page = follow_trans_huge_pmd(vma, address,
235 							     pmd, flags);
236 				spin_unlock(ptl);
237 				*page_mask = HPAGE_PMD_NR - 1;
238 				return page;
239 			}
240 		} else
241 			spin_unlock(ptl);
242 	}
243 	return follow_page_pte(vma, address, pmd, flags);
244 }
245 
246 static int get_gate_page(struct mm_struct *mm, unsigned long address,
247 		unsigned int gup_flags, struct vm_area_struct **vma,
248 		struct page **page)
249 {
250 	pgd_t *pgd;
251 	pud_t *pud;
252 	pmd_t *pmd;
253 	pte_t *pte;
254 	int ret = -EFAULT;
255 
256 	/* user gate pages are read-only */
257 	if (gup_flags & FOLL_WRITE)
258 		return -EFAULT;
259 	if (address > TASK_SIZE)
260 		pgd = pgd_offset_k(address);
261 	else
262 		pgd = pgd_offset_gate(mm, address);
263 	BUG_ON(pgd_none(*pgd));
264 	pud = pud_offset(pgd, address);
265 	BUG_ON(pud_none(*pud));
266 	pmd = pmd_offset(pud, address);
267 	if (pmd_none(*pmd))
268 		return -EFAULT;
269 	VM_BUG_ON(pmd_trans_huge(*pmd));
270 	pte = pte_offset_map(pmd, address);
271 	if (pte_none(*pte))
272 		goto unmap;
273 	*vma = get_gate_vma(mm);
274 	if (!page)
275 		goto out;
276 	*page = vm_normal_page(*vma, address, *pte);
277 	if (!*page) {
278 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
279 			goto unmap;
280 		*page = pte_page(*pte);
281 	}
282 	get_page(*page);
283 out:
284 	ret = 0;
285 unmap:
286 	pte_unmap(pte);
287 	return ret;
288 }
289 
290 /*
291  * mmap_sem must be held on entry.  If @nonblocking != NULL and
292  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
293  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
294  */
295 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
296 		unsigned long address, unsigned int *flags, int *nonblocking)
297 {
298 	struct mm_struct *mm = vma->vm_mm;
299 	unsigned int fault_flags = 0;
300 	int ret;
301 
302 	/* For mm_populate(), just skip the stack guard page. */
303 	if ((*flags & FOLL_POPULATE) &&
304 			(stack_guard_page_start(vma, address) ||
305 			 stack_guard_page_end(vma, address + PAGE_SIZE)))
306 		return -ENOENT;
307 	if (*flags & FOLL_WRITE)
308 		fault_flags |= FAULT_FLAG_WRITE;
309 	if (nonblocking)
310 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
311 	if (*flags & FOLL_NOWAIT)
312 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
313 	if (*flags & FOLL_TRIED) {
314 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
315 		fault_flags |= FAULT_FLAG_TRIED;
316 	}
317 
318 	ret = handle_mm_fault(mm, vma, address, fault_flags);
319 	if (ret & VM_FAULT_ERROR) {
320 		if (ret & VM_FAULT_OOM)
321 			return -ENOMEM;
322 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
323 			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
324 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
325 			return -EFAULT;
326 		BUG();
327 	}
328 
329 	if (tsk) {
330 		if (ret & VM_FAULT_MAJOR)
331 			tsk->maj_flt++;
332 		else
333 			tsk->min_flt++;
334 	}
335 
336 	if (ret & VM_FAULT_RETRY) {
337 		if (nonblocking)
338 			*nonblocking = 0;
339 		return -EBUSY;
340 	}
341 
342 	/*
343 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
344 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
345 	 * can thus safely do subsequent page lookups as if they were reads.
346 	 * But only do so when looping for pte_write is futile: in some cases
347 	 * userspace may also be wanting to write to the gotten user page,
348 	 * which a read fault here might prevent (a readonly page might get
349 	 * reCOWed by userspace write).
350 	 */
351 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
352 		*flags &= ~FOLL_WRITE;
353 	return 0;
354 }
355 
356 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
357 {
358 	vm_flags_t vm_flags = vma->vm_flags;
359 
360 	if (vm_flags & (VM_IO | VM_PFNMAP))
361 		return -EFAULT;
362 
363 	if (gup_flags & FOLL_WRITE) {
364 		if (!(vm_flags & VM_WRITE)) {
365 			if (!(gup_flags & FOLL_FORCE))
366 				return -EFAULT;
367 			/*
368 			 * We used to let the write,force case do COW in a
369 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
370 			 * set a breakpoint in a read-only mapping of an
371 			 * executable, without corrupting the file (yet only
372 			 * when that file had been opened for writing!).
373 			 * Anon pages in shared mappings are surprising: now
374 			 * just reject it.
375 			 */
376 			if (!is_cow_mapping(vm_flags)) {
377 				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
378 				return -EFAULT;
379 			}
380 		}
381 	} else if (!(vm_flags & VM_READ)) {
382 		if (!(gup_flags & FOLL_FORCE))
383 			return -EFAULT;
384 		/*
385 		 * Is there actually any vma we can reach here which does not
386 		 * have VM_MAYREAD set?
387 		 */
388 		if (!(vm_flags & VM_MAYREAD))
389 			return -EFAULT;
390 	}
391 	return 0;
392 }
393 
394 /**
395  * __get_user_pages() - pin user pages in memory
396  * @tsk:	task_struct of target task
397  * @mm:		mm_struct of target mm
398  * @start:	starting user address
399  * @nr_pages:	number of pages from start to pin
400  * @gup_flags:	flags modifying pin behaviour
401  * @pages:	array that receives pointers to the pages pinned.
402  *		Should be at least nr_pages long. Or NULL, if caller
403  *		only intends to ensure the pages are faulted in.
404  * @vmas:	array of pointers to vmas corresponding to each page.
405  *		Or NULL if the caller does not require them.
406  * @nonblocking: whether waiting for disk IO or mmap_sem contention
407  *
408  * Returns number of pages pinned. This may be fewer than the number
409  * requested. If nr_pages is 0 or negative, returns 0. If no pages
410  * were pinned, returns -errno. Each page returned must be released
411  * with a put_page() call when it is finished with. vmas will only
412  * remain valid while mmap_sem is held.
413  *
414  * Must be called with mmap_sem held.  It may be released.  See below.
415  *
416  * __get_user_pages walks a process's page tables and takes a reference to
417  * each struct page that each user address corresponds to at a given
418  * instant. That is, it takes the page that would be accessed if a user
419  * thread accesses the given user virtual address at that instant.
420  *
421  * This does not guarantee that the page exists in the user mappings when
422  * __get_user_pages returns, and there may even be a completely different
423  * page there in some cases (eg. if mmapped pagecache has been invalidated
424  * and subsequently re faulted). However it does guarantee that the page
425  * won't be freed completely. And mostly callers simply care that the page
426  * contains data that was valid *at some point in time*. Typically, an IO
427  * or similar operation cannot guarantee anything stronger anyway because
428  * locks can't be held over the syscall boundary.
429  *
430  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
431  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
432  * appropriate) must be called after the page is finished with, and
433  * before put_page is called.
434  *
435  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
436  * or mmap_sem contention, and if waiting is needed to pin all pages,
437  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
438  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
439  * this case.
440  *
441  * A caller using such a combination of @nonblocking and @gup_flags
442  * must therefore hold the mmap_sem for reading only, and recognize
443  * when it's been released.  Otherwise, it must be held for either
444  * reading or writing and will not be released.
445  *
446  * In most cases, get_user_pages or get_user_pages_fast should be used
447  * instead of __get_user_pages. __get_user_pages should be used only if
448  * you need some special @gup_flags.
449  */
450 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
451 		unsigned long start, unsigned long nr_pages,
452 		unsigned int gup_flags, struct page **pages,
453 		struct vm_area_struct **vmas, int *nonblocking)
454 {
455 	long i = 0;
456 	unsigned int page_mask;
457 	struct vm_area_struct *vma = NULL;
458 
459 	if (!nr_pages)
460 		return 0;
461 
462 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
463 
464 	/*
465 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
466 	 * fault information is unrelated to the reference behaviour of a task
467 	 * using the address space
468 	 */
469 	if (!(gup_flags & FOLL_FORCE))
470 		gup_flags |= FOLL_NUMA;
471 
472 	do {
473 		struct page *page;
474 		unsigned int foll_flags = gup_flags;
475 		unsigned int page_increm;
476 
477 		/* first iteration or cross vma bound */
478 		if (!vma || start >= vma->vm_end) {
479 			vma = find_extend_vma(mm, start);
480 			if (!vma && in_gate_area(mm, start)) {
481 				int ret;
482 				ret = get_gate_page(mm, start & PAGE_MASK,
483 						gup_flags, &vma,
484 						pages ? &pages[i] : NULL);
485 				if (ret)
486 					return i ? : ret;
487 				page_mask = 0;
488 				goto next_page;
489 			}
490 
491 			if (!vma || check_vma_flags(vma, gup_flags))
492 				return i ? : -EFAULT;
493 			if (is_vm_hugetlb_page(vma)) {
494 				i = follow_hugetlb_page(mm, vma, pages, vmas,
495 						&start, &nr_pages, i,
496 						gup_flags);
497 				continue;
498 			}
499 		}
500 retry:
501 		/*
502 		 * If we have a pending SIGKILL, don't keep faulting pages and
503 		 * potentially allocating memory.
504 		 */
505 		if (unlikely(fatal_signal_pending(current)))
506 			return i ? i : -ERESTARTSYS;
507 		cond_resched();
508 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
509 		if (!page) {
510 			int ret;
511 			ret = faultin_page(tsk, vma, start, &foll_flags,
512 					nonblocking);
513 			switch (ret) {
514 			case 0:
515 				goto retry;
516 			case -EFAULT:
517 			case -ENOMEM:
518 			case -EHWPOISON:
519 				return i ? i : ret;
520 			case -EBUSY:
521 				return i;
522 			case -ENOENT:
523 				goto next_page;
524 			}
525 			BUG();
526 		} else if (PTR_ERR(page) == -EEXIST) {
527 			/*
528 			 * Proper page table entry exists, but no corresponding
529 			 * struct page.
530 			 */
531 			goto next_page;
532 		} else if (IS_ERR(page)) {
533 			return i ? i : PTR_ERR(page);
534 		}
535 		if (pages) {
536 			pages[i] = page;
537 			flush_anon_page(vma, page, start);
538 			flush_dcache_page(page);
539 			page_mask = 0;
540 		}
541 next_page:
542 		if (vmas) {
543 			vmas[i] = vma;
544 			page_mask = 0;
545 		}
546 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
547 		if (page_increm > nr_pages)
548 			page_increm = nr_pages;
549 		i += page_increm;
550 		start += page_increm * PAGE_SIZE;
551 		nr_pages -= page_increm;
552 	} while (nr_pages);
553 	return i;
554 }
555 EXPORT_SYMBOL(__get_user_pages);
556 
557 /*
558  * fixup_user_fault() - manually resolve a user page fault
559  * @tsk:	the task_struct to use for page fault accounting, or
560  *		NULL if faults are not to be recorded.
561  * @mm:		mm_struct of target mm
562  * @address:	user address
563  * @fault_flags:flags to pass down to handle_mm_fault()
564  *
565  * This is meant to be called in the specific scenario where for locking reasons
566  * we try to access user memory in atomic context (within a pagefault_disable()
567  * section), this returns -EFAULT, and we want to resolve the user fault before
568  * trying again.
569  *
570  * Typically this is meant to be used by the futex code.
571  *
572  * The main difference with get_user_pages() is that this function will
573  * unconditionally call handle_mm_fault() which will in turn perform all the
574  * necessary SW fixup of the dirty and young bits in the PTE, while
575  * handle_mm_fault() only guarantees to update these in the struct page.
576  *
577  * This is important for some architectures where those bits also gate the
578  * access permission to the page because they are maintained in software.  On
579  * such architectures, gup() will not be enough to make a subsequent access
580  * succeed.
581  *
582  * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
583  */
584 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
585 		     unsigned long address, unsigned int fault_flags)
586 {
587 	struct vm_area_struct *vma;
588 	vm_flags_t vm_flags;
589 	int ret;
590 
591 	vma = find_extend_vma(mm, address);
592 	if (!vma || address < vma->vm_start)
593 		return -EFAULT;
594 
595 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
596 	if (!(vm_flags & vma->vm_flags))
597 		return -EFAULT;
598 
599 	ret = handle_mm_fault(mm, vma, address, fault_flags);
600 	if (ret & VM_FAULT_ERROR) {
601 		if (ret & VM_FAULT_OOM)
602 			return -ENOMEM;
603 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
604 			return -EHWPOISON;
605 		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
606 			return -EFAULT;
607 		BUG();
608 	}
609 	if (tsk) {
610 		if (ret & VM_FAULT_MAJOR)
611 			tsk->maj_flt++;
612 		else
613 			tsk->min_flt++;
614 	}
615 	return 0;
616 }
617 
618 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
619 						struct mm_struct *mm,
620 						unsigned long start,
621 						unsigned long nr_pages,
622 						int write, int force,
623 						struct page **pages,
624 						struct vm_area_struct **vmas,
625 						int *locked, bool notify_drop,
626 						unsigned int flags)
627 {
628 	long ret, pages_done;
629 	bool lock_dropped;
630 
631 	if (locked) {
632 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
633 		BUG_ON(vmas);
634 		/* check caller initialized locked */
635 		BUG_ON(*locked != 1);
636 	}
637 
638 	if (pages)
639 		flags |= FOLL_GET;
640 	if (write)
641 		flags |= FOLL_WRITE;
642 	if (force)
643 		flags |= FOLL_FORCE;
644 
645 	pages_done = 0;
646 	lock_dropped = false;
647 	for (;;) {
648 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
649 				       vmas, locked);
650 		if (!locked)
651 			/* VM_FAULT_RETRY couldn't trigger, bypass */
652 			return ret;
653 
654 		/* VM_FAULT_RETRY cannot return errors */
655 		if (!*locked) {
656 			BUG_ON(ret < 0);
657 			BUG_ON(ret >= nr_pages);
658 		}
659 
660 		if (!pages)
661 			/* If it's a prefault don't insist harder */
662 			return ret;
663 
664 		if (ret > 0) {
665 			nr_pages -= ret;
666 			pages_done += ret;
667 			if (!nr_pages)
668 				break;
669 		}
670 		if (*locked) {
671 			/* VM_FAULT_RETRY didn't trigger */
672 			if (!pages_done)
673 				pages_done = ret;
674 			break;
675 		}
676 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
677 		pages += ret;
678 		start += ret << PAGE_SHIFT;
679 
680 		/*
681 		 * Repeat on the address that fired VM_FAULT_RETRY
682 		 * without FAULT_FLAG_ALLOW_RETRY but with
683 		 * FAULT_FLAG_TRIED.
684 		 */
685 		*locked = 1;
686 		lock_dropped = true;
687 		down_read(&mm->mmap_sem);
688 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
689 				       pages, NULL, NULL);
690 		if (ret != 1) {
691 			BUG_ON(ret > 1);
692 			if (!pages_done)
693 				pages_done = ret;
694 			break;
695 		}
696 		nr_pages--;
697 		pages_done++;
698 		if (!nr_pages)
699 			break;
700 		pages++;
701 		start += PAGE_SIZE;
702 	}
703 	if (notify_drop && lock_dropped && *locked) {
704 		/*
705 		 * We must let the caller know we temporarily dropped the lock
706 		 * and so the critical section protected by it was lost.
707 		 */
708 		up_read(&mm->mmap_sem);
709 		*locked = 0;
710 	}
711 	return pages_done;
712 }
713 
714 /*
715  * We can leverage the VM_FAULT_RETRY functionality in the page fault
716  * paths better by using either get_user_pages_locked() or
717  * get_user_pages_unlocked().
718  *
719  * get_user_pages_locked() is suitable to replace the form:
720  *
721  *      down_read(&mm->mmap_sem);
722  *      do_something()
723  *      get_user_pages(tsk, mm, ..., pages, NULL);
724  *      up_read(&mm->mmap_sem);
725  *
726  *  to:
727  *
728  *      int locked = 1;
729  *      down_read(&mm->mmap_sem);
730  *      do_something()
731  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
732  *      if (locked)
733  *          up_read(&mm->mmap_sem);
734  */
735 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
736 			   unsigned long start, unsigned long nr_pages,
737 			   int write, int force, struct page **pages,
738 			   int *locked)
739 {
740 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
741 				       pages, NULL, locked, true, FOLL_TOUCH);
742 }
743 EXPORT_SYMBOL(get_user_pages_locked);
744 
745 /*
746  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
747  * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
748  *
749  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
750  * caller if required (just like with __get_user_pages). "FOLL_GET",
751  * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
752  * according to the parameters "pages", "write", "force"
753  * respectively.
754  */
755 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
756 					       unsigned long start, unsigned long nr_pages,
757 					       int write, int force, struct page **pages,
758 					       unsigned int gup_flags)
759 {
760 	long ret;
761 	int locked = 1;
762 	down_read(&mm->mmap_sem);
763 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
764 				      pages, NULL, &locked, false, gup_flags);
765 	if (locked)
766 		up_read(&mm->mmap_sem);
767 	return ret;
768 }
769 EXPORT_SYMBOL(__get_user_pages_unlocked);
770 
771 /*
772  * get_user_pages_unlocked() is suitable to replace the form:
773  *
774  *      down_read(&mm->mmap_sem);
775  *      get_user_pages(tsk, mm, ..., pages, NULL);
776  *      up_read(&mm->mmap_sem);
777  *
778  *  with:
779  *
780  *      get_user_pages_unlocked(tsk, mm, ..., pages);
781  *
782  * It is functionally equivalent to get_user_pages_fast so
783  * get_user_pages_fast should be used instead, if the two parameters
784  * "tsk" and "mm" are respectively equal to current and current->mm,
785  * or if "force" shall be set to 1 (get_user_pages_fast misses the
786  * "force" parameter).
787  */
788 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
789 			     unsigned long start, unsigned long nr_pages,
790 			     int write, int force, struct page **pages)
791 {
792 	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
793 					 force, pages, FOLL_TOUCH);
794 }
795 EXPORT_SYMBOL(get_user_pages_unlocked);
796 
797 /*
798  * get_user_pages() - pin user pages in memory
799  * @tsk:	the task_struct to use for page fault accounting, or
800  *		NULL if faults are not to be recorded.
801  * @mm:		mm_struct of target mm
802  * @start:	starting user address
803  * @nr_pages:	number of pages from start to pin
804  * @write:	whether pages will be written to by the caller
805  * @force:	whether to force access even when user mapping is currently
806  *		protected (but never forces write access to shared mapping).
807  * @pages:	array that receives pointers to the pages pinned.
808  *		Should be at least nr_pages long. Or NULL, if caller
809  *		only intends to ensure the pages are faulted in.
810  * @vmas:	array of pointers to vmas corresponding to each page.
811  *		Or NULL if the caller does not require them.
812  *
813  * Returns number of pages pinned. This may be fewer than the number
814  * requested. If nr_pages is 0 or negative, returns 0. If no pages
815  * were pinned, returns -errno. Each page returned must be released
816  * with a put_page() call when it is finished with. vmas will only
817  * remain valid while mmap_sem is held.
818  *
819  * Must be called with mmap_sem held for read or write.
820  *
821  * get_user_pages walks a process's page tables and takes a reference to
822  * each struct page that each user address corresponds to at a given
823  * instant. That is, it takes the page that would be accessed if a user
824  * thread accesses the given user virtual address at that instant.
825  *
826  * This does not guarantee that the page exists in the user mappings when
827  * get_user_pages returns, and there may even be a completely different
828  * page there in some cases (eg. if mmapped pagecache has been invalidated
829  * and subsequently re faulted). However it does guarantee that the page
830  * won't be freed completely. And mostly callers simply care that the page
831  * contains data that was valid *at some point in time*. Typically, an IO
832  * or similar operation cannot guarantee anything stronger anyway because
833  * locks can't be held over the syscall boundary.
834  *
835  * If write=0, the page must not be written to. If the page is written to,
836  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
837  * after the page is finished with, and before put_page is called.
838  *
839  * get_user_pages is typically used for fewer-copy IO operations, to get a
840  * handle on the memory by some means other than accesses via the user virtual
841  * addresses. The pages may be submitted for DMA to devices or accessed via
842  * their kernel linear mapping (via the kmap APIs). Care should be taken to
843  * use the correct cache flushing APIs.
844  *
845  * See also get_user_pages_fast, for performance critical applications.
846  *
847  * get_user_pages should be phased out in favor of
848  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
849  * should use get_user_pages because it cannot pass
850  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
851  */
852 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
853 		unsigned long start, unsigned long nr_pages, int write,
854 		int force, struct page **pages, struct vm_area_struct **vmas)
855 {
856 	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
857 				       pages, vmas, NULL, false, FOLL_TOUCH);
858 }
859 EXPORT_SYMBOL(get_user_pages);
860 
861 /**
862  * populate_vma_page_range() -  populate a range of pages in the vma.
863  * @vma:   target vma
864  * @start: start address
865  * @end:   end address
866  * @nonblocking:
867  *
868  * This takes care of mlocking the pages too if VM_LOCKED is set.
869  *
870  * return 0 on success, negative error code on error.
871  *
872  * vma->vm_mm->mmap_sem must be held.
873  *
874  * If @nonblocking is NULL, it may be held for read or write and will
875  * be unperturbed.
876  *
877  * If @nonblocking is non-NULL, it must held for read only and may be
878  * released.  If it's released, *@nonblocking will be set to 0.
879  */
880 long populate_vma_page_range(struct vm_area_struct *vma,
881 		unsigned long start, unsigned long end, int *nonblocking)
882 {
883 	struct mm_struct *mm = vma->vm_mm;
884 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
885 	int gup_flags;
886 
887 	VM_BUG_ON(start & ~PAGE_MASK);
888 	VM_BUG_ON(end   & ~PAGE_MASK);
889 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
890 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
891 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
892 
893 	gup_flags = FOLL_TOUCH | FOLL_POPULATE;
894 	/*
895 	 * We want to touch writable mappings with a write fault in order
896 	 * to break COW, except for shared mappings because these don't COW
897 	 * and we would not want to dirty them for nothing.
898 	 */
899 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
900 		gup_flags |= FOLL_WRITE;
901 
902 	/*
903 	 * We want mlock to succeed for regions that have any permissions
904 	 * other than PROT_NONE.
905 	 */
906 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
907 		gup_flags |= FOLL_FORCE;
908 
909 	/*
910 	 * We made sure addr is within a VMA, so the following will
911 	 * not result in a stack expansion that recurses back here.
912 	 */
913 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
914 				NULL, NULL, nonblocking);
915 }
916 
917 /*
918  * __mm_populate - populate and/or mlock pages within a range of address space.
919  *
920  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
921  * flags. VMAs must be already marked with the desired vm_flags, and
922  * mmap_sem must not be held.
923  */
924 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
925 {
926 	struct mm_struct *mm = current->mm;
927 	unsigned long end, nstart, nend;
928 	struct vm_area_struct *vma = NULL;
929 	int locked = 0;
930 	long ret = 0;
931 
932 	VM_BUG_ON(start & ~PAGE_MASK);
933 	VM_BUG_ON(len != PAGE_ALIGN(len));
934 	end = start + len;
935 
936 	for (nstart = start; nstart < end; nstart = nend) {
937 		/*
938 		 * We want to fault in pages for [nstart; end) address range.
939 		 * Find first corresponding VMA.
940 		 */
941 		if (!locked) {
942 			locked = 1;
943 			down_read(&mm->mmap_sem);
944 			vma = find_vma(mm, nstart);
945 		} else if (nstart >= vma->vm_end)
946 			vma = vma->vm_next;
947 		if (!vma || vma->vm_start >= end)
948 			break;
949 		/*
950 		 * Set [nstart; nend) to intersection of desired address
951 		 * range with the first VMA. Also, skip undesirable VMA types.
952 		 */
953 		nend = min(end, vma->vm_end);
954 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
955 			continue;
956 		if (nstart < vma->vm_start)
957 			nstart = vma->vm_start;
958 		/*
959 		 * Now fault in a range of pages. populate_vma_page_range()
960 		 * double checks the vma flags, so that it won't mlock pages
961 		 * if the vma was already munlocked.
962 		 */
963 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
964 		if (ret < 0) {
965 			if (ignore_errors) {
966 				ret = 0;
967 				continue;	/* continue at next VMA */
968 			}
969 			break;
970 		}
971 		nend = nstart + ret * PAGE_SIZE;
972 		ret = 0;
973 	}
974 	if (locked)
975 		up_read(&mm->mmap_sem);
976 	return ret;	/* 0 or negative error code */
977 }
978 
979 /**
980  * get_dump_page() - pin user page in memory while writing it to core dump
981  * @addr: user address
982  *
983  * Returns struct page pointer of user page pinned for dump,
984  * to be freed afterwards by page_cache_release() or put_page().
985  *
986  * Returns NULL on any kind of failure - a hole must then be inserted into
987  * the corefile, to preserve alignment with its headers; and also returns
988  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
989  * allowing a hole to be left in the corefile to save diskspace.
990  *
991  * Called without mmap_sem, but after all other threads have been killed.
992  */
993 #ifdef CONFIG_ELF_CORE
994 struct page *get_dump_page(unsigned long addr)
995 {
996 	struct vm_area_struct *vma;
997 	struct page *page;
998 
999 	if (__get_user_pages(current, current->mm, addr, 1,
1000 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1001 			     NULL) < 1)
1002 		return NULL;
1003 	flush_cache_page(vma, addr, page_to_pfn(page));
1004 	return page;
1005 }
1006 #endif /* CONFIG_ELF_CORE */
1007 
1008 /*
1009  * Generic RCU Fast GUP
1010  *
1011  * get_user_pages_fast attempts to pin user pages by walking the page
1012  * tables directly and avoids taking locks. Thus the walker needs to be
1013  * protected from page table pages being freed from under it, and should
1014  * block any THP splits.
1015  *
1016  * One way to achieve this is to have the walker disable interrupts, and
1017  * rely on IPIs from the TLB flushing code blocking before the page table
1018  * pages are freed. This is unsuitable for architectures that do not need
1019  * to broadcast an IPI when invalidating TLBs.
1020  *
1021  * Another way to achieve this is to batch up page table containing pages
1022  * belonging to more than one mm_user, then rcu_sched a callback to free those
1023  * pages. Disabling interrupts will allow the fast_gup walker to both block
1024  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1025  * (which is a relatively rare event). The code below adopts this strategy.
1026  *
1027  * Before activating this code, please be aware that the following assumptions
1028  * are currently made:
1029  *
1030  *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1031  *      pages containing page tables.
1032  *
1033  *  *) THP splits will broadcast an IPI, this can be achieved by overriding
1034  *      pmdp_splitting_flush.
1035  *
1036  *  *) ptes can be read atomically by the architecture.
1037  *
1038  *  *) access_ok is sufficient to validate userspace address ranges.
1039  *
1040  * The last two assumptions can be relaxed by the addition of helper functions.
1041  *
1042  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1043  */
1044 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1045 
1046 #ifdef __HAVE_ARCH_PTE_SPECIAL
1047 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1048 			 int write, struct page **pages, int *nr)
1049 {
1050 	pte_t *ptep, *ptem;
1051 	int ret = 0;
1052 
1053 	ptem = ptep = pte_offset_map(&pmd, addr);
1054 	do {
1055 		/*
1056 		 * In the line below we are assuming that the pte can be read
1057 		 * atomically. If this is not the case for your architecture,
1058 		 * please wrap this in a helper function!
1059 		 *
1060 		 * for an example see gup_get_pte in arch/x86/mm/gup.c
1061 		 */
1062 		pte_t pte = READ_ONCE(*ptep);
1063 		struct page *page;
1064 
1065 		/*
1066 		 * Similar to the PMD case below, NUMA hinting must take slow
1067 		 * path using the pte_protnone check.
1068 		 */
1069 		if (!pte_present(pte) || pte_special(pte) ||
1070 			pte_protnone(pte) || (write && !pte_write(pte)))
1071 			goto pte_unmap;
1072 
1073 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1074 		page = pte_page(pte);
1075 
1076 		if (!page_cache_get_speculative(page))
1077 			goto pte_unmap;
1078 
1079 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1080 			put_page(page);
1081 			goto pte_unmap;
1082 		}
1083 
1084 		pages[*nr] = page;
1085 		(*nr)++;
1086 
1087 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1088 
1089 	ret = 1;
1090 
1091 pte_unmap:
1092 	pte_unmap(ptem);
1093 	return ret;
1094 }
1095 #else
1096 
1097 /*
1098  * If we can't determine whether or not a pte is special, then fail immediately
1099  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1100  * to be special.
1101  *
1102  * For a futex to be placed on a THP tail page, get_futex_key requires a
1103  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1104  * useful to have gup_huge_pmd even if we can't operate on ptes.
1105  */
1106 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1107 			 int write, struct page **pages, int *nr)
1108 {
1109 	return 0;
1110 }
1111 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1112 
1113 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1114 		unsigned long end, int write, struct page **pages, int *nr)
1115 {
1116 	struct page *head, *page, *tail;
1117 	int refs;
1118 
1119 	if (write && !pmd_write(orig))
1120 		return 0;
1121 
1122 	refs = 0;
1123 	head = pmd_page(orig);
1124 	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1125 	tail = page;
1126 	do {
1127 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1128 		pages[*nr] = page;
1129 		(*nr)++;
1130 		page++;
1131 		refs++;
1132 	} while (addr += PAGE_SIZE, addr != end);
1133 
1134 	if (!page_cache_add_speculative(head, refs)) {
1135 		*nr -= refs;
1136 		return 0;
1137 	}
1138 
1139 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1140 		*nr -= refs;
1141 		while (refs--)
1142 			put_page(head);
1143 		return 0;
1144 	}
1145 
1146 	/*
1147 	 * Any tail pages need their mapcount reference taken before we
1148 	 * return. (This allows the THP code to bump their ref count when
1149 	 * they are split into base pages).
1150 	 */
1151 	while (refs--) {
1152 		if (PageTail(tail))
1153 			get_huge_page_tail(tail);
1154 		tail++;
1155 	}
1156 
1157 	return 1;
1158 }
1159 
1160 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1161 		unsigned long end, int write, struct page **pages, int *nr)
1162 {
1163 	struct page *head, *page, *tail;
1164 	int refs;
1165 
1166 	if (write && !pud_write(orig))
1167 		return 0;
1168 
1169 	refs = 0;
1170 	head = pud_page(orig);
1171 	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1172 	tail = page;
1173 	do {
1174 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1175 		pages[*nr] = page;
1176 		(*nr)++;
1177 		page++;
1178 		refs++;
1179 	} while (addr += PAGE_SIZE, addr != end);
1180 
1181 	if (!page_cache_add_speculative(head, refs)) {
1182 		*nr -= refs;
1183 		return 0;
1184 	}
1185 
1186 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1187 		*nr -= refs;
1188 		while (refs--)
1189 			put_page(head);
1190 		return 0;
1191 	}
1192 
1193 	while (refs--) {
1194 		if (PageTail(tail))
1195 			get_huge_page_tail(tail);
1196 		tail++;
1197 	}
1198 
1199 	return 1;
1200 }
1201 
1202 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1203 			unsigned long end, int write,
1204 			struct page **pages, int *nr)
1205 {
1206 	int refs;
1207 	struct page *head, *page, *tail;
1208 
1209 	if (write && !pgd_write(orig))
1210 		return 0;
1211 
1212 	refs = 0;
1213 	head = pgd_page(orig);
1214 	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1215 	tail = page;
1216 	do {
1217 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1218 		pages[*nr] = page;
1219 		(*nr)++;
1220 		page++;
1221 		refs++;
1222 	} while (addr += PAGE_SIZE, addr != end);
1223 
1224 	if (!page_cache_add_speculative(head, refs)) {
1225 		*nr -= refs;
1226 		return 0;
1227 	}
1228 
1229 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1230 		*nr -= refs;
1231 		while (refs--)
1232 			put_page(head);
1233 		return 0;
1234 	}
1235 
1236 	while (refs--) {
1237 		if (PageTail(tail))
1238 			get_huge_page_tail(tail);
1239 		tail++;
1240 	}
1241 
1242 	return 1;
1243 }
1244 
1245 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1246 		int write, struct page **pages, int *nr)
1247 {
1248 	unsigned long next;
1249 	pmd_t *pmdp;
1250 
1251 	pmdp = pmd_offset(&pud, addr);
1252 	do {
1253 		pmd_t pmd = READ_ONCE(*pmdp);
1254 
1255 		next = pmd_addr_end(addr, end);
1256 		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1257 			return 0;
1258 
1259 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1260 			/*
1261 			 * NUMA hinting faults need to be handled in the GUP
1262 			 * slowpath for accounting purposes and so that they
1263 			 * can be serialised against THP migration.
1264 			 */
1265 			if (pmd_protnone(pmd))
1266 				return 0;
1267 
1268 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1269 				pages, nr))
1270 				return 0;
1271 
1272 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1273 			/*
1274 			 * architecture have different format for hugetlbfs
1275 			 * pmd format and THP pmd format
1276 			 */
1277 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1278 					 PMD_SHIFT, next, write, pages, nr))
1279 				return 0;
1280 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1281 				return 0;
1282 	} while (pmdp++, addr = next, addr != end);
1283 
1284 	return 1;
1285 }
1286 
1287 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1288 			 int write, struct page **pages, int *nr)
1289 {
1290 	unsigned long next;
1291 	pud_t *pudp;
1292 
1293 	pudp = pud_offset(&pgd, addr);
1294 	do {
1295 		pud_t pud = READ_ONCE(*pudp);
1296 
1297 		next = pud_addr_end(addr, end);
1298 		if (pud_none(pud))
1299 			return 0;
1300 		if (unlikely(pud_huge(pud))) {
1301 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1302 					  pages, nr))
1303 				return 0;
1304 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1305 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1306 					 PUD_SHIFT, next, write, pages, nr))
1307 				return 0;
1308 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1309 			return 0;
1310 	} while (pudp++, addr = next, addr != end);
1311 
1312 	return 1;
1313 }
1314 
1315 /*
1316  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1317  * the regular GUP. It will only return non-negative values.
1318  */
1319 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1320 			  struct page **pages)
1321 {
1322 	struct mm_struct *mm = current->mm;
1323 	unsigned long addr, len, end;
1324 	unsigned long next, flags;
1325 	pgd_t *pgdp;
1326 	int nr = 0;
1327 
1328 	start &= PAGE_MASK;
1329 	addr = start;
1330 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1331 	end = start + len;
1332 
1333 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1334 					start, len)))
1335 		return 0;
1336 
1337 	/*
1338 	 * Disable interrupts.  We use the nested form as we can already have
1339 	 * interrupts disabled by get_futex_key.
1340 	 *
1341 	 * With interrupts disabled, we block page table pages from being
1342 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1343 	 * for more details.
1344 	 *
1345 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1346 	 * block IPIs that come from THPs splitting.
1347 	 */
1348 
1349 	local_irq_save(flags);
1350 	pgdp = pgd_offset(mm, addr);
1351 	do {
1352 		pgd_t pgd = READ_ONCE(*pgdp);
1353 
1354 		next = pgd_addr_end(addr, end);
1355 		if (pgd_none(pgd))
1356 			break;
1357 		if (unlikely(pgd_huge(pgd))) {
1358 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1359 					  pages, &nr))
1360 				break;
1361 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1362 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1363 					 PGDIR_SHIFT, next, write, pages, &nr))
1364 				break;
1365 		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1366 			break;
1367 	} while (pgdp++, addr = next, addr != end);
1368 	local_irq_restore(flags);
1369 
1370 	return nr;
1371 }
1372 
1373 /**
1374  * get_user_pages_fast() - pin user pages in memory
1375  * @start:	starting user address
1376  * @nr_pages:	number of pages from start to pin
1377  * @write:	whether pages will be written to
1378  * @pages:	array that receives pointers to the pages pinned.
1379  *		Should be at least nr_pages long.
1380  *
1381  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1382  * If not successful, it will fall back to taking the lock and
1383  * calling get_user_pages().
1384  *
1385  * Returns number of pages pinned. This may be fewer than the number
1386  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1387  * were pinned, returns -errno.
1388  */
1389 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1390 			struct page **pages)
1391 {
1392 	struct mm_struct *mm = current->mm;
1393 	int nr, ret;
1394 
1395 	start &= PAGE_MASK;
1396 	nr = __get_user_pages_fast(start, nr_pages, write, pages);
1397 	ret = nr;
1398 
1399 	if (nr < nr_pages) {
1400 		/* Try to get the remaining pages with get_user_pages */
1401 		start += nr << PAGE_SHIFT;
1402 		pages += nr;
1403 
1404 		ret = get_user_pages_unlocked(current, mm, start,
1405 					      nr_pages - nr, write, 0, pages);
1406 
1407 		/* Have to be a bit careful with return values */
1408 		if (nr > 0) {
1409 			if (ret < 0)
1410 				ret = nr;
1411 			else
1412 				ret += nr;
1413 		}
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
1420