1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/pgtable.h> 18 #include <asm/tlbflush.h> 19 20 #include "internal.h" 21 22 static struct page *no_page_table(struct vm_area_struct *vma, 23 unsigned int flags) 24 { 25 /* 26 * When core dumping an enormous anonymous area that nobody 27 * has touched so far, we don't want to allocate unnecessary pages or 28 * page tables. Return error instead of NULL to skip handle_mm_fault, 29 * then get_dump_page() will return NULL to leave a hole in the dump. 30 * But we can only make this optimization where a hole would surely 31 * be zero-filled if handle_mm_fault() actually did handle it. 32 */ 33 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 34 return ERR_PTR(-EFAULT); 35 return NULL; 36 } 37 38 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 39 pte_t *pte, unsigned int flags) 40 { 41 /* No page to get reference */ 42 if (flags & FOLL_GET) 43 return -EFAULT; 44 45 if (flags & FOLL_TOUCH) { 46 pte_t entry = *pte; 47 48 if (flags & FOLL_WRITE) 49 entry = pte_mkdirty(entry); 50 entry = pte_mkyoung(entry); 51 52 if (!pte_same(*pte, entry)) { 53 set_pte_at(vma->vm_mm, address, pte, entry); 54 update_mmu_cache(vma, address, pte); 55 } 56 } 57 58 /* Proper page table entry exists, but no corresponding struct page */ 59 return -EEXIST; 60 } 61 62 static struct page *follow_page_pte(struct vm_area_struct *vma, 63 unsigned long address, pmd_t *pmd, unsigned int flags) 64 { 65 struct mm_struct *mm = vma->vm_mm; 66 struct dev_pagemap *pgmap = NULL; 67 struct page *page; 68 spinlock_t *ptl; 69 pte_t *ptep, pte; 70 71 retry: 72 if (unlikely(pmd_bad(*pmd))) 73 return no_page_table(vma, flags); 74 75 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 76 pte = *ptep; 77 if (!pte_present(pte)) { 78 swp_entry_t entry; 79 /* 80 * KSM's break_ksm() relies upon recognizing a ksm page 81 * even while it is being migrated, so for that case we 82 * need migration_entry_wait(). 83 */ 84 if (likely(!(flags & FOLL_MIGRATION))) 85 goto no_page; 86 if (pte_none(pte)) 87 goto no_page; 88 entry = pte_to_swp_entry(pte); 89 if (!is_migration_entry(entry)) 90 goto no_page; 91 pte_unmap_unlock(ptep, ptl); 92 migration_entry_wait(mm, pmd, address); 93 goto retry; 94 } 95 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 96 goto no_page; 97 if ((flags & FOLL_WRITE) && !pte_write(pte)) { 98 pte_unmap_unlock(ptep, ptl); 99 return NULL; 100 } 101 102 page = vm_normal_page(vma, address, pte); 103 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 104 /* 105 * Only return device mapping pages in the FOLL_GET case since 106 * they are only valid while holding the pgmap reference. 107 */ 108 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 109 if (pgmap) 110 page = pte_page(pte); 111 else 112 goto no_page; 113 } else if (unlikely(!page)) { 114 if (flags & FOLL_DUMP) { 115 /* Avoid special (like zero) pages in core dumps */ 116 page = ERR_PTR(-EFAULT); 117 goto out; 118 } 119 120 if (is_zero_pfn(pte_pfn(pte))) { 121 page = pte_page(pte); 122 } else { 123 int ret; 124 125 ret = follow_pfn_pte(vma, address, ptep, flags); 126 page = ERR_PTR(ret); 127 goto out; 128 } 129 } 130 131 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 132 int ret; 133 get_page(page); 134 pte_unmap_unlock(ptep, ptl); 135 lock_page(page); 136 ret = split_huge_page(page); 137 unlock_page(page); 138 put_page(page); 139 if (ret) 140 return ERR_PTR(ret); 141 goto retry; 142 } 143 144 if (flags & FOLL_GET) { 145 get_page(page); 146 147 /* drop the pgmap reference now that we hold the page */ 148 if (pgmap) { 149 put_dev_pagemap(pgmap); 150 pgmap = NULL; 151 } 152 } 153 if (flags & FOLL_TOUCH) { 154 if ((flags & FOLL_WRITE) && 155 !pte_dirty(pte) && !PageDirty(page)) 156 set_page_dirty(page); 157 /* 158 * pte_mkyoung() would be more correct here, but atomic care 159 * is needed to avoid losing the dirty bit: it is easier to use 160 * mark_page_accessed(). 161 */ 162 mark_page_accessed(page); 163 } 164 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 165 /* Do not mlock pte-mapped THP */ 166 if (PageTransCompound(page)) 167 goto out; 168 169 /* 170 * The preliminary mapping check is mainly to avoid the 171 * pointless overhead of lock_page on the ZERO_PAGE 172 * which might bounce very badly if there is contention. 173 * 174 * If the page is already locked, we don't need to 175 * handle it now - vmscan will handle it later if and 176 * when it attempts to reclaim the page. 177 */ 178 if (page->mapping && trylock_page(page)) { 179 lru_add_drain(); /* push cached pages to LRU */ 180 /* 181 * Because we lock page here, and migration is 182 * blocked by the pte's page reference, and we 183 * know the page is still mapped, we don't even 184 * need to check for file-cache page truncation. 185 */ 186 mlock_vma_page(page); 187 unlock_page(page); 188 } 189 } 190 out: 191 pte_unmap_unlock(ptep, ptl); 192 return page; 193 no_page: 194 pte_unmap_unlock(ptep, ptl); 195 if (!pte_none(pte)) 196 return NULL; 197 return no_page_table(vma, flags); 198 } 199 200 /** 201 * follow_page_mask - look up a page descriptor from a user-virtual address 202 * @vma: vm_area_struct mapping @address 203 * @address: virtual address to look up 204 * @flags: flags modifying lookup behaviour 205 * @page_mask: on output, *page_mask is set according to the size of the page 206 * 207 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 208 * 209 * Returns the mapped (struct page *), %NULL if no mapping exists, or 210 * an error pointer if there is a mapping to something not represented 211 * by a page descriptor (see also vm_normal_page()). 212 */ 213 struct page *follow_page_mask(struct vm_area_struct *vma, 214 unsigned long address, unsigned int flags, 215 unsigned int *page_mask) 216 { 217 pgd_t *pgd; 218 pud_t *pud; 219 pmd_t *pmd; 220 spinlock_t *ptl; 221 struct page *page; 222 struct mm_struct *mm = vma->vm_mm; 223 224 *page_mask = 0; 225 226 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 227 if (!IS_ERR(page)) { 228 BUG_ON(flags & FOLL_GET); 229 return page; 230 } 231 232 pgd = pgd_offset(mm, address); 233 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 234 return no_page_table(vma, flags); 235 236 pud = pud_offset(pgd, address); 237 if (pud_none(*pud)) 238 return no_page_table(vma, flags); 239 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 240 page = follow_huge_pud(mm, address, pud, flags); 241 if (page) 242 return page; 243 return no_page_table(vma, flags); 244 } 245 if (unlikely(pud_bad(*pud))) 246 return no_page_table(vma, flags); 247 248 pmd = pmd_offset(pud, address); 249 if (pmd_none(*pmd)) 250 return no_page_table(vma, flags); 251 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 252 page = follow_huge_pmd(mm, address, pmd, flags); 253 if (page) 254 return page; 255 return no_page_table(vma, flags); 256 } 257 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 258 return no_page_table(vma, flags); 259 if (pmd_devmap(*pmd)) { 260 ptl = pmd_lock(mm, pmd); 261 page = follow_devmap_pmd(vma, address, pmd, flags); 262 spin_unlock(ptl); 263 if (page) 264 return page; 265 } 266 if (likely(!pmd_trans_huge(*pmd))) 267 return follow_page_pte(vma, address, pmd, flags); 268 269 ptl = pmd_lock(mm, pmd); 270 if (unlikely(!pmd_trans_huge(*pmd))) { 271 spin_unlock(ptl); 272 return follow_page_pte(vma, address, pmd, flags); 273 } 274 if (flags & FOLL_SPLIT) { 275 int ret; 276 page = pmd_page(*pmd); 277 if (is_huge_zero_page(page)) { 278 spin_unlock(ptl); 279 ret = 0; 280 split_huge_pmd(vma, pmd, address); 281 } else { 282 get_page(page); 283 spin_unlock(ptl); 284 lock_page(page); 285 ret = split_huge_page(page); 286 unlock_page(page); 287 put_page(page); 288 } 289 290 return ret ? ERR_PTR(ret) : 291 follow_page_pte(vma, address, pmd, flags); 292 } 293 294 page = follow_trans_huge_pmd(vma, address, pmd, flags); 295 spin_unlock(ptl); 296 *page_mask = HPAGE_PMD_NR - 1; 297 return page; 298 } 299 300 static int get_gate_page(struct mm_struct *mm, unsigned long address, 301 unsigned int gup_flags, struct vm_area_struct **vma, 302 struct page **page) 303 { 304 pgd_t *pgd; 305 pud_t *pud; 306 pmd_t *pmd; 307 pte_t *pte; 308 int ret = -EFAULT; 309 310 /* user gate pages are read-only */ 311 if (gup_flags & FOLL_WRITE) 312 return -EFAULT; 313 if (address > TASK_SIZE) 314 pgd = pgd_offset_k(address); 315 else 316 pgd = pgd_offset_gate(mm, address); 317 BUG_ON(pgd_none(*pgd)); 318 pud = pud_offset(pgd, address); 319 BUG_ON(pud_none(*pud)); 320 pmd = pmd_offset(pud, address); 321 if (pmd_none(*pmd)) 322 return -EFAULT; 323 VM_BUG_ON(pmd_trans_huge(*pmd)); 324 pte = pte_offset_map(pmd, address); 325 if (pte_none(*pte)) 326 goto unmap; 327 *vma = get_gate_vma(mm); 328 if (!page) 329 goto out; 330 *page = vm_normal_page(*vma, address, *pte); 331 if (!*page) { 332 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 333 goto unmap; 334 *page = pte_page(*pte); 335 } 336 get_page(*page); 337 out: 338 ret = 0; 339 unmap: 340 pte_unmap(pte); 341 return ret; 342 } 343 344 /* 345 * mmap_sem must be held on entry. If @nonblocking != NULL and 346 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 347 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 348 */ 349 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 350 unsigned long address, unsigned int *flags, int *nonblocking) 351 { 352 struct mm_struct *mm = vma->vm_mm; 353 unsigned int fault_flags = 0; 354 int ret; 355 356 /* mlock all present pages, but do not fault in new pages */ 357 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 358 return -ENOENT; 359 /* For mm_populate(), just skip the stack guard page. */ 360 if ((*flags & FOLL_POPULATE) && 361 (stack_guard_page_start(vma, address) || 362 stack_guard_page_end(vma, address + PAGE_SIZE))) 363 return -ENOENT; 364 if (*flags & FOLL_WRITE) 365 fault_flags |= FAULT_FLAG_WRITE; 366 if (nonblocking) 367 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 368 if (*flags & FOLL_NOWAIT) 369 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 370 if (*flags & FOLL_TRIED) { 371 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 372 fault_flags |= FAULT_FLAG_TRIED; 373 } 374 375 ret = handle_mm_fault(mm, vma, address, fault_flags); 376 if (ret & VM_FAULT_ERROR) { 377 if (ret & VM_FAULT_OOM) 378 return -ENOMEM; 379 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 380 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 381 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 382 return -EFAULT; 383 BUG(); 384 } 385 386 if (tsk) { 387 if (ret & VM_FAULT_MAJOR) 388 tsk->maj_flt++; 389 else 390 tsk->min_flt++; 391 } 392 393 if (ret & VM_FAULT_RETRY) { 394 if (nonblocking) 395 *nonblocking = 0; 396 return -EBUSY; 397 } 398 399 /* 400 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 401 * necessary, even if maybe_mkwrite decided not to set pte_write. We 402 * can thus safely do subsequent page lookups as if they were reads. 403 * But only do so when looping for pte_write is futile: in some cases 404 * userspace may also be wanting to write to the gotten user page, 405 * which a read fault here might prevent (a readonly page might get 406 * reCOWed by userspace write). 407 */ 408 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 409 *flags &= ~FOLL_WRITE; 410 return 0; 411 } 412 413 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 414 { 415 vm_flags_t vm_flags = vma->vm_flags; 416 417 if (vm_flags & (VM_IO | VM_PFNMAP)) 418 return -EFAULT; 419 420 if (gup_flags & FOLL_WRITE) { 421 if (!(vm_flags & VM_WRITE)) { 422 if (!(gup_flags & FOLL_FORCE)) 423 return -EFAULT; 424 /* 425 * We used to let the write,force case do COW in a 426 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 427 * set a breakpoint in a read-only mapping of an 428 * executable, without corrupting the file (yet only 429 * when that file had been opened for writing!). 430 * Anon pages in shared mappings are surprising: now 431 * just reject it. 432 */ 433 if (!is_cow_mapping(vm_flags)) { 434 WARN_ON_ONCE(vm_flags & VM_MAYWRITE); 435 return -EFAULT; 436 } 437 } 438 } else if (!(vm_flags & VM_READ)) { 439 if (!(gup_flags & FOLL_FORCE)) 440 return -EFAULT; 441 /* 442 * Is there actually any vma we can reach here which does not 443 * have VM_MAYREAD set? 444 */ 445 if (!(vm_flags & VM_MAYREAD)) 446 return -EFAULT; 447 } 448 return 0; 449 } 450 451 /** 452 * __get_user_pages() - pin user pages in memory 453 * @tsk: task_struct of target task 454 * @mm: mm_struct of target mm 455 * @start: starting user address 456 * @nr_pages: number of pages from start to pin 457 * @gup_flags: flags modifying pin behaviour 458 * @pages: array that receives pointers to the pages pinned. 459 * Should be at least nr_pages long. Or NULL, if caller 460 * only intends to ensure the pages are faulted in. 461 * @vmas: array of pointers to vmas corresponding to each page. 462 * Or NULL if the caller does not require them. 463 * @nonblocking: whether waiting for disk IO or mmap_sem contention 464 * 465 * Returns number of pages pinned. This may be fewer than the number 466 * requested. If nr_pages is 0 or negative, returns 0. If no pages 467 * were pinned, returns -errno. Each page returned must be released 468 * with a put_page() call when it is finished with. vmas will only 469 * remain valid while mmap_sem is held. 470 * 471 * Must be called with mmap_sem held. It may be released. See below. 472 * 473 * __get_user_pages walks a process's page tables and takes a reference to 474 * each struct page that each user address corresponds to at a given 475 * instant. That is, it takes the page that would be accessed if a user 476 * thread accesses the given user virtual address at that instant. 477 * 478 * This does not guarantee that the page exists in the user mappings when 479 * __get_user_pages returns, and there may even be a completely different 480 * page there in some cases (eg. if mmapped pagecache has been invalidated 481 * and subsequently re faulted). However it does guarantee that the page 482 * won't be freed completely. And mostly callers simply care that the page 483 * contains data that was valid *at some point in time*. Typically, an IO 484 * or similar operation cannot guarantee anything stronger anyway because 485 * locks can't be held over the syscall boundary. 486 * 487 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 488 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 489 * appropriate) must be called after the page is finished with, and 490 * before put_page is called. 491 * 492 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 493 * or mmap_sem contention, and if waiting is needed to pin all pages, 494 * *@nonblocking will be set to 0. Further, if @gup_flags does not 495 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 496 * this case. 497 * 498 * A caller using such a combination of @nonblocking and @gup_flags 499 * must therefore hold the mmap_sem for reading only, and recognize 500 * when it's been released. Otherwise, it must be held for either 501 * reading or writing and will not be released. 502 * 503 * In most cases, get_user_pages or get_user_pages_fast should be used 504 * instead of __get_user_pages. __get_user_pages should be used only if 505 * you need some special @gup_flags. 506 */ 507 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 508 unsigned long start, unsigned long nr_pages, 509 unsigned int gup_flags, struct page **pages, 510 struct vm_area_struct **vmas, int *nonblocking) 511 { 512 long i = 0; 513 unsigned int page_mask; 514 struct vm_area_struct *vma = NULL; 515 516 if (!nr_pages) 517 return 0; 518 519 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 520 521 /* 522 * If FOLL_FORCE is set then do not force a full fault as the hinting 523 * fault information is unrelated to the reference behaviour of a task 524 * using the address space 525 */ 526 if (!(gup_flags & FOLL_FORCE)) 527 gup_flags |= FOLL_NUMA; 528 529 do { 530 struct page *page; 531 unsigned int foll_flags = gup_flags; 532 unsigned int page_increm; 533 534 /* first iteration or cross vma bound */ 535 if (!vma || start >= vma->vm_end) { 536 vma = find_extend_vma(mm, start); 537 if (!vma && in_gate_area(mm, start)) { 538 int ret; 539 ret = get_gate_page(mm, start & PAGE_MASK, 540 gup_flags, &vma, 541 pages ? &pages[i] : NULL); 542 if (ret) 543 return i ? : ret; 544 page_mask = 0; 545 goto next_page; 546 } 547 548 if (!vma || check_vma_flags(vma, gup_flags)) 549 return i ? : -EFAULT; 550 if (is_vm_hugetlb_page(vma)) { 551 i = follow_hugetlb_page(mm, vma, pages, vmas, 552 &start, &nr_pages, i, 553 gup_flags); 554 continue; 555 } 556 } 557 retry: 558 /* 559 * If we have a pending SIGKILL, don't keep faulting pages and 560 * potentially allocating memory. 561 */ 562 if (unlikely(fatal_signal_pending(current))) 563 return i ? i : -ERESTARTSYS; 564 cond_resched(); 565 page = follow_page_mask(vma, start, foll_flags, &page_mask); 566 if (!page) { 567 int ret; 568 ret = faultin_page(tsk, vma, start, &foll_flags, 569 nonblocking); 570 switch (ret) { 571 case 0: 572 goto retry; 573 case -EFAULT: 574 case -ENOMEM: 575 case -EHWPOISON: 576 return i ? i : ret; 577 case -EBUSY: 578 return i; 579 case -ENOENT: 580 goto next_page; 581 } 582 BUG(); 583 } else if (PTR_ERR(page) == -EEXIST) { 584 /* 585 * Proper page table entry exists, but no corresponding 586 * struct page. 587 */ 588 goto next_page; 589 } else if (IS_ERR(page)) { 590 return i ? i : PTR_ERR(page); 591 } 592 if (pages) { 593 pages[i] = page; 594 flush_anon_page(vma, page, start); 595 flush_dcache_page(page); 596 page_mask = 0; 597 } 598 next_page: 599 if (vmas) { 600 vmas[i] = vma; 601 page_mask = 0; 602 } 603 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 604 if (page_increm > nr_pages) 605 page_increm = nr_pages; 606 i += page_increm; 607 start += page_increm * PAGE_SIZE; 608 nr_pages -= page_increm; 609 } while (nr_pages); 610 return i; 611 } 612 EXPORT_SYMBOL(__get_user_pages); 613 614 /* 615 * fixup_user_fault() - manually resolve a user page fault 616 * @tsk: the task_struct to use for page fault accounting, or 617 * NULL if faults are not to be recorded. 618 * @mm: mm_struct of target mm 619 * @address: user address 620 * @fault_flags:flags to pass down to handle_mm_fault() 621 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 622 * does not allow retry 623 * 624 * This is meant to be called in the specific scenario where for locking reasons 625 * we try to access user memory in atomic context (within a pagefault_disable() 626 * section), this returns -EFAULT, and we want to resolve the user fault before 627 * trying again. 628 * 629 * Typically this is meant to be used by the futex code. 630 * 631 * The main difference with get_user_pages() is that this function will 632 * unconditionally call handle_mm_fault() which will in turn perform all the 633 * necessary SW fixup of the dirty and young bits in the PTE, while 634 * get_user_pages() only guarantees to update these in the struct page. 635 * 636 * This is important for some architectures where those bits also gate the 637 * access permission to the page because they are maintained in software. On 638 * such architectures, gup() will not be enough to make a subsequent access 639 * succeed. 640 * 641 * This function will not return with an unlocked mmap_sem. So it has not the 642 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 643 */ 644 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 645 unsigned long address, unsigned int fault_flags, 646 bool *unlocked) 647 { 648 struct vm_area_struct *vma; 649 vm_flags_t vm_flags; 650 int ret, major = 0; 651 652 if (unlocked) 653 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 654 655 retry: 656 vma = find_extend_vma(mm, address); 657 if (!vma || address < vma->vm_start) 658 return -EFAULT; 659 660 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; 661 if (!(vm_flags & vma->vm_flags)) 662 return -EFAULT; 663 664 ret = handle_mm_fault(mm, vma, address, fault_flags); 665 major |= ret & VM_FAULT_MAJOR; 666 if (ret & VM_FAULT_ERROR) { 667 if (ret & VM_FAULT_OOM) 668 return -ENOMEM; 669 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 670 return -EHWPOISON; 671 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 672 return -EFAULT; 673 BUG(); 674 } 675 676 if (ret & VM_FAULT_RETRY) { 677 down_read(&mm->mmap_sem); 678 if (!(fault_flags & FAULT_FLAG_TRIED)) { 679 *unlocked = true; 680 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 681 fault_flags |= FAULT_FLAG_TRIED; 682 goto retry; 683 } 684 } 685 686 if (tsk) { 687 if (major) 688 tsk->maj_flt++; 689 else 690 tsk->min_flt++; 691 } 692 return 0; 693 } 694 695 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 696 struct mm_struct *mm, 697 unsigned long start, 698 unsigned long nr_pages, 699 int write, int force, 700 struct page **pages, 701 struct vm_area_struct **vmas, 702 int *locked, bool notify_drop, 703 unsigned int flags) 704 { 705 long ret, pages_done; 706 bool lock_dropped; 707 708 if (locked) { 709 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 710 BUG_ON(vmas); 711 /* check caller initialized locked */ 712 BUG_ON(*locked != 1); 713 } 714 715 if (pages) 716 flags |= FOLL_GET; 717 if (write) 718 flags |= FOLL_WRITE; 719 if (force) 720 flags |= FOLL_FORCE; 721 722 pages_done = 0; 723 lock_dropped = false; 724 for (;;) { 725 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 726 vmas, locked); 727 if (!locked) 728 /* VM_FAULT_RETRY couldn't trigger, bypass */ 729 return ret; 730 731 /* VM_FAULT_RETRY cannot return errors */ 732 if (!*locked) { 733 BUG_ON(ret < 0); 734 BUG_ON(ret >= nr_pages); 735 } 736 737 if (!pages) 738 /* If it's a prefault don't insist harder */ 739 return ret; 740 741 if (ret > 0) { 742 nr_pages -= ret; 743 pages_done += ret; 744 if (!nr_pages) 745 break; 746 } 747 if (*locked) { 748 /* VM_FAULT_RETRY didn't trigger */ 749 if (!pages_done) 750 pages_done = ret; 751 break; 752 } 753 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 754 pages += ret; 755 start += ret << PAGE_SHIFT; 756 757 /* 758 * Repeat on the address that fired VM_FAULT_RETRY 759 * without FAULT_FLAG_ALLOW_RETRY but with 760 * FAULT_FLAG_TRIED. 761 */ 762 *locked = 1; 763 lock_dropped = true; 764 down_read(&mm->mmap_sem); 765 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 766 pages, NULL, NULL); 767 if (ret != 1) { 768 BUG_ON(ret > 1); 769 if (!pages_done) 770 pages_done = ret; 771 break; 772 } 773 nr_pages--; 774 pages_done++; 775 if (!nr_pages) 776 break; 777 pages++; 778 start += PAGE_SIZE; 779 } 780 if (notify_drop && lock_dropped && *locked) { 781 /* 782 * We must let the caller know we temporarily dropped the lock 783 * and so the critical section protected by it was lost. 784 */ 785 up_read(&mm->mmap_sem); 786 *locked = 0; 787 } 788 return pages_done; 789 } 790 791 /* 792 * We can leverage the VM_FAULT_RETRY functionality in the page fault 793 * paths better by using either get_user_pages_locked() or 794 * get_user_pages_unlocked(). 795 * 796 * get_user_pages_locked() is suitable to replace the form: 797 * 798 * down_read(&mm->mmap_sem); 799 * do_something() 800 * get_user_pages(tsk, mm, ..., pages, NULL); 801 * up_read(&mm->mmap_sem); 802 * 803 * to: 804 * 805 * int locked = 1; 806 * down_read(&mm->mmap_sem); 807 * do_something() 808 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 809 * if (locked) 810 * up_read(&mm->mmap_sem); 811 */ 812 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 813 unsigned long start, unsigned long nr_pages, 814 int write, int force, struct page **pages, 815 int *locked) 816 { 817 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 818 pages, NULL, locked, true, FOLL_TOUCH); 819 } 820 EXPORT_SYMBOL(get_user_pages_locked); 821 822 /* 823 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to 824 * pass additional gup_flags as last parameter (like FOLL_HWPOISON). 825 * 826 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 827 * caller if required (just like with __get_user_pages). "FOLL_GET", 828 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed 829 * according to the parameters "pages", "write", "force" 830 * respectively. 831 */ 832 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 833 unsigned long start, unsigned long nr_pages, 834 int write, int force, struct page **pages, 835 unsigned int gup_flags) 836 { 837 long ret; 838 int locked = 1; 839 down_read(&mm->mmap_sem); 840 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 841 pages, NULL, &locked, false, gup_flags); 842 if (locked) 843 up_read(&mm->mmap_sem); 844 return ret; 845 } 846 EXPORT_SYMBOL(__get_user_pages_unlocked); 847 848 /* 849 * get_user_pages_unlocked() is suitable to replace the form: 850 * 851 * down_read(&mm->mmap_sem); 852 * get_user_pages(tsk, mm, ..., pages, NULL); 853 * up_read(&mm->mmap_sem); 854 * 855 * with: 856 * 857 * get_user_pages_unlocked(tsk, mm, ..., pages); 858 * 859 * It is functionally equivalent to get_user_pages_fast so 860 * get_user_pages_fast should be used instead, if the two parameters 861 * "tsk" and "mm" are respectively equal to current and current->mm, 862 * or if "force" shall be set to 1 (get_user_pages_fast misses the 863 * "force" parameter). 864 */ 865 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 866 unsigned long start, unsigned long nr_pages, 867 int write, int force, struct page **pages) 868 { 869 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write, 870 force, pages, FOLL_TOUCH); 871 } 872 EXPORT_SYMBOL(get_user_pages_unlocked); 873 874 /* 875 * get_user_pages() - pin user pages in memory 876 * @tsk: the task_struct to use for page fault accounting, or 877 * NULL if faults are not to be recorded. 878 * @mm: mm_struct of target mm 879 * @start: starting user address 880 * @nr_pages: number of pages from start to pin 881 * @write: whether pages will be written to by the caller 882 * @force: whether to force access even when user mapping is currently 883 * protected (but never forces write access to shared mapping). 884 * @pages: array that receives pointers to the pages pinned. 885 * Should be at least nr_pages long. Or NULL, if caller 886 * only intends to ensure the pages are faulted in. 887 * @vmas: array of pointers to vmas corresponding to each page. 888 * Or NULL if the caller does not require them. 889 * 890 * Returns number of pages pinned. This may be fewer than the number 891 * requested. If nr_pages is 0 or negative, returns 0. If no pages 892 * were pinned, returns -errno. Each page returned must be released 893 * with a put_page() call when it is finished with. vmas will only 894 * remain valid while mmap_sem is held. 895 * 896 * Must be called with mmap_sem held for read or write. 897 * 898 * get_user_pages walks a process's page tables and takes a reference to 899 * each struct page that each user address corresponds to at a given 900 * instant. That is, it takes the page that would be accessed if a user 901 * thread accesses the given user virtual address at that instant. 902 * 903 * This does not guarantee that the page exists in the user mappings when 904 * get_user_pages returns, and there may even be a completely different 905 * page there in some cases (eg. if mmapped pagecache has been invalidated 906 * and subsequently re faulted). However it does guarantee that the page 907 * won't be freed completely. And mostly callers simply care that the page 908 * contains data that was valid *at some point in time*. Typically, an IO 909 * or similar operation cannot guarantee anything stronger anyway because 910 * locks can't be held over the syscall boundary. 911 * 912 * If write=0, the page must not be written to. If the page is written to, 913 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 914 * after the page is finished with, and before put_page is called. 915 * 916 * get_user_pages is typically used for fewer-copy IO operations, to get a 917 * handle on the memory by some means other than accesses via the user virtual 918 * addresses. The pages may be submitted for DMA to devices or accessed via 919 * their kernel linear mapping (via the kmap APIs). Care should be taken to 920 * use the correct cache flushing APIs. 921 * 922 * See also get_user_pages_fast, for performance critical applications. 923 * 924 * get_user_pages should be phased out in favor of 925 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 926 * should use get_user_pages because it cannot pass 927 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 928 */ 929 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 930 unsigned long start, unsigned long nr_pages, int write, 931 int force, struct page **pages, struct vm_area_struct **vmas) 932 { 933 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force, 934 pages, vmas, NULL, false, FOLL_TOUCH); 935 } 936 EXPORT_SYMBOL(get_user_pages); 937 938 /** 939 * populate_vma_page_range() - populate a range of pages in the vma. 940 * @vma: target vma 941 * @start: start address 942 * @end: end address 943 * @nonblocking: 944 * 945 * This takes care of mlocking the pages too if VM_LOCKED is set. 946 * 947 * return 0 on success, negative error code on error. 948 * 949 * vma->vm_mm->mmap_sem must be held. 950 * 951 * If @nonblocking is NULL, it may be held for read or write and will 952 * be unperturbed. 953 * 954 * If @nonblocking is non-NULL, it must held for read only and may be 955 * released. If it's released, *@nonblocking will be set to 0. 956 */ 957 long populate_vma_page_range(struct vm_area_struct *vma, 958 unsigned long start, unsigned long end, int *nonblocking) 959 { 960 struct mm_struct *mm = vma->vm_mm; 961 unsigned long nr_pages = (end - start) / PAGE_SIZE; 962 int gup_flags; 963 964 VM_BUG_ON(start & ~PAGE_MASK); 965 VM_BUG_ON(end & ~PAGE_MASK); 966 VM_BUG_ON_VMA(start < vma->vm_start, vma); 967 VM_BUG_ON_VMA(end > vma->vm_end, vma); 968 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 969 970 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 971 if (vma->vm_flags & VM_LOCKONFAULT) 972 gup_flags &= ~FOLL_POPULATE; 973 /* 974 * We want to touch writable mappings with a write fault in order 975 * to break COW, except for shared mappings because these don't COW 976 * and we would not want to dirty them for nothing. 977 */ 978 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 979 gup_flags |= FOLL_WRITE; 980 981 /* 982 * We want mlock to succeed for regions that have any permissions 983 * other than PROT_NONE. 984 */ 985 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 986 gup_flags |= FOLL_FORCE; 987 988 /* 989 * We made sure addr is within a VMA, so the following will 990 * not result in a stack expansion that recurses back here. 991 */ 992 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 993 NULL, NULL, nonblocking); 994 } 995 996 /* 997 * __mm_populate - populate and/or mlock pages within a range of address space. 998 * 999 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1000 * flags. VMAs must be already marked with the desired vm_flags, and 1001 * mmap_sem must not be held. 1002 */ 1003 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1004 { 1005 struct mm_struct *mm = current->mm; 1006 unsigned long end, nstart, nend; 1007 struct vm_area_struct *vma = NULL; 1008 int locked = 0; 1009 long ret = 0; 1010 1011 VM_BUG_ON(start & ~PAGE_MASK); 1012 VM_BUG_ON(len != PAGE_ALIGN(len)); 1013 end = start + len; 1014 1015 for (nstart = start; nstart < end; nstart = nend) { 1016 /* 1017 * We want to fault in pages for [nstart; end) address range. 1018 * Find first corresponding VMA. 1019 */ 1020 if (!locked) { 1021 locked = 1; 1022 down_read(&mm->mmap_sem); 1023 vma = find_vma(mm, nstart); 1024 } else if (nstart >= vma->vm_end) 1025 vma = vma->vm_next; 1026 if (!vma || vma->vm_start >= end) 1027 break; 1028 /* 1029 * Set [nstart; nend) to intersection of desired address 1030 * range with the first VMA. Also, skip undesirable VMA types. 1031 */ 1032 nend = min(end, vma->vm_end); 1033 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1034 continue; 1035 if (nstart < vma->vm_start) 1036 nstart = vma->vm_start; 1037 /* 1038 * Now fault in a range of pages. populate_vma_page_range() 1039 * double checks the vma flags, so that it won't mlock pages 1040 * if the vma was already munlocked. 1041 */ 1042 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1043 if (ret < 0) { 1044 if (ignore_errors) { 1045 ret = 0; 1046 continue; /* continue at next VMA */ 1047 } 1048 break; 1049 } 1050 nend = nstart + ret * PAGE_SIZE; 1051 ret = 0; 1052 } 1053 if (locked) 1054 up_read(&mm->mmap_sem); 1055 return ret; /* 0 or negative error code */ 1056 } 1057 1058 /** 1059 * get_dump_page() - pin user page in memory while writing it to core dump 1060 * @addr: user address 1061 * 1062 * Returns struct page pointer of user page pinned for dump, 1063 * to be freed afterwards by page_cache_release() or put_page(). 1064 * 1065 * Returns NULL on any kind of failure - a hole must then be inserted into 1066 * the corefile, to preserve alignment with its headers; and also returns 1067 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1068 * allowing a hole to be left in the corefile to save diskspace. 1069 * 1070 * Called without mmap_sem, but after all other threads have been killed. 1071 */ 1072 #ifdef CONFIG_ELF_CORE 1073 struct page *get_dump_page(unsigned long addr) 1074 { 1075 struct vm_area_struct *vma; 1076 struct page *page; 1077 1078 if (__get_user_pages(current, current->mm, addr, 1, 1079 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1080 NULL) < 1) 1081 return NULL; 1082 flush_cache_page(vma, addr, page_to_pfn(page)); 1083 return page; 1084 } 1085 #endif /* CONFIG_ELF_CORE */ 1086 1087 /* 1088 * Generic RCU Fast GUP 1089 * 1090 * get_user_pages_fast attempts to pin user pages by walking the page 1091 * tables directly and avoids taking locks. Thus the walker needs to be 1092 * protected from page table pages being freed from under it, and should 1093 * block any THP splits. 1094 * 1095 * One way to achieve this is to have the walker disable interrupts, and 1096 * rely on IPIs from the TLB flushing code blocking before the page table 1097 * pages are freed. This is unsuitable for architectures that do not need 1098 * to broadcast an IPI when invalidating TLBs. 1099 * 1100 * Another way to achieve this is to batch up page table containing pages 1101 * belonging to more than one mm_user, then rcu_sched a callback to free those 1102 * pages. Disabling interrupts will allow the fast_gup walker to both block 1103 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1104 * (which is a relatively rare event). The code below adopts this strategy. 1105 * 1106 * Before activating this code, please be aware that the following assumptions 1107 * are currently made: 1108 * 1109 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1110 * pages containing page tables. 1111 * 1112 * *) ptes can be read atomically by the architecture. 1113 * 1114 * *) access_ok is sufficient to validate userspace address ranges. 1115 * 1116 * The last two assumptions can be relaxed by the addition of helper functions. 1117 * 1118 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1119 */ 1120 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1121 1122 #ifdef __HAVE_ARCH_PTE_SPECIAL 1123 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1124 int write, struct page **pages, int *nr) 1125 { 1126 pte_t *ptep, *ptem; 1127 int ret = 0; 1128 1129 ptem = ptep = pte_offset_map(&pmd, addr); 1130 do { 1131 /* 1132 * In the line below we are assuming that the pte can be read 1133 * atomically. If this is not the case for your architecture, 1134 * please wrap this in a helper function! 1135 * 1136 * for an example see gup_get_pte in arch/x86/mm/gup.c 1137 */ 1138 pte_t pte = READ_ONCE(*ptep); 1139 struct page *head, *page; 1140 1141 /* 1142 * Similar to the PMD case below, NUMA hinting must take slow 1143 * path using the pte_protnone check. 1144 */ 1145 if (!pte_present(pte) || pte_special(pte) || 1146 pte_protnone(pte) || (write && !pte_write(pte))) 1147 goto pte_unmap; 1148 1149 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1150 page = pte_page(pte); 1151 head = compound_head(page); 1152 1153 if (!page_cache_get_speculative(head)) 1154 goto pte_unmap; 1155 1156 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1157 put_page(head); 1158 goto pte_unmap; 1159 } 1160 1161 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1162 pages[*nr] = page; 1163 (*nr)++; 1164 1165 } while (ptep++, addr += PAGE_SIZE, addr != end); 1166 1167 ret = 1; 1168 1169 pte_unmap: 1170 pte_unmap(ptem); 1171 return ret; 1172 } 1173 #else 1174 1175 /* 1176 * If we can't determine whether or not a pte is special, then fail immediately 1177 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1178 * to be special. 1179 * 1180 * For a futex to be placed on a THP tail page, get_futex_key requires a 1181 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1182 * useful to have gup_huge_pmd even if we can't operate on ptes. 1183 */ 1184 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1185 int write, struct page **pages, int *nr) 1186 { 1187 return 0; 1188 } 1189 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1190 1191 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1192 unsigned long end, int write, struct page **pages, int *nr) 1193 { 1194 struct page *head, *page; 1195 int refs; 1196 1197 if (write && !pmd_write(orig)) 1198 return 0; 1199 1200 refs = 0; 1201 head = pmd_page(orig); 1202 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1203 do { 1204 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1205 pages[*nr] = page; 1206 (*nr)++; 1207 page++; 1208 refs++; 1209 } while (addr += PAGE_SIZE, addr != end); 1210 1211 if (!page_cache_add_speculative(head, refs)) { 1212 *nr -= refs; 1213 return 0; 1214 } 1215 1216 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1217 *nr -= refs; 1218 while (refs--) 1219 put_page(head); 1220 return 0; 1221 } 1222 1223 return 1; 1224 } 1225 1226 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1227 unsigned long end, int write, struct page **pages, int *nr) 1228 { 1229 struct page *head, *page; 1230 int refs; 1231 1232 if (write && !pud_write(orig)) 1233 return 0; 1234 1235 refs = 0; 1236 head = pud_page(orig); 1237 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1238 do { 1239 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1240 pages[*nr] = page; 1241 (*nr)++; 1242 page++; 1243 refs++; 1244 } while (addr += PAGE_SIZE, addr != end); 1245 1246 if (!page_cache_add_speculative(head, refs)) { 1247 *nr -= refs; 1248 return 0; 1249 } 1250 1251 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1252 *nr -= refs; 1253 while (refs--) 1254 put_page(head); 1255 return 0; 1256 } 1257 1258 return 1; 1259 } 1260 1261 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1262 unsigned long end, int write, 1263 struct page **pages, int *nr) 1264 { 1265 int refs; 1266 struct page *head, *page; 1267 1268 if (write && !pgd_write(orig)) 1269 return 0; 1270 1271 refs = 0; 1272 head = pgd_page(orig); 1273 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1274 do { 1275 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1276 pages[*nr] = page; 1277 (*nr)++; 1278 page++; 1279 refs++; 1280 } while (addr += PAGE_SIZE, addr != end); 1281 1282 if (!page_cache_add_speculative(head, refs)) { 1283 *nr -= refs; 1284 return 0; 1285 } 1286 1287 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1288 *nr -= refs; 1289 while (refs--) 1290 put_page(head); 1291 return 0; 1292 } 1293 1294 return 1; 1295 } 1296 1297 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1298 int write, struct page **pages, int *nr) 1299 { 1300 unsigned long next; 1301 pmd_t *pmdp; 1302 1303 pmdp = pmd_offset(&pud, addr); 1304 do { 1305 pmd_t pmd = READ_ONCE(*pmdp); 1306 1307 next = pmd_addr_end(addr, end); 1308 if (pmd_none(pmd)) 1309 return 0; 1310 1311 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1312 /* 1313 * NUMA hinting faults need to be handled in the GUP 1314 * slowpath for accounting purposes and so that they 1315 * can be serialised against THP migration. 1316 */ 1317 if (pmd_protnone(pmd)) 1318 return 0; 1319 1320 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1321 pages, nr)) 1322 return 0; 1323 1324 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1325 /* 1326 * architecture have different format for hugetlbfs 1327 * pmd format and THP pmd format 1328 */ 1329 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1330 PMD_SHIFT, next, write, pages, nr)) 1331 return 0; 1332 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1333 return 0; 1334 } while (pmdp++, addr = next, addr != end); 1335 1336 return 1; 1337 } 1338 1339 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, 1340 int write, struct page **pages, int *nr) 1341 { 1342 unsigned long next; 1343 pud_t *pudp; 1344 1345 pudp = pud_offset(&pgd, addr); 1346 do { 1347 pud_t pud = READ_ONCE(*pudp); 1348 1349 next = pud_addr_end(addr, end); 1350 if (pud_none(pud)) 1351 return 0; 1352 if (unlikely(pud_huge(pud))) { 1353 if (!gup_huge_pud(pud, pudp, addr, next, write, 1354 pages, nr)) 1355 return 0; 1356 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1357 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1358 PUD_SHIFT, next, write, pages, nr)) 1359 return 0; 1360 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1361 return 0; 1362 } while (pudp++, addr = next, addr != end); 1363 1364 return 1; 1365 } 1366 1367 /* 1368 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1369 * the regular GUP. It will only return non-negative values. 1370 */ 1371 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1372 struct page **pages) 1373 { 1374 struct mm_struct *mm = current->mm; 1375 unsigned long addr, len, end; 1376 unsigned long next, flags; 1377 pgd_t *pgdp; 1378 int nr = 0; 1379 1380 start &= PAGE_MASK; 1381 addr = start; 1382 len = (unsigned long) nr_pages << PAGE_SHIFT; 1383 end = start + len; 1384 1385 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1386 start, len))) 1387 return 0; 1388 1389 /* 1390 * Disable interrupts. We use the nested form as we can already have 1391 * interrupts disabled by get_futex_key. 1392 * 1393 * With interrupts disabled, we block page table pages from being 1394 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1395 * for more details. 1396 * 1397 * We do not adopt an rcu_read_lock(.) here as we also want to 1398 * block IPIs that come from THPs splitting. 1399 */ 1400 1401 local_irq_save(flags); 1402 pgdp = pgd_offset(mm, addr); 1403 do { 1404 pgd_t pgd = READ_ONCE(*pgdp); 1405 1406 next = pgd_addr_end(addr, end); 1407 if (pgd_none(pgd)) 1408 break; 1409 if (unlikely(pgd_huge(pgd))) { 1410 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1411 pages, &nr)) 1412 break; 1413 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1414 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1415 PGDIR_SHIFT, next, write, pages, &nr)) 1416 break; 1417 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) 1418 break; 1419 } while (pgdp++, addr = next, addr != end); 1420 local_irq_restore(flags); 1421 1422 return nr; 1423 } 1424 1425 /** 1426 * get_user_pages_fast() - pin user pages in memory 1427 * @start: starting user address 1428 * @nr_pages: number of pages from start to pin 1429 * @write: whether pages will be written to 1430 * @pages: array that receives pointers to the pages pinned. 1431 * Should be at least nr_pages long. 1432 * 1433 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1434 * If not successful, it will fall back to taking the lock and 1435 * calling get_user_pages(). 1436 * 1437 * Returns number of pages pinned. This may be fewer than the number 1438 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1439 * were pinned, returns -errno. 1440 */ 1441 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1442 struct page **pages) 1443 { 1444 struct mm_struct *mm = current->mm; 1445 int nr, ret; 1446 1447 start &= PAGE_MASK; 1448 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1449 ret = nr; 1450 1451 if (nr < nr_pages) { 1452 /* Try to get the remaining pages with get_user_pages */ 1453 start += nr << PAGE_SHIFT; 1454 pages += nr; 1455 1456 ret = get_user_pages_unlocked(current, mm, start, 1457 nr_pages - nr, write, 0, pages); 1458 1459 /* Have to be a bit careful with return values */ 1460 if (nr > 0) { 1461 if (ret < 0) 1462 ret = nr; 1463 else 1464 ret += nr; 1465 } 1466 } 1467 1468 return ret; 1469 } 1470 1471 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1472