xref: /openbmc/linux/mm/gup.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/tlbflush.h>
23 
24 #include "internal.h"
25 
26 struct follow_page_context {
27 	struct dev_pagemap *pgmap;
28 	unsigned int page_mask;
29 };
30 
31 static void hpage_pincount_add(struct page *page, int refs)
32 {
33 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 	VM_BUG_ON_PAGE(page != compound_head(page), page);
35 
36 	atomic_add(refs, compound_pincount_ptr(page));
37 }
38 
39 static void hpage_pincount_sub(struct page *page, int refs)
40 {
41 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 	VM_BUG_ON_PAGE(page != compound_head(page), page);
43 
44 	atomic_sub(refs, compound_pincount_ptr(page));
45 }
46 
47 /*
48  * Return the compound head page with ref appropriately incremented,
49  * or NULL if that failed.
50  */
51 static inline struct page *try_get_compound_head(struct page *page, int refs)
52 {
53 	struct page *head = compound_head(page);
54 
55 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 		return NULL;
57 	if (unlikely(!page_cache_add_speculative(head, refs)))
58 		return NULL;
59 	return head;
60 }
61 
62 /*
63  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64  * flags-dependent amount.
65  *
66  * "grab" names in this file mean, "look at flags to decide whether to use
67  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68  *
69  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70  * same time. (That's true throughout the get_user_pages*() and
71  * pin_user_pages*() APIs.) Cases:
72  *
73  *    FOLL_GET: page's refcount will be incremented by 1.
74  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75  *
76  * Return: head page (with refcount appropriately incremented) for success, or
77  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78  * considered failure, and furthermore, a likely bug in the caller, so a warning
79  * is also emitted.
80  */
81 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 							  int refs,
83 							  unsigned int flags)
84 {
85 	if (flags & FOLL_GET)
86 		return try_get_compound_head(page, refs);
87 	else if (flags & FOLL_PIN) {
88 		int orig_refs = refs;
89 
90 		/*
91 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 		 * path, so fail and let the caller fall back to the slow path.
93 		 */
94 		if (unlikely(flags & FOLL_LONGTERM) &&
95 				is_migrate_cma_page(page))
96 			return NULL;
97 
98 		/*
99 		 * When pinning a compound page of order > 1 (which is what
100 		 * hpage_pincount_available() checks for), use an exact count to
101 		 * track it, via hpage_pincount_add/_sub().
102 		 *
103 		 * However, be sure to *also* increment the normal page refcount
104 		 * field at least once, so that the page really is pinned.
105 		 */
106 		if (!hpage_pincount_available(page))
107 			refs *= GUP_PIN_COUNTING_BIAS;
108 
109 		page = try_get_compound_head(page, refs);
110 		if (!page)
111 			return NULL;
112 
113 		if (hpage_pincount_available(page))
114 			hpage_pincount_add(page, refs);
115 
116 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 				    orig_refs);
118 
119 		return page;
120 	}
121 
122 	WARN_ON_ONCE(1);
123 	return NULL;
124 }
125 
126 /**
127  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133  *
134  * @page:    pointer to page to be grabbed
135  * @flags:   gup flags: these are the FOLL_* flag values.
136  *
137  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138  * time. Cases:
139  *
140  *    FOLL_GET: page's refcount will be incremented by 1.
141  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142  *
143  * Return: true for success, or if no action was required (if neither FOLL_PIN
144  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145  * FOLL_PIN was set, but the page could not be grabbed.
146  */
147 bool __must_check try_grab_page(struct page *page, unsigned int flags)
148 {
149 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150 
151 	if (flags & FOLL_GET)
152 		return try_get_page(page);
153 	else if (flags & FOLL_PIN) {
154 		int refs = 1;
155 
156 		page = compound_head(page);
157 
158 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 			return false;
160 
161 		if (hpage_pincount_available(page))
162 			hpage_pincount_add(page, 1);
163 		else
164 			refs = GUP_PIN_COUNTING_BIAS;
165 
166 		/*
167 		 * Similar to try_grab_compound_head(): even if using the
168 		 * hpage_pincount_add/_sub() routines, be sure to
169 		 * *also* increment the normal page refcount field at least
170 		 * once, so that the page really is pinned.
171 		 */
172 		page_ref_add(page, refs);
173 
174 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175 	}
176 
177 	return true;
178 }
179 
180 #ifdef CONFIG_DEV_PAGEMAP_OPS
181 static bool __unpin_devmap_managed_user_page(struct page *page)
182 {
183 	int count, refs = 1;
184 
185 	if (!page_is_devmap_managed(page))
186 		return false;
187 
188 	if (hpage_pincount_available(page))
189 		hpage_pincount_sub(page, 1);
190 	else
191 		refs = GUP_PIN_COUNTING_BIAS;
192 
193 	count = page_ref_sub_return(page, refs);
194 
195 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196 	/*
197 	 * devmap page refcounts are 1-based, rather than 0-based: if
198 	 * refcount is 1, then the page is free and the refcount is
199 	 * stable because nobody holds a reference on the page.
200 	 */
201 	if (count == 1)
202 		free_devmap_managed_page(page);
203 	else if (!count)
204 		__put_page(page);
205 
206 	return true;
207 }
208 #else
209 static bool __unpin_devmap_managed_user_page(struct page *page)
210 {
211 	return false;
212 }
213 #endif /* CONFIG_DEV_PAGEMAP_OPS */
214 
215 /**
216  * unpin_user_page() - release a dma-pinned page
217  * @page:            pointer to page to be released
218  *
219  * Pages that were pinned via pin_user_pages*() must be released via either
220  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221  * that such pages can be separately tracked and uniquely handled. In
222  * particular, interactions with RDMA and filesystems need special handling.
223  */
224 void unpin_user_page(struct page *page)
225 {
226 	int refs = 1;
227 
228 	page = compound_head(page);
229 
230 	/*
231 	 * For devmap managed pages we need to catch refcount transition from
232 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 	 * page is free and we need to inform the device driver through
234 	 * callback. See include/linux/memremap.h and HMM for details.
235 	 */
236 	if (__unpin_devmap_managed_user_page(page))
237 		return;
238 
239 	if (hpage_pincount_available(page))
240 		hpage_pincount_sub(page, 1);
241 	else
242 		refs = GUP_PIN_COUNTING_BIAS;
243 
244 	if (page_ref_sub_and_test(page, refs))
245 		__put_page(page);
246 
247 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248 }
249 EXPORT_SYMBOL(unpin_user_page);
250 
251 /**
252  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253  * @pages:  array of pages to be maybe marked dirty, and definitely released.
254  * @npages: number of pages in the @pages array.
255  * @make_dirty: whether to mark the pages dirty
256  *
257  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258  * variants called on that page.
259  *
260  * For each page in the @pages array, make that page (or its head page, if a
261  * compound page) dirty, if @make_dirty is true, and if the page was previously
262  * listed as clean. In any case, releases all pages using unpin_user_page(),
263  * possibly via unpin_user_pages(), for the non-dirty case.
264  *
265  * Please see the unpin_user_page() documentation for details.
266  *
267  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268  * required, then the caller should a) verify that this is really correct,
269  * because _lock() is usually required, and b) hand code it:
270  * set_page_dirty_lock(), unpin_user_page().
271  *
272  */
273 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 				 bool make_dirty)
275 {
276 	unsigned long index;
277 
278 	/*
279 	 * TODO: this can be optimized for huge pages: if a series of pages is
280 	 * physically contiguous and part of the same compound page, then a
281 	 * single operation to the head page should suffice.
282 	 */
283 
284 	if (!make_dirty) {
285 		unpin_user_pages(pages, npages);
286 		return;
287 	}
288 
289 	for (index = 0; index < npages; index++) {
290 		struct page *page = compound_head(pages[index]);
291 		/*
292 		 * Checking PageDirty at this point may race with
293 		 * clear_page_dirty_for_io(), but that's OK. Two key
294 		 * cases:
295 		 *
296 		 * 1) This code sees the page as already dirty, so it
297 		 * skips the call to set_page_dirty(). That could happen
298 		 * because clear_page_dirty_for_io() called
299 		 * page_mkclean(), followed by set_page_dirty().
300 		 * However, now the page is going to get written back,
301 		 * which meets the original intention of setting it
302 		 * dirty, so all is well: clear_page_dirty_for_io() goes
303 		 * on to call TestClearPageDirty(), and write the page
304 		 * back.
305 		 *
306 		 * 2) This code sees the page as clean, so it calls
307 		 * set_page_dirty(). The page stays dirty, despite being
308 		 * written back, so it gets written back again in the
309 		 * next writeback cycle. This is harmless.
310 		 */
311 		if (!PageDirty(page))
312 			set_page_dirty_lock(page);
313 		unpin_user_page(page);
314 	}
315 }
316 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 
318 /**
319  * unpin_user_pages() - release an array of gup-pinned pages.
320  * @pages:  array of pages to be marked dirty and released.
321  * @npages: number of pages in the @pages array.
322  *
323  * For each page in the @pages array, release the page using unpin_user_page().
324  *
325  * Please see the unpin_user_page() documentation for details.
326  */
327 void unpin_user_pages(struct page **pages, unsigned long npages)
328 {
329 	unsigned long index;
330 
331 	/*
332 	 * TODO: this can be optimized for huge pages: if a series of pages is
333 	 * physically contiguous and part of the same compound page, then a
334 	 * single operation to the head page should suffice.
335 	 */
336 	for (index = 0; index < npages; index++)
337 		unpin_user_page(pages[index]);
338 }
339 EXPORT_SYMBOL(unpin_user_pages);
340 
341 #ifdef CONFIG_MMU
342 static struct page *no_page_table(struct vm_area_struct *vma,
343 		unsigned int flags)
344 {
345 	/*
346 	 * When core dumping an enormous anonymous area that nobody
347 	 * has touched so far, we don't want to allocate unnecessary pages or
348 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349 	 * then get_dump_page() will return NULL to leave a hole in the dump.
350 	 * But we can only make this optimization where a hole would surely
351 	 * be zero-filled if handle_mm_fault() actually did handle it.
352 	 */
353 	if ((flags & FOLL_DUMP) &&
354 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385  * but only after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
390 }
391 
392 /*
393  * A (separate) COW fault might break the page the other way and
394  * get_user_pages() would return the page from what is now the wrong
395  * VM. So we need to force a COW break at GUP time even for reads.
396  */
397 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
398 {
399 	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
400 }
401 
402 static struct page *follow_page_pte(struct vm_area_struct *vma,
403 		unsigned long address, pmd_t *pmd, unsigned int flags,
404 		struct dev_pagemap **pgmap)
405 {
406 	struct mm_struct *mm = vma->vm_mm;
407 	struct page *page;
408 	spinlock_t *ptl;
409 	pte_t *ptep, pte;
410 	int ret;
411 
412 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414 			 (FOLL_PIN | FOLL_GET)))
415 		return ERR_PTR(-EINVAL);
416 retry:
417 	if (unlikely(pmd_bad(*pmd)))
418 		return no_page_table(vma, flags);
419 
420 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
421 	pte = *ptep;
422 	if (!pte_present(pte)) {
423 		swp_entry_t entry;
424 		/*
425 		 * KSM's break_ksm() relies upon recognizing a ksm page
426 		 * even while it is being migrated, so for that case we
427 		 * need migration_entry_wait().
428 		 */
429 		if (likely(!(flags & FOLL_MIGRATION)))
430 			goto no_page;
431 		if (pte_none(pte))
432 			goto no_page;
433 		entry = pte_to_swp_entry(pte);
434 		if (!is_migration_entry(entry))
435 			goto no_page;
436 		pte_unmap_unlock(ptep, ptl);
437 		migration_entry_wait(mm, pmd, address);
438 		goto retry;
439 	}
440 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
441 		goto no_page;
442 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
443 		pte_unmap_unlock(ptep, ptl);
444 		return NULL;
445 	}
446 
447 	page = vm_normal_page(vma, address, pte);
448 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
449 		/*
450 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 		 * case since they are only valid while holding the pgmap
452 		 * reference.
453 		 */
454 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455 		if (*pgmap)
456 			page = pte_page(pte);
457 		else
458 			goto no_page;
459 	} else if (unlikely(!page)) {
460 		if (flags & FOLL_DUMP) {
461 			/* Avoid special (like zero) pages in core dumps */
462 			page = ERR_PTR(-EFAULT);
463 			goto out;
464 		}
465 
466 		if (is_zero_pfn(pte_pfn(pte))) {
467 			page = pte_page(pte);
468 		} else {
469 			ret = follow_pfn_pte(vma, address, ptep, flags);
470 			page = ERR_PTR(ret);
471 			goto out;
472 		}
473 	}
474 
475 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
476 		get_page(page);
477 		pte_unmap_unlock(ptep, ptl);
478 		lock_page(page);
479 		ret = split_huge_page(page);
480 		unlock_page(page);
481 		put_page(page);
482 		if (ret)
483 			return ERR_PTR(ret);
484 		goto retry;
485 	}
486 
487 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 	if (unlikely(!try_grab_page(page, flags))) {
489 		page = ERR_PTR(-ENOMEM);
490 		goto out;
491 	}
492 	/*
493 	 * We need to make the page accessible if and only if we are going
494 	 * to access its content (the FOLL_PIN case).  Please see
495 	 * Documentation/core-api/pin_user_pages.rst for details.
496 	 */
497 	if (flags & FOLL_PIN) {
498 		ret = arch_make_page_accessible(page);
499 		if (ret) {
500 			unpin_user_page(page);
501 			page = ERR_PTR(ret);
502 			goto out;
503 		}
504 	}
505 	if (flags & FOLL_TOUCH) {
506 		if ((flags & FOLL_WRITE) &&
507 		    !pte_dirty(pte) && !PageDirty(page))
508 			set_page_dirty(page);
509 		/*
510 		 * pte_mkyoung() would be more correct here, but atomic care
511 		 * is needed to avoid losing the dirty bit: it is easier to use
512 		 * mark_page_accessed().
513 		 */
514 		mark_page_accessed(page);
515 	}
516 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
517 		/* Do not mlock pte-mapped THP */
518 		if (PageTransCompound(page))
519 			goto out;
520 
521 		/*
522 		 * The preliminary mapping check is mainly to avoid the
523 		 * pointless overhead of lock_page on the ZERO_PAGE
524 		 * which might bounce very badly if there is contention.
525 		 *
526 		 * If the page is already locked, we don't need to
527 		 * handle it now - vmscan will handle it later if and
528 		 * when it attempts to reclaim the page.
529 		 */
530 		if (page->mapping && trylock_page(page)) {
531 			lru_add_drain();  /* push cached pages to LRU */
532 			/*
533 			 * Because we lock page here, and migration is
534 			 * blocked by the pte's page reference, and we
535 			 * know the page is still mapped, we don't even
536 			 * need to check for file-cache page truncation.
537 			 */
538 			mlock_vma_page(page);
539 			unlock_page(page);
540 		}
541 	}
542 out:
543 	pte_unmap_unlock(ptep, ptl);
544 	return page;
545 no_page:
546 	pte_unmap_unlock(ptep, ptl);
547 	if (!pte_none(pte))
548 		return NULL;
549 	return no_page_table(vma, flags);
550 }
551 
552 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 				    unsigned long address, pud_t *pudp,
554 				    unsigned int flags,
555 				    struct follow_page_context *ctx)
556 {
557 	pmd_t *pmd, pmdval;
558 	spinlock_t *ptl;
559 	struct page *page;
560 	struct mm_struct *mm = vma->vm_mm;
561 
562 	pmd = pmd_offset(pudp, address);
563 	/*
564 	 * The READ_ONCE() will stabilize the pmdval in a register or
565 	 * on the stack so that it will stop changing under the code.
566 	 */
567 	pmdval = READ_ONCE(*pmd);
568 	if (pmd_none(pmdval))
569 		return no_page_table(vma, flags);
570 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571 		page = follow_huge_pmd(mm, address, pmd, flags);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577 		page = follow_huge_pd(vma, address,
578 				      __hugepd(pmd_val(pmdval)), flags,
579 				      PMD_SHIFT);
580 		if (page)
581 			return page;
582 		return no_page_table(vma, flags);
583 	}
584 retry:
585 	if (!pmd_present(pmdval)) {
586 		if (likely(!(flags & FOLL_MIGRATION)))
587 			return no_page_table(vma, flags);
588 		VM_BUG_ON(thp_migration_supported() &&
589 				  !is_pmd_migration_entry(pmdval));
590 		if (is_pmd_migration_entry(pmdval))
591 			pmd_migration_entry_wait(mm, pmd);
592 		pmdval = READ_ONCE(*pmd);
593 		/*
594 		 * MADV_DONTNEED may convert the pmd to null because
595 		 * mmap_lock is held in read mode
596 		 */
597 		if (pmd_none(pmdval))
598 			return no_page_table(vma, flags);
599 		goto retry;
600 	}
601 	if (pmd_devmap(pmdval)) {
602 		ptl = pmd_lock(mm, pmd);
603 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
604 		spin_unlock(ptl);
605 		if (page)
606 			return page;
607 	}
608 	if (likely(!pmd_trans_huge(pmdval)))
609 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
610 
611 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
612 		return no_page_table(vma, flags);
613 
614 retry_locked:
615 	ptl = pmd_lock(mm, pmd);
616 	if (unlikely(pmd_none(*pmd))) {
617 		spin_unlock(ptl);
618 		return no_page_table(vma, flags);
619 	}
620 	if (unlikely(!pmd_present(*pmd))) {
621 		spin_unlock(ptl);
622 		if (likely(!(flags & FOLL_MIGRATION)))
623 			return no_page_table(vma, flags);
624 		pmd_migration_entry_wait(mm, pmd);
625 		goto retry_locked;
626 	}
627 	if (unlikely(!pmd_trans_huge(*pmd))) {
628 		spin_unlock(ptl);
629 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
630 	}
631 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
632 		int ret;
633 		page = pmd_page(*pmd);
634 		if (is_huge_zero_page(page)) {
635 			spin_unlock(ptl);
636 			ret = 0;
637 			split_huge_pmd(vma, pmd, address);
638 			if (pmd_trans_unstable(pmd))
639 				ret = -EBUSY;
640 		} else if (flags & FOLL_SPLIT) {
641 			if (unlikely(!try_get_page(page))) {
642 				spin_unlock(ptl);
643 				return ERR_PTR(-ENOMEM);
644 			}
645 			spin_unlock(ptl);
646 			lock_page(page);
647 			ret = split_huge_page(page);
648 			unlock_page(page);
649 			put_page(page);
650 			if (pmd_none(*pmd))
651 				return no_page_table(vma, flags);
652 		} else {  /* flags & FOLL_SPLIT_PMD */
653 			spin_unlock(ptl);
654 			split_huge_pmd(vma, pmd, address);
655 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
656 		}
657 
658 		return ret ? ERR_PTR(ret) :
659 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
660 	}
661 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
662 	spin_unlock(ptl);
663 	ctx->page_mask = HPAGE_PMD_NR - 1;
664 	return page;
665 }
666 
667 static struct page *follow_pud_mask(struct vm_area_struct *vma,
668 				    unsigned long address, p4d_t *p4dp,
669 				    unsigned int flags,
670 				    struct follow_page_context *ctx)
671 {
672 	pud_t *pud;
673 	spinlock_t *ptl;
674 	struct page *page;
675 	struct mm_struct *mm = vma->vm_mm;
676 
677 	pud = pud_offset(p4dp, address);
678 	if (pud_none(*pud))
679 		return no_page_table(vma, flags);
680 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
681 		page = follow_huge_pud(mm, address, pud, flags);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
687 		page = follow_huge_pd(vma, address,
688 				      __hugepd(pud_val(*pud)), flags,
689 				      PUD_SHIFT);
690 		if (page)
691 			return page;
692 		return no_page_table(vma, flags);
693 	}
694 	if (pud_devmap(*pud)) {
695 		ptl = pud_lock(mm, pud);
696 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
697 		spin_unlock(ptl);
698 		if (page)
699 			return page;
700 	}
701 	if (unlikely(pud_bad(*pud)))
702 		return no_page_table(vma, flags);
703 
704 	return follow_pmd_mask(vma, address, pud, flags, ctx);
705 }
706 
707 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708 				    unsigned long address, pgd_t *pgdp,
709 				    unsigned int flags,
710 				    struct follow_page_context *ctx)
711 {
712 	p4d_t *p4d;
713 	struct page *page;
714 
715 	p4d = p4d_offset(pgdp, address);
716 	if (p4d_none(*p4d))
717 		return no_page_table(vma, flags);
718 	BUILD_BUG_ON(p4d_huge(*p4d));
719 	if (unlikely(p4d_bad(*p4d)))
720 		return no_page_table(vma, flags);
721 
722 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723 		page = follow_huge_pd(vma, address,
724 				      __hugepd(p4d_val(*p4d)), flags,
725 				      P4D_SHIFT);
726 		if (page)
727 			return page;
728 		return no_page_table(vma, flags);
729 	}
730 	return follow_pud_mask(vma, address, p4d, flags, ctx);
731 }
732 
733 /**
734  * follow_page_mask - look up a page descriptor from a user-virtual address
735  * @vma: vm_area_struct mapping @address
736  * @address: virtual address to look up
737  * @flags: flags modifying lookup behaviour
738  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739  *       pointer to output page_mask
740  *
741  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
742  *
743  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
745  *
746  * On output, the @ctx->page_mask is set according to the size of the page.
747  *
748  * Return: the mapped (struct page *), %NULL if no mapping exists, or
749  * an error pointer if there is a mapping to something not represented
750  * by a page descriptor (see also vm_normal_page()).
751  */
752 static struct page *follow_page_mask(struct vm_area_struct *vma,
753 			      unsigned long address, unsigned int flags,
754 			      struct follow_page_context *ctx)
755 {
756 	pgd_t *pgd;
757 	struct page *page;
758 	struct mm_struct *mm = vma->vm_mm;
759 
760 	ctx->page_mask = 0;
761 
762 	/* make this handle hugepd */
763 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764 	if (!IS_ERR(page)) {
765 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
766 		return page;
767 	}
768 
769 	pgd = pgd_offset(mm, address);
770 
771 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772 		return no_page_table(vma, flags);
773 
774 	if (pgd_huge(*pgd)) {
775 		page = follow_huge_pgd(mm, address, pgd, flags);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781 		page = follow_huge_pd(vma, address,
782 				      __hugepd(pgd_val(*pgd)), flags,
783 				      PGDIR_SHIFT);
784 		if (page)
785 			return page;
786 		return no_page_table(vma, flags);
787 	}
788 
789 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
790 }
791 
792 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793 			 unsigned int foll_flags)
794 {
795 	struct follow_page_context ctx = { NULL };
796 	struct page *page;
797 
798 	page = follow_page_mask(vma, address, foll_flags, &ctx);
799 	if (ctx.pgmap)
800 		put_dev_pagemap(ctx.pgmap);
801 	return page;
802 }
803 
804 static int get_gate_page(struct mm_struct *mm, unsigned long address,
805 		unsigned int gup_flags, struct vm_area_struct **vma,
806 		struct page **page)
807 {
808 	pgd_t *pgd;
809 	p4d_t *p4d;
810 	pud_t *pud;
811 	pmd_t *pmd;
812 	pte_t *pte;
813 	int ret = -EFAULT;
814 
815 	/* user gate pages are read-only */
816 	if (gup_flags & FOLL_WRITE)
817 		return -EFAULT;
818 	if (address > TASK_SIZE)
819 		pgd = pgd_offset_k(address);
820 	else
821 		pgd = pgd_offset_gate(mm, address);
822 	if (pgd_none(*pgd))
823 		return -EFAULT;
824 	p4d = p4d_offset(pgd, address);
825 	if (p4d_none(*p4d))
826 		return -EFAULT;
827 	pud = pud_offset(p4d, address);
828 	if (pud_none(*pud))
829 		return -EFAULT;
830 	pmd = pmd_offset(pud, address);
831 	if (!pmd_present(*pmd))
832 		return -EFAULT;
833 	VM_BUG_ON(pmd_trans_huge(*pmd));
834 	pte = pte_offset_map(pmd, address);
835 	if (pte_none(*pte))
836 		goto unmap;
837 	*vma = get_gate_vma(mm);
838 	if (!page)
839 		goto out;
840 	*page = vm_normal_page(*vma, address, *pte);
841 	if (!*page) {
842 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843 			goto unmap;
844 		*page = pte_page(*pte);
845 	}
846 	if (unlikely(!try_get_page(*page))) {
847 		ret = -ENOMEM;
848 		goto unmap;
849 	}
850 out:
851 	ret = 0;
852 unmap:
853 	pte_unmap(pte);
854 	return ret;
855 }
856 
857 /*
858  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
859  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
860  * is, *@locked will be set to 0 and -EBUSY returned.
861  */
862 static int faultin_page(struct vm_area_struct *vma,
863 		unsigned long address, unsigned int *flags, int *locked)
864 {
865 	unsigned int fault_flags = 0;
866 	vm_fault_t ret;
867 
868 	/* mlock all present pages, but do not fault in new pages */
869 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870 		return -ENOENT;
871 	if (*flags & FOLL_WRITE)
872 		fault_flags |= FAULT_FLAG_WRITE;
873 	if (*flags & FOLL_REMOTE)
874 		fault_flags |= FAULT_FLAG_REMOTE;
875 	if (locked)
876 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
877 	if (*flags & FOLL_NOWAIT)
878 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
879 	if (*flags & FOLL_TRIED) {
880 		/*
881 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882 		 * can co-exist
883 		 */
884 		fault_flags |= FAULT_FLAG_TRIED;
885 	}
886 
887 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
888 	if (ret & VM_FAULT_ERROR) {
889 		int err = vm_fault_to_errno(ret, *flags);
890 
891 		if (err)
892 			return err;
893 		BUG();
894 	}
895 
896 	if (ret & VM_FAULT_RETRY) {
897 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
898 			*locked = 0;
899 		return -EBUSY;
900 	}
901 
902 	/*
903 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
904 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
905 	 * can thus safely do subsequent page lookups as if they were reads.
906 	 * But only do so when looping for pte_write is futile: in some cases
907 	 * userspace may also be wanting to write to the gotten user page,
908 	 * which a read fault here might prevent (a readonly page might get
909 	 * reCOWed by userspace write).
910 	 */
911 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
912 		*flags |= FOLL_COW;
913 	return 0;
914 }
915 
916 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
917 {
918 	vm_flags_t vm_flags = vma->vm_flags;
919 	int write = (gup_flags & FOLL_WRITE);
920 	int foreign = (gup_flags & FOLL_REMOTE);
921 
922 	if (vm_flags & (VM_IO | VM_PFNMAP))
923 		return -EFAULT;
924 
925 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
926 		return -EFAULT;
927 
928 	if (write) {
929 		if (!(vm_flags & VM_WRITE)) {
930 			if (!(gup_flags & FOLL_FORCE))
931 				return -EFAULT;
932 			/*
933 			 * We used to let the write,force case do COW in a
934 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
935 			 * set a breakpoint in a read-only mapping of an
936 			 * executable, without corrupting the file (yet only
937 			 * when that file had been opened for writing!).
938 			 * Anon pages in shared mappings are surprising: now
939 			 * just reject it.
940 			 */
941 			if (!is_cow_mapping(vm_flags))
942 				return -EFAULT;
943 		}
944 	} else if (!(vm_flags & VM_READ)) {
945 		if (!(gup_flags & FOLL_FORCE))
946 			return -EFAULT;
947 		/*
948 		 * Is there actually any vma we can reach here which does not
949 		 * have VM_MAYREAD set?
950 		 */
951 		if (!(vm_flags & VM_MAYREAD))
952 			return -EFAULT;
953 	}
954 	/*
955 	 * gups are always data accesses, not instruction
956 	 * fetches, so execute=false here
957 	 */
958 	if (!arch_vma_access_permitted(vma, write, false, foreign))
959 		return -EFAULT;
960 	return 0;
961 }
962 
963 /**
964  * __get_user_pages() - pin user pages in memory
965  * @mm:		mm_struct of target mm
966  * @start:	starting user address
967  * @nr_pages:	number of pages from start to pin
968  * @gup_flags:	flags modifying pin behaviour
969  * @pages:	array that receives pointers to the pages pinned.
970  *		Should be at least nr_pages long. Or NULL, if caller
971  *		only intends to ensure the pages are faulted in.
972  * @vmas:	array of pointers to vmas corresponding to each page.
973  *		Or NULL if the caller does not require them.
974  * @locked:     whether we're still with the mmap_lock held
975  *
976  * Returns either number of pages pinned (which may be less than the
977  * number requested), or an error. Details about the return value:
978  *
979  * -- If nr_pages is 0, returns 0.
980  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981  * -- If nr_pages is >0, and some pages were pinned, returns the number of
982  *    pages pinned. Again, this may be less than nr_pages.
983  * -- 0 return value is possible when the fault would need to be retried.
984  *
985  * The caller is responsible for releasing returned @pages, via put_page().
986  *
987  * @vmas are valid only as long as mmap_lock is held.
988  *
989  * Must be called with mmap_lock held.  It may be released.  See below.
990  *
991  * __get_user_pages walks a process's page tables and takes a reference to
992  * each struct page that each user address corresponds to at a given
993  * instant. That is, it takes the page that would be accessed if a user
994  * thread accesses the given user virtual address at that instant.
995  *
996  * This does not guarantee that the page exists in the user mappings when
997  * __get_user_pages returns, and there may even be a completely different
998  * page there in some cases (eg. if mmapped pagecache has been invalidated
999  * and subsequently re faulted). However it does guarantee that the page
1000  * won't be freed completely. And mostly callers simply care that the page
1001  * contains data that was valid *at some point in time*. Typically, an IO
1002  * or similar operation cannot guarantee anything stronger anyway because
1003  * locks can't be held over the syscall boundary.
1004  *
1005  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1006  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1007  * appropriate) must be called after the page is finished with, and
1008  * before put_page is called.
1009  *
1010  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1011  * released by an up_read().  That can happen if @gup_flags does not
1012  * have FOLL_NOWAIT.
1013  *
1014  * A caller using such a combination of @locked and @gup_flags
1015  * must therefore hold the mmap_lock for reading only, and recognize
1016  * when it's been released.  Otherwise, it must be held for either
1017  * reading or writing and will not be released.
1018  *
1019  * In most cases, get_user_pages or get_user_pages_fast should be used
1020  * instead of __get_user_pages. __get_user_pages should be used only if
1021  * you need some special @gup_flags.
1022  */
1023 static long __get_user_pages(struct mm_struct *mm,
1024 		unsigned long start, unsigned long nr_pages,
1025 		unsigned int gup_flags, struct page **pages,
1026 		struct vm_area_struct **vmas, int *locked)
1027 {
1028 	long ret = 0, i = 0;
1029 	struct vm_area_struct *vma = NULL;
1030 	struct follow_page_context ctx = { NULL };
1031 
1032 	if (!nr_pages)
1033 		return 0;
1034 
1035 	start = untagged_addr(start);
1036 
1037 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1038 
1039 	/*
1040 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1041 	 * fault information is unrelated to the reference behaviour of a task
1042 	 * using the address space
1043 	 */
1044 	if (!(gup_flags & FOLL_FORCE))
1045 		gup_flags |= FOLL_NUMA;
1046 
1047 	do {
1048 		struct page *page;
1049 		unsigned int foll_flags = gup_flags;
1050 		unsigned int page_increm;
1051 
1052 		/* first iteration or cross vma bound */
1053 		if (!vma || start >= vma->vm_end) {
1054 			vma = find_extend_vma(mm, start);
1055 			if (!vma && in_gate_area(mm, start)) {
1056 				ret = get_gate_page(mm, start & PAGE_MASK,
1057 						gup_flags, &vma,
1058 						pages ? &pages[i] : NULL);
1059 				if (ret)
1060 					goto out;
1061 				ctx.page_mask = 0;
1062 				goto next_page;
1063 			}
1064 
1065 			if (!vma || check_vma_flags(vma, gup_flags)) {
1066 				ret = -EFAULT;
1067 				goto out;
1068 			}
1069 			if (is_vm_hugetlb_page(vma)) {
1070 				if (should_force_cow_break(vma, foll_flags))
1071 					foll_flags |= FOLL_WRITE;
1072 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1073 						&start, &nr_pages, i,
1074 						foll_flags, locked);
1075 				if (locked && *locked == 0) {
1076 					/*
1077 					 * We've got a VM_FAULT_RETRY
1078 					 * and we've lost mmap_lock.
1079 					 * We must stop here.
1080 					 */
1081 					BUG_ON(gup_flags & FOLL_NOWAIT);
1082 					BUG_ON(ret != 0);
1083 					goto out;
1084 				}
1085 				continue;
1086 			}
1087 		}
1088 
1089 		if (should_force_cow_break(vma, foll_flags))
1090 			foll_flags |= FOLL_WRITE;
1091 
1092 retry:
1093 		/*
1094 		 * If we have a pending SIGKILL, don't keep faulting pages and
1095 		 * potentially allocating memory.
1096 		 */
1097 		if (fatal_signal_pending(current)) {
1098 			ret = -EINTR;
1099 			goto out;
1100 		}
1101 		cond_resched();
1102 
1103 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1104 		if (!page) {
1105 			ret = faultin_page(vma, start, &foll_flags, locked);
1106 			switch (ret) {
1107 			case 0:
1108 				goto retry;
1109 			case -EBUSY:
1110 				ret = 0;
1111 				fallthrough;
1112 			case -EFAULT:
1113 			case -ENOMEM:
1114 			case -EHWPOISON:
1115 				goto out;
1116 			case -ENOENT:
1117 				goto next_page;
1118 			}
1119 			BUG();
1120 		} else if (PTR_ERR(page) == -EEXIST) {
1121 			/*
1122 			 * Proper page table entry exists, but no corresponding
1123 			 * struct page.
1124 			 */
1125 			goto next_page;
1126 		} else if (IS_ERR(page)) {
1127 			ret = PTR_ERR(page);
1128 			goto out;
1129 		}
1130 		if (pages) {
1131 			pages[i] = page;
1132 			flush_anon_page(vma, page, start);
1133 			flush_dcache_page(page);
1134 			ctx.page_mask = 0;
1135 		}
1136 next_page:
1137 		if (vmas) {
1138 			vmas[i] = vma;
1139 			ctx.page_mask = 0;
1140 		}
1141 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1142 		if (page_increm > nr_pages)
1143 			page_increm = nr_pages;
1144 		i += page_increm;
1145 		start += page_increm * PAGE_SIZE;
1146 		nr_pages -= page_increm;
1147 	} while (nr_pages);
1148 out:
1149 	if (ctx.pgmap)
1150 		put_dev_pagemap(ctx.pgmap);
1151 	return i ? i : ret;
1152 }
1153 
1154 static bool vma_permits_fault(struct vm_area_struct *vma,
1155 			      unsigned int fault_flags)
1156 {
1157 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1158 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1159 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1160 
1161 	if (!(vm_flags & vma->vm_flags))
1162 		return false;
1163 
1164 	/*
1165 	 * The architecture might have a hardware protection
1166 	 * mechanism other than read/write that can deny access.
1167 	 *
1168 	 * gup always represents data access, not instruction
1169 	 * fetches, so execute=false here:
1170 	 */
1171 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1172 		return false;
1173 
1174 	return true;
1175 }
1176 
1177 /**
1178  * fixup_user_fault() - manually resolve a user page fault
1179  * @mm:		mm_struct of target mm
1180  * @address:	user address
1181  * @fault_flags:flags to pass down to handle_mm_fault()
1182  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1183  *		does not allow retry. If NULL, the caller must guarantee
1184  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1185  *
1186  * This is meant to be called in the specific scenario where for locking reasons
1187  * we try to access user memory in atomic context (within a pagefault_disable()
1188  * section), this returns -EFAULT, and we want to resolve the user fault before
1189  * trying again.
1190  *
1191  * Typically this is meant to be used by the futex code.
1192  *
1193  * The main difference with get_user_pages() is that this function will
1194  * unconditionally call handle_mm_fault() which will in turn perform all the
1195  * necessary SW fixup of the dirty and young bits in the PTE, while
1196  * get_user_pages() only guarantees to update these in the struct page.
1197  *
1198  * This is important for some architectures where those bits also gate the
1199  * access permission to the page because they are maintained in software.  On
1200  * such architectures, gup() will not be enough to make a subsequent access
1201  * succeed.
1202  *
1203  * This function will not return with an unlocked mmap_lock. So it has not the
1204  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1205  */
1206 int fixup_user_fault(struct mm_struct *mm,
1207 		     unsigned long address, unsigned int fault_flags,
1208 		     bool *unlocked)
1209 {
1210 	struct vm_area_struct *vma;
1211 	vm_fault_t ret, major = 0;
1212 
1213 	address = untagged_addr(address);
1214 
1215 	if (unlocked)
1216 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1217 
1218 retry:
1219 	vma = find_extend_vma(mm, address);
1220 	if (!vma || address < vma->vm_start)
1221 		return -EFAULT;
1222 
1223 	if (!vma_permits_fault(vma, fault_flags))
1224 		return -EFAULT;
1225 
1226 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1227 	    fatal_signal_pending(current))
1228 		return -EINTR;
1229 
1230 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1231 	major |= ret & VM_FAULT_MAJOR;
1232 	if (ret & VM_FAULT_ERROR) {
1233 		int err = vm_fault_to_errno(ret, 0);
1234 
1235 		if (err)
1236 			return err;
1237 		BUG();
1238 	}
1239 
1240 	if (ret & VM_FAULT_RETRY) {
1241 		mmap_read_lock(mm);
1242 		*unlocked = true;
1243 		fault_flags |= FAULT_FLAG_TRIED;
1244 		goto retry;
1245 	}
1246 
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(fixup_user_fault);
1250 
1251 /*
1252  * Please note that this function, unlike __get_user_pages will not
1253  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1254  */
1255 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1256 						unsigned long start,
1257 						unsigned long nr_pages,
1258 						struct page **pages,
1259 						struct vm_area_struct **vmas,
1260 						int *locked,
1261 						unsigned int flags)
1262 {
1263 	long ret, pages_done;
1264 	bool lock_dropped;
1265 
1266 	if (locked) {
1267 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1268 		BUG_ON(vmas);
1269 		/* check caller initialized locked */
1270 		BUG_ON(*locked != 1);
1271 	}
1272 
1273 	/*
1274 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1275 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1276 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1277 	 * for FOLL_GET, not for the newer FOLL_PIN.
1278 	 *
1279 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1280 	 * that here, as any failures will be obvious enough.
1281 	 */
1282 	if (pages && !(flags & FOLL_PIN))
1283 		flags |= FOLL_GET;
1284 
1285 	pages_done = 0;
1286 	lock_dropped = false;
1287 	for (;;) {
1288 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1289 				       vmas, locked);
1290 		if (!locked)
1291 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1292 			return ret;
1293 
1294 		/* VM_FAULT_RETRY cannot return errors */
1295 		if (!*locked) {
1296 			BUG_ON(ret < 0);
1297 			BUG_ON(ret >= nr_pages);
1298 		}
1299 
1300 		if (ret > 0) {
1301 			nr_pages -= ret;
1302 			pages_done += ret;
1303 			if (!nr_pages)
1304 				break;
1305 		}
1306 		if (*locked) {
1307 			/*
1308 			 * VM_FAULT_RETRY didn't trigger or it was a
1309 			 * FOLL_NOWAIT.
1310 			 */
1311 			if (!pages_done)
1312 				pages_done = ret;
1313 			break;
1314 		}
1315 		/*
1316 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1317 		 * For the prefault case (!pages) we only update counts.
1318 		 */
1319 		if (likely(pages))
1320 			pages += ret;
1321 		start += ret << PAGE_SHIFT;
1322 		lock_dropped = true;
1323 
1324 retry:
1325 		/*
1326 		 * Repeat on the address that fired VM_FAULT_RETRY
1327 		 * with both FAULT_FLAG_ALLOW_RETRY and
1328 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1329 		 * by fatal signals, so we need to check it before we
1330 		 * start trying again otherwise it can loop forever.
1331 		 */
1332 
1333 		if (fatal_signal_pending(current)) {
1334 			if (!pages_done)
1335 				pages_done = -EINTR;
1336 			break;
1337 		}
1338 
1339 		ret = mmap_read_lock_killable(mm);
1340 		if (ret) {
1341 			BUG_ON(ret > 0);
1342 			if (!pages_done)
1343 				pages_done = ret;
1344 			break;
1345 		}
1346 
1347 		*locked = 1;
1348 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1349 				       pages, NULL, locked);
1350 		if (!*locked) {
1351 			/* Continue to retry until we succeeded */
1352 			BUG_ON(ret != 0);
1353 			goto retry;
1354 		}
1355 		if (ret != 1) {
1356 			BUG_ON(ret > 1);
1357 			if (!pages_done)
1358 				pages_done = ret;
1359 			break;
1360 		}
1361 		nr_pages--;
1362 		pages_done++;
1363 		if (!nr_pages)
1364 			break;
1365 		if (likely(pages))
1366 			pages++;
1367 		start += PAGE_SIZE;
1368 	}
1369 	if (lock_dropped && *locked) {
1370 		/*
1371 		 * We must let the caller know we temporarily dropped the lock
1372 		 * and so the critical section protected by it was lost.
1373 		 */
1374 		mmap_read_unlock(mm);
1375 		*locked = 0;
1376 	}
1377 	return pages_done;
1378 }
1379 
1380 /**
1381  * populate_vma_page_range() -  populate a range of pages in the vma.
1382  * @vma:   target vma
1383  * @start: start address
1384  * @end:   end address
1385  * @locked: whether the mmap_lock is still held
1386  *
1387  * This takes care of mlocking the pages too if VM_LOCKED is set.
1388  *
1389  * Return either number of pages pinned in the vma, or a negative error
1390  * code on error.
1391  *
1392  * vma->vm_mm->mmap_lock must be held.
1393  *
1394  * If @locked is NULL, it may be held for read or write and will
1395  * be unperturbed.
1396  *
1397  * If @locked is non-NULL, it must held for read only and may be
1398  * released.  If it's released, *@locked will be set to 0.
1399  */
1400 long populate_vma_page_range(struct vm_area_struct *vma,
1401 		unsigned long start, unsigned long end, int *locked)
1402 {
1403 	struct mm_struct *mm = vma->vm_mm;
1404 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1405 	int gup_flags;
1406 
1407 	VM_BUG_ON(start & ~PAGE_MASK);
1408 	VM_BUG_ON(end   & ~PAGE_MASK);
1409 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1410 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1411 	mmap_assert_locked(mm);
1412 
1413 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1414 	if (vma->vm_flags & VM_LOCKONFAULT)
1415 		gup_flags &= ~FOLL_POPULATE;
1416 	/*
1417 	 * We want to touch writable mappings with a write fault in order
1418 	 * to break COW, except for shared mappings because these don't COW
1419 	 * and we would not want to dirty them for nothing.
1420 	 */
1421 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1422 		gup_flags |= FOLL_WRITE;
1423 
1424 	/*
1425 	 * We want mlock to succeed for regions that have any permissions
1426 	 * other than PROT_NONE.
1427 	 */
1428 	if (vma_is_accessible(vma))
1429 		gup_flags |= FOLL_FORCE;
1430 
1431 	/*
1432 	 * We made sure addr is within a VMA, so the following will
1433 	 * not result in a stack expansion that recurses back here.
1434 	 */
1435 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1436 				NULL, NULL, locked);
1437 }
1438 
1439 /*
1440  * __mm_populate - populate and/or mlock pages within a range of address space.
1441  *
1442  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1443  * flags. VMAs must be already marked with the desired vm_flags, and
1444  * mmap_lock must not be held.
1445  */
1446 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1447 {
1448 	struct mm_struct *mm = current->mm;
1449 	unsigned long end, nstart, nend;
1450 	struct vm_area_struct *vma = NULL;
1451 	int locked = 0;
1452 	long ret = 0;
1453 
1454 	end = start + len;
1455 
1456 	for (nstart = start; nstart < end; nstart = nend) {
1457 		/*
1458 		 * We want to fault in pages for [nstart; end) address range.
1459 		 * Find first corresponding VMA.
1460 		 */
1461 		if (!locked) {
1462 			locked = 1;
1463 			mmap_read_lock(mm);
1464 			vma = find_vma(mm, nstart);
1465 		} else if (nstart >= vma->vm_end)
1466 			vma = vma->vm_next;
1467 		if (!vma || vma->vm_start >= end)
1468 			break;
1469 		/*
1470 		 * Set [nstart; nend) to intersection of desired address
1471 		 * range with the first VMA. Also, skip undesirable VMA types.
1472 		 */
1473 		nend = min(end, vma->vm_end);
1474 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1475 			continue;
1476 		if (nstart < vma->vm_start)
1477 			nstart = vma->vm_start;
1478 		/*
1479 		 * Now fault in a range of pages. populate_vma_page_range()
1480 		 * double checks the vma flags, so that it won't mlock pages
1481 		 * if the vma was already munlocked.
1482 		 */
1483 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1484 		if (ret < 0) {
1485 			if (ignore_errors) {
1486 				ret = 0;
1487 				continue;	/* continue at next VMA */
1488 			}
1489 			break;
1490 		}
1491 		nend = nstart + ret * PAGE_SIZE;
1492 		ret = 0;
1493 	}
1494 	if (locked)
1495 		mmap_read_unlock(mm);
1496 	return ret;	/* 0 or negative error code */
1497 }
1498 
1499 /**
1500  * get_dump_page() - pin user page in memory while writing it to core dump
1501  * @addr: user address
1502  *
1503  * Returns struct page pointer of user page pinned for dump,
1504  * to be freed afterwards by put_page().
1505  *
1506  * Returns NULL on any kind of failure - a hole must then be inserted into
1507  * the corefile, to preserve alignment with its headers; and also returns
1508  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1509  * allowing a hole to be left in the corefile to save diskspace.
1510  *
1511  * Called without mmap_lock, but after all other threads have been killed.
1512  */
1513 #ifdef CONFIG_ELF_CORE
1514 struct page *get_dump_page(unsigned long addr)
1515 {
1516 	struct vm_area_struct *vma;
1517 	struct page *page;
1518 
1519 	if (__get_user_pages(current->mm, addr, 1,
1520 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1521 			     NULL) < 1)
1522 		return NULL;
1523 	flush_cache_page(vma, addr, page_to_pfn(page));
1524 	return page;
1525 }
1526 #endif /* CONFIG_ELF_CORE */
1527 #else /* CONFIG_MMU */
1528 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1529 		unsigned long nr_pages, struct page **pages,
1530 		struct vm_area_struct **vmas, int *locked,
1531 		unsigned int foll_flags)
1532 {
1533 	struct vm_area_struct *vma;
1534 	unsigned long vm_flags;
1535 	int i;
1536 
1537 	/* calculate required read or write permissions.
1538 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1539 	 */
1540 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1541 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1542 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1543 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1544 
1545 	for (i = 0; i < nr_pages; i++) {
1546 		vma = find_vma(mm, start);
1547 		if (!vma)
1548 			goto finish_or_fault;
1549 
1550 		/* protect what we can, including chardevs */
1551 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1552 		    !(vm_flags & vma->vm_flags))
1553 			goto finish_or_fault;
1554 
1555 		if (pages) {
1556 			pages[i] = virt_to_page(start);
1557 			if (pages[i])
1558 				get_page(pages[i]);
1559 		}
1560 		if (vmas)
1561 			vmas[i] = vma;
1562 		start = (start + PAGE_SIZE) & PAGE_MASK;
1563 	}
1564 
1565 	return i;
1566 
1567 finish_or_fault:
1568 	return i ? : -EFAULT;
1569 }
1570 #endif /* !CONFIG_MMU */
1571 
1572 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1573 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1574 {
1575 	long i;
1576 	struct vm_area_struct *vma_prev = NULL;
1577 
1578 	for (i = 0; i < nr_pages; i++) {
1579 		struct vm_area_struct *vma = vmas[i];
1580 
1581 		if (vma == vma_prev)
1582 			continue;
1583 
1584 		vma_prev = vma;
1585 
1586 		if (vma_is_fsdax(vma))
1587 			return true;
1588 	}
1589 	return false;
1590 }
1591 
1592 #ifdef CONFIG_CMA
1593 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1594 					unsigned long start,
1595 					unsigned long nr_pages,
1596 					struct page **pages,
1597 					struct vm_area_struct **vmas,
1598 					unsigned int gup_flags)
1599 {
1600 	unsigned long i;
1601 	unsigned long step;
1602 	bool drain_allow = true;
1603 	bool migrate_allow = true;
1604 	LIST_HEAD(cma_page_list);
1605 	long ret = nr_pages;
1606 	struct migration_target_control mtc = {
1607 		.nid = NUMA_NO_NODE,
1608 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1609 	};
1610 
1611 check_again:
1612 	for (i = 0; i < nr_pages;) {
1613 
1614 		struct page *head = compound_head(pages[i]);
1615 
1616 		/*
1617 		 * gup may start from a tail page. Advance step by the left
1618 		 * part.
1619 		 */
1620 		step = compound_nr(head) - (pages[i] - head);
1621 		/*
1622 		 * If we get a page from the CMA zone, since we are going to
1623 		 * be pinning these entries, we might as well move them out
1624 		 * of the CMA zone if possible.
1625 		 */
1626 		if (is_migrate_cma_page(head)) {
1627 			if (PageHuge(head))
1628 				isolate_huge_page(head, &cma_page_list);
1629 			else {
1630 				if (!PageLRU(head) && drain_allow) {
1631 					lru_add_drain_all();
1632 					drain_allow = false;
1633 				}
1634 
1635 				if (!isolate_lru_page(head)) {
1636 					list_add_tail(&head->lru, &cma_page_list);
1637 					mod_node_page_state(page_pgdat(head),
1638 							    NR_ISOLATED_ANON +
1639 							    page_is_file_lru(head),
1640 							    thp_nr_pages(head));
1641 				}
1642 			}
1643 		}
1644 
1645 		i += step;
1646 	}
1647 
1648 	if (!list_empty(&cma_page_list)) {
1649 		/*
1650 		 * drop the above get_user_pages reference.
1651 		 */
1652 		for (i = 0; i < nr_pages; i++)
1653 			put_page(pages[i]);
1654 
1655 		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1656 			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1657 			/*
1658 			 * some of the pages failed migration. Do get_user_pages
1659 			 * without migration.
1660 			 */
1661 			migrate_allow = false;
1662 
1663 			if (!list_empty(&cma_page_list))
1664 				putback_movable_pages(&cma_page_list);
1665 		}
1666 		/*
1667 		 * We did migrate all the pages, Try to get the page references
1668 		 * again migrating any new CMA pages which we failed to isolate
1669 		 * earlier.
1670 		 */
1671 		ret = __get_user_pages_locked(mm, start, nr_pages,
1672 						   pages, vmas, NULL,
1673 						   gup_flags);
1674 
1675 		if ((ret > 0) && migrate_allow) {
1676 			nr_pages = ret;
1677 			drain_allow = true;
1678 			goto check_again;
1679 		}
1680 	}
1681 
1682 	return ret;
1683 }
1684 #else
1685 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1686 					unsigned long start,
1687 					unsigned long nr_pages,
1688 					struct page **pages,
1689 					struct vm_area_struct **vmas,
1690 					unsigned int gup_flags)
1691 {
1692 	return nr_pages;
1693 }
1694 #endif /* CONFIG_CMA */
1695 
1696 /*
1697  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1698  * allows us to process the FOLL_LONGTERM flag.
1699  */
1700 static long __gup_longterm_locked(struct mm_struct *mm,
1701 				  unsigned long start,
1702 				  unsigned long nr_pages,
1703 				  struct page **pages,
1704 				  struct vm_area_struct **vmas,
1705 				  unsigned int gup_flags)
1706 {
1707 	struct vm_area_struct **vmas_tmp = vmas;
1708 	unsigned long flags = 0;
1709 	long rc, i;
1710 
1711 	if (gup_flags & FOLL_LONGTERM) {
1712 		if (!pages)
1713 			return -EINVAL;
1714 
1715 		if (!vmas_tmp) {
1716 			vmas_tmp = kcalloc(nr_pages,
1717 					   sizeof(struct vm_area_struct *),
1718 					   GFP_KERNEL);
1719 			if (!vmas_tmp)
1720 				return -ENOMEM;
1721 		}
1722 		flags = memalloc_nocma_save();
1723 	}
1724 
1725 	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1726 				     vmas_tmp, NULL, gup_flags);
1727 
1728 	if (gup_flags & FOLL_LONGTERM) {
1729 		if (rc < 0)
1730 			goto out;
1731 
1732 		if (check_dax_vmas(vmas_tmp, rc)) {
1733 			for (i = 0; i < rc; i++)
1734 				put_page(pages[i]);
1735 			rc = -EOPNOTSUPP;
1736 			goto out;
1737 		}
1738 
1739 		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1740 						 vmas_tmp, gup_flags);
1741 out:
1742 		memalloc_nocma_restore(flags);
1743 	}
1744 
1745 	if (vmas_tmp != vmas)
1746 		kfree(vmas_tmp);
1747 	return rc;
1748 }
1749 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1750 static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1751 						  unsigned long start,
1752 						  unsigned long nr_pages,
1753 						  struct page **pages,
1754 						  struct vm_area_struct **vmas,
1755 						  unsigned int flags)
1756 {
1757 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1758 				       NULL, flags);
1759 }
1760 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1761 
1762 #ifdef CONFIG_MMU
1763 static long __get_user_pages_remote(struct mm_struct *mm,
1764 				    unsigned long start, unsigned long nr_pages,
1765 				    unsigned int gup_flags, struct page **pages,
1766 				    struct vm_area_struct **vmas, int *locked)
1767 {
1768 	/*
1769 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1770 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1771 	 * vmas. However, this only comes up if locked is set, and there are
1772 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1773 	 * allow what we can.
1774 	 */
1775 	if (gup_flags & FOLL_LONGTERM) {
1776 		if (WARN_ON_ONCE(locked))
1777 			return -EINVAL;
1778 		/*
1779 		 * This will check the vmas (even if our vmas arg is NULL)
1780 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1781 		 */
1782 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1783 					     vmas, gup_flags | FOLL_TOUCH |
1784 					     FOLL_REMOTE);
1785 	}
1786 
1787 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1788 				       locked,
1789 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1790 }
1791 
1792 /**
1793  * get_user_pages_remote() - pin user pages in memory
1794  * @mm:		mm_struct of target mm
1795  * @start:	starting user address
1796  * @nr_pages:	number of pages from start to pin
1797  * @gup_flags:	flags modifying lookup behaviour
1798  * @pages:	array that receives pointers to the pages pinned.
1799  *		Should be at least nr_pages long. Or NULL, if caller
1800  *		only intends to ensure the pages are faulted in.
1801  * @vmas:	array of pointers to vmas corresponding to each page.
1802  *		Or NULL if the caller does not require them.
1803  * @locked:	pointer to lock flag indicating whether lock is held and
1804  *		subsequently whether VM_FAULT_RETRY functionality can be
1805  *		utilised. Lock must initially be held.
1806  *
1807  * Returns either number of pages pinned (which may be less than the
1808  * number requested), or an error. Details about the return value:
1809  *
1810  * -- If nr_pages is 0, returns 0.
1811  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1812  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1813  *    pages pinned. Again, this may be less than nr_pages.
1814  *
1815  * The caller is responsible for releasing returned @pages, via put_page().
1816  *
1817  * @vmas are valid only as long as mmap_lock is held.
1818  *
1819  * Must be called with mmap_lock held for read or write.
1820  *
1821  * get_user_pages_remote walks a process's page tables and takes a reference
1822  * to each struct page that each user address corresponds to at a given
1823  * instant. That is, it takes the page that would be accessed if a user
1824  * thread accesses the given user virtual address at that instant.
1825  *
1826  * This does not guarantee that the page exists in the user mappings when
1827  * get_user_pages_remote returns, and there may even be a completely different
1828  * page there in some cases (eg. if mmapped pagecache has been invalidated
1829  * and subsequently re faulted). However it does guarantee that the page
1830  * won't be freed completely. And mostly callers simply care that the page
1831  * contains data that was valid *at some point in time*. Typically, an IO
1832  * or similar operation cannot guarantee anything stronger anyway because
1833  * locks can't be held over the syscall boundary.
1834  *
1835  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1836  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1837  * be called after the page is finished with, and before put_page is called.
1838  *
1839  * get_user_pages_remote is typically used for fewer-copy IO operations,
1840  * to get a handle on the memory by some means other than accesses
1841  * via the user virtual addresses. The pages may be submitted for
1842  * DMA to devices or accessed via their kernel linear mapping (via the
1843  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1844  *
1845  * See also get_user_pages_fast, for performance critical applications.
1846  *
1847  * get_user_pages_remote should be phased out in favor of
1848  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1849  * should use get_user_pages_remote because it cannot pass
1850  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1851  */
1852 long get_user_pages_remote(struct mm_struct *mm,
1853 		unsigned long start, unsigned long nr_pages,
1854 		unsigned int gup_flags, struct page **pages,
1855 		struct vm_area_struct **vmas, int *locked)
1856 {
1857 	/*
1858 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1859 	 * never directly by the caller, so enforce that with an assertion:
1860 	 */
1861 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1862 		return -EINVAL;
1863 
1864 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1865 				       pages, vmas, locked);
1866 }
1867 EXPORT_SYMBOL(get_user_pages_remote);
1868 
1869 #else /* CONFIG_MMU */
1870 long get_user_pages_remote(struct mm_struct *mm,
1871 			   unsigned long start, unsigned long nr_pages,
1872 			   unsigned int gup_flags, struct page **pages,
1873 			   struct vm_area_struct **vmas, int *locked)
1874 {
1875 	return 0;
1876 }
1877 
1878 static long __get_user_pages_remote(struct mm_struct *mm,
1879 				    unsigned long start, unsigned long nr_pages,
1880 				    unsigned int gup_flags, struct page **pages,
1881 				    struct vm_area_struct **vmas, int *locked)
1882 {
1883 	return 0;
1884 }
1885 #endif /* !CONFIG_MMU */
1886 
1887 /**
1888  * get_user_pages() - pin user pages in memory
1889  * @start:      starting user address
1890  * @nr_pages:   number of pages from start to pin
1891  * @gup_flags:  flags modifying lookup behaviour
1892  * @pages:      array that receives pointers to the pages pinned.
1893  *              Should be at least nr_pages long. Or NULL, if caller
1894  *              only intends to ensure the pages are faulted in.
1895  * @vmas:       array of pointers to vmas corresponding to each page.
1896  *              Or NULL if the caller does not require them.
1897  *
1898  * This is the same as get_user_pages_remote(), just with a less-flexible
1899  * calling convention where we assume that the mm being operated on belongs to
1900  * the current task, and doesn't allow passing of a locked parameter.  We also
1901  * obviously don't pass FOLL_REMOTE in here.
1902  */
1903 long get_user_pages(unsigned long start, unsigned long nr_pages,
1904 		unsigned int gup_flags, struct page **pages,
1905 		struct vm_area_struct **vmas)
1906 {
1907 	/*
1908 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1909 	 * never directly by the caller, so enforce that with an assertion:
1910 	 */
1911 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1912 		return -EINVAL;
1913 
1914 	return __gup_longterm_locked(current->mm, start, nr_pages,
1915 				     pages, vmas, gup_flags | FOLL_TOUCH);
1916 }
1917 EXPORT_SYMBOL(get_user_pages);
1918 
1919 /**
1920  * get_user_pages_locked() is suitable to replace the form:
1921  *
1922  *      mmap_read_lock(mm);
1923  *      do_something()
1924  *      get_user_pages(mm, ..., pages, NULL);
1925  *      mmap_read_unlock(mm);
1926  *
1927  *  to:
1928  *
1929  *      int locked = 1;
1930  *      mmap_read_lock(mm);
1931  *      do_something()
1932  *      get_user_pages_locked(mm, ..., pages, &locked);
1933  *      if (locked)
1934  *          mmap_read_unlock(mm);
1935  *
1936  * @start:      starting user address
1937  * @nr_pages:   number of pages from start to pin
1938  * @gup_flags:  flags modifying lookup behaviour
1939  * @pages:      array that receives pointers to the pages pinned.
1940  *              Should be at least nr_pages long. Or NULL, if caller
1941  *              only intends to ensure the pages are faulted in.
1942  * @locked:     pointer to lock flag indicating whether lock is held and
1943  *              subsequently whether VM_FAULT_RETRY functionality can be
1944  *              utilised. Lock must initially be held.
1945  *
1946  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1947  * paths better by using either get_user_pages_locked() or
1948  * get_user_pages_unlocked().
1949  *
1950  */
1951 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1952 			   unsigned int gup_flags, struct page **pages,
1953 			   int *locked)
1954 {
1955 	/*
1956 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1957 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1958 	 * vmas.  As there are no users of this flag in this call we simply
1959 	 * disallow this option for now.
1960 	 */
1961 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1962 		return -EINVAL;
1963 	/*
1964 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1965 	 * never directly by the caller, so enforce that:
1966 	 */
1967 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1968 		return -EINVAL;
1969 
1970 	return __get_user_pages_locked(current->mm, start, nr_pages,
1971 				       pages, NULL, locked,
1972 				       gup_flags | FOLL_TOUCH);
1973 }
1974 EXPORT_SYMBOL(get_user_pages_locked);
1975 
1976 /*
1977  * get_user_pages_unlocked() is suitable to replace the form:
1978  *
1979  *      mmap_read_lock(mm);
1980  *      get_user_pages(mm, ..., pages, NULL);
1981  *      mmap_read_unlock(mm);
1982  *
1983  *  with:
1984  *
1985  *      get_user_pages_unlocked(mm, ..., pages);
1986  *
1987  * It is functionally equivalent to get_user_pages_fast so
1988  * get_user_pages_fast should be used instead if specific gup_flags
1989  * (e.g. FOLL_FORCE) are not required.
1990  */
1991 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1992 			     struct page **pages, unsigned int gup_flags)
1993 {
1994 	struct mm_struct *mm = current->mm;
1995 	int locked = 1;
1996 	long ret;
1997 
1998 	/*
1999 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2000 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2001 	 * vmas.  As there are no users of this flag in this call we simply
2002 	 * disallow this option for now.
2003 	 */
2004 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2005 		return -EINVAL;
2006 
2007 	mmap_read_lock(mm);
2008 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2009 				      &locked, gup_flags | FOLL_TOUCH);
2010 	if (locked)
2011 		mmap_read_unlock(mm);
2012 	return ret;
2013 }
2014 EXPORT_SYMBOL(get_user_pages_unlocked);
2015 
2016 /*
2017  * Fast GUP
2018  *
2019  * get_user_pages_fast attempts to pin user pages by walking the page
2020  * tables directly and avoids taking locks. Thus the walker needs to be
2021  * protected from page table pages being freed from under it, and should
2022  * block any THP splits.
2023  *
2024  * One way to achieve this is to have the walker disable interrupts, and
2025  * rely on IPIs from the TLB flushing code blocking before the page table
2026  * pages are freed. This is unsuitable for architectures that do not need
2027  * to broadcast an IPI when invalidating TLBs.
2028  *
2029  * Another way to achieve this is to batch up page table containing pages
2030  * belonging to more than one mm_user, then rcu_sched a callback to free those
2031  * pages. Disabling interrupts will allow the fast_gup walker to both block
2032  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2033  * (which is a relatively rare event). The code below adopts this strategy.
2034  *
2035  * Before activating this code, please be aware that the following assumptions
2036  * are currently made:
2037  *
2038  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2039  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2040  *
2041  *  *) ptes can be read atomically by the architecture.
2042  *
2043  *  *) access_ok is sufficient to validate userspace address ranges.
2044  *
2045  * The last two assumptions can be relaxed by the addition of helper functions.
2046  *
2047  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2048  */
2049 #ifdef CONFIG_HAVE_FAST_GUP
2050 
2051 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2052 {
2053 	if (flags & FOLL_PIN) {
2054 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2055 				    refs);
2056 
2057 		if (hpage_pincount_available(page))
2058 			hpage_pincount_sub(page, refs);
2059 		else
2060 			refs *= GUP_PIN_COUNTING_BIAS;
2061 	}
2062 
2063 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2064 	/*
2065 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2066 	 * ref needs a put_page().
2067 	 */
2068 	if (refs > 1)
2069 		page_ref_sub(page, refs - 1);
2070 	put_page(page);
2071 }
2072 
2073 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2074 
2075 /*
2076  * WARNING: only to be used in the get_user_pages_fast() implementation.
2077  *
2078  * With get_user_pages_fast(), we walk down the pagetables without taking any
2079  * locks.  For this we would like to load the pointers atomically, but sometimes
2080  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2081  * we do have is the guarantee that a PTE will only either go from not present
2082  * to present, or present to not present or both -- it will not switch to a
2083  * completely different present page without a TLB flush in between; something
2084  * that we are blocking by holding interrupts off.
2085  *
2086  * Setting ptes from not present to present goes:
2087  *
2088  *   ptep->pte_high = h;
2089  *   smp_wmb();
2090  *   ptep->pte_low = l;
2091  *
2092  * And present to not present goes:
2093  *
2094  *   ptep->pte_low = 0;
2095  *   smp_wmb();
2096  *   ptep->pte_high = 0;
2097  *
2098  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2099  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2100  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2101  * picked up a changed pte high. We might have gotten rubbish values from
2102  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2103  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2104  * operates on present ptes we're safe.
2105  */
2106 static inline pte_t gup_get_pte(pte_t *ptep)
2107 {
2108 	pte_t pte;
2109 
2110 	do {
2111 		pte.pte_low = ptep->pte_low;
2112 		smp_rmb();
2113 		pte.pte_high = ptep->pte_high;
2114 		smp_rmb();
2115 	} while (unlikely(pte.pte_low != ptep->pte_low));
2116 
2117 	return pte;
2118 }
2119 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2120 /*
2121  * We require that the PTE can be read atomically.
2122  */
2123 static inline pte_t gup_get_pte(pte_t *ptep)
2124 {
2125 	return ptep_get(ptep);
2126 }
2127 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2128 
2129 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2130 					    unsigned int flags,
2131 					    struct page **pages)
2132 {
2133 	while ((*nr) - nr_start) {
2134 		struct page *page = pages[--(*nr)];
2135 
2136 		ClearPageReferenced(page);
2137 		if (flags & FOLL_PIN)
2138 			unpin_user_page(page);
2139 		else
2140 			put_page(page);
2141 	}
2142 }
2143 
2144 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2145 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2146 			 unsigned int flags, struct page **pages, int *nr)
2147 {
2148 	struct dev_pagemap *pgmap = NULL;
2149 	int nr_start = *nr, ret = 0;
2150 	pte_t *ptep, *ptem;
2151 
2152 	ptem = ptep = pte_offset_map(&pmd, addr);
2153 	do {
2154 		pte_t pte = gup_get_pte(ptep);
2155 		struct page *head, *page;
2156 
2157 		/*
2158 		 * Similar to the PMD case below, NUMA hinting must take slow
2159 		 * path using the pte_protnone check.
2160 		 */
2161 		if (pte_protnone(pte))
2162 			goto pte_unmap;
2163 
2164 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2165 			goto pte_unmap;
2166 
2167 		if (pte_devmap(pte)) {
2168 			if (unlikely(flags & FOLL_LONGTERM))
2169 				goto pte_unmap;
2170 
2171 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2172 			if (unlikely(!pgmap)) {
2173 				undo_dev_pagemap(nr, nr_start, flags, pages);
2174 				goto pte_unmap;
2175 			}
2176 		} else if (pte_special(pte))
2177 			goto pte_unmap;
2178 
2179 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2180 		page = pte_page(pte);
2181 
2182 		head = try_grab_compound_head(page, 1, flags);
2183 		if (!head)
2184 			goto pte_unmap;
2185 
2186 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2187 			put_compound_head(head, 1, flags);
2188 			goto pte_unmap;
2189 		}
2190 
2191 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2192 
2193 		/*
2194 		 * We need to make the page accessible if and only if we are
2195 		 * going to access its content (the FOLL_PIN case).  Please
2196 		 * see Documentation/core-api/pin_user_pages.rst for
2197 		 * details.
2198 		 */
2199 		if (flags & FOLL_PIN) {
2200 			ret = arch_make_page_accessible(page);
2201 			if (ret) {
2202 				unpin_user_page(page);
2203 				goto pte_unmap;
2204 			}
2205 		}
2206 		SetPageReferenced(page);
2207 		pages[*nr] = page;
2208 		(*nr)++;
2209 
2210 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2211 
2212 	ret = 1;
2213 
2214 pte_unmap:
2215 	if (pgmap)
2216 		put_dev_pagemap(pgmap);
2217 	pte_unmap(ptem);
2218 	return ret;
2219 }
2220 #else
2221 
2222 /*
2223  * If we can't determine whether or not a pte is special, then fail immediately
2224  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2225  * to be special.
2226  *
2227  * For a futex to be placed on a THP tail page, get_futex_key requires a
2228  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2229  * useful to have gup_huge_pmd even if we can't operate on ptes.
2230  */
2231 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2232 			 unsigned int flags, struct page **pages, int *nr)
2233 {
2234 	return 0;
2235 }
2236 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2237 
2238 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2239 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2240 			     unsigned long end, unsigned int flags,
2241 			     struct page **pages, int *nr)
2242 {
2243 	int nr_start = *nr;
2244 	struct dev_pagemap *pgmap = NULL;
2245 
2246 	do {
2247 		struct page *page = pfn_to_page(pfn);
2248 
2249 		pgmap = get_dev_pagemap(pfn, pgmap);
2250 		if (unlikely(!pgmap)) {
2251 			undo_dev_pagemap(nr, nr_start, flags, pages);
2252 			return 0;
2253 		}
2254 		SetPageReferenced(page);
2255 		pages[*nr] = page;
2256 		if (unlikely(!try_grab_page(page, flags))) {
2257 			undo_dev_pagemap(nr, nr_start, flags, pages);
2258 			return 0;
2259 		}
2260 		(*nr)++;
2261 		pfn++;
2262 	} while (addr += PAGE_SIZE, addr != end);
2263 
2264 	if (pgmap)
2265 		put_dev_pagemap(pgmap);
2266 	return 1;
2267 }
2268 
2269 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2270 				 unsigned long end, unsigned int flags,
2271 				 struct page **pages, int *nr)
2272 {
2273 	unsigned long fault_pfn;
2274 	int nr_start = *nr;
2275 
2276 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2277 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2278 		return 0;
2279 
2280 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2281 		undo_dev_pagemap(nr, nr_start, flags, pages);
2282 		return 0;
2283 	}
2284 	return 1;
2285 }
2286 
2287 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2288 				 unsigned long end, unsigned int flags,
2289 				 struct page **pages, int *nr)
2290 {
2291 	unsigned long fault_pfn;
2292 	int nr_start = *nr;
2293 
2294 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2295 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2296 		return 0;
2297 
2298 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2299 		undo_dev_pagemap(nr, nr_start, flags, pages);
2300 		return 0;
2301 	}
2302 	return 1;
2303 }
2304 #else
2305 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2306 				 unsigned long end, unsigned int flags,
2307 				 struct page **pages, int *nr)
2308 {
2309 	BUILD_BUG();
2310 	return 0;
2311 }
2312 
2313 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2314 				 unsigned long end, unsigned int flags,
2315 				 struct page **pages, int *nr)
2316 {
2317 	BUILD_BUG();
2318 	return 0;
2319 }
2320 #endif
2321 
2322 static int record_subpages(struct page *page, unsigned long addr,
2323 			   unsigned long end, struct page **pages)
2324 {
2325 	int nr;
2326 
2327 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2328 		pages[nr++] = page++;
2329 
2330 	return nr;
2331 }
2332 
2333 #ifdef CONFIG_ARCH_HAS_HUGEPD
2334 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2335 				      unsigned long sz)
2336 {
2337 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2338 	return (__boundary - 1 < end - 1) ? __boundary : end;
2339 }
2340 
2341 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2342 		       unsigned long end, unsigned int flags,
2343 		       struct page **pages, int *nr)
2344 {
2345 	unsigned long pte_end;
2346 	struct page *head, *page;
2347 	pte_t pte;
2348 	int refs;
2349 
2350 	pte_end = (addr + sz) & ~(sz-1);
2351 	if (pte_end < end)
2352 		end = pte_end;
2353 
2354 	pte = huge_ptep_get(ptep);
2355 
2356 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2357 		return 0;
2358 
2359 	/* hugepages are never "special" */
2360 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361 
2362 	head = pte_page(pte);
2363 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2364 	refs = record_subpages(page, addr, end, pages + *nr);
2365 
2366 	head = try_grab_compound_head(head, refs, flags);
2367 	if (!head)
2368 		return 0;
2369 
2370 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2371 		put_compound_head(head, refs, flags);
2372 		return 0;
2373 	}
2374 
2375 	*nr += refs;
2376 	SetPageReferenced(head);
2377 	return 1;
2378 }
2379 
2380 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2381 		unsigned int pdshift, unsigned long end, unsigned int flags,
2382 		struct page **pages, int *nr)
2383 {
2384 	pte_t *ptep;
2385 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2386 	unsigned long next;
2387 
2388 	ptep = hugepte_offset(hugepd, addr, pdshift);
2389 	do {
2390 		next = hugepte_addr_end(addr, end, sz);
2391 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2392 			return 0;
2393 	} while (ptep++, addr = next, addr != end);
2394 
2395 	return 1;
2396 }
2397 #else
2398 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2399 		unsigned int pdshift, unsigned long end, unsigned int flags,
2400 		struct page **pages, int *nr)
2401 {
2402 	return 0;
2403 }
2404 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2405 
2406 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2407 			unsigned long end, unsigned int flags,
2408 			struct page **pages, int *nr)
2409 {
2410 	struct page *head, *page;
2411 	int refs;
2412 
2413 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2414 		return 0;
2415 
2416 	if (pmd_devmap(orig)) {
2417 		if (unlikely(flags & FOLL_LONGTERM))
2418 			return 0;
2419 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2420 					     pages, nr);
2421 	}
2422 
2423 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2424 	refs = record_subpages(page, addr, end, pages + *nr);
2425 
2426 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2427 	if (!head)
2428 		return 0;
2429 
2430 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2431 		put_compound_head(head, refs, flags);
2432 		return 0;
2433 	}
2434 
2435 	*nr += refs;
2436 	SetPageReferenced(head);
2437 	return 1;
2438 }
2439 
2440 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2441 			unsigned long end, unsigned int flags,
2442 			struct page **pages, int *nr)
2443 {
2444 	struct page *head, *page;
2445 	int refs;
2446 
2447 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2448 		return 0;
2449 
2450 	if (pud_devmap(orig)) {
2451 		if (unlikely(flags & FOLL_LONGTERM))
2452 			return 0;
2453 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2454 					     pages, nr);
2455 	}
2456 
2457 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2458 	refs = record_subpages(page, addr, end, pages + *nr);
2459 
2460 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2461 	if (!head)
2462 		return 0;
2463 
2464 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2465 		put_compound_head(head, refs, flags);
2466 		return 0;
2467 	}
2468 
2469 	*nr += refs;
2470 	SetPageReferenced(head);
2471 	return 1;
2472 }
2473 
2474 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2475 			unsigned long end, unsigned int flags,
2476 			struct page **pages, int *nr)
2477 {
2478 	int refs;
2479 	struct page *head, *page;
2480 
2481 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2482 		return 0;
2483 
2484 	BUILD_BUG_ON(pgd_devmap(orig));
2485 
2486 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2487 	refs = record_subpages(page, addr, end, pages + *nr);
2488 
2489 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2490 	if (!head)
2491 		return 0;
2492 
2493 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2494 		put_compound_head(head, refs, flags);
2495 		return 0;
2496 	}
2497 
2498 	*nr += refs;
2499 	SetPageReferenced(head);
2500 	return 1;
2501 }
2502 
2503 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2504 		unsigned int flags, struct page **pages, int *nr)
2505 {
2506 	unsigned long next;
2507 	pmd_t *pmdp;
2508 
2509 	pmdp = pmd_offset(&pud, addr);
2510 	do {
2511 		pmd_t pmd = READ_ONCE(*pmdp);
2512 
2513 		next = pmd_addr_end(addr, end);
2514 		if (!pmd_present(pmd))
2515 			return 0;
2516 
2517 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2518 			     pmd_devmap(pmd))) {
2519 			/*
2520 			 * NUMA hinting faults need to be handled in the GUP
2521 			 * slowpath for accounting purposes and so that they
2522 			 * can be serialised against THP migration.
2523 			 */
2524 			if (pmd_protnone(pmd))
2525 				return 0;
2526 
2527 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2528 				pages, nr))
2529 				return 0;
2530 
2531 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2532 			/*
2533 			 * architecture have different format for hugetlbfs
2534 			 * pmd format and THP pmd format
2535 			 */
2536 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2537 					 PMD_SHIFT, next, flags, pages, nr))
2538 				return 0;
2539 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2540 			return 0;
2541 	} while (pmdp++, addr = next, addr != end);
2542 
2543 	return 1;
2544 }
2545 
2546 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2547 			 unsigned int flags, struct page **pages, int *nr)
2548 {
2549 	unsigned long next;
2550 	pud_t *pudp;
2551 
2552 	pudp = pud_offset(&p4d, addr);
2553 	do {
2554 		pud_t pud = READ_ONCE(*pudp);
2555 
2556 		next = pud_addr_end(addr, end);
2557 		if (unlikely(!pud_present(pud)))
2558 			return 0;
2559 		if (unlikely(pud_huge(pud))) {
2560 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2561 					  pages, nr))
2562 				return 0;
2563 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2564 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2565 					 PUD_SHIFT, next, flags, pages, nr))
2566 				return 0;
2567 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2568 			return 0;
2569 	} while (pudp++, addr = next, addr != end);
2570 
2571 	return 1;
2572 }
2573 
2574 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2575 			 unsigned int flags, struct page **pages, int *nr)
2576 {
2577 	unsigned long next;
2578 	p4d_t *p4dp;
2579 
2580 	p4dp = p4d_offset(&pgd, addr);
2581 	do {
2582 		p4d_t p4d = READ_ONCE(*p4dp);
2583 
2584 		next = p4d_addr_end(addr, end);
2585 		if (p4d_none(p4d))
2586 			return 0;
2587 		BUILD_BUG_ON(p4d_huge(p4d));
2588 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2589 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2590 					 P4D_SHIFT, next, flags, pages, nr))
2591 				return 0;
2592 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2593 			return 0;
2594 	} while (p4dp++, addr = next, addr != end);
2595 
2596 	return 1;
2597 }
2598 
2599 static void gup_pgd_range(unsigned long addr, unsigned long end,
2600 		unsigned int flags, struct page **pages, int *nr)
2601 {
2602 	unsigned long next;
2603 	pgd_t *pgdp;
2604 
2605 	pgdp = pgd_offset(current->mm, addr);
2606 	do {
2607 		pgd_t pgd = READ_ONCE(*pgdp);
2608 
2609 		next = pgd_addr_end(addr, end);
2610 		if (pgd_none(pgd))
2611 			return;
2612 		if (unlikely(pgd_huge(pgd))) {
2613 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2614 					  pages, nr))
2615 				return;
2616 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2617 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2618 					 PGDIR_SHIFT, next, flags, pages, nr))
2619 				return;
2620 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2621 			return;
2622 	} while (pgdp++, addr = next, addr != end);
2623 }
2624 #else
2625 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2626 		unsigned int flags, struct page **pages, int *nr)
2627 {
2628 }
2629 #endif /* CONFIG_HAVE_FAST_GUP */
2630 
2631 #ifndef gup_fast_permitted
2632 /*
2633  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2634  * we need to fall back to the slow version:
2635  */
2636 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2637 {
2638 	return true;
2639 }
2640 #endif
2641 
2642 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2643 				   unsigned int gup_flags, struct page **pages)
2644 {
2645 	int ret;
2646 
2647 	/*
2648 	 * FIXME: FOLL_LONGTERM does not work with
2649 	 * get_user_pages_unlocked() (see comments in that function)
2650 	 */
2651 	if (gup_flags & FOLL_LONGTERM) {
2652 		mmap_read_lock(current->mm);
2653 		ret = __gup_longterm_locked(current->mm,
2654 					    start, nr_pages,
2655 					    pages, NULL, gup_flags);
2656 		mmap_read_unlock(current->mm);
2657 	} else {
2658 		ret = get_user_pages_unlocked(start, nr_pages,
2659 					      pages, gup_flags);
2660 	}
2661 
2662 	return ret;
2663 }
2664 
2665 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2666 					unsigned int gup_flags,
2667 					struct page **pages)
2668 {
2669 	unsigned long addr, len, end;
2670 	unsigned long flags;
2671 	int nr_pinned = 0, ret = 0;
2672 
2673 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2674 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2675 				       FOLL_FAST_ONLY)))
2676 		return -EINVAL;
2677 
2678 	if (!(gup_flags & FOLL_FAST_ONLY))
2679 		might_lock_read(&current->mm->mmap_lock);
2680 
2681 	start = untagged_addr(start) & PAGE_MASK;
2682 	addr = start;
2683 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2684 	end = start + len;
2685 
2686 	if (end <= start)
2687 		return 0;
2688 	if (unlikely(!access_ok((void __user *)start, len)))
2689 		return -EFAULT;
2690 
2691 	/*
2692 	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2693 	 * because get_user_pages() may need to cause an early COW in
2694 	 * order to avoid confusing the normal COW routines. So only
2695 	 * targets that are already writable are safe to do by just
2696 	 * looking at the page tables.
2697 	 *
2698 	 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2699 	 * because there is no slow path to fall back on. But you'd
2700 	 * better be careful about possible COW pages - you'll get _a_
2701 	 * COW page, but not necessarily the one you intended to get
2702 	 * depending on what COW event happens after this. COW may break
2703 	 * the page copy in a random direction.
2704 	 *
2705 	 * Disable interrupts. The nested form is used, in order to allow
2706 	 * full, general purpose use of this routine.
2707 	 *
2708 	 * With interrupts disabled, we block page table pages from being
2709 	 * freed from under us. See struct mmu_table_batch comments in
2710 	 * include/asm-generic/tlb.h for more details.
2711 	 *
2712 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2713 	 * block IPIs that come from THPs splitting.
2714 	 */
2715 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2716 		unsigned long fast_flags = gup_flags;
2717 		if (!(gup_flags & FOLL_FAST_ONLY))
2718 			fast_flags |= FOLL_WRITE;
2719 
2720 		local_irq_save(flags);
2721 		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2722 		local_irq_restore(flags);
2723 		ret = nr_pinned;
2724 	}
2725 
2726 	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2727 		/* Try to get the remaining pages with get_user_pages */
2728 		start += nr_pinned << PAGE_SHIFT;
2729 		pages += nr_pinned;
2730 
2731 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2732 					      gup_flags, pages);
2733 
2734 		/* Have to be a bit careful with return values */
2735 		if (nr_pinned > 0) {
2736 			if (ret < 0)
2737 				ret = nr_pinned;
2738 			else
2739 				ret += nr_pinned;
2740 		}
2741 	}
2742 
2743 	return ret;
2744 }
2745 /**
2746  * get_user_pages_fast_only() - pin user pages in memory
2747  * @start:      starting user address
2748  * @nr_pages:   number of pages from start to pin
2749  * @gup_flags:  flags modifying pin behaviour
2750  * @pages:      array that receives pointers to the pages pinned.
2751  *              Should be at least nr_pages long.
2752  *
2753  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2754  * the regular GUP.
2755  * Note a difference with get_user_pages_fast: this always returns the
2756  * number of pages pinned, 0 if no pages were pinned.
2757  *
2758  * If the architecture does not support this function, simply return with no
2759  * pages pinned.
2760  *
2761  * Careful, careful! COW breaking can go either way, so a non-write
2762  * access can get ambiguous page results. If you call this function without
2763  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2764  */
2765 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2766 			     unsigned int gup_flags, struct page **pages)
2767 {
2768 	int nr_pinned;
2769 	/*
2770 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2771 	 * because gup fast is always a "pin with a +1 page refcount" request.
2772 	 *
2773 	 * FOLL_FAST_ONLY is required in order to match the API description of
2774 	 * this routine: no fall back to regular ("slow") GUP.
2775 	 */
2776 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2777 
2778 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2779 						 pages);
2780 
2781 	/*
2782 	 * As specified in the API description above, this routine is not
2783 	 * allowed to return negative values. However, the common core
2784 	 * routine internal_get_user_pages_fast() *can* return -errno.
2785 	 * Therefore, correct for that here:
2786 	 */
2787 	if (nr_pinned < 0)
2788 		nr_pinned = 0;
2789 
2790 	return nr_pinned;
2791 }
2792 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2793 
2794 /**
2795  * get_user_pages_fast() - pin user pages in memory
2796  * @start:      starting user address
2797  * @nr_pages:   number of pages from start to pin
2798  * @gup_flags:  flags modifying pin behaviour
2799  * @pages:      array that receives pointers to the pages pinned.
2800  *              Should be at least nr_pages long.
2801  *
2802  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2803  * If not successful, it will fall back to taking the lock and
2804  * calling get_user_pages().
2805  *
2806  * Returns number of pages pinned. This may be fewer than the number requested.
2807  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2808  * -errno.
2809  */
2810 int get_user_pages_fast(unsigned long start, int nr_pages,
2811 			unsigned int gup_flags, struct page **pages)
2812 {
2813 	/*
2814 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2815 	 * never directly by the caller, so enforce that:
2816 	 */
2817 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2818 		return -EINVAL;
2819 
2820 	/*
2821 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2822 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2823 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2824 	 * request.
2825 	 */
2826 	gup_flags |= FOLL_GET;
2827 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2828 }
2829 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2830 
2831 /**
2832  * pin_user_pages_fast() - pin user pages in memory without taking locks
2833  *
2834  * @start:      starting user address
2835  * @nr_pages:   number of pages from start to pin
2836  * @gup_flags:  flags modifying pin behaviour
2837  * @pages:      array that receives pointers to the pages pinned.
2838  *              Should be at least nr_pages long.
2839  *
2840  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2841  * get_user_pages_fast() for documentation on the function arguments, because
2842  * the arguments here are identical.
2843  *
2844  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2845  * see Documentation/core-api/pin_user_pages.rst for further details.
2846  */
2847 int pin_user_pages_fast(unsigned long start, int nr_pages,
2848 			unsigned int gup_flags, struct page **pages)
2849 {
2850 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2851 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2852 		return -EINVAL;
2853 
2854 	gup_flags |= FOLL_PIN;
2855 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2856 }
2857 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2858 
2859 /*
2860  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2861  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2862  *
2863  * The API rules are the same, too: no negative values may be returned.
2864  */
2865 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2866 			     unsigned int gup_flags, struct page **pages)
2867 {
2868 	int nr_pinned;
2869 
2870 	/*
2871 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2872 	 * rules require returning 0, rather than -errno:
2873 	 */
2874 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2875 		return 0;
2876 	/*
2877 	 * FOLL_FAST_ONLY is required in order to match the API description of
2878 	 * this routine: no fall back to regular ("slow") GUP.
2879 	 */
2880 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2881 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2882 						 pages);
2883 	/*
2884 	 * This routine is not allowed to return negative values. However,
2885 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2886 	 * correct for that here:
2887 	 */
2888 	if (nr_pinned < 0)
2889 		nr_pinned = 0;
2890 
2891 	return nr_pinned;
2892 }
2893 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2894 
2895 /**
2896  * pin_user_pages_remote() - pin pages of a remote process
2897  *
2898  * @mm:		mm_struct of target mm
2899  * @start:	starting user address
2900  * @nr_pages:	number of pages from start to pin
2901  * @gup_flags:	flags modifying lookup behaviour
2902  * @pages:	array that receives pointers to the pages pinned.
2903  *		Should be at least nr_pages long. Or NULL, if caller
2904  *		only intends to ensure the pages are faulted in.
2905  * @vmas:	array of pointers to vmas corresponding to each page.
2906  *		Or NULL if the caller does not require them.
2907  * @locked:	pointer to lock flag indicating whether lock is held and
2908  *		subsequently whether VM_FAULT_RETRY functionality can be
2909  *		utilised. Lock must initially be held.
2910  *
2911  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2912  * get_user_pages_remote() for documentation on the function arguments, because
2913  * the arguments here are identical.
2914  *
2915  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2916  * see Documentation/core-api/pin_user_pages.rst for details.
2917  */
2918 long pin_user_pages_remote(struct mm_struct *mm,
2919 			   unsigned long start, unsigned long nr_pages,
2920 			   unsigned int gup_flags, struct page **pages,
2921 			   struct vm_area_struct **vmas, int *locked)
2922 {
2923 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2924 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2925 		return -EINVAL;
2926 
2927 	gup_flags |= FOLL_PIN;
2928 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2929 				       pages, vmas, locked);
2930 }
2931 EXPORT_SYMBOL(pin_user_pages_remote);
2932 
2933 /**
2934  * pin_user_pages() - pin user pages in memory for use by other devices
2935  *
2936  * @start:	starting user address
2937  * @nr_pages:	number of pages from start to pin
2938  * @gup_flags:	flags modifying lookup behaviour
2939  * @pages:	array that receives pointers to the pages pinned.
2940  *		Should be at least nr_pages long. Or NULL, if caller
2941  *		only intends to ensure the pages are faulted in.
2942  * @vmas:	array of pointers to vmas corresponding to each page.
2943  *		Or NULL if the caller does not require them.
2944  *
2945  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2946  * FOLL_PIN is set.
2947  *
2948  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2949  * see Documentation/core-api/pin_user_pages.rst for details.
2950  */
2951 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2952 		    unsigned int gup_flags, struct page **pages,
2953 		    struct vm_area_struct **vmas)
2954 {
2955 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2956 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2957 		return -EINVAL;
2958 
2959 	gup_flags |= FOLL_PIN;
2960 	return __gup_longterm_locked(current->mm, start, nr_pages,
2961 				     pages, vmas, gup_flags);
2962 }
2963 EXPORT_SYMBOL(pin_user_pages);
2964 
2965 /*
2966  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2967  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2968  * FOLL_PIN and rejects FOLL_GET.
2969  */
2970 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2971 			     struct page **pages, unsigned int gup_flags)
2972 {
2973 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2974 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2975 		return -EINVAL;
2976 
2977 	gup_flags |= FOLL_PIN;
2978 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2979 }
2980 EXPORT_SYMBOL(pin_user_pages_unlocked);
2981 
2982 /*
2983  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2984  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2985  * FOLL_GET.
2986  */
2987 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2988 			   unsigned int gup_flags, struct page **pages,
2989 			   int *locked)
2990 {
2991 	/*
2992 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2993 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2994 	 * vmas.  As there are no users of this flag in this call we simply
2995 	 * disallow this option for now.
2996 	 */
2997 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2998 		return -EINVAL;
2999 
3000 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3001 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002 		return -EINVAL;
3003 
3004 	gup_flags |= FOLL_PIN;
3005 	return __get_user_pages_locked(current->mm, start, nr_pages,
3006 				       pages, NULL, locked,
3007 				       gup_flags | FOLL_TOUCH);
3008 }
3009 EXPORT_SYMBOL(pin_user_pages_locked);
3010