xref: /openbmc/linux/mm/gup.c (revision 9d637f8113deef57bbeb141a2c1a4eb00e8c14c4)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  
14  #include <linux/sched/signal.h>
15  #include <linux/rwsem.h>
16  #include <linux/hugetlb.h>
17  #include <linux/migrate.h>
18  #include <linux/mm_inline.h>
19  #include <linux/sched/mm.h>
20  
21  #include <asm/mmu_context.h>
22  #include <asm/tlbflush.h>
23  
24  #include "internal.h"
25  
26  struct follow_page_context {
27  	struct dev_pagemap *pgmap;
28  	unsigned int page_mask;
29  };
30  
31  static void hpage_pincount_add(struct page *page, int refs)
32  {
33  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34  	VM_BUG_ON_PAGE(page != compound_head(page), page);
35  
36  	atomic_add(refs, compound_pincount_ptr(page));
37  }
38  
39  static void hpage_pincount_sub(struct page *page, int refs)
40  {
41  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42  	VM_BUG_ON_PAGE(page != compound_head(page), page);
43  
44  	atomic_sub(refs, compound_pincount_ptr(page));
45  }
46  
47  /*
48   * Return the compound head page with ref appropriately incremented,
49   * or NULL if that failed.
50   */
51  static inline struct page *try_get_compound_head(struct page *page, int refs)
52  {
53  	struct page *head = compound_head(page);
54  
55  	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56  		return NULL;
57  	if (unlikely(!page_cache_add_speculative(head, refs)))
58  		return NULL;
59  	return head;
60  }
61  
62  /*
63   * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64   * flags-dependent amount.
65   *
66   * "grab" names in this file mean, "look at flags to decide whether to use
67   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68   *
69   * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70   * same time. (That's true throughout the get_user_pages*() and
71   * pin_user_pages*() APIs.) Cases:
72   *
73   *    FOLL_GET: page's refcount will be incremented by 1.
74   *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75   *
76   * Return: head page (with refcount appropriately incremented) for success, or
77   * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78   * considered failure, and furthermore, a likely bug in the caller, so a warning
79   * is also emitted.
80   */
81  static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82  							  int refs,
83  							  unsigned int flags)
84  {
85  	if (flags & FOLL_GET)
86  		return try_get_compound_head(page, refs);
87  	else if (flags & FOLL_PIN) {
88  		int orig_refs = refs;
89  
90  		/*
91  		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92  		 * path, so fail and let the caller fall back to the slow path.
93  		 */
94  		if (unlikely(flags & FOLL_LONGTERM) &&
95  				is_migrate_cma_page(page))
96  			return NULL;
97  
98  		/*
99  		 * When pinning a compound page of order > 1 (which is what
100  		 * hpage_pincount_available() checks for), use an exact count to
101  		 * track it, via hpage_pincount_add/_sub().
102  		 *
103  		 * However, be sure to *also* increment the normal page refcount
104  		 * field at least once, so that the page really is pinned.
105  		 */
106  		if (!hpage_pincount_available(page))
107  			refs *= GUP_PIN_COUNTING_BIAS;
108  
109  		page = try_get_compound_head(page, refs);
110  		if (!page)
111  			return NULL;
112  
113  		if (hpage_pincount_available(page))
114  			hpage_pincount_add(page, refs);
115  
116  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117  				    orig_refs);
118  
119  		return page;
120  	}
121  
122  	WARN_ON_ONCE(1);
123  	return NULL;
124  }
125  
126  /**
127   * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128   *
129   * This might not do anything at all, depending on the flags argument.
130   *
131   * "grab" names in this file mean, "look at flags to decide whether to use
132   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133   *
134   * @page:    pointer to page to be grabbed
135   * @flags:   gup flags: these are the FOLL_* flag values.
136   *
137   * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138   * time. Cases:
139   *
140   *    FOLL_GET: page's refcount will be incremented by 1.
141   *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142   *
143   * Return: true for success, or if no action was required (if neither FOLL_PIN
144   * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145   * FOLL_PIN was set, but the page could not be grabbed.
146   */
147  bool __must_check try_grab_page(struct page *page, unsigned int flags)
148  {
149  	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150  
151  	if (flags & FOLL_GET)
152  		return try_get_page(page);
153  	else if (flags & FOLL_PIN) {
154  		int refs = 1;
155  
156  		page = compound_head(page);
157  
158  		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159  			return false;
160  
161  		if (hpage_pincount_available(page))
162  			hpage_pincount_add(page, 1);
163  		else
164  			refs = GUP_PIN_COUNTING_BIAS;
165  
166  		/*
167  		 * Similar to try_grab_compound_head(): even if using the
168  		 * hpage_pincount_add/_sub() routines, be sure to
169  		 * *also* increment the normal page refcount field at least
170  		 * once, so that the page really is pinned.
171  		 */
172  		page_ref_add(page, refs);
173  
174  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175  	}
176  
177  	return true;
178  }
179  
180  #ifdef CONFIG_DEV_PAGEMAP_OPS
181  static bool __unpin_devmap_managed_user_page(struct page *page)
182  {
183  	int count, refs = 1;
184  
185  	if (!page_is_devmap_managed(page))
186  		return false;
187  
188  	if (hpage_pincount_available(page))
189  		hpage_pincount_sub(page, 1);
190  	else
191  		refs = GUP_PIN_COUNTING_BIAS;
192  
193  	count = page_ref_sub_return(page, refs);
194  
195  	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196  	/*
197  	 * devmap page refcounts are 1-based, rather than 0-based: if
198  	 * refcount is 1, then the page is free and the refcount is
199  	 * stable because nobody holds a reference on the page.
200  	 */
201  	if (count == 1)
202  		free_devmap_managed_page(page);
203  	else if (!count)
204  		__put_page(page);
205  
206  	return true;
207  }
208  #else
209  static bool __unpin_devmap_managed_user_page(struct page *page)
210  {
211  	return false;
212  }
213  #endif /* CONFIG_DEV_PAGEMAP_OPS */
214  
215  /**
216   * unpin_user_page() - release a dma-pinned page
217   * @page:            pointer to page to be released
218   *
219   * Pages that were pinned via pin_user_pages*() must be released via either
220   * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221   * that such pages can be separately tracked and uniquely handled. In
222   * particular, interactions with RDMA and filesystems need special handling.
223   */
224  void unpin_user_page(struct page *page)
225  {
226  	int refs = 1;
227  
228  	page = compound_head(page);
229  
230  	/*
231  	 * For devmap managed pages we need to catch refcount transition from
232  	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233  	 * page is free and we need to inform the device driver through
234  	 * callback. See include/linux/memremap.h and HMM for details.
235  	 */
236  	if (__unpin_devmap_managed_user_page(page))
237  		return;
238  
239  	if (hpage_pincount_available(page))
240  		hpage_pincount_sub(page, 1);
241  	else
242  		refs = GUP_PIN_COUNTING_BIAS;
243  
244  	if (page_ref_sub_and_test(page, refs))
245  		__put_page(page);
246  
247  	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248  }
249  EXPORT_SYMBOL(unpin_user_page);
250  
251  /**
252   * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253   * @pages:  array of pages to be maybe marked dirty, and definitely released.
254   * @npages: number of pages in the @pages array.
255   * @make_dirty: whether to mark the pages dirty
256   *
257   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258   * variants called on that page.
259   *
260   * For each page in the @pages array, make that page (or its head page, if a
261   * compound page) dirty, if @make_dirty is true, and if the page was previously
262   * listed as clean. In any case, releases all pages using unpin_user_page(),
263   * possibly via unpin_user_pages(), for the non-dirty case.
264   *
265   * Please see the unpin_user_page() documentation for details.
266   *
267   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268   * required, then the caller should a) verify that this is really correct,
269   * because _lock() is usually required, and b) hand code it:
270   * set_page_dirty_lock(), unpin_user_page().
271   *
272   */
273  void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274  				 bool make_dirty)
275  {
276  	unsigned long index;
277  
278  	/*
279  	 * TODO: this can be optimized for huge pages: if a series of pages is
280  	 * physically contiguous and part of the same compound page, then a
281  	 * single operation to the head page should suffice.
282  	 */
283  
284  	if (!make_dirty) {
285  		unpin_user_pages(pages, npages);
286  		return;
287  	}
288  
289  	for (index = 0; index < npages; index++) {
290  		struct page *page = compound_head(pages[index]);
291  		/*
292  		 * Checking PageDirty at this point may race with
293  		 * clear_page_dirty_for_io(), but that's OK. Two key
294  		 * cases:
295  		 *
296  		 * 1) This code sees the page as already dirty, so it
297  		 * skips the call to set_page_dirty(). That could happen
298  		 * because clear_page_dirty_for_io() called
299  		 * page_mkclean(), followed by set_page_dirty().
300  		 * However, now the page is going to get written back,
301  		 * which meets the original intention of setting it
302  		 * dirty, so all is well: clear_page_dirty_for_io() goes
303  		 * on to call TestClearPageDirty(), and write the page
304  		 * back.
305  		 *
306  		 * 2) This code sees the page as clean, so it calls
307  		 * set_page_dirty(). The page stays dirty, despite being
308  		 * written back, so it gets written back again in the
309  		 * next writeback cycle. This is harmless.
310  		 */
311  		if (!PageDirty(page))
312  			set_page_dirty_lock(page);
313  		unpin_user_page(page);
314  	}
315  }
316  EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317  
318  /**
319   * unpin_user_pages() - release an array of gup-pinned pages.
320   * @pages:  array of pages to be marked dirty and released.
321   * @npages: number of pages in the @pages array.
322   *
323   * For each page in the @pages array, release the page using unpin_user_page().
324   *
325   * Please see the unpin_user_page() documentation for details.
326   */
327  void unpin_user_pages(struct page **pages, unsigned long npages)
328  {
329  	unsigned long index;
330  
331  	/*
332  	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
333  	 * leaving them pinned), but probably not. More likely, gup/pup returned
334  	 * a hard -ERRNO error to the caller, who erroneously passed it here.
335  	 */
336  	if (WARN_ON(IS_ERR_VALUE(npages)))
337  		return;
338  	/*
339  	 * TODO: this can be optimized for huge pages: if a series of pages is
340  	 * physically contiguous and part of the same compound page, then a
341  	 * single operation to the head page should suffice.
342  	 */
343  	for (index = 0; index < npages; index++)
344  		unpin_user_page(pages[index]);
345  }
346  EXPORT_SYMBOL(unpin_user_pages);
347  
348  #ifdef CONFIG_MMU
349  static struct page *no_page_table(struct vm_area_struct *vma,
350  		unsigned int flags)
351  {
352  	/*
353  	 * When core dumping an enormous anonymous area that nobody
354  	 * has touched so far, we don't want to allocate unnecessary pages or
355  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
356  	 * then get_dump_page() will return NULL to leave a hole in the dump.
357  	 * But we can only make this optimization where a hole would surely
358  	 * be zero-filled if handle_mm_fault() actually did handle it.
359  	 */
360  	if ((flags & FOLL_DUMP) &&
361  			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
362  		return ERR_PTR(-EFAULT);
363  	return NULL;
364  }
365  
366  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
367  		pte_t *pte, unsigned int flags)
368  {
369  	/* No page to get reference */
370  	if (flags & FOLL_GET)
371  		return -EFAULT;
372  
373  	if (flags & FOLL_TOUCH) {
374  		pte_t entry = *pte;
375  
376  		if (flags & FOLL_WRITE)
377  			entry = pte_mkdirty(entry);
378  		entry = pte_mkyoung(entry);
379  
380  		if (!pte_same(*pte, entry)) {
381  			set_pte_at(vma->vm_mm, address, pte, entry);
382  			update_mmu_cache(vma, address, pte);
383  		}
384  	}
385  
386  	/* Proper page table entry exists, but no corresponding struct page */
387  	return -EEXIST;
388  }
389  
390  /*
391   * FOLL_FORCE can write to even unwritable pte's, but only
392   * after we've gone through a COW cycle and they are dirty.
393   */
394  static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
395  {
396  	return pte_write(pte) ||
397  		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
398  }
399  
400  static struct page *follow_page_pte(struct vm_area_struct *vma,
401  		unsigned long address, pmd_t *pmd, unsigned int flags,
402  		struct dev_pagemap **pgmap)
403  {
404  	struct mm_struct *mm = vma->vm_mm;
405  	struct page *page;
406  	spinlock_t *ptl;
407  	pte_t *ptep, pte;
408  	int ret;
409  
410  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
411  	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
412  			 (FOLL_PIN | FOLL_GET)))
413  		return ERR_PTR(-EINVAL);
414  retry:
415  	if (unlikely(pmd_bad(*pmd)))
416  		return no_page_table(vma, flags);
417  
418  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
419  	pte = *ptep;
420  	if (!pte_present(pte)) {
421  		swp_entry_t entry;
422  		/*
423  		 * KSM's break_ksm() relies upon recognizing a ksm page
424  		 * even while it is being migrated, so for that case we
425  		 * need migration_entry_wait().
426  		 */
427  		if (likely(!(flags & FOLL_MIGRATION)))
428  			goto no_page;
429  		if (pte_none(pte))
430  			goto no_page;
431  		entry = pte_to_swp_entry(pte);
432  		if (!is_migration_entry(entry))
433  			goto no_page;
434  		pte_unmap_unlock(ptep, ptl);
435  		migration_entry_wait(mm, pmd, address);
436  		goto retry;
437  	}
438  	if ((flags & FOLL_NUMA) && pte_protnone(pte))
439  		goto no_page;
440  	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
441  		pte_unmap_unlock(ptep, ptl);
442  		return NULL;
443  	}
444  
445  	page = vm_normal_page(vma, address, pte);
446  	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
447  		/*
448  		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
449  		 * case since they are only valid while holding the pgmap
450  		 * reference.
451  		 */
452  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
453  		if (*pgmap)
454  			page = pte_page(pte);
455  		else
456  			goto no_page;
457  	} else if (unlikely(!page)) {
458  		if (flags & FOLL_DUMP) {
459  			/* Avoid special (like zero) pages in core dumps */
460  			page = ERR_PTR(-EFAULT);
461  			goto out;
462  		}
463  
464  		if (is_zero_pfn(pte_pfn(pte))) {
465  			page = pte_page(pte);
466  		} else {
467  			ret = follow_pfn_pte(vma, address, ptep, flags);
468  			page = ERR_PTR(ret);
469  			goto out;
470  		}
471  	}
472  
473  	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
474  		get_page(page);
475  		pte_unmap_unlock(ptep, ptl);
476  		lock_page(page);
477  		ret = split_huge_page(page);
478  		unlock_page(page);
479  		put_page(page);
480  		if (ret)
481  			return ERR_PTR(ret);
482  		goto retry;
483  	}
484  
485  	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
486  	if (unlikely(!try_grab_page(page, flags))) {
487  		page = ERR_PTR(-ENOMEM);
488  		goto out;
489  	}
490  	/*
491  	 * We need to make the page accessible if and only if we are going
492  	 * to access its content (the FOLL_PIN case).  Please see
493  	 * Documentation/core-api/pin_user_pages.rst for details.
494  	 */
495  	if (flags & FOLL_PIN) {
496  		ret = arch_make_page_accessible(page);
497  		if (ret) {
498  			unpin_user_page(page);
499  			page = ERR_PTR(ret);
500  			goto out;
501  		}
502  	}
503  	if (flags & FOLL_TOUCH) {
504  		if ((flags & FOLL_WRITE) &&
505  		    !pte_dirty(pte) && !PageDirty(page))
506  			set_page_dirty(page);
507  		/*
508  		 * pte_mkyoung() would be more correct here, but atomic care
509  		 * is needed to avoid losing the dirty bit: it is easier to use
510  		 * mark_page_accessed().
511  		 */
512  		mark_page_accessed(page);
513  	}
514  	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
515  		/* Do not mlock pte-mapped THP */
516  		if (PageTransCompound(page))
517  			goto out;
518  
519  		/*
520  		 * The preliminary mapping check is mainly to avoid the
521  		 * pointless overhead of lock_page on the ZERO_PAGE
522  		 * which might bounce very badly if there is contention.
523  		 *
524  		 * If the page is already locked, we don't need to
525  		 * handle it now - vmscan will handle it later if and
526  		 * when it attempts to reclaim the page.
527  		 */
528  		if (page->mapping && trylock_page(page)) {
529  			lru_add_drain();  /* push cached pages to LRU */
530  			/*
531  			 * Because we lock page here, and migration is
532  			 * blocked by the pte's page reference, and we
533  			 * know the page is still mapped, we don't even
534  			 * need to check for file-cache page truncation.
535  			 */
536  			mlock_vma_page(page);
537  			unlock_page(page);
538  		}
539  	}
540  out:
541  	pte_unmap_unlock(ptep, ptl);
542  	return page;
543  no_page:
544  	pte_unmap_unlock(ptep, ptl);
545  	if (!pte_none(pte))
546  		return NULL;
547  	return no_page_table(vma, flags);
548  }
549  
550  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
551  				    unsigned long address, pud_t *pudp,
552  				    unsigned int flags,
553  				    struct follow_page_context *ctx)
554  {
555  	pmd_t *pmd, pmdval;
556  	spinlock_t *ptl;
557  	struct page *page;
558  	struct mm_struct *mm = vma->vm_mm;
559  
560  	pmd = pmd_offset(pudp, address);
561  	/*
562  	 * The READ_ONCE() will stabilize the pmdval in a register or
563  	 * on the stack so that it will stop changing under the code.
564  	 */
565  	pmdval = READ_ONCE(*pmd);
566  	if (pmd_none(pmdval))
567  		return no_page_table(vma, flags);
568  	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
569  		page = follow_huge_pmd(mm, address, pmd, flags);
570  		if (page)
571  			return page;
572  		return no_page_table(vma, flags);
573  	}
574  	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
575  		page = follow_huge_pd(vma, address,
576  				      __hugepd(pmd_val(pmdval)), flags,
577  				      PMD_SHIFT);
578  		if (page)
579  			return page;
580  		return no_page_table(vma, flags);
581  	}
582  retry:
583  	if (!pmd_present(pmdval)) {
584  		if (likely(!(flags & FOLL_MIGRATION)))
585  			return no_page_table(vma, flags);
586  		VM_BUG_ON(thp_migration_supported() &&
587  				  !is_pmd_migration_entry(pmdval));
588  		if (is_pmd_migration_entry(pmdval))
589  			pmd_migration_entry_wait(mm, pmd);
590  		pmdval = READ_ONCE(*pmd);
591  		/*
592  		 * MADV_DONTNEED may convert the pmd to null because
593  		 * mmap_lock is held in read mode
594  		 */
595  		if (pmd_none(pmdval))
596  			return no_page_table(vma, flags);
597  		goto retry;
598  	}
599  	if (pmd_devmap(pmdval)) {
600  		ptl = pmd_lock(mm, pmd);
601  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
602  		spin_unlock(ptl);
603  		if (page)
604  			return page;
605  	}
606  	if (likely(!pmd_trans_huge(pmdval)))
607  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
608  
609  	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
610  		return no_page_table(vma, flags);
611  
612  retry_locked:
613  	ptl = pmd_lock(mm, pmd);
614  	if (unlikely(pmd_none(*pmd))) {
615  		spin_unlock(ptl);
616  		return no_page_table(vma, flags);
617  	}
618  	if (unlikely(!pmd_present(*pmd))) {
619  		spin_unlock(ptl);
620  		if (likely(!(flags & FOLL_MIGRATION)))
621  			return no_page_table(vma, flags);
622  		pmd_migration_entry_wait(mm, pmd);
623  		goto retry_locked;
624  	}
625  	if (unlikely(!pmd_trans_huge(*pmd))) {
626  		spin_unlock(ptl);
627  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
628  	}
629  	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
630  		int ret;
631  		page = pmd_page(*pmd);
632  		if (is_huge_zero_page(page)) {
633  			spin_unlock(ptl);
634  			ret = 0;
635  			split_huge_pmd(vma, pmd, address);
636  			if (pmd_trans_unstable(pmd))
637  				ret = -EBUSY;
638  		} else if (flags & FOLL_SPLIT) {
639  			if (unlikely(!try_get_page(page))) {
640  				spin_unlock(ptl);
641  				return ERR_PTR(-ENOMEM);
642  			}
643  			spin_unlock(ptl);
644  			lock_page(page);
645  			ret = split_huge_page(page);
646  			unlock_page(page);
647  			put_page(page);
648  			if (pmd_none(*pmd))
649  				return no_page_table(vma, flags);
650  		} else {  /* flags & FOLL_SPLIT_PMD */
651  			spin_unlock(ptl);
652  			split_huge_pmd(vma, pmd, address);
653  			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
654  		}
655  
656  		return ret ? ERR_PTR(ret) :
657  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
658  	}
659  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
660  	spin_unlock(ptl);
661  	ctx->page_mask = HPAGE_PMD_NR - 1;
662  	return page;
663  }
664  
665  static struct page *follow_pud_mask(struct vm_area_struct *vma,
666  				    unsigned long address, p4d_t *p4dp,
667  				    unsigned int flags,
668  				    struct follow_page_context *ctx)
669  {
670  	pud_t *pud;
671  	spinlock_t *ptl;
672  	struct page *page;
673  	struct mm_struct *mm = vma->vm_mm;
674  
675  	pud = pud_offset(p4dp, address);
676  	if (pud_none(*pud))
677  		return no_page_table(vma, flags);
678  	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
679  		page = follow_huge_pud(mm, address, pud, flags);
680  		if (page)
681  			return page;
682  		return no_page_table(vma, flags);
683  	}
684  	if (is_hugepd(__hugepd(pud_val(*pud)))) {
685  		page = follow_huge_pd(vma, address,
686  				      __hugepd(pud_val(*pud)), flags,
687  				      PUD_SHIFT);
688  		if (page)
689  			return page;
690  		return no_page_table(vma, flags);
691  	}
692  	if (pud_devmap(*pud)) {
693  		ptl = pud_lock(mm, pud);
694  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
695  		spin_unlock(ptl);
696  		if (page)
697  			return page;
698  	}
699  	if (unlikely(pud_bad(*pud)))
700  		return no_page_table(vma, flags);
701  
702  	return follow_pmd_mask(vma, address, pud, flags, ctx);
703  }
704  
705  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
706  				    unsigned long address, pgd_t *pgdp,
707  				    unsigned int flags,
708  				    struct follow_page_context *ctx)
709  {
710  	p4d_t *p4d;
711  	struct page *page;
712  
713  	p4d = p4d_offset(pgdp, address);
714  	if (p4d_none(*p4d))
715  		return no_page_table(vma, flags);
716  	BUILD_BUG_ON(p4d_huge(*p4d));
717  	if (unlikely(p4d_bad(*p4d)))
718  		return no_page_table(vma, flags);
719  
720  	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
721  		page = follow_huge_pd(vma, address,
722  				      __hugepd(p4d_val(*p4d)), flags,
723  				      P4D_SHIFT);
724  		if (page)
725  			return page;
726  		return no_page_table(vma, flags);
727  	}
728  	return follow_pud_mask(vma, address, p4d, flags, ctx);
729  }
730  
731  /**
732   * follow_page_mask - look up a page descriptor from a user-virtual address
733   * @vma: vm_area_struct mapping @address
734   * @address: virtual address to look up
735   * @flags: flags modifying lookup behaviour
736   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
737   *       pointer to output page_mask
738   *
739   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
740   *
741   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
742   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
743   *
744   * On output, the @ctx->page_mask is set according to the size of the page.
745   *
746   * Return: the mapped (struct page *), %NULL if no mapping exists, or
747   * an error pointer if there is a mapping to something not represented
748   * by a page descriptor (see also vm_normal_page()).
749   */
750  static struct page *follow_page_mask(struct vm_area_struct *vma,
751  			      unsigned long address, unsigned int flags,
752  			      struct follow_page_context *ctx)
753  {
754  	pgd_t *pgd;
755  	struct page *page;
756  	struct mm_struct *mm = vma->vm_mm;
757  
758  	ctx->page_mask = 0;
759  
760  	/* make this handle hugepd */
761  	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
762  	if (!IS_ERR(page)) {
763  		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
764  		return page;
765  	}
766  
767  	pgd = pgd_offset(mm, address);
768  
769  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770  		return no_page_table(vma, flags);
771  
772  	if (pgd_huge(*pgd)) {
773  		page = follow_huge_pgd(mm, address, pgd, flags);
774  		if (page)
775  			return page;
776  		return no_page_table(vma, flags);
777  	}
778  	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779  		page = follow_huge_pd(vma, address,
780  				      __hugepd(pgd_val(*pgd)), flags,
781  				      PGDIR_SHIFT);
782  		if (page)
783  			return page;
784  		return no_page_table(vma, flags);
785  	}
786  
787  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
788  }
789  
790  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791  			 unsigned int foll_flags)
792  {
793  	struct follow_page_context ctx = { NULL };
794  	struct page *page;
795  
796  	page = follow_page_mask(vma, address, foll_flags, &ctx);
797  	if (ctx.pgmap)
798  		put_dev_pagemap(ctx.pgmap);
799  	return page;
800  }
801  
802  static int get_gate_page(struct mm_struct *mm, unsigned long address,
803  		unsigned int gup_flags, struct vm_area_struct **vma,
804  		struct page **page)
805  {
806  	pgd_t *pgd;
807  	p4d_t *p4d;
808  	pud_t *pud;
809  	pmd_t *pmd;
810  	pte_t *pte;
811  	int ret = -EFAULT;
812  
813  	/* user gate pages are read-only */
814  	if (gup_flags & FOLL_WRITE)
815  		return -EFAULT;
816  	if (address > TASK_SIZE)
817  		pgd = pgd_offset_k(address);
818  	else
819  		pgd = pgd_offset_gate(mm, address);
820  	if (pgd_none(*pgd))
821  		return -EFAULT;
822  	p4d = p4d_offset(pgd, address);
823  	if (p4d_none(*p4d))
824  		return -EFAULT;
825  	pud = pud_offset(p4d, address);
826  	if (pud_none(*pud))
827  		return -EFAULT;
828  	pmd = pmd_offset(pud, address);
829  	if (!pmd_present(*pmd))
830  		return -EFAULT;
831  	VM_BUG_ON(pmd_trans_huge(*pmd));
832  	pte = pte_offset_map(pmd, address);
833  	if (pte_none(*pte))
834  		goto unmap;
835  	*vma = get_gate_vma(mm);
836  	if (!page)
837  		goto out;
838  	*page = vm_normal_page(*vma, address, *pte);
839  	if (!*page) {
840  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
841  			goto unmap;
842  		*page = pte_page(*pte);
843  	}
844  	if (unlikely(!try_grab_page(*page, gup_flags))) {
845  		ret = -ENOMEM;
846  		goto unmap;
847  	}
848  out:
849  	ret = 0;
850  unmap:
851  	pte_unmap(pte);
852  	return ret;
853  }
854  
855  /*
856   * mmap_lock must be held on entry.  If @locked != NULL and *@flags
857   * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
858   * is, *@locked will be set to 0 and -EBUSY returned.
859   */
860  static int faultin_page(struct vm_area_struct *vma,
861  		unsigned long address, unsigned int *flags, int *locked)
862  {
863  	unsigned int fault_flags = 0;
864  	vm_fault_t ret;
865  
866  	/* mlock all present pages, but do not fault in new pages */
867  	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
868  		return -ENOENT;
869  	if (*flags & FOLL_WRITE)
870  		fault_flags |= FAULT_FLAG_WRITE;
871  	if (*flags & FOLL_REMOTE)
872  		fault_flags |= FAULT_FLAG_REMOTE;
873  	if (locked)
874  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
875  	if (*flags & FOLL_NOWAIT)
876  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
877  	if (*flags & FOLL_TRIED) {
878  		/*
879  		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
880  		 * can co-exist
881  		 */
882  		fault_flags |= FAULT_FLAG_TRIED;
883  	}
884  
885  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
886  	if (ret & VM_FAULT_ERROR) {
887  		int err = vm_fault_to_errno(ret, *flags);
888  
889  		if (err)
890  			return err;
891  		BUG();
892  	}
893  
894  	if (ret & VM_FAULT_RETRY) {
895  		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896  			*locked = 0;
897  		return -EBUSY;
898  	}
899  
900  	/*
901  	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902  	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903  	 * can thus safely do subsequent page lookups as if they were reads.
904  	 * But only do so when looping for pte_write is futile: in some cases
905  	 * userspace may also be wanting to write to the gotten user page,
906  	 * which a read fault here might prevent (a readonly page might get
907  	 * reCOWed by userspace write).
908  	 */
909  	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
910  		*flags |= FOLL_COW;
911  	return 0;
912  }
913  
914  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915  {
916  	vm_flags_t vm_flags = vma->vm_flags;
917  	int write = (gup_flags & FOLL_WRITE);
918  	int foreign = (gup_flags & FOLL_REMOTE);
919  
920  	if (vm_flags & (VM_IO | VM_PFNMAP))
921  		return -EFAULT;
922  
923  	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924  		return -EFAULT;
925  
926  	if (write) {
927  		if (!(vm_flags & VM_WRITE)) {
928  			if (!(gup_flags & FOLL_FORCE))
929  				return -EFAULT;
930  			/*
931  			 * We used to let the write,force case do COW in a
932  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
933  			 * set a breakpoint in a read-only mapping of an
934  			 * executable, without corrupting the file (yet only
935  			 * when that file had been opened for writing!).
936  			 * Anon pages in shared mappings are surprising: now
937  			 * just reject it.
938  			 */
939  			if (!is_cow_mapping(vm_flags))
940  				return -EFAULT;
941  		}
942  	} else if (!(vm_flags & VM_READ)) {
943  		if (!(gup_flags & FOLL_FORCE))
944  			return -EFAULT;
945  		/*
946  		 * Is there actually any vma we can reach here which does not
947  		 * have VM_MAYREAD set?
948  		 */
949  		if (!(vm_flags & VM_MAYREAD))
950  			return -EFAULT;
951  	}
952  	/*
953  	 * gups are always data accesses, not instruction
954  	 * fetches, so execute=false here
955  	 */
956  	if (!arch_vma_access_permitted(vma, write, false, foreign))
957  		return -EFAULT;
958  	return 0;
959  }
960  
961  /**
962   * __get_user_pages() - pin user pages in memory
963   * @mm:		mm_struct of target mm
964   * @start:	starting user address
965   * @nr_pages:	number of pages from start to pin
966   * @gup_flags:	flags modifying pin behaviour
967   * @pages:	array that receives pointers to the pages pinned.
968   *		Should be at least nr_pages long. Or NULL, if caller
969   *		only intends to ensure the pages are faulted in.
970   * @vmas:	array of pointers to vmas corresponding to each page.
971   *		Or NULL if the caller does not require them.
972   * @locked:     whether we're still with the mmap_lock held
973   *
974   * Returns either number of pages pinned (which may be less than the
975   * number requested), or an error. Details about the return value:
976   *
977   * -- If nr_pages is 0, returns 0.
978   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
979   * -- If nr_pages is >0, and some pages were pinned, returns the number of
980   *    pages pinned. Again, this may be less than nr_pages.
981   * -- 0 return value is possible when the fault would need to be retried.
982   *
983   * The caller is responsible for releasing returned @pages, via put_page().
984   *
985   * @vmas are valid only as long as mmap_lock is held.
986   *
987   * Must be called with mmap_lock held.  It may be released.  See below.
988   *
989   * __get_user_pages walks a process's page tables and takes a reference to
990   * each struct page that each user address corresponds to at a given
991   * instant. That is, it takes the page that would be accessed if a user
992   * thread accesses the given user virtual address at that instant.
993   *
994   * This does not guarantee that the page exists in the user mappings when
995   * __get_user_pages returns, and there may even be a completely different
996   * page there in some cases (eg. if mmapped pagecache has been invalidated
997   * and subsequently re faulted). However it does guarantee that the page
998   * won't be freed completely. And mostly callers simply care that the page
999   * contains data that was valid *at some point in time*. Typically, an IO
1000   * or similar operation cannot guarantee anything stronger anyway because
1001   * locks can't be held over the syscall boundary.
1002   *
1003   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1004   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1005   * appropriate) must be called after the page is finished with, and
1006   * before put_page is called.
1007   *
1008   * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1009   * released by an up_read().  That can happen if @gup_flags does not
1010   * have FOLL_NOWAIT.
1011   *
1012   * A caller using such a combination of @locked and @gup_flags
1013   * must therefore hold the mmap_lock for reading only, and recognize
1014   * when it's been released.  Otherwise, it must be held for either
1015   * reading or writing and will not be released.
1016   *
1017   * In most cases, get_user_pages or get_user_pages_fast should be used
1018   * instead of __get_user_pages. __get_user_pages should be used only if
1019   * you need some special @gup_flags.
1020   */
1021  static long __get_user_pages(struct mm_struct *mm,
1022  		unsigned long start, unsigned long nr_pages,
1023  		unsigned int gup_flags, struct page **pages,
1024  		struct vm_area_struct **vmas, int *locked)
1025  {
1026  	long ret = 0, i = 0;
1027  	struct vm_area_struct *vma = NULL;
1028  	struct follow_page_context ctx = { NULL };
1029  
1030  	if (!nr_pages)
1031  		return 0;
1032  
1033  	start = untagged_addr(start);
1034  
1035  	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1036  
1037  	/*
1038  	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1039  	 * fault information is unrelated to the reference behaviour of a task
1040  	 * using the address space
1041  	 */
1042  	if (!(gup_flags & FOLL_FORCE))
1043  		gup_flags |= FOLL_NUMA;
1044  
1045  	do {
1046  		struct page *page;
1047  		unsigned int foll_flags = gup_flags;
1048  		unsigned int page_increm;
1049  
1050  		/* first iteration or cross vma bound */
1051  		if (!vma || start >= vma->vm_end) {
1052  			vma = find_extend_vma(mm, start);
1053  			if (!vma && in_gate_area(mm, start)) {
1054  				ret = get_gate_page(mm, start & PAGE_MASK,
1055  						gup_flags, &vma,
1056  						pages ? &pages[i] : NULL);
1057  				if (ret)
1058  					goto out;
1059  				ctx.page_mask = 0;
1060  				goto next_page;
1061  			}
1062  
1063  			if (!vma || check_vma_flags(vma, gup_flags)) {
1064  				ret = -EFAULT;
1065  				goto out;
1066  			}
1067  			if (is_vm_hugetlb_page(vma)) {
1068  				i = follow_hugetlb_page(mm, vma, pages, vmas,
1069  						&start, &nr_pages, i,
1070  						gup_flags, locked);
1071  				if (locked && *locked == 0) {
1072  					/*
1073  					 * We've got a VM_FAULT_RETRY
1074  					 * and we've lost mmap_lock.
1075  					 * We must stop here.
1076  					 */
1077  					BUG_ON(gup_flags & FOLL_NOWAIT);
1078  					BUG_ON(ret != 0);
1079  					goto out;
1080  				}
1081  				continue;
1082  			}
1083  		}
1084  retry:
1085  		/*
1086  		 * If we have a pending SIGKILL, don't keep faulting pages and
1087  		 * potentially allocating memory.
1088  		 */
1089  		if (fatal_signal_pending(current)) {
1090  			ret = -EINTR;
1091  			goto out;
1092  		}
1093  		cond_resched();
1094  
1095  		page = follow_page_mask(vma, start, foll_flags, &ctx);
1096  		if (!page) {
1097  			ret = faultin_page(vma, start, &foll_flags, locked);
1098  			switch (ret) {
1099  			case 0:
1100  				goto retry;
1101  			case -EBUSY:
1102  				ret = 0;
1103  				fallthrough;
1104  			case -EFAULT:
1105  			case -ENOMEM:
1106  			case -EHWPOISON:
1107  				goto out;
1108  			case -ENOENT:
1109  				goto next_page;
1110  			}
1111  			BUG();
1112  		} else if (PTR_ERR(page) == -EEXIST) {
1113  			/*
1114  			 * Proper page table entry exists, but no corresponding
1115  			 * struct page.
1116  			 */
1117  			goto next_page;
1118  		} else if (IS_ERR(page)) {
1119  			ret = PTR_ERR(page);
1120  			goto out;
1121  		}
1122  		if (pages) {
1123  			pages[i] = page;
1124  			flush_anon_page(vma, page, start);
1125  			flush_dcache_page(page);
1126  			ctx.page_mask = 0;
1127  		}
1128  next_page:
1129  		if (vmas) {
1130  			vmas[i] = vma;
1131  			ctx.page_mask = 0;
1132  		}
1133  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1134  		if (page_increm > nr_pages)
1135  			page_increm = nr_pages;
1136  		i += page_increm;
1137  		start += page_increm * PAGE_SIZE;
1138  		nr_pages -= page_increm;
1139  	} while (nr_pages);
1140  out:
1141  	if (ctx.pgmap)
1142  		put_dev_pagemap(ctx.pgmap);
1143  	return i ? i : ret;
1144  }
1145  
1146  static bool vma_permits_fault(struct vm_area_struct *vma,
1147  			      unsigned int fault_flags)
1148  {
1149  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1150  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1151  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1152  
1153  	if (!(vm_flags & vma->vm_flags))
1154  		return false;
1155  
1156  	/*
1157  	 * The architecture might have a hardware protection
1158  	 * mechanism other than read/write that can deny access.
1159  	 *
1160  	 * gup always represents data access, not instruction
1161  	 * fetches, so execute=false here:
1162  	 */
1163  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1164  		return false;
1165  
1166  	return true;
1167  }
1168  
1169  /**
1170   * fixup_user_fault() - manually resolve a user page fault
1171   * @mm:		mm_struct of target mm
1172   * @address:	user address
1173   * @fault_flags:flags to pass down to handle_mm_fault()
1174   * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1175   *		does not allow retry. If NULL, the caller must guarantee
1176   *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1177   *
1178   * This is meant to be called in the specific scenario where for locking reasons
1179   * we try to access user memory in atomic context (within a pagefault_disable()
1180   * section), this returns -EFAULT, and we want to resolve the user fault before
1181   * trying again.
1182   *
1183   * Typically this is meant to be used by the futex code.
1184   *
1185   * The main difference with get_user_pages() is that this function will
1186   * unconditionally call handle_mm_fault() which will in turn perform all the
1187   * necessary SW fixup of the dirty and young bits in the PTE, while
1188   * get_user_pages() only guarantees to update these in the struct page.
1189   *
1190   * This is important for some architectures where those bits also gate the
1191   * access permission to the page because they are maintained in software.  On
1192   * such architectures, gup() will not be enough to make a subsequent access
1193   * succeed.
1194   *
1195   * This function will not return with an unlocked mmap_lock. So it has not the
1196   * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1197   */
1198  int fixup_user_fault(struct mm_struct *mm,
1199  		     unsigned long address, unsigned int fault_flags,
1200  		     bool *unlocked)
1201  {
1202  	struct vm_area_struct *vma;
1203  	vm_fault_t ret, major = 0;
1204  
1205  	address = untagged_addr(address);
1206  
1207  	if (unlocked)
1208  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1209  
1210  retry:
1211  	vma = find_extend_vma(mm, address);
1212  	if (!vma || address < vma->vm_start)
1213  		return -EFAULT;
1214  
1215  	if (!vma_permits_fault(vma, fault_flags))
1216  		return -EFAULT;
1217  
1218  	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1219  	    fatal_signal_pending(current))
1220  		return -EINTR;
1221  
1222  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1223  	major |= ret & VM_FAULT_MAJOR;
1224  	if (ret & VM_FAULT_ERROR) {
1225  		int err = vm_fault_to_errno(ret, 0);
1226  
1227  		if (err)
1228  			return err;
1229  		BUG();
1230  	}
1231  
1232  	if (ret & VM_FAULT_RETRY) {
1233  		mmap_read_lock(mm);
1234  		*unlocked = true;
1235  		fault_flags |= FAULT_FLAG_TRIED;
1236  		goto retry;
1237  	}
1238  
1239  	return 0;
1240  }
1241  EXPORT_SYMBOL_GPL(fixup_user_fault);
1242  
1243  /*
1244   * Please note that this function, unlike __get_user_pages will not
1245   * return 0 for nr_pages > 0 without FOLL_NOWAIT
1246   */
1247  static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1248  						unsigned long start,
1249  						unsigned long nr_pages,
1250  						struct page **pages,
1251  						struct vm_area_struct **vmas,
1252  						int *locked,
1253  						unsigned int flags)
1254  {
1255  	long ret, pages_done;
1256  	bool lock_dropped;
1257  
1258  	if (locked) {
1259  		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1260  		BUG_ON(vmas);
1261  		/* check caller initialized locked */
1262  		BUG_ON(*locked != 1);
1263  	}
1264  
1265  	if (flags & FOLL_PIN)
1266  		atomic_set(&mm->has_pinned, 1);
1267  
1268  	/*
1269  	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1270  	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1271  	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1272  	 * for FOLL_GET, not for the newer FOLL_PIN.
1273  	 *
1274  	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1275  	 * that here, as any failures will be obvious enough.
1276  	 */
1277  	if (pages && !(flags & FOLL_PIN))
1278  		flags |= FOLL_GET;
1279  
1280  	pages_done = 0;
1281  	lock_dropped = false;
1282  	for (;;) {
1283  		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1284  				       vmas, locked);
1285  		if (!locked)
1286  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1287  			return ret;
1288  
1289  		/* VM_FAULT_RETRY cannot return errors */
1290  		if (!*locked) {
1291  			BUG_ON(ret < 0);
1292  			BUG_ON(ret >= nr_pages);
1293  		}
1294  
1295  		if (ret > 0) {
1296  			nr_pages -= ret;
1297  			pages_done += ret;
1298  			if (!nr_pages)
1299  				break;
1300  		}
1301  		if (*locked) {
1302  			/*
1303  			 * VM_FAULT_RETRY didn't trigger or it was a
1304  			 * FOLL_NOWAIT.
1305  			 */
1306  			if (!pages_done)
1307  				pages_done = ret;
1308  			break;
1309  		}
1310  		/*
1311  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1312  		 * For the prefault case (!pages) we only update counts.
1313  		 */
1314  		if (likely(pages))
1315  			pages += ret;
1316  		start += ret << PAGE_SHIFT;
1317  		lock_dropped = true;
1318  
1319  retry:
1320  		/*
1321  		 * Repeat on the address that fired VM_FAULT_RETRY
1322  		 * with both FAULT_FLAG_ALLOW_RETRY and
1323  		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1324  		 * by fatal signals, so we need to check it before we
1325  		 * start trying again otherwise it can loop forever.
1326  		 */
1327  
1328  		if (fatal_signal_pending(current)) {
1329  			if (!pages_done)
1330  				pages_done = -EINTR;
1331  			break;
1332  		}
1333  
1334  		ret = mmap_read_lock_killable(mm);
1335  		if (ret) {
1336  			BUG_ON(ret > 0);
1337  			if (!pages_done)
1338  				pages_done = ret;
1339  			break;
1340  		}
1341  
1342  		*locked = 1;
1343  		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1344  				       pages, NULL, locked);
1345  		if (!*locked) {
1346  			/* Continue to retry until we succeeded */
1347  			BUG_ON(ret != 0);
1348  			goto retry;
1349  		}
1350  		if (ret != 1) {
1351  			BUG_ON(ret > 1);
1352  			if (!pages_done)
1353  				pages_done = ret;
1354  			break;
1355  		}
1356  		nr_pages--;
1357  		pages_done++;
1358  		if (!nr_pages)
1359  			break;
1360  		if (likely(pages))
1361  			pages++;
1362  		start += PAGE_SIZE;
1363  	}
1364  	if (lock_dropped && *locked) {
1365  		/*
1366  		 * We must let the caller know we temporarily dropped the lock
1367  		 * and so the critical section protected by it was lost.
1368  		 */
1369  		mmap_read_unlock(mm);
1370  		*locked = 0;
1371  	}
1372  	return pages_done;
1373  }
1374  
1375  /**
1376   * populate_vma_page_range() -  populate a range of pages in the vma.
1377   * @vma:   target vma
1378   * @start: start address
1379   * @end:   end address
1380   * @locked: whether the mmap_lock is still held
1381   *
1382   * This takes care of mlocking the pages too if VM_LOCKED is set.
1383   *
1384   * Return either number of pages pinned in the vma, or a negative error
1385   * code on error.
1386   *
1387   * vma->vm_mm->mmap_lock must be held.
1388   *
1389   * If @locked is NULL, it may be held for read or write and will
1390   * be unperturbed.
1391   *
1392   * If @locked is non-NULL, it must held for read only and may be
1393   * released.  If it's released, *@locked will be set to 0.
1394   */
1395  long populate_vma_page_range(struct vm_area_struct *vma,
1396  		unsigned long start, unsigned long end, int *locked)
1397  {
1398  	struct mm_struct *mm = vma->vm_mm;
1399  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1400  	int gup_flags;
1401  
1402  	VM_BUG_ON(start & ~PAGE_MASK);
1403  	VM_BUG_ON(end   & ~PAGE_MASK);
1404  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1405  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1406  	mmap_assert_locked(mm);
1407  
1408  	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1409  	if (vma->vm_flags & VM_LOCKONFAULT)
1410  		gup_flags &= ~FOLL_POPULATE;
1411  	/*
1412  	 * We want to touch writable mappings with a write fault in order
1413  	 * to break COW, except for shared mappings because these don't COW
1414  	 * and we would not want to dirty them for nothing.
1415  	 */
1416  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1417  		gup_flags |= FOLL_WRITE;
1418  
1419  	/*
1420  	 * We want mlock to succeed for regions that have any permissions
1421  	 * other than PROT_NONE.
1422  	 */
1423  	if (vma_is_accessible(vma))
1424  		gup_flags |= FOLL_FORCE;
1425  
1426  	/*
1427  	 * We made sure addr is within a VMA, so the following will
1428  	 * not result in a stack expansion that recurses back here.
1429  	 */
1430  	return __get_user_pages(mm, start, nr_pages, gup_flags,
1431  				NULL, NULL, locked);
1432  }
1433  
1434  /*
1435   * __mm_populate - populate and/or mlock pages within a range of address space.
1436   *
1437   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1438   * flags. VMAs must be already marked with the desired vm_flags, and
1439   * mmap_lock must not be held.
1440   */
1441  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1442  {
1443  	struct mm_struct *mm = current->mm;
1444  	unsigned long end, nstart, nend;
1445  	struct vm_area_struct *vma = NULL;
1446  	int locked = 0;
1447  	long ret = 0;
1448  
1449  	end = start + len;
1450  
1451  	for (nstart = start; nstart < end; nstart = nend) {
1452  		/*
1453  		 * We want to fault in pages for [nstart; end) address range.
1454  		 * Find first corresponding VMA.
1455  		 */
1456  		if (!locked) {
1457  			locked = 1;
1458  			mmap_read_lock(mm);
1459  			vma = find_vma(mm, nstart);
1460  		} else if (nstart >= vma->vm_end)
1461  			vma = vma->vm_next;
1462  		if (!vma || vma->vm_start >= end)
1463  			break;
1464  		/*
1465  		 * Set [nstart; nend) to intersection of desired address
1466  		 * range with the first VMA. Also, skip undesirable VMA types.
1467  		 */
1468  		nend = min(end, vma->vm_end);
1469  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1470  			continue;
1471  		if (nstart < vma->vm_start)
1472  			nstart = vma->vm_start;
1473  		/*
1474  		 * Now fault in a range of pages. populate_vma_page_range()
1475  		 * double checks the vma flags, so that it won't mlock pages
1476  		 * if the vma was already munlocked.
1477  		 */
1478  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1479  		if (ret < 0) {
1480  			if (ignore_errors) {
1481  				ret = 0;
1482  				continue;	/* continue at next VMA */
1483  			}
1484  			break;
1485  		}
1486  		nend = nstart + ret * PAGE_SIZE;
1487  		ret = 0;
1488  	}
1489  	if (locked)
1490  		mmap_read_unlock(mm);
1491  	return ret;	/* 0 or negative error code */
1492  }
1493  #else /* CONFIG_MMU */
1494  static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1495  		unsigned long nr_pages, struct page **pages,
1496  		struct vm_area_struct **vmas, int *locked,
1497  		unsigned int foll_flags)
1498  {
1499  	struct vm_area_struct *vma;
1500  	unsigned long vm_flags;
1501  	int i;
1502  
1503  	/* calculate required read or write permissions.
1504  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1505  	 */
1506  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1507  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1508  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1509  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1510  
1511  	for (i = 0; i < nr_pages; i++) {
1512  		vma = find_vma(mm, start);
1513  		if (!vma)
1514  			goto finish_or_fault;
1515  
1516  		/* protect what we can, including chardevs */
1517  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1518  		    !(vm_flags & vma->vm_flags))
1519  			goto finish_or_fault;
1520  
1521  		if (pages) {
1522  			pages[i] = virt_to_page(start);
1523  			if (pages[i])
1524  				get_page(pages[i]);
1525  		}
1526  		if (vmas)
1527  			vmas[i] = vma;
1528  		start = (start + PAGE_SIZE) & PAGE_MASK;
1529  	}
1530  
1531  	return i;
1532  
1533  finish_or_fault:
1534  	return i ? : -EFAULT;
1535  }
1536  #endif /* !CONFIG_MMU */
1537  
1538  /**
1539   * get_dump_page() - pin user page in memory while writing it to core dump
1540   * @addr: user address
1541   *
1542   * Returns struct page pointer of user page pinned for dump,
1543   * to be freed afterwards by put_page().
1544   *
1545   * Returns NULL on any kind of failure - a hole must then be inserted into
1546   * the corefile, to preserve alignment with its headers; and also returns
1547   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1548   * allowing a hole to be left in the corefile to save diskspace.
1549   *
1550   * Called without mmap_lock (takes and releases the mmap_lock by itself).
1551   */
1552  #ifdef CONFIG_ELF_CORE
1553  struct page *get_dump_page(unsigned long addr)
1554  {
1555  	struct mm_struct *mm = current->mm;
1556  	struct page *page;
1557  	int locked = 1;
1558  	int ret;
1559  
1560  	if (mmap_read_lock_killable(mm))
1561  		return NULL;
1562  	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1563  				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1564  	if (locked)
1565  		mmap_read_unlock(mm);
1566  	return (ret == 1) ? page : NULL;
1567  }
1568  #endif /* CONFIG_ELF_CORE */
1569  
1570  #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1571  static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1572  {
1573  	long i;
1574  	struct vm_area_struct *vma_prev = NULL;
1575  
1576  	for (i = 0; i < nr_pages; i++) {
1577  		struct vm_area_struct *vma = vmas[i];
1578  
1579  		if (vma == vma_prev)
1580  			continue;
1581  
1582  		vma_prev = vma;
1583  
1584  		if (vma_is_fsdax(vma))
1585  			return true;
1586  	}
1587  	return false;
1588  }
1589  
1590  #ifdef CONFIG_CMA
1591  static long check_and_migrate_cma_pages(struct mm_struct *mm,
1592  					unsigned long start,
1593  					unsigned long nr_pages,
1594  					struct page **pages,
1595  					struct vm_area_struct **vmas,
1596  					unsigned int gup_flags)
1597  {
1598  	unsigned long i;
1599  	unsigned long step;
1600  	bool drain_allow = true;
1601  	bool migrate_allow = true;
1602  	LIST_HEAD(cma_page_list);
1603  	long ret = nr_pages;
1604  	struct migration_target_control mtc = {
1605  		.nid = NUMA_NO_NODE,
1606  		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1607  	};
1608  
1609  check_again:
1610  	for (i = 0; i < nr_pages;) {
1611  
1612  		struct page *head = compound_head(pages[i]);
1613  
1614  		/*
1615  		 * gup may start from a tail page. Advance step by the left
1616  		 * part.
1617  		 */
1618  		step = compound_nr(head) - (pages[i] - head);
1619  		/*
1620  		 * If we get a page from the CMA zone, since we are going to
1621  		 * be pinning these entries, we might as well move them out
1622  		 * of the CMA zone if possible.
1623  		 */
1624  		if (is_migrate_cma_page(head)) {
1625  			if (PageHuge(head))
1626  				isolate_huge_page(head, &cma_page_list);
1627  			else {
1628  				if (!PageLRU(head) && drain_allow) {
1629  					lru_add_drain_all();
1630  					drain_allow = false;
1631  				}
1632  
1633  				if (!isolate_lru_page(head)) {
1634  					list_add_tail(&head->lru, &cma_page_list);
1635  					mod_node_page_state(page_pgdat(head),
1636  							    NR_ISOLATED_ANON +
1637  							    page_is_file_lru(head),
1638  							    thp_nr_pages(head));
1639  				}
1640  			}
1641  		}
1642  
1643  		i += step;
1644  	}
1645  
1646  	if (!list_empty(&cma_page_list)) {
1647  		/*
1648  		 * drop the above get_user_pages reference.
1649  		 */
1650  		for (i = 0; i < nr_pages; i++)
1651  			put_page(pages[i]);
1652  
1653  		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1654  			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1655  			/*
1656  			 * some of the pages failed migration. Do get_user_pages
1657  			 * without migration.
1658  			 */
1659  			migrate_allow = false;
1660  
1661  			if (!list_empty(&cma_page_list))
1662  				putback_movable_pages(&cma_page_list);
1663  		}
1664  		/*
1665  		 * We did migrate all the pages, Try to get the page references
1666  		 * again migrating any new CMA pages which we failed to isolate
1667  		 * earlier.
1668  		 */
1669  		ret = __get_user_pages_locked(mm, start, nr_pages,
1670  						   pages, vmas, NULL,
1671  						   gup_flags);
1672  
1673  		if ((ret > 0) && migrate_allow) {
1674  			nr_pages = ret;
1675  			drain_allow = true;
1676  			goto check_again;
1677  		}
1678  	}
1679  
1680  	return ret;
1681  }
1682  #else
1683  static long check_and_migrate_cma_pages(struct mm_struct *mm,
1684  					unsigned long start,
1685  					unsigned long nr_pages,
1686  					struct page **pages,
1687  					struct vm_area_struct **vmas,
1688  					unsigned int gup_flags)
1689  {
1690  	return nr_pages;
1691  }
1692  #endif /* CONFIG_CMA */
1693  
1694  /*
1695   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1696   * allows us to process the FOLL_LONGTERM flag.
1697   */
1698  static long __gup_longterm_locked(struct mm_struct *mm,
1699  				  unsigned long start,
1700  				  unsigned long nr_pages,
1701  				  struct page **pages,
1702  				  struct vm_area_struct **vmas,
1703  				  unsigned int gup_flags)
1704  {
1705  	struct vm_area_struct **vmas_tmp = vmas;
1706  	unsigned long flags = 0;
1707  	long rc, i;
1708  
1709  	if (gup_flags & FOLL_LONGTERM) {
1710  		if (!pages)
1711  			return -EINVAL;
1712  
1713  		if (!vmas_tmp) {
1714  			vmas_tmp = kcalloc(nr_pages,
1715  					   sizeof(struct vm_area_struct *),
1716  					   GFP_KERNEL);
1717  			if (!vmas_tmp)
1718  				return -ENOMEM;
1719  		}
1720  		flags = memalloc_nocma_save();
1721  	}
1722  
1723  	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1724  				     vmas_tmp, NULL, gup_flags);
1725  
1726  	if (gup_flags & FOLL_LONGTERM) {
1727  		if (rc < 0)
1728  			goto out;
1729  
1730  		if (check_dax_vmas(vmas_tmp, rc)) {
1731  			for (i = 0; i < rc; i++)
1732  				put_page(pages[i]);
1733  			rc = -EOPNOTSUPP;
1734  			goto out;
1735  		}
1736  
1737  		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1738  						 vmas_tmp, gup_flags);
1739  out:
1740  		memalloc_nocma_restore(flags);
1741  	}
1742  
1743  	if (vmas_tmp != vmas)
1744  		kfree(vmas_tmp);
1745  	return rc;
1746  }
1747  #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1748  static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1749  						  unsigned long start,
1750  						  unsigned long nr_pages,
1751  						  struct page **pages,
1752  						  struct vm_area_struct **vmas,
1753  						  unsigned int flags)
1754  {
1755  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1756  				       NULL, flags);
1757  }
1758  #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1759  
1760  static bool is_valid_gup_flags(unsigned int gup_flags)
1761  {
1762  	/*
1763  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1764  	 * never directly by the caller, so enforce that with an assertion:
1765  	 */
1766  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1767  		return false;
1768  	/*
1769  	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1770  	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1771  	 * FOLL_PIN.
1772  	 */
1773  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1774  		return false;
1775  
1776  	return true;
1777  }
1778  
1779  #ifdef CONFIG_MMU
1780  static long __get_user_pages_remote(struct mm_struct *mm,
1781  				    unsigned long start, unsigned long nr_pages,
1782  				    unsigned int gup_flags, struct page **pages,
1783  				    struct vm_area_struct **vmas, int *locked)
1784  {
1785  	/*
1786  	 * Parts of FOLL_LONGTERM behavior are incompatible with
1787  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1788  	 * vmas. However, this only comes up if locked is set, and there are
1789  	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1790  	 * allow what we can.
1791  	 */
1792  	if (gup_flags & FOLL_LONGTERM) {
1793  		if (WARN_ON_ONCE(locked))
1794  			return -EINVAL;
1795  		/*
1796  		 * This will check the vmas (even if our vmas arg is NULL)
1797  		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1798  		 */
1799  		return __gup_longterm_locked(mm, start, nr_pages, pages,
1800  					     vmas, gup_flags | FOLL_TOUCH |
1801  					     FOLL_REMOTE);
1802  	}
1803  
1804  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1805  				       locked,
1806  				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1807  }
1808  
1809  /**
1810   * get_user_pages_remote() - pin user pages in memory
1811   * @mm:		mm_struct of target mm
1812   * @start:	starting user address
1813   * @nr_pages:	number of pages from start to pin
1814   * @gup_flags:	flags modifying lookup behaviour
1815   * @pages:	array that receives pointers to the pages pinned.
1816   *		Should be at least nr_pages long. Or NULL, if caller
1817   *		only intends to ensure the pages are faulted in.
1818   * @vmas:	array of pointers to vmas corresponding to each page.
1819   *		Or NULL if the caller does not require them.
1820   * @locked:	pointer to lock flag indicating whether lock is held and
1821   *		subsequently whether VM_FAULT_RETRY functionality can be
1822   *		utilised. Lock must initially be held.
1823   *
1824   * Returns either number of pages pinned (which may be less than the
1825   * number requested), or an error. Details about the return value:
1826   *
1827   * -- If nr_pages is 0, returns 0.
1828   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1829   * -- If nr_pages is >0, and some pages were pinned, returns the number of
1830   *    pages pinned. Again, this may be less than nr_pages.
1831   *
1832   * The caller is responsible for releasing returned @pages, via put_page().
1833   *
1834   * @vmas are valid only as long as mmap_lock is held.
1835   *
1836   * Must be called with mmap_lock held for read or write.
1837   *
1838   * get_user_pages_remote walks a process's page tables and takes a reference
1839   * to each struct page that each user address corresponds to at a given
1840   * instant. That is, it takes the page that would be accessed if a user
1841   * thread accesses the given user virtual address at that instant.
1842   *
1843   * This does not guarantee that the page exists in the user mappings when
1844   * get_user_pages_remote returns, and there may even be a completely different
1845   * page there in some cases (eg. if mmapped pagecache has been invalidated
1846   * and subsequently re faulted). However it does guarantee that the page
1847   * won't be freed completely. And mostly callers simply care that the page
1848   * contains data that was valid *at some point in time*. Typically, an IO
1849   * or similar operation cannot guarantee anything stronger anyway because
1850   * locks can't be held over the syscall boundary.
1851   *
1852   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1853   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1854   * be called after the page is finished with, and before put_page is called.
1855   *
1856   * get_user_pages_remote is typically used for fewer-copy IO operations,
1857   * to get a handle on the memory by some means other than accesses
1858   * via the user virtual addresses. The pages may be submitted for
1859   * DMA to devices or accessed via their kernel linear mapping (via the
1860   * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1861   *
1862   * See also get_user_pages_fast, for performance critical applications.
1863   *
1864   * get_user_pages_remote should be phased out in favor of
1865   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1866   * should use get_user_pages_remote because it cannot pass
1867   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1868   */
1869  long get_user_pages_remote(struct mm_struct *mm,
1870  		unsigned long start, unsigned long nr_pages,
1871  		unsigned int gup_flags, struct page **pages,
1872  		struct vm_area_struct **vmas, int *locked)
1873  {
1874  	if (!is_valid_gup_flags(gup_flags))
1875  		return -EINVAL;
1876  
1877  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1878  				       pages, vmas, locked);
1879  }
1880  EXPORT_SYMBOL(get_user_pages_remote);
1881  
1882  #else /* CONFIG_MMU */
1883  long get_user_pages_remote(struct mm_struct *mm,
1884  			   unsigned long start, unsigned long nr_pages,
1885  			   unsigned int gup_flags, struct page **pages,
1886  			   struct vm_area_struct **vmas, int *locked)
1887  {
1888  	return 0;
1889  }
1890  
1891  static long __get_user_pages_remote(struct mm_struct *mm,
1892  				    unsigned long start, unsigned long nr_pages,
1893  				    unsigned int gup_flags, struct page **pages,
1894  				    struct vm_area_struct **vmas, int *locked)
1895  {
1896  	return 0;
1897  }
1898  #endif /* !CONFIG_MMU */
1899  
1900  /**
1901   * get_user_pages() - pin user pages in memory
1902   * @start:      starting user address
1903   * @nr_pages:   number of pages from start to pin
1904   * @gup_flags:  flags modifying lookup behaviour
1905   * @pages:      array that receives pointers to the pages pinned.
1906   *              Should be at least nr_pages long. Or NULL, if caller
1907   *              only intends to ensure the pages are faulted in.
1908   * @vmas:       array of pointers to vmas corresponding to each page.
1909   *              Or NULL if the caller does not require them.
1910   *
1911   * This is the same as get_user_pages_remote(), just with a less-flexible
1912   * calling convention where we assume that the mm being operated on belongs to
1913   * the current task, and doesn't allow passing of a locked parameter.  We also
1914   * obviously don't pass FOLL_REMOTE in here.
1915   */
1916  long get_user_pages(unsigned long start, unsigned long nr_pages,
1917  		unsigned int gup_flags, struct page **pages,
1918  		struct vm_area_struct **vmas)
1919  {
1920  	if (!is_valid_gup_flags(gup_flags))
1921  		return -EINVAL;
1922  
1923  	return __gup_longterm_locked(current->mm, start, nr_pages,
1924  				     pages, vmas, gup_flags | FOLL_TOUCH);
1925  }
1926  EXPORT_SYMBOL(get_user_pages);
1927  
1928  /**
1929   * get_user_pages_locked() is suitable to replace the form:
1930   *
1931   *      mmap_read_lock(mm);
1932   *      do_something()
1933   *      get_user_pages(mm, ..., pages, NULL);
1934   *      mmap_read_unlock(mm);
1935   *
1936   *  to:
1937   *
1938   *      int locked = 1;
1939   *      mmap_read_lock(mm);
1940   *      do_something()
1941   *      get_user_pages_locked(mm, ..., pages, &locked);
1942   *      if (locked)
1943   *          mmap_read_unlock(mm);
1944   *
1945   * @start:      starting user address
1946   * @nr_pages:   number of pages from start to pin
1947   * @gup_flags:  flags modifying lookup behaviour
1948   * @pages:      array that receives pointers to the pages pinned.
1949   *              Should be at least nr_pages long. Or NULL, if caller
1950   *              only intends to ensure the pages are faulted in.
1951   * @locked:     pointer to lock flag indicating whether lock is held and
1952   *              subsequently whether VM_FAULT_RETRY functionality can be
1953   *              utilised. Lock must initially be held.
1954   *
1955   * We can leverage the VM_FAULT_RETRY functionality in the page fault
1956   * paths better by using either get_user_pages_locked() or
1957   * get_user_pages_unlocked().
1958   *
1959   */
1960  long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1961  			   unsigned int gup_flags, struct page **pages,
1962  			   int *locked)
1963  {
1964  	/*
1965  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1966  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1967  	 * vmas.  As there are no users of this flag in this call we simply
1968  	 * disallow this option for now.
1969  	 */
1970  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1971  		return -EINVAL;
1972  	/*
1973  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1974  	 * never directly by the caller, so enforce that:
1975  	 */
1976  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1977  		return -EINVAL;
1978  
1979  	return __get_user_pages_locked(current->mm, start, nr_pages,
1980  				       pages, NULL, locked,
1981  				       gup_flags | FOLL_TOUCH);
1982  }
1983  EXPORT_SYMBOL(get_user_pages_locked);
1984  
1985  /*
1986   * get_user_pages_unlocked() is suitable to replace the form:
1987   *
1988   *      mmap_read_lock(mm);
1989   *      get_user_pages(mm, ..., pages, NULL);
1990   *      mmap_read_unlock(mm);
1991   *
1992   *  with:
1993   *
1994   *      get_user_pages_unlocked(mm, ..., pages);
1995   *
1996   * It is functionally equivalent to get_user_pages_fast so
1997   * get_user_pages_fast should be used instead if specific gup_flags
1998   * (e.g. FOLL_FORCE) are not required.
1999   */
2000  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2001  			     struct page **pages, unsigned int gup_flags)
2002  {
2003  	struct mm_struct *mm = current->mm;
2004  	int locked = 1;
2005  	long ret;
2006  
2007  	/*
2008  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2009  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2010  	 * vmas.  As there are no users of this flag in this call we simply
2011  	 * disallow this option for now.
2012  	 */
2013  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2014  		return -EINVAL;
2015  
2016  	mmap_read_lock(mm);
2017  	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2018  				      &locked, gup_flags | FOLL_TOUCH);
2019  	if (locked)
2020  		mmap_read_unlock(mm);
2021  	return ret;
2022  }
2023  EXPORT_SYMBOL(get_user_pages_unlocked);
2024  
2025  /*
2026   * Fast GUP
2027   *
2028   * get_user_pages_fast attempts to pin user pages by walking the page
2029   * tables directly and avoids taking locks. Thus the walker needs to be
2030   * protected from page table pages being freed from under it, and should
2031   * block any THP splits.
2032   *
2033   * One way to achieve this is to have the walker disable interrupts, and
2034   * rely on IPIs from the TLB flushing code blocking before the page table
2035   * pages are freed. This is unsuitable for architectures that do not need
2036   * to broadcast an IPI when invalidating TLBs.
2037   *
2038   * Another way to achieve this is to batch up page table containing pages
2039   * belonging to more than one mm_user, then rcu_sched a callback to free those
2040   * pages. Disabling interrupts will allow the fast_gup walker to both block
2041   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2042   * (which is a relatively rare event). The code below adopts this strategy.
2043   *
2044   * Before activating this code, please be aware that the following assumptions
2045   * are currently made:
2046   *
2047   *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2048   *  free pages containing page tables or TLB flushing requires IPI broadcast.
2049   *
2050   *  *) ptes can be read atomically by the architecture.
2051   *
2052   *  *) access_ok is sufficient to validate userspace address ranges.
2053   *
2054   * The last two assumptions can be relaxed by the addition of helper functions.
2055   *
2056   * This code is based heavily on the PowerPC implementation by Nick Piggin.
2057   */
2058  #ifdef CONFIG_HAVE_FAST_GUP
2059  
2060  static void put_compound_head(struct page *page, int refs, unsigned int flags)
2061  {
2062  	if (flags & FOLL_PIN) {
2063  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2064  				    refs);
2065  
2066  		if (hpage_pincount_available(page))
2067  			hpage_pincount_sub(page, refs);
2068  		else
2069  			refs *= GUP_PIN_COUNTING_BIAS;
2070  	}
2071  
2072  	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2073  	/*
2074  	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2075  	 * ref needs a put_page().
2076  	 */
2077  	if (refs > 1)
2078  		page_ref_sub(page, refs - 1);
2079  	put_page(page);
2080  }
2081  
2082  #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2083  
2084  /*
2085   * WARNING: only to be used in the get_user_pages_fast() implementation.
2086   *
2087   * With get_user_pages_fast(), we walk down the pagetables without taking any
2088   * locks.  For this we would like to load the pointers atomically, but sometimes
2089   * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2090   * we do have is the guarantee that a PTE will only either go from not present
2091   * to present, or present to not present or both -- it will not switch to a
2092   * completely different present page without a TLB flush in between; something
2093   * that we are blocking by holding interrupts off.
2094   *
2095   * Setting ptes from not present to present goes:
2096   *
2097   *   ptep->pte_high = h;
2098   *   smp_wmb();
2099   *   ptep->pte_low = l;
2100   *
2101   * And present to not present goes:
2102   *
2103   *   ptep->pte_low = 0;
2104   *   smp_wmb();
2105   *   ptep->pte_high = 0;
2106   *
2107   * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2108   * We load pte_high *after* loading pte_low, which ensures we don't see an older
2109   * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2110   * picked up a changed pte high. We might have gotten rubbish values from
2111   * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2112   * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2113   * operates on present ptes we're safe.
2114   */
2115  static inline pte_t gup_get_pte(pte_t *ptep)
2116  {
2117  	pte_t pte;
2118  
2119  	do {
2120  		pte.pte_low = ptep->pte_low;
2121  		smp_rmb();
2122  		pte.pte_high = ptep->pte_high;
2123  		smp_rmb();
2124  	} while (unlikely(pte.pte_low != ptep->pte_low));
2125  
2126  	return pte;
2127  }
2128  #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2129  /*
2130   * We require that the PTE can be read atomically.
2131   */
2132  static inline pte_t gup_get_pte(pte_t *ptep)
2133  {
2134  	return ptep_get(ptep);
2135  }
2136  #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2137  
2138  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2139  					    unsigned int flags,
2140  					    struct page **pages)
2141  {
2142  	while ((*nr) - nr_start) {
2143  		struct page *page = pages[--(*nr)];
2144  
2145  		ClearPageReferenced(page);
2146  		if (flags & FOLL_PIN)
2147  			unpin_user_page(page);
2148  		else
2149  			put_page(page);
2150  	}
2151  }
2152  
2153  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2154  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2155  			 unsigned int flags, struct page **pages, int *nr)
2156  {
2157  	struct dev_pagemap *pgmap = NULL;
2158  	int nr_start = *nr, ret = 0;
2159  	pte_t *ptep, *ptem;
2160  
2161  	ptem = ptep = pte_offset_map(&pmd, addr);
2162  	do {
2163  		pte_t pte = gup_get_pte(ptep);
2164  		struct page *head, *page;
2165  
2166  		/*
2167  		 * Similar to the PMD case below, NUMA hinting must take slow
2168  		 * path using the pte_protnone check.
2169  		 */
2170  		if (pte_protnone(pte))
2171  			goto pte_unmap;
2172  
2173  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2174  			goto pte_unmap;
2175  
2176  		if (pte_devmap(pte)) {
2177  			if (unlikely(flags & FOLL_LONGTERM))
2178  				goto pte_unmap;
2179  
2180  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2181  			if (unlikely(!pgmap)) {
2182  				undo_dev_pagemap(nr, nr_start, flags, pages);
2183  				goto pte_unmap;
2184  			}
2185  		} else if (pte_special(pte))
2186  			goto pte_unmap;
2187  
2188  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2189  		page = pte_page(pte);
2190  
2191  		head = try_grab_compound_head(page, 1, flags);
2192  		if (!head)
2193  			goto pte_unmap;
2194  
2195  		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2196  			put_compound_head(head, 1, flags);
2197  			goto pte_unmap;
2198  		}
2199  
2200  		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2201  
2202  		/*
2203  		 * We need to make the page accessible if and only if we are
2204  		 * going to access its content (the FOLL_PIN case).  Please
2205  		 * see Documentation/core-api/pin_user_pages.rst for
2206  		 * details.
2207  		 */
2208  		if (flags & FOLL_PIN) {
2209  			ret = arch_make_page_accessible(page);
2210  			if (ret) {
2211  				unpin_user_page(page);
2212  				goto pte_unmap;
2213  			}
2214  		}
2215  		SetPageReferenced(page);
2216  		pages[*nr] = page;
2217  		(*nr)++;
2218  
2219  	} while (ptep++, addr += PAGE_SIZE, addr != end);
2220  
2221  	ret = 1;
2222  
2223  pte_unmap:
2224  	if (pgmap)
2225  		put_dev_pagemap(pgmap);
2226  	pte_unmap(ptem);
2227  	return ret;
2228  }
2229  #else
2230  
2231  /*
2232   * If we can't determine whether or not a pte is special, then fail immediately
2233   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2234   * to be special.
2235   *
2236   * For a futex to be placed on a THP tail page, get_futex_key requires a
2237   * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2238   * useful to have gup_huge_pmd even if we can't operate on ptes.
2239   */
2240  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2241  			 unsigned int flags, struct page **pages, int *nr)
2242  {
2243  	return 0;
2244  }
2245  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2246  
2247  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2248  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2249  			     unsigned long end, unsigned int flags,
2250  			     struct page **pages, int *nr)
2251  {
2252  	int nr_start = *nr;
2253  	struct dev_pagemap *pgmap = NULL;
2254  
2255  	do {
2256  		struct page *page = pfn_to_page(pfn);
2257  
2258  		pgmap = get_dev_pagemap(pfn, pgmap);
2259  		if (unlikely(!pgmap)) {
2260  			undo_dev_pagemap(nr, nr_start, flags, pages);
2261  			return 0;
2262  		}
2263  		SetPageReferenced(page);
2264  		pages[*nr] = page;
2265  		if (unlikely(!try_grab_page(page, flags))) {
2266  			undo_dev_pagemap(nr, nr_start, flags, pages);
2267  			return 0;
2268  		}
2269  		(*nr)++;
2270  		pfn++;
2271  	} while (addr += PAGE_SIZE, addr != end);
2272  
2273  	if (pgmap)
2274  		put_dev_pagemap(pgmap);
2275  	return 1;
2276  }
2277  
2278  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2279  				 unsigned long end, unsigned int flags,
2280  				 struct page **pages, int *nr)
2281  {
2282  	unsigned long fault_pfn;
2283  	int nr_start = *nr;
2284  
2285  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2286  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2287  		return 0;
2288  
2289  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2290  		undo_dev_pagemap(nr, nr_start, flags, pages);
2291  		return 0;
2292  	}
2293  	return 1;
2294  }
2295  
2296  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2297  				 unsigned long end, unsigned int flags,
2298  				 struct page **pages, int *nr)
2299  {
2300  	unsigned long fault_pfn;
2301  	int nr_start = *nr;
2302  
2303  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2304  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2305  		return 0;
2306  
2307  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2308  		undo_dev_pagemap(nr, nr_start, flags, pages);
2309  		return 0;
2310  	}
2311  	return 1;
2312  }
2313  #else
2314  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2315  				 unsigned long end, unsigned int flags,
2316  				 struct page **pages, int *nr)
2317  {
2318  	BUILD_BUG();
2319  	return 0;
2320  }
2321  
2322  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2323  				 unsigned long end, unsigned int flags,
2324  				 struct page **pages, int *nr)
2325  {
2326  	BUILD_BUG();
2327  	return 0;
2328  }
2329  #endif
2330  
2331  static int record_subpages(struct page *page, unsigned long addr,
2332  			   unsigned long end, struct page **pages)
2333  {
2334  	int nr;
2335  
2336  	for (nr = 0; addr != end; addr += PAGE_SIZE)
2337  		pages[nr++] = page++;
2338  
2339  	return nr;
2340  }
2341  
2342  #ifdef CONFIG_ARCH_HAS_HUGEPD
2343  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2344  				      unsigned long sz)
2345  {
2346  	unsigned long __boundary = (addr + sz) & ~(sz-1);
2347  	return (__boundary - 1 < end - 1) ? __boundary : end;
2348  }
2349  
2350  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2351  		       unsigned long end, unsigned int flags,
2352  		       struct page **pages, int *nr)
2353  {
2354  	unsigned long pte_end;
2355  	struct page *head, *page;
2356  	pte_t pte;
2357  	int refs;
2358  
2359  	pte_end = (addr + sz) & ~(sz-1);
2360  	if (pte_end < end)
2361  		end = pte_end;
2362  
2363  	pte = huge_ptep_get(ptep);
2364  
2365  	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2366  		return 0;
2367  
2368  	/* hugepages are never "special" */
2369  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2370  
2371  	head = pte_page(pte);
2372  	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2373  	refs = record_subpages(page, addr, end, pages + *nr);
2374  
2375  	head = try_grab_compound_head(head, refs, flags);
2376  	if (!head)
2377  		return 0;
2378  
2379  	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2380  		put_compound_head(head, refs, flags);
2381  		return 0;
2382  	}
2383  
2384  	*nr += refs;
2385  	SetPageReferenced(head);
2386  	return 1;
2387  }
2388  
2389  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2390  		unsigned int pdshift, unsigned long end, unsigned int flags,
2391  		struct page **pages, int *nr)
2392  {
2393  	pte_t *ptep;
2394  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2395  	unsigned long next;
2396  
2397  	ptep = hugepte_offset(hugepd, addr, pdshift);
2398  	do {
2399  		next = hugepte_addr_end(addr, end, sz);
2400  		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2401  			return 0;
2402  	} while (ptep++, addr = next, addr != end);
2403  
2404  	return 1;
2405  }
2406  #else
2407  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2408  		unsigned int pdshift, unsigned long end, unsigned int flags,
2409  		struct page **pages, int *nr)
2410  {
2411  	return 0;
2412  }
2413  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2414  
2415  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2416  			unsigned long end, unsigned int flags,
2417  			struct page **pages, int *nr)
2418  {
2419  	struct page *head, *page;
2420  	int refs;
2421  
2422  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2423  		return 0;
2424  
2425  	if (pmd_devmap(orig)) {
2426  		if (unlikely(flags & FOLL_LONGTERM))
2427  			return 0;
2428  		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2429  					     pages, nr);
2430  	}
2431  
2432  	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2433  	refs = record_subpages(page, addr, end, pages + *nr);
2434  
2435  	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2436  	if (!head)
2437  		return 0;
2438  
2439  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2440  		put_compound_head(head, refs, flags);
2441  		return 0;
2442  	}
2443  
2444  	*nr += refs;
2445  	SetPageReferenced(head);
2446  	return 1;
2447  }
2448  
2449  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2450  			unsigned long end, unsigned int flags,
2451  			struct page **pages, int *nr)
2452  {
2453  	struct page *head, *page;
2454  	int refs;
2455  
2456  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2457  		return 0;
2458  
2459  	if (pud_devmap(orig)) {
2460  		if (unlikely(flags & FOLL_LONGTERM))
2461  			return 0;
2462  		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2463  					     pages, nr);
2464  	}
2465  
2466  	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2467  	refs = record_subpages(page, addr, end, pages + *nr);
2468  
2469  	head = try_grab_compound_head(pud_page(orig), refs, flags);
2470  	if (!head)
2471  		return 0;
2472  
2473  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2474  		put_compound_head(head, refs, flags);
2475  		return 0;
2476  	}
2477  
2478  	*nr += refs;
2479  	SetPageReferenced(head);
2480  	return 1;
2481  }
2482  
2483  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2484  			unsigned long end, unsigned int flags,
2485  			struct page **pages, int *nr)
2486  {
2487  	int refs;
2488  	struct page *head, *page;
2489  
2490  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2491  		return 0;
2492  
2493  	BUILD_BUG_ON(pgd_devmap(orig));
2494  
2495  	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2496  	refs = record_subpages(page, addr, end, pages + *nr);
2497  
2498  	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2499  	if (!head)
2500  		return 0;
2501  
2502  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2503  		put_compound_head(head, refs, flags);
2504  		return 0;
2505  	}
2506  
2507  	*nr += refs;
2508  	SetPageReferenced(head);
2509  	return 1;
2510  }
2511  
2512  static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2513  		unsigned int flags, struct page **pages, int *nr)
2514  {
2515  	unsigned long next;
2516  	pmd_t *pmdp;
2517  
2518  	pmdp = pmd_offset_lockless(pudp, pud, addr);
2519  	do {
2520  		pmd_t pmd = READ_ONCE(*pmdp);
2521  
2522  		next = pmd_addr_end(addr, end);
2523  		if (!pmd_present(pmd))
2524  			return 0;
2525  
2526  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2527  			     pmd_devmap(pmd))) {
2528  			/*
2529  			 * NUMA hinting faults need to be handled in the GUP
2530  			 * slowpath for accounting purposes and so that they
2531  			 * can be serialised against THP migration.
2532  			 */
2533  			if (pmd_protnone(pmd))
2534  				return 0;
2535  
2536  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2537  				pages, nr))
2538  				return 0;
2539  
2540  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2541  			/*
2542  			 * architecture have different format for hugetlbfs
2543  			 * pmd format and THP pmd format
2544  			 */
2545  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2546  					 PMD_SHIFT, next, flags, pages, nr))
2547  				return 0;
2548  		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2549  			return 0;
2550  	} while (pmdp++, addr = next, addr != end);
2551  
2552  	return 1;
2553  }
2554  
2555  static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2556  			 unsigned int flags, struct page **pages, int *nr)
2557  {
2558  	unsigned long next;
2559  	pud_t *pudp;
2560  
2561  	pudp = pud_offset_lockless(p4dp, p4d, addr);
2562  	do {
2563  		pud_t pud = READ_ONCE(*pudp);
2564  
2565  		next = pud_addr_end(addr, end);
2566  		if (unlikely(!pud_present(pud)))
2567  			return 0;
2568  		if (unlikely(pud_huge(pud))) {
2569  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2570  					  pages, nr))
2571  				return 0;
2572  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2573  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2574  					 PUD_SHIFT, next, flags, pages, nr))
2575  				return 0;
2576  		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2577  			return 0;
2578  	} while (pudp++, addr = next, addr != end);
2579  
2580  	return 1;
2581  }
2582  
2583  static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2584  			 unsigned int flags, struct page **pages, int *nr)
2585  {
2586  	unsigned long next;
2587  	p4d_t *p4dp;
2588  
2589  	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2590  	do {
2591  		p4d_t p4d = READ_ONCE(*p4dp);
2592  
2593  		next = p4d_addr_end(addr, end);
2594  		if (p4d_none(p4d))
2595  			return 0;
2596  		BUILD_BUG_ON(p4d_huge(p4d));
2597  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2598  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2599  					 P4D_SHIFT, next, flags, pages, nr))
2600  				return 0;
2601  		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2602  			return 0;
2603  	} while (p4dp++, addr = next, addr != end);
2604  
2605  	return 1;
2606  }
2607  
2608  static void gup_pgd_range(unsigned long addr, unsigned long end,
2609  		unsigned int flags, struct page **pages, int *nr)
2610  {
2611  	unsigned long next;
2612  	pgd_t *pgdp;
2613  
2614  	pgdp = pgd_offset(current->mm, addr);
2615  	do {
2616  		pgd_t pgd = READ_ONCE(*pgdp);
2617  
2618  		next = pgd_addr_end(addr, end);
2619  		if (pgd_none(pgd))
2620  			return;
2621  		if (unlikely(pgd_huge(pgd))) {
2622  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2623  					  pages, nr))
2624  				return;
2625  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2626  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2627  					 PGDIR_SHIFT, next, flags, pages, nr))
2628  				return;
2629  		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2630  			return;
2631  	} while (pgdp++, addr = next, addr != end);
2632  }
2633  #else
2634  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2635  		unsigned int flags, struct page **pages, int *nr)
2636  {
2637  }
2638  #endif /* CONFIG_HAVE_FAST_GUP */
2639  
2640  #ifndef gup_fast_permitted
2641  /*
2642   * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2643   * we need to fall back to the slow version:
2644   */
2645  static bool gup_fast_permitted(unsigned long start, unsigned long end)
2646  {
2647  	return true;
2648  }
2649  #endif
2650  
2651  static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2652  				   unsigned int gup_flags, struct page **pages)
2653  {
2654  	int ret;
2655  
2656  	/*
2657  	 * FIXME: FOLL_LONGTERM does not work with
2658  	 * get_user_pages_unlocked() (see comments in that function)
2659  	 */
2660  	if (gup_flags & FOLL_LONGTERM) {
2661  		mmap_read_lock(current->mm);
2662  		ret = __gup_longterm_locked(current->mm,
2663  					    start, nr_pages,
2664  					    pages, NULL, gup_flags);
2665  		mmap_read_unlock(current->mm);
2666  	} else {
2667  		ret = get_user_pages_unlocked(start, nr_pages,
2668  					      pages, gup_flags);
2669  	}
2670  
2671  	return ret;
2672  }
2673  
2674  static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2675  					unsigned int gup_flags,
2676  					struct page **pages)
2677  {
2678  	unsigned long addr, len, end;
2679  	unsigned long flags;
2680  	int nr_pinned = 0, ret = 0;
2681  
2682  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2683  				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2684  				       FOLL_FAST_ONLY)))
2685  		return -EINVAL;
2686  
2687  	if (gup_flags & FOLL_PIN)
2688  		atomic_set(&current->mm->has_pinned, 1);
2689  
2690  	if (!(gup_flags & FOLL_FAST_ONLY))
2691  		might_lock_read(&current->mm->mmap_lock);
2692  
2693  	start = untagged_addr(start) & PAGE_MASK;
2694  	addr = start;
2695  	len = (unsigned long) nr_pages << PAGE_SHIFT;
2696  	end = start + len;
2697  
2698  	if (end <= start)
2699  		return 0;
2700  	if (unlikely(!access_ok((void __user *)start, len)))
2701  		return -EFAULT;
2702  
2703  	/*
2704  	 * Disable interrupts. The nested form is used, in order to allow
2705  	 * full, general purpose use of this routine.
2706  	 *
2707  	 * With interrupts disabled, we block page table pages from being
2708  	 * freed from under us. See struct mmu_table_batch comments in
2709  	 * include/asm-generic/tlb.h for more details.
2710  	 *
2711  	 * We do not adopt an rcu_read_lock(.) here as we also want to
2712  	 * block IPIs that come from THPs splitting.
2713  	 */
2714  	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2715  		unsigned long fast_flags = gup_flags;
2716  
2717  		local_irq_save(flags);
2718  		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2719  		local_irq_restore(flags);
2720  		ret = nr_pinned;
2721  	}
2722  
2723  	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2724  		/* Try to get the remaining pages with get_user_pages */
2725  		start += nr_pinned << PAGE_SHIFT;
2726  		pages += nr_pinned;
2727  
2728  		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2729  					      gup_flags, pages);
2730  
2731  		/* Have to be a bit careful with return values */
2732  		if (nr_pinned > 0) {
2733  			if (ret < 0)
2734  				ret = nr_pinned;
2735  			else
2736  				ret += nr_pinned;
2737  		}
2738  	}
2739  
2740  	return ret;
2741  }
2742  /**
2743   * get_user_pages_fast_only() - pin user pages in memory
2744   * @start:      starting user address
2745   * @nr_pages:   number of pages from start to pin
2746   * @gup_flags:  flags modifying pin behaviour
2747   * @pages:      array that receives pointers to the pages pinned.
2748   *              Should be at least nr_pages long.
2749   *
2750   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2751   * the regular GUP.
2752   * Note a difference with get_user_pages_fast: this always returns the
2753   * number of pages pinned, 0 if no pages were pinned.
2754   *
2755   * If the architecture does not support this function, simply return with no
2756   * pages pinned.
2757   *
2758   * Careful, careful! COW breaking can go either way, so a non-write
2759   * access can get ambiguous page results. If you call this function without
2760   * 'write' set, you'd better be sure that you're ok with that ambiguity.
2761   */
2762  int get_user_pages_fast_only(unsigned long start, int nr_pages,
2763  			     unsigned int gup_flags, struct page **pages)
2764  {
2765  	int nr_pinned;
2766  	/*
2767  	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2768  	 * because gup fast is always a "pin with a +1 page refcount" request.
2769  	 *
2770  	 * FOLL_FAST_ONLY is required in order to match the API description of
2771  	 * this routine: no fall back to regular ("slow") GUP.
2772  	 */
2773  	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2774  
2775  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2776  						 pages);
2777  
2778  	/*
2779  	 * As specified in the API description above, this routine is not
2780  	 * allowed to return negative values. However, the common core
2781  	 * routine internal_get_user_pages_fast() *can* return -errno.
2782  	 * Therefore, correct for that here:
2783  	 */
2784  	if (nr_pinned < 0)
2785  		nr_pinned = 0;
2786  
2787  	return nr_pinned;
2788  }
2789  EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2790  
2791  /**
2792   * get_user_pages_fast() - pin user pages in memory
2793   * @start:      starting user address
2794   * @nr_pages:   number of pages from start to pin
2795   * @gup_flags:  flags modifying pin behaviour
2796   * @pages:      array that receives pointers to the pages pinned.
2797   *              Should be at least nr_pages long.
2798   *
2799   * Attempt to pin user pages in memory without taking mm->mmap_lock.
2800   * If not successful, it will fall back to taking the lock and
2801   * calling get_user_pages().
2802   *
2803   * Returns number of pages pinned. This may be fewer than the number requested.
2804   * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2805   * -errno.
2806   */
2807  int get_user_pages_fast(unsigned long start, int nr_pages,
2808  			unsigned int gup_flags, struct page **pages)
2809  {
2810  	if (!is_valid_gup_flags(gup_flags))
2811  		return -EINVAL;
2812  
2813  	/*
2814  	 * The caller may or may not have explicitly set FOLL_GET; either way is
2815  	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2816  	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2817  	 * request.
2818  	 */
2819  	gup_flags |= FOLL_GET;
2820  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2821  }
2822  EXPORT_SYMBOL_GPL(get_user_pages_fast);
2823  
2824  /**
2825   * pin_user_pages_fast() - pin user pages in memory without taking locks
2826   *
2827   * @start:      starting user address
2828   * @nr_pages:   number of pages from start to pin
2829   * @gup_flags:  flags modifying pin behaviour
2830   * @pages:      array that receives pointers to the pages pinned.
2831   *              Should be at least nr_pages long.
2832   *
2833   * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2834   * get_user_pages_fast() for documentation on the function arguments, because
2835   * the arguments here are identical.
2836   *
2837   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2838   * see Documentation/core-api/pin_user_pages.rst for further details.
2839   */
2840  int pin_user_pages_fast(unsigned long start, int nr_pages,
2841  			unsigned int gup_flags, struct page **pages)
2842  {
2843  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2844  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2845  		return -EINVAL;
2846  
2847  	gup_flags |= FOLL_PIN;
2848  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2849  }
2850  EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2851  
2852  /*
2853   * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2854   * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2855   *
2856   * The API rules are the same, too: no negative values may be returned.
2857   */
2858  int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2859  			     unsigned int gup_flags, struct page **pages)
2860  {
2861  	int nr_pinned;
2862  
2863  	/*
2864  	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2865  	 * rules require returning 0, rather than -errno:
2866  	 */
2867  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2868  		return 0;
2869  	/*
2870  	 * FOLL_FAST_ONLY is required in order to match the API description of
2871  	 * this routine: no fall back to regular ("slow") GUP.
2872  	 */
2873  	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2874  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2875  						 pages);
2876  	/*
2877  	 * This routine is not allowed to return negative values. However,
2878  	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2879  	 * correct for that here:
2880  	 */
2881  	if (nr_pinned < 0)
2882  		nr_pinned = 0;
2883  
2884  	return nr_pinned;
2885  }
2886  EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2887  
2888  /**
2889   * pin_user_pages_remote() - pin pages of a remote process
2890   *
2891   * @mm:		mm_struct of target mm
2892   * @start:	starting user address
2893   * @nr_pages:	number of pages from start to pin
2894   * @gup_flags:	flags modifying lookup behaviour
2895   * @pages:	array that receives pointers to the pages pinned.
2896   *		Should be at least nr_pages long. Or NULL, if caller
2897   *		only intends to ensure the pages are faulted in.
2898   * @vmas:	array of pointers to vmas corresponding to each page.
2899   *		Or NULL if the caller does not require them.
2900   * @locked:	pointer to lock flag indicating whether lock is held and
2901   *		subsequently whether VM_FAULT_RETRY functionality can be
2902   *		utilised. Lock must initially be held.
2903   *
2904   * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2905   * get_user_pages_remote() for documentation on the function arguments, because
2906   * the arguments here are identical.
2907   *
2908   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2909   * see Documentation/core-api/pin_user_pages.rst for details.
2910   */
2911  long pin_user_pages_remote(struct mm_struct *mm,
2912  			   unsigned long start, unsigned long nr_pages,
2913  			   unsigned int gup_flags, struct page **pages,
2914  			   struct vm_area_struct **vmas, int *locked)
2915  {
2916  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2917  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2918  		return -EINVAL;
2919  
2920  	gup_flags |= FOLL_PIN;
2921  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2922  				       pages, vmas, locked);
2923  }
2924  EXPORT_SYMBOL(pin_user_pages_remote);
2925  
2926  /**
2927   * pin_user_pages() - pin user pages in memory for use by other devices
2928   *
2929   * @start:	starting user address
2930   * @nr_pages:	number of pages from start to pin
2931   * @gup_flags:	flags modifying lookup behaviour
2932   * @pages:	array that receives pointers to the pages pinned.
2933   *		Should be at least nr_pages long. Or NULL, if caller
2934   *		only intends to ensure the pages are faulted in.
2935   * @vmas:	array of pointers to vmas corresponding to each page.
2936   *		Or NULL if the caller does not require them.
2937   *
2938   * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2939   * FOLL_PIN is set.
2940   *
2941   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2942   * see Documentation/core-api/pin_user_pages.rst for details.
2943   */
2944  long pin_user_pages(unsigned long start, unsigned long nr_pages,
2945  		    unsigned int gup_flags, struct page **pages,
2946  		    struct vm_area_struct **vmas)
2947  {
2948  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2949  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2950  		return -EINVAL;
2951  
2952  	gup_flags |= FOLL_PIN;
2953  	return __gup_longterm_locked(current->mm, start, nr_pages,
2954  				     pages, vmas, gup_flags);
2955  }
2956  EXPORT_SYMBOL(pin_user_pages);
2957  
2958  /*
2959   * pin_user_pages_unlocked() is the FOLL_PIN variant of
2960   * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2961   * FOLL_PIN and rejects FOLL_GET.
2962   */
2963  long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2964  			     struct page **pages, unsigned int gup_flags)
2965  {
2966  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2967  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2968  		return -EINVAL;
2969  
2970  	gup_flags |= FOLL_PIN;
2971  	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2972  }
2973  EXPORT_SYMBOL(pin_user_pages_unlocked);
2974  
2975  /*
2976   * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2977   * Behavior is the same, except that this one sets FOLL_PIN and rejects
2978   * FOLL_GET.
2979   */
2980  long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2981  			   unsigned int gup_flags, struct page **pages,
2982  			   int *locked)
2983  {
2984  	/*
2985  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2986  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2987  	 * vmas.  As there are no users of this flag in this call we simply
2988  	 * disallow this option for now.
2989  	 */
2990  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2991  		return -EINVAL;
2992  
2993  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2994  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2995  		return -EINVAL;
2996  
2997  	gup_flags |= FOLL_PIN;
2998  	return __get_user_pages_locked(current->mm, start, nr_pages,
2999  				       pages, NULL, locked,
3000  				       gup_flags | FOLL_TOUCH);
3001  }
3002  EXPORT_SYMBOL(pin_user_pages_locked);
3003