xref: /openbmc/linux/mm/gup.c (revision 85716a80)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		/*
162 		 * Adjust the pincount before re-checking the PTE for changes.
163 		 * This is essentially a smp_mb() and is paired with a memory
164 		 * barrier in page_try_share_anon_rmap().
165 		 */
166 		smp_mb__after_atomic();
167 
168 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 
170 		return folio;
171 	}
172 
173 	WARN_ON_ONCE(1);
174 	return NULL;
175 }
176 
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178 {
179 	if (flags & FOLL_PIN) {
180 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 		if (folio_test_large(folio))
182 			atomic_sub(refs, folio_pincount_ptr(folio));
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	if (!put_devmap_managed_page_refs(&folio->page, refs))
188 		folio_put_refs(folio, refs);
189 }
190 
191 /**
192  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193  * @page:    pointer to page to be grabbed
194  * @flags:   gup flags: these are the FOLL_* flag values.
195  *
196  * This might not do anything at all, depending on the flags argument.
197  *
198  * "grab" names in this file mean, "look at flags to decide whether to use
199  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_folio() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	struct folio *folio = page_folio(page);
212 
213 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 		return false;
216 
217 	if (flags & FOLL_GET)
218 		folio_ref_inc(folio);
219 	else if (flags & FOLL_PIN) {
220 		/*
221 		 * Similar to try_grab_folio(): be sure to *also*
222 		 * increment the normal page refcount field at least once,
223 		 * so that the page really is pinned.
224 		 */
225 		if (folio_test_large(folio)) {
226 			folio_ref_add(folio, 1);
227 			atomic_add(1, folio_pincount_ptr(folio));
228 		} else {
229 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 		}
231 
232 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 	}
234 
235 	return true;
236 }
237 
238 /**
239  * unpin_user_page() - release a dma-pinned page
240  * @page:            pointer to page to be released
241  *
242  * Pages that were pinned via pin_user_pages*() must be released via either
243  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244  * that such pages can be separately tracked and uniquely handled. In
245  * particular, interactions with RDMA and filesystems need special handling.
246  */
247 void unpin_user_page(struct page *page)
248 {
249 	sanity_check_pinned_pages(&page, 1);
250 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
251 }
252 EXPORT_SYMBOL(unpin_user_page);
253 
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 		unsigned long npages, unsigned long i, unsigned int *ntails)
256 {
257 	struct page *next = nth_page(start, i);
258 	struct folio *folio = page_folio(next);
259 	unsigned int nr = 1;
260 
261 	if (folio_test_large(folio))
262 		nr = min_t(unsigned int, npages - i,
263 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
264 
265 	*ntails = nr;
266 	return folio;
267 }
268 
269 static inline struct folio *gup_folio_next(struct page **list,
270 		unsigned long npages, unsigned long i, unsigned int *ntails)
271 {
272 	struct folio *folio = page_folio(list[i]);
273 	unsigned int nr;
274 
275 	for (nr = i + 1; nr < npages; nr++) {
276 		if (page_folio(list[nr]) != folio)
277 			break;
278 	}
279 
280 	*ntails = nr - i;
281 	return folio;
282 }
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long i;
310 	struct folio *folio;
311 	unsigned int nr;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	sanity_check_pinned_pages(pages, npages);
319 	for (i = 0; i < npages; i += nr) {
320 		folio = gup_folio_next(pages, npages, i, &nr);
321 		/*
322 		 * Checking PageDirty at this point may race with
323 		 * clear_page_dirty_for_io(), but that's OK. Two key
324 		 * cases:
325 		 *
326 		 * 1) This code sees the page as already dirty, so it
327 		 * skips the call to set_page_dirty(). That could happen
328 		 * because clear_page_dirty_for_io() called
329 		 * page_mkclean(), followed by set_page_dirty().
330 		 * However, now the page is going to get written back,
331 		 * which meets the original intention of setting it
332 		 * dirty, so all is well: clear_page_dirty_for_io() goes
333 		 * on to call TestClearPageDirty(), and write the page
334 		 * back.
335 		 *
336 		 * 2) This code sees the page as clean, so it calls
337 		 * set_page_dirty(). The page stays dirty, despite being
338 		 * written back, so it gets written back again in the
339 		 * next writeback cycle. This is harmless.
340 		 */
341 		if (!folio_test_dirty(folio)) {
342 			folio_lock(folio);
343 			folio_mark_dirty(folio);
344 			folio_unlock(folio);
345 		}
346 		gup_put_folio(folio, nr, FOLL_PIN);
347 	}
348 }
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350 
351 /**
352  * unpin_user_page_range_dirty_lock() - release and optionally dirty
353  * gup-pinned page range
354  *
355  * @page:  the starting page of a range maybe marked dirty, and definitely released.
356  * @npages: number of consecutive pages to release.
357  * @make_dirty: whether to mark the pages dirty
358  *
359  * "gup-pinned page range" refers to a range of pages that has had one of the
360  * pin_user_pages() variants called on that page.
361  *
362  * For the page ranges defined by [page .. page+npages], make that range (or
363  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364  * page range was previously listed as clean.
365  *
366  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367  * required, then the caller should a) verify that this is really correct,
368  * because _lock() is usually required, and b) hand code it:
369  * set_page_dirty_lock(), unpin_user_page().
370  *
371  */
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 				      bool make_dirty)
374 {
375 	unsigned long i;
376 	struct folio *folio;
377 	unsigned int nr;
378 
379 	for (i = 0; i < npages; i += nr) {
380 		folio = gup_folio_range_next(page, npages, i, &nr);
381 		if (make_dirty && !folio_test_dirty(folio)) {
382 			folio_lock(folio);
383 			folio_mark_dirty(folio);
384 			folio_unlock(folio);
385 		}
386 		gup_put_folio(folio, nr, FOLL_PIN);
387 	}
388 }
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390 
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392 {
393 	unsigned long i;
394 	struct folio *folio;
395 	unsigned int nr;
396 
397 	/*
398 	 * Don't perform any sanity checks because we might have raced with
399 	 * fork() and some anonymous pages might now actually be shared --
400 	 * which is why we're unpinning after all.
401 	 */
402 	for (i = 0; i < npages; i += nr) {
403 		folio = gup_folio_next(pages, npages, i, &nr);
404 		gup_put_folio(folio, nr, FOLL_PIN);
405 	}
406 }
407 
408 /**
409  * unpin_user_pages() - release an array of gup-pinned pages.
410  * @pages:  array of pages to be marked dirty and released.
411  * @npages: number of pages in the @pages array.
412  *
413  * For each page in the @pages array, release the page using unpin_user_page().
414  *
415  * Please see the unpin_user_page() documentation for details.
416  */
417 void unpin_user_pages(struct page **pages, unsigned long npages)
418 {
419 	unsigned long i;
420 	struct folio *folio;
421 	unsigned int nr;
422 
423 	/*
424 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 	 * leaving them pinned), but probably not. More likely, gup/pup returned
426 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 	 */
428 	if (WARN_ON(IS_ERR_VALUE(npages)))
429 		return;
430 
431 	sanity_check_pinned_pages(pages, npages);
432 	for (i = 0; i < npages; i += nr) {
433 		folio = gup_folio_next(pages, npages, i, &nr);
434 		gup_put_folio(folio, nr, FOLL_PIN);
435 	}
436 }
437 EXPORT_SYMBOL(unpin_user_pages);
438 
439 /*
440  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
442  * cache bouncing on large SMP machines for concurrent pinned gups.
443  */
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445 {
446 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 		set_bit(MMF_HAS_PINNED, mm_flags);
448 }
449 
450 #ifdef CONFIG_MMU
451 static struct page *no_page_table(struct vm_area_struct *vma,
452 		unsigned int flags)
453 {
454 	/*
455 	 * When core dumping an enormous anonymous area that nobody
456 	 * has touched so far, we don't want to allocate unnecessary pages or
457 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
458 	 * then get_dump_page() will return NULL to leave a hole in the dump.
459 	 * But we can only make this optimization where a hole would surely
460 	 * be zero-filled if handle_mm_fault() actually did handle it.
461 	 */
462 	if ((flags & FOLL_DUMP) &&
463 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 		return ERR_PTR(-EFAULT);
465 	return NULL;
466 }
467 
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 		pte_t *pte, unsigned int flags)
470 {
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 					struct vm_area_struct *vma,
491 					unsigned int flags)
492 {
493 	/* If the pte is writable, we can write to the page. */
494 	if (pte_write(pte))
495 		return true;
496 
497 	/* Maybe FOLL_FORCE is set to override it? */
498 	if (!(flags & FOLL_FORCE))
499 		return false;
500 
501 	/* But FOLL_FORCE has no effect on shared mappings */
502 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 		return false;
504 
505 	/* ... or read-only private ones */
506 	if (!(vma->vm_flags & VM_MAYWRITE))
507 		return false;
508 
509 	/* ... or already writable ones that just need to take a write fault */
510 	if (vma->vm_flags & VM_WRITE)
511 		return false;
512 
513 	/*
514 	 * See can_change_pte_writable(): we broke COW and could map the page
515 	 * writable if we have an exclusive anonymous page ...
516 	 */
517 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 		return false;
519 
520 	/* ... and a write-fault isn't required for other reasons. */
521 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 		return false;
523 	return !userfaultfd_pte_wp(vma, pte);
524 }
525 
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 		unsigned long address, pmd_t *pmd, unsigned int flags,
528 		struct dev_pagemap **pgmap)
529 {
530 	struct mm_struct *mm = vma->vm_mm;
531 	struct page *page;
532 	spinlock_t *ptl;
533 	pte_t *ptep, pte;
534 	int ret;
535 
536 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 			 (FOLL_PIN | FOLL_GET)))
539 		return ERR_PTR(-EINVAL);
540 	if (unlikely(pmd_bad(*pmd)))
541 		return no_page_table(vma, flags);
542 
543 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
544 	pte = *ptep;
545 	if (!pte_present(pte))
546 		goto no_page;
547 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
548 		goto no_page;
549 
550 	page = vm_normal_page(vma, address, pte);
551 
552 	/*
553 	 * We only care about anon pages in can_follow_write_pte() and don't
554 	 * have to worry about pte_devmap() because they are never anon.
555 	 */
556 	if ((flags & FOLL_WRITE) &&
557 	    !can_follow_write_pte(pte, page, vma, flags)) {
558 		page = NULL;
559 		goto out;
560 	}
561 
562 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
563 		/*
564 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
565 		 * case since they are only valid while holding the pgmap
566 		 * reference.
567 		 */
568 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
569 		if (*pgmap)
570 			page = pte_page(pte);
571 		else
572 			goto no_page;
573 	} else if (unlikely(!page)) {
574 		if (flags & FOLL_DUMP) {
575 			/* Avoid special (like zero) pages in core dumps */
576 			page = ERR_PTR(-EFAULT);
577 			goto out;
578 		}
579 
580 		if (is_zero_pfn(pte_pfn(pte))) {
581 			page = pte_page(pte);
582 		} else {
583 			ret = follow_pfn_pte(vma, address, ptep, flags);
584 			page = ERR_PTR(ret);
585 			goto out;
586 		}
587 	}
588 
589 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
590 		page = ERR_PTR(-EMLINK);
591 		goto out;
592 	}
593 
594 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
595 		       !PageAnonExclusive(page), page);
596 
597 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
598 	if (unlikely(!try_grab_page(page, flags))) {
599 		page = ERR_PTR(-ENOMEM);
600 		goto out;
601 	}
602 	/*
603 	 * We need to make the page accessible if and only if we are going
604 	 * to access its content (the FOLL_PIN case).  Please see
605 	 * Documentation/core-api/pin_user_pages.rst for details.
606 	 */
607 	if (flags & FOLL_PIN) {
608 		ret = arch_make_page_accessible(page);
609 		if (ret) {
610 			unpin_user_page(page);
611 			page = ERR_PTR(ret);
612 			goto out;
613 		}
614 	}
615 	if (flags & FOLL_TOUCH) {
616 		if ((flags & FOLL_WRITE) &&
617 		    !pte_dirty(pte) && !PageDirty(page))
618 			set_page_dirty(page);
619 		/*
620 		 * pte_mkyoung() would be more correct here, but atomic care
621 		 * is needed to avoid losing the dirty bit: it is easier to use
622 		 * mark_page_accessed().
623 		 */
624 		mark_page_accessed(page);
625 	}
626 out:
627 	pte_unmap_unlock(ptep, ptl);
628 	return page;
629 no_page:
630 	pte_unmap_unlock(ptep, ptl);
631 	if (!pte_none(pte))
632 		return NULL;
633 	return no_page_table(vma, flags);
634 }
635 
636 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 				    unsigned long address, pud_t *pudp,
638 				    unsigned int flags,
639 				    struct follow_page_context *ctx)
640 {
641 	pmd_t *pmd, pmdval;
642 	spinlock_t *ptl;
643 	struct page *page;
644 	struct mm_struct *mm = vma->vm_mm;
645 
646 	pmd = pmd_offset(pudp, address);
647 	/*
648 	 * The READ_ONCE() will stabilize the pmdval in a register or
649 	 * on the stack so that it will stop changing under the code.
650 	 */
651 	pmdval = READ_ONCE(*pmd);
652 	if (pmd_none(pmdval))
653 		return no_page_table(vma, flags);
654 	if (!pmd_present(pmdval))
655 		return no_page_table(vma, flags);
656 	if (pmd_devmap(pmdval)) {
657 		ptl = pmd_lock(mm, pmd);
658 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
659 		spin_unlock(ptl);
660 		if (page)
661 			return page;
662 	}
663 	if (likely(!pmd_trans_huge(pmdval)))
664 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
665 
666 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
667 		return no_page_table(vma, flags);
668 
669 	ptl = pmd_lock(mm, pmd);
670 	if (unlikely(!pmd_present(*pmd))) {
671 		spin_unlock(ptl);
672 		return no_page_table(vma, flags);
673 	}
674 	if (unlikely(!pmd_trans_huge(*pmd))) {
675 		spin_unlock(ptl);
676 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
677 	}
678 	if (flags & FOLL_SPLIT_PMD) {
679 		int ret;
680 		page = pmd_page(*pmd);
681 		if (is_huge_zero_page(page)) {
682 			spin_unlock(ptl);
683 			ret = 0;
684 			split_huge_pmd(vma, pmd, address);
685 			if (pmd_trans_unstable(pmd))
686 				ret = -EBUSY;
687 		} else {
688 			spin_unlock(ptl);
689 			split_huge_pmd(vma, pmd, address);
690 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
691 		}
692 
693 		return ret ? ERR_PTR(ret) :
694 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
695 	}
696 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
697 	spin_unlock(ptl);
698 	ctx->page_mask = HPAGE_PMD_NR - 1;
699 	return page;
700 }
701 
702 static struct page *follow_pud_mask(struct vm_area_struct *vma,
703 				    unsigned long address, p4d_t *p4dp,
704 				    unsigned int flags,
705 				    struct follow_page_context *ctx)
706 {
707 	pud_t *pud;
708 	spinlock_t *ptl;
709 	struct page *page;
710 	struct mm_struct *mm = vma->vm_mm;
711 
712 	pud = pud_offset(p4dp, address);
713 	if (pud_none(*pud))
714 		return no_page_table(vma, flags);
715 	if (pud_devmap(*pud)) {
716 		ptl = pud_lock(mm, pud);
717 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
718 		spin_unlock(ptl);
719 		if (page)
720 			return page;
721 	}
722 	if (unlikely(pud_bad(*pud)))
723 		return no_page_table(vma, flags);
724 
725 	return follow_pmd_mask(vma, address, pud, flags, ctx);
726 }
727 
728 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
729 				    unsigned long address, pgd_t *pgdp,
730 				    unsigned int flags,
731 				    struct follow_page_context *ctx)
732 {
733 	p4d_t *p4d;
734 
735 	p4d = p4d_offset(pgdp, address);
736 	if (p4d_none(*p4d))
737 		return no_page_table(vma, flags);
738 	BUILD_BUG_ON(p4d_huge(*p4d));
739 	if (unlikely(p4d_bad(*p4d)))
740 		return no_page_table(vma, flags);
741 
742 	return follow_pud_mask(vma, address, p4d, flags, ctx);
743 }
744 
745 /**
746  * follow_page_mask - look up a page descriptor from a user-virtual address
747  * @vma: vm_area_struct mapping @address
748  * @address: virtual address to look up
749  * @flags: flags modifying lookup behaviour
750  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
751  *       pointer to output page_mask
752  *
753  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
754  *
755  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
756  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
757  *
758  * When getting an anonymous page and the caller has to trigger unsharing
759  * of a shared anonymous page first, -EMLINK is returned. The caller should
760  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
761  * relevant with FOLL_PIN and !FOLL_WRITE.
762  *
763  * On output, the @ctx->page_mask is set according to the size of the page.
764  *
765  * Return: the mapped (struct page *), %NULL if no mapping exists, or
766  * an error pointer if there is a mapping to something not represented
767  * by a page descriptor (see also vm_normal_page()).
768  */
769 static struct page *follow_page_mask(struct vm_area_struct *vma,
770 			      unsigned long address, unsigned int flags,
771 			      struct follow_page_context *ctx)
772 {
773 	pgd_t *pgd;
774 	struct page *page;
775 	struct mm_struct *mm = vma->vm_mm;
776 
777 	ctx->page_mask = 0;
778 
779 	/*
780 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
781 	 * special hugetlb page table walking code.  This eliminates the
782 	 * need to check for hugetlb entries in the general walking code.
783 	 *
784 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
785 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
786 	 */
787 	if (is_vm_hugetlb_page(vma)) {
788 		page = hugetlb_follow_page_mask(vma, address, flags);
789 		if (!page)
790 			page = no_page_table(vma, flags);
791 		return page;
792 	}
793 
794 	pgd = pgd_offset(mm, address);
795 
796 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
797 		return no_page_table(vma, flags);
798 
799 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
800 }
801 
802 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
803 			 unsigned int foll_flags)
804 {
805 	struct follow_page_context ctx = { NULL };
806 	struct page *page;
807 
808 	if (vma_is_secretmem(vma))
809 		return NULL;
810 
811 	if (foll_flags & FOLL_PIN)
812 		return NULL;
813 
814 	page = follow_page_mask(vma, address, foll_flags, &ctx);
815 	if (ctx.pgmap)
816 		put_dev_pagemap(ctx.pgmap);
817 	return page;
818 }
819 
820 static int get_gate_page(struct mm_struct *mm, unsigned long address,
821 		unsigned int gup_flags, struct vm_area_struct **vma,
822 		struct page **page)
823 {
824 	pgd_t *pgd;
825 	p4d_t *p4d;
826 	pud_t *pud;
827 	pmd_t *pmd;
828 	pte_t *pte;
829 	int ret = -EFAULT;
830 
831 	/* user gate pages are read-only */
832 	if (gup_flags & FOLL_WRITE)
833 		return -EFAULT;
834 	if (address > TASK_SIZE)
835 		pgd = pgd_offset_k(address);
836 	else
837 		pgd = pgd_offset_gate(mm, address);
838 	if (pgd_none(*pgd))
839 		return -EFAULT;
840 	p4d = p4d_offset(pgd, address);
841 	if (p4d_none(*p4d))
842 		return -EFAULT;
843 	pud = pud_offset(p4d, address);
844 	if (pud_none(*pud))
845 		return -EFAULT;
846 	pmd = pmd_offset(pud, address);
847 	if (!pmd_present(*pmd))
848 		return -EFAULT;
849 	VM_BUG_ON(pmd_trans_huge(*pmd));
850 	pte = pte_offset_map(pmd, address);
851 	if (pte_none(*pte))
852 		goto unmap;
853 	*vma = get_gate_vma(mm);
854 	if (!page)
855 		goto out;
856 	*page = vm_normal_page(*vma, address, *pte);
857 	if (!*page) {
858 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
859 			goto unmap;
860 		*page = pte_page(*pte);
861 	}
862 	if (unlikely(!try_grab_page(*page, gup_flags))) {
863 		ret = -ENOMEM;
864 		goto unmap;
865 	}
866 out:
867 	ret = 0;
868 unmap:
869 	pte_unmap(pte);
870 	return ret;
871 }
872 
873 /*
874  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
875  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
876  * is, *@locked will be set to 0 and -EBUSY returned.
877  */
878 static int faultin_page(struct vm_area_struct *vma,
879 		unsigned long address, unsigned int *flags, bool unshare,
880 		int *locked)
881 {
882 	unsigned int fault_flags = 0;
883 	vm_fault_t ret;
884 
885 	if (*flags & FOLL_NOFAULT)
886 		return -EFAULT;
887 	if (*flags & FOLL_WRITE)
888 		fault_flags |= FAULT_FLAG_WRITE;
889 	if (*flags & FOLL_REMOTE)
890 		fault_flags |= FAULT_FLAG_REMOTE;
891 	if (locked)
892 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
893 	if (*flags & FOLL_NOWAIT)
894 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
895 	if (*flags & FOLL_TRIED) {
896 		/*
897 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
898 		 * can co-exist
899 		 */
900 		fault_flags |= FAULT_FLAG_TRIED;
901 	}
902 	if (unshare) {
903 		fault_flags |= FAULT_FLAG_UNSHARE;
904 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
905 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
906 	}
907 
908 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
909 
910 	if (ret & VM_FAULT_COMPLETED) {
911 		/*
912 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
913 		 * mmap lock in the page fault handler. Sanity check this.
914 		 */
915 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
916 		if (locked)
917 			*locked = 0;
918 		/*
919 		 * We should do the same as VM_FAULT_RETRY, but let's not
920 		 * return -EBUSY since that's not reflecting the reality of
921 		 * what has happened - we've just fully completed a page
922 		 * fault, with the mmap lock released.  Use -EAGAIN to show
923 		 * that we want to take the mmap lock _again_.
924 		 */
925 		return -EAGAIN;
926 	}
927 
928 	if (ret & VM_FAULT_ERROR) {
929 		int err = vm_fault_to_errno(ret, *flags);
930 
931 		if (err)
932 			return err;
933 		BUG();
934 	}
935 
936 	if (ret & VM_FAULT_RETRY) {
937 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
938 			*locked = 0;
939 		return -EBUSY;
940 	}
941 
942 	return 0;
943 }
944 
945 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
946 {
947 	vm_flags_t vm_flags = vma->vm_flags;
948 	int write = (gup_flags & FOLL_WRITE);
949 	int foreign = (gup_flags & FOLL_REMOTE);
950 
951 	if (vm_flags & (VM_IO | VM_PFNMAP))
952 		return -EFAULT;
953 
954 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
955 		return -EFAULT;
956 
957 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
958 		return -EOPNOTSUPP;
959 
960 	if (vma_is_secretmem(vma))
961 		return -EFAULT;
962 
963 	if (write) {
964 		if (!(vm_flags & VM_WRITE)) {
965 			if (!(gup_flags & FOLL_FORCE))
966 				return -EFAULT;
967 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
968 			if (is_vm_hugetlb_page(vma))
969 				return -EFAULT;
970 			/*
971 			 * We used to let the write,force case do COW in a
972 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
973 			 * set a breakpoint in a read-only mapping of an
974 			 * executable, without corrupting the file (yet only
975 			 * when that file had been opened for writing!).
976 			 * Anon pages in shared mappings are surprising: now
977 			 * just reject it.
978 			 */
979 			if (!is_cow_mapping(vm_flags))
980 				return -EFAULT;
981 		}
982 	} else if (!(vm_flags & VM_READ)) {
983 		if (!(gup_flags & FOLL_FORCE))
984 			return -EFAULT;
985 		/*
986 		 * Is there actually any vma we can reach here which does not
987 		 * have VM_MAYREAD set?
988 		 */
989 		if (!(vm_flags & VM_MAYREAD))
990 			return -EFAULT;
991 	}
992 	/*
993 	 * gups are always data accesses, not instruction
994 	 * fetches, so execute=false here
995 	 */
996 	if (!arch_vma_access_permitted(vma, write, false, foreign))
997 		return -EFAULT;
998 	return 0;
999 }
1000 
1001 /**
1002  * __get_user_pages() - pin user pages in memory
1003  * @mm:		mm_struct of target mm
1004  * @start:	starting user address
1005  * @nr_pages:	number of pages from start to pin
1006  * @gup_flags:	flags modifying pin behaviour
1007  * @pages:	array that receives pointers to the pages pinned.
1008  *		Should be at least nr_pages long. Or NULL, if caller
1009  *		only intends to ensure the pages are faulted in.
1010  * @vmas:	array of pointers to vmas corresponding to each page.
1011  *		Or NULL if the caller does not require them.
1012  * @locked:     whether we're still with the mmap_lock held
1013  *
1014  * Returns either number of pages pinned (which may be less than the
1015  * number requested), or an error. Details about the return value:
1016  *
1017  * -- If nr_pages is 0, returns 0.
1018  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1019  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1020  *    pages pinned. Again, this may be less than nr_pages.
1021  * -- 0 return value is possible when the fault would need to be retried.
1022  *
1023  * The caller is responsible for releasing returned @pages, via put_page().
1024  *
1025  * @vmas are valid only as long as mmap_lock is held.
1026  *
1027  * Must be called with mmap_lock held.  It may be released.  See below.
1028  *
1029  * __get_user_pages walks a process's page tables and takes a reference to
1030  * each struct page that each user address corresponds to at a given
1031  * instant. That is, it takes the page that would be accessed if a user
1032  * thread accesses the given user virtual address at that instant.
1033  *
1034  * This does not guarantee that the page exists in the user mappings when
1035  * __get_user_pages returns, and there may even be a completely different
1036  * page there in some cases (eg. if mmapped pagecache has been invalidated
1037  * and subsequently re faulted). However it does guarantee that the page
1038  * won't be freed completely. And mostly callers simply care that the page
1039  * contains data that was valid *at some point in time*. Typically, an IO
1040  * or similar operation cannot guarantee anything stronger anyway because
1041  * locks can't be held over the syscall boundary.
1042  *
1043  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1044  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1045  * appropriate) must be called after the page is finished with, and
1046  * before put_page is called.
1047  *
1048  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1049  * released by an up_read().  That can happen if @gup_flags does not
1050  * have FOLL_NOWAIT.
1051  *
1052  * A caller using such a combination of @locked and @gup_flags
1053  * must therefore hold the mmap_lock for reading only, and recognize
1054  * when it's been released.  Otherwise, it must be held for either
1055  * reading or writing and will not be released.
1056  *
1057  * In most cases, get_user_pages or get_user_pages_fast should be used
1058  * instead of __get_user_pages. __get_user_pages should be used only if
1059  * you need some special @gup_flags.
1060  */
1061 static long __get_user_pages(struct mm_struct *mm,
1062 		unsigned long start, unsigned long nr_pages,
1063 		unsigned int gup_flags, struct page **pages,
1064 		struct vm_area_struct **vmas, int *locked)
1065 {
1066 	long ret = 0, i = 0;
1067 	struct vm_area_struct *vma = NULL;
1068 	struct follow_page_context ctx = { NULL };
1069 
1070 	if (!nr_pages)
1071 		return 0;
1072 
1073 	start = untagged_addr(start);
1074 
1075 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1076 
1077 	do {
1078 		struct page *page;
1079 		unsigned int foll_flags = gup_flags;
1080 		unsigned int page_increm;
1081 
1082 		/* first iteration or cross vma bound */
1083 		if (!vma || start >= vma->vm_end) {
1084 			vma = find_extend_vma(mm, start);
1085 			if (!vma && in_gate_area(mm, start)) {
1086 				ret = get_gate_page(mm, start & PAGE_MASK,
1087 						gup_flags, &vma,
1088 						pages ? &pages[i] : NULL);
1089 				if (ret)
1090 					goto out;
1091 				ctx.page_mask = 0;
1092 				goto next_page;
1093 			}
1094 
1095 			if (!vma) {
1096 				ret = -EFAULT;
1097 				goto out;
1098 			}
1099 			ret = check_vma_flags(vma, gup_flags);
1100 			if (ret)
1101 				goto out;
1102 
1103 			if (is_vm_hugetlb_page(vma)) {
1104 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1105 						&start, &nr_pages, i,
1106 						gup_flags, locked);
1107 				if (locked && *locked == 0) {
1108 					/*
1109 					 * We've got a VM_FAULT_RETRY
1110 					 * and we've lost mmap_lock.
1111 					 * We must stop here.
1112 					 */
1113 					BUG_ON(gup_flags & FOLL_NOWAIT);
1114 					goto out;
1115 				}
1116 				continue;
1117 			}
1118 		}
1119 retry:
1120 		/*
1121 		 * If we have a pending SIGKILL, don't keep faulting pages and
1122 		 * potentially allocating memory.
1123 		 */
1124 		if (fatal_signal_pending(current)) {
1125 			ret = -EINTR;
1126 			goto out;
1127 		}
1128 		cond_resched();
1129 
1130 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1131 		if (!page || PTR_ERR(page) == -EMLINK) {
1132 			ret = faultin_page(vma, start, &foll_flags,
1133 					   PTR_ERR(page) == -EMLINK, locked);
1134 			switch (ret) {
1135 			case 0:
1136 				goto retry;
1137 			case -EBUSY:
1138 			case -EAGAIN:
1139 				ret = 0;
1140 				fallthrough;
1141 			case -EFAULT:
1142 			case -ENOMEM:
1143 			case -EHWPOISON:
1144 				goto out;
1145 			}
1146 			BUG();
1147 		} else if (PTR_ERR(page) == -EEXIST) {
1148 			/*
1149 			 * Proper page table entry exists, but no corresponding
1150 			 * struct page. If the caller expects **pages to be
1151 			 * filled in, bail out now, because that can't be done
1152 			 * for this page.
1153 			 */
1154 			if (pages) {
1155 				ret = PTR_ERR(page);
1156 				goto out;
1157 			}
1158 
1159 			goto next_page;
1160 		} else if (IS_ERR(page)) {
1161 			ret = PTR_ERR(page);
1162 			goto out;
1163 		}
1164 		if (pages) {
1165 			pages[i] = page;
1166 			flush_anon_page(vma, page, start);
1167 			flush_dcache_page(page);
1168 			ctx.page_mask = 0;
1169 		}
1170 next_page:
1171 		if (vmas) {
1172 			vmas[i] = vma;
1173 			ctx.page_mask = 0;
1174 		}
1175 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1176 		if (page_increm > nr_pages)
1177 			page_increm = nr_pages;
1178 		i += page_increm;
1179 		start += page_increm * PAGE_SIZE;
1180 		nr_pages -= page_increm;
1181 	} while (nr_pages);
1182 out:
1183 	if (ctx.pgmap)
1184 		put_dev_pagemap(ctx.pgmap);
1185 	return i ? i : ret;
1186 }
1187 
1188 static bool vma_permits_fault(struct vm_area_struct *vma,
1189 			      unsigned int fault_flags)
1190 {
1191 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1192 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1193 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1194 
1195 	if (!(vm_flags & vma->vm_flags))
1196 		return false;
1197 
1198 	/*
1199 	 * The architecture might have a hardware protection
1200 	 * mechanism other than read/write that can deny access.
1201 	 *
1202 	 * gup always represents data access, not instruction
1203 	 * fetches, so execute=false here:
1204 	 */
1205 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1206 		return false;
1207 
1208 	return true;
1209 }
1210 
1211 /**
1212  * fixup_user_fault() - manually resolve a user page fault
1213  * @mm:		mm_struct of target mm
1214  * @address:	user address
1215  * @fault_flags:flags to pass down to handle_mm_fault()
1216  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1217  *		does not allow retry. If NULL, the caller must guarantee
1218  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1219  *
1220  * This is meant to be called in the specific scenario where for locking reasons
1221  * we try to access user memory in atomic context (within a pagefault_disable()
1222  * section), this returns -EFAULT, and we want to resolve the user fault before
1223  * trying again.
1224  *
1225  * Typically this is meant to be used by the futex code.
1226  *
1227  * The main difference with get_user_pages() is that this function will
1228  * unconditionally call handle_mm_fault() which will in turn perform all the
1229  * necessary SW fixup of the dirty and young bits in the PTE, while
1230  * get_user_pages() only guarantees to update these in the struct page.
1231  *
1232  * This is important for some architectures where those bits also gate the
1233  * access permission to the page because they are maintained in software.  On
1234  * such architectures, gup() will not be enough to make a subsequent access
1235  * succeed.
1236  *
1237  * This function will not return with an unlocked mmap_lock. So it has not the
1238  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1239  */
1240 int fixup_user_fault(struct mm_struct *mm,
1241 		     unsigned long address, unsigned int fault_flags,
1242 		     bool *unlocked)
1243 {
1244 	struct vm_area_struct *vma;
1245 	vm_fault_t ret;
1246 
1247 	address = untagged_addr(address);
1248 
1249 	if (unlocked)
1250 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1251 
1252 retry:
1253 	vma = find_extend_vma(mm, address);
1254 	if (!vma || address < vma->vm_start)
1255 		return -EFAULT;
1256 
1257 	if (!vma_permits_fault(vma, fault_flags))
1258 		return -EFAULT;
1259 
1260 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1261 	    fatal_signal_pending(current))
1262 		return -EINTR;
1263 
1264 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1265 
1266 	if (ret & VM_FAULT_COMPLETED) {
1267 		/*
1268 		 * NOTE: it's a pity that we need to retake the lock here
1269 		 * to pair with the unlock() in the callers. Ideally we
1270 		 * could tell the callers so they do not need to unlock.
1271 		 */
1272 		mmap_read_lock(mm);
1273 		*unlocked = true;
1274 		return 0;
1275 	}
1276 
1277 	if (ret & VM_FAULT_ERROR) {
1278 		int err = vm_fault_to_errno(ret, 0);
1279 
1280 		if (err)
1281 			return err;
1282 		BUG();
1283 	}
1284 
1285 	if (ret & VM_FAULT_RETRY) {
1286 		mmap_read_lock(mm);
1287 		*unlocked = true;
1288 		fault_flags |= FAULT_FLAG_TRIED;
1289 		goto retry;
1290 	}
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(fixup_user_fault);
1295 
1296 /*
1297  * Please note that this function, unlike __get_user_pages will not
1298  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1299  */
1300 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1301 						unsigned long start,
1302 						unsigned long nr_pages,
1303 						struct page **pages,
1304 						struct vm_area_struct **vmas,
1305 						int *locked,
1306 						unsigned int flags)
1307 {
1308 	long ret, pages_done;
1309 	bool lock_dropped;
1310 
1311 	if (locked) {
1312 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1313 		BUG_ON(vmas);
1314 		/* check caller initialized locked */
1315 		BUG_ON(*locked != 1);
1316 	}
1317 
1318 	if (flags & FOLL_PIN)
1319 		mm_set_has_pinned_flag(&mm->flags);
1320 
1321 	/*
1322 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1323 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1324 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1325 	 * for FOLL_GET, not for the newer FOLL_PIN.
1326 	 *
1327 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1328 	 * that here, as any failures will be obvious enough.
1329 	 */
1330 	if (pages && !(flags & FOLL_PIN))
1331 		flags |= FOLL_GET;
1332 
1333 	pages_done = 0;
1334 	lock_dropped = false;
1335 	for (;;) {
1336 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1337 				       vmas, locked);
1338 		if (!locked)
1339 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1340 			return ret;
1341 
1342 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1343 		if (!*locked) {
1344 			BUG_ON(ret < 0);
1345 			BUG_ON(ret >= nr_pages);
1346 		}
1347 
1348 		if (ret > 0) {
1349 			nr_pages -= ret;
1350 			pages_done += ret;
1351 			if (!nr_pages)
1352 				break;
1353 		}
1354 		if (*locked) {
1355 			/*
1356 			 * VM_FAULT_RETRY didn't trigger or it was a
1357 			 * FOLL_NOWAIT.
1358 			 */
1359 			if (!pages_done)
1360 				pages_done = ret;
1361 			break;
1362 		}
1363 		/*
1364 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1365 		 * For the prefault case (!pages) we only update counts.
1366 		 */
1367 		if (likely(pages))
1368 			pages += ret;
1369 		start += ret << PAGE_SHIFT;
1370 		lock_dropped = true;
1371 
1372 retry:
1373 		/*
1374 		 * Repeat on the address that fired VM_FAULT_RETRY
1375 		 * with both FAULT_FLAG_ALLOW_RETRY and
1376 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1377 		 * by fatal signals, so we need to check it before we
1378 		 * start trying again otherwise it can loop forever.
1379 		 */
1380 
1381 		if (fatal_signal_pending(current)) {
1382 			if (!pages_done)
1383 				pages_done = -EINTR;
1384 			break;
1385 		}
1386 
1387 		ret = mmap_read_lock_killable(mm);
1388 		if (ret) {
1389 			BUG_ON(ret > 0);
1390 			if (!pages_done)
1391 				pages_done = ret;
1392 			break;
1393 		}
1394 
1395 		*locked = 1;
1396 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1397 				       pages, NULL, locked);
1398 		if (!*locked) {
1399 			/* Continue to retry until we succeeded */
1400 			BUG_ON(ret != 0);
1401 			goto retry;
1402 		}
1403 		if (ret != 1) {
1404 			BUG_ON(ret > 1);
1405 			if (!pages_done)
1406 				pages_done = ret;
1407 			break;
1408 		}
1409 		nr_pages--;
1410 		pages_done++;
1411 		if (!nr_pages)
1412 			break;
1413 		if (likely(pages))
1414 			pages++;
1415 		start += PAGE_SIZE;
1416 	}
1417 	if (lock_dropped && *locked) {
1418 		/*
1419 		 * We must let the caller know we temporarily dropped the lock
1420 		 * and so the critical section protected by it was lost.
1421 		 */
1422 		mmap_read_unlock(mm);
1423 		*locked = 0;
1424 	}
1425 	return pages_done;
1426 }
1427 
1428 /**
1429  * populate_vma_page_range() -  populate a range of pages in the vma.
1430  * @vma:   target vma
1431  * @start: start address
1432  * @end:   end address
1433  * @locked: whether the mmap_lock is still held
1434  *
1435  * This takes care of mlocking the pages too if VM_LOCKED is set.
1436  *
1437  * Return either number of pages pinned in the vma, or a negative error
1438  * code on error.
1439  *
1440  * vma->vm_mm->mmap_lock must be held.
1441  *
1442  * If @locked is NULL, it may be held for read or write and will
1443  * be unperturbed.
1444  *
1445  * If @locked is non-NULL, it must held for read only and may be
1446  * released.  If it's released, *@locked will be set to 0.
1447  */
1448 long populate_vma_page_range(struct vm_area_struct *vma,
1449 		unsigned long start, unsigned long end, int *locked)
1450 {
1451 	struct mm_struct *mm = vma->vm_mm;
1452 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1453 	int gup_flags;
1454 	long ret;
1455 
1456 	VM_BUG_ON(!PAGE_ALIGNED(start));
1457 	VM_BUG_ON(!PAGE_ALIGNED(end));
1458 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1459 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1460 	mmap_assert_locked(mm);
1461 
1462 	/*
1463 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1464 	 * faultin_page() to break COW, so it has no work to do here.
1465 	 */
1466 	if (vma->vm_flags & VM_LOCKONFAULT)
1467 		return nr_pages;
1468 
1469 	gup_flags = FOLL_TOUCH;
1470 	/*
1471 	 * We want to touch writable mappings with a write fault in order
1472 	 * to break COW, except for shared mappings because these don't COW
1473 	 * and we would not want to dirty them for nothing.
1474 	 */
1475 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1476 		gup_flags |= FOLL_WRITE;
1477 
1478 	/*
1479 	 * We want mlock to succeed for regions that have any permissions
1480 	 * other than PROT_NONE.
1481 	 */
1482 	if (vma_is_accessible(vma))
1483 		gup_flags |= FOLL_FORCE;
1484 
1485 	/*
1486 	 * We made sure addr is within a VMA, so the following will
1487 	 * not result in a stack expansion that recurses back here.
1488 	 */
1489 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1490 				NULL, NULL, locked);
1491 	lru_add_drain();
1492 	return ret;
1493 }
1494 
1495 /*
1496  * faultin_vma_page_range() - populate (prefault) page tables inside the
1497  *			      given VMA range readable/writable
1498  *
1499  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1500  *
1501  * @vma: target vma
1502  * @start: start address
1503  * @end: end address
1504  * @write: whether to prefault readable or writable
1505  * @locked: whether the mmap_lock is still held
1506  *
1507  * Returns either number of processed pages in the vma, or a negative error
1508  * code on error (see __get_user_pages()).
1509  *
1510  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1511  * covered by the VMA.
1512  *
1513  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1514  *
1515  * If @locked is non-NULL, it must held for read only and may be released.  If
1516  * it's released, *@locked will be set to 0.
1517  */
1518 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1519 			    unsigned long end, bool write, int *locked)
1520 {
1521 	struct mm_struct *mm = vma->vm_mm;
1522 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1523 	int gup_flags;
1524 	long ret;
1525 
1526 	VM_BUG_ON(!PAGE_ALIGNED(start));
1527 	VM_BUG_ON(!PAGE_ALIGNED(end));
1528 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1529 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1530 	mmap_assert_locked(mm);
1531 
1532 	/*
1533 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1534 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1535 	 *	       difference with !FOLL_FORCE, because the page is writable
1536 	 *	       in the page table.
1537 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1538 	 *		  a poisoned page.
1539 	 * !FOLL_FORCE: Require proper access permissions.
1540 	 */
1541 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1542 	if (write)
1543 		gup_flags |= FOLL_WRITE;
1544 
1545 	/*
1546 	 * We want to report -EINVAL instead of -EFAULT for any permission
1547 	 * problems or incompatible mappings.
1548 	 */
1549 	if (check_vma_flags(vma, gup_flags))
1550 		return -EINVAL;
1551 
1552 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1553 				NULL, NULL, locked);
1554 	lru_add_drain();
1555 	return ret;
1556 }
1557 
1558 /*
1559  * __mm_populate - populate and/or mlock pages within a range of address space.
1560  *
1561  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1562  * flags. VMAs must be already marked with the desired vm_flags, and
1563  * mmap_lock must not be held.
1564  */
1565 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1566 {
1567 	struct mm_struct *mm = current->mm;
1568 	unsigned long end, nstart, nend;
1569 	struct vm_area_struct *vma = NULL;
1570 	int locked = 0;
1571 	long ret = 0;
1572 
1573 	end = start + len;
1574 
1575 	for (nstart = start; nstart < end; nstart = nend) {
1576 		/*
1577 		 * We want to fault in pages for [nstart; end) address range.
1578 		 * Find first corresponding VMA.
1579 		 */
1580 		if (!locked) {
1581 			locked = 1;
1582 			mmap_read_lock(mm);
1583 			vma = find_vma_intersection(mm, nstart, end);
1584 		} else if (nstart >= vma->vm_end)
1585 			vma = find_vma_intersection(mm, vma->vm_end, end);
1586 
1587 		if (!vma)
1588 			break;
1589 		/*
1590 		 * Set [nstart; nend) to intersection of desired address
1591 		 * range with the first VMA. Also, skip undesirable VMA types.
1592 		 */
1593 		nend = min(end, vma->vm_end);
1594 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1595 			continue;
1596 		if (nstart < vma->vm_start)
1597 			nstart = vma->vm_start;
1598 		/*
1599 		 * Now fault in a range of pages. populate_vma_page_range()
1600 		 * double checks the vma flags, so that it won't mlock pages
1601 		 * if the vma was already munlocked.
1602 		 */
1603 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1604 		if (ret < 0) {
1605 			if (ignore_errors) {
1606 				ret = 0;
1607 				continue;	/* continue at next VMA */
1608 			}
1609 			break;
1610 		}
1611 		nend = nstart + ret * PAGE_SIZE;
1612 		ret = 0;
1613 	}
1614 	if (locked)
1615 		mmap_read_unlock(mm);
1616 	return ret;	/* 0 or negative error code */
1617 }
1618 #else /* CONFIG_MMU */
1619 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1620 		unsigned long nr_pages, struct page **pages,
1621 		struct vm_area_struct **vmas, int *locked,
1622 		unsigned int foll_flags)
1623 {
1624 	struct vm_area_struct *vma;
1625 	unsigned long vm_flags;
1626 	long i;
1627 
1628 	/* calculate required read or write permissions.
1629 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1630 	 */
1631 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1632 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1633 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1634 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1635 
1636 	for (i = 0; i < nr_pages; i++) {
1637 		vma = find_vma(mm, start);
1638 		if (!vma)
1639 			goto finish_or_fault;
1640 
1641 		/* protect what we can, including chardevs */
1642 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1643 		    !(vm_flags & vma->vm_flags))
1644 			goto finish_or_fault;
1645 
1646 		if (pages) {
1647 			pages[i] = virt_to_page((void *)start);
1648 			if (pages[i])
1649 				get_page(pages[i]);
1650 		}
1651 		if (vmas)
1652 			vmas[i] = vma;
1653 		start = (start + PAGE_SIZE) & PAGE_MASK;
1654 	}
1655 
1656 	return i;
1657 
1658 finish_or_fault:
1659 	return i ? : -EFAULT;
1660 }
1661 #endif /* !CONFIG_MMU */
1662 
1663 /**
1664  * fault_in_writeable - fault in userspace address range for writing
1665  * @uaddr: start of address range
1666  * @size: size of address range
1667  *
1668  * Returns the number of bytes not faulted in (like copy_to_user() and
1669  * copy_from_user()).
1670  */
1671 size_t fault_in_writeable(char __user *uaddr, size_t size)
1672 {
1673 	char __user *start = uaddr, *end;
1674 
1675 	if (unlikely(size == 0))
1676 		return 0;
1677 	if (!user_write_access_begin(uaddr, size))
1678 		return size;
1679 	if (!PAGE_ALIGNED(uaddr)) {
1680 		unsafe_put_user(0, uaddr, out);
1681 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1682 	}
1683 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1684 	if (unlikely(end < start))
1685 		end = NULL;
1686 	while (uaddr != end) {
1687 		unsafe_put_user(0, uaddr, out);
1688 		uaddr += PAGE_SIZE;
1689 	}
1690 
1691 out:
1692 	user_write_access_end();
1693 	if (size > uaddr - start)
1694 		return size - (uaddr - start);
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(fault_in_writeable);
1698 
1699 /**
1700  * fault_in_subpage_writeable - fault in an address range for writing
1701  * @uaddr: start of address range
1702  * @size: size of address range
1703  *
1704  * Fault in a user address range for writing while checking for permissions at
1705  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1706  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1707  *
1708  * Returns the number of bytes not faulted in (like copy_to_user() and
1709  * copy_from_user()).
1710  */
1711 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1712 {
1713 	size_t faulted_in;
1714 
1715 	/*
1716 	 * Attempt faulting in at page granularity first for page table
1717 	 * permission checking. The arch-specific probe_subpage_writeable()
1718 	 * functions may not check for this.
1719 	 */
1720 	faulted_in = size - fault_in_writeable(uaddr, size);
1721 	if (faulted_in)
1722 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1723 
1724 	return size - faulted_in;
1725 }
1726 EXPORT_SYMBOL(fault_in_subpage_writeable);
1727 
1728 /*
1729  * fault_in_safe_writeable - fault in an address range for writing
1730  * @uaddr: start of address range
1731  * @size: length of address range
1732  *
1733  * Faults in an address range for writing.  This is primarily useful when we
1734  * already know that some or all of the pages in the address range aren't in
1735  * memory.
1736  *
1737  * Unlike fault_in_writeable(), this function is non-destructive.
1738  *
1739  * Note that we don't pin or otherwise hold the pages referenced that we fault
1740  * in.  There's no guarantee that they'll stay in memory for any duration of
1741  * time.
1742  *
1743  * Returns the number of bytes not faulted in, like copy_to_user() and
1744  * copy_from_user().
1745  */
1746 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1747 {
1748 	unsigned long start = (unsigned long)uaddr, end;
1749 	struct mm_struct *mm = current->mm;
1750 	bool unlocked = false;
1751 
1752 	if (unlikely(size == 0))
1753 		return 0;
1754 	end = PAGE_ALIGN(start + size);
1755 	if (end < start)
1756 		end = 0;
1757 
1758 	mmap_read_lock(mm);
1759 	do {
1760 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1761 			break;
1762 		start = (start + PAGE_SIZE) & PAGE_MASK;
1763 	} while (start != end);
1764 	mmap_read_unlock(mm);
1765 
1766 	if (size > (unsigned long)uaddr - start)
1767 		return size - ((unsigned long)uaddr - start);
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL(fault_in_safe_writeable);
1771 
1772 /**
1773  * fault_in_readable - fault in userspace address range for reading
1774  * @uaddr: start of user address range
1775  * @size: size of user address range
1776  *
1777  * Returns the number of bytes not faulted in (like copy_to_user() and
1778  * copy_from_user()).
1779  */
1780 size_t fault_in_readable(const char __user *uaddr, size_t size)
1781 {
1782 	const char __user *start = uaddr, *end;
1783 	volatile char c;
1784 
1785 	if (unlikely(size == 0))
1786 		return 0;
1787 	if (!user_read_access_begin(uaddr, size))
1788 		return size;
1789 	if (!PAGE_ALIGNED(uaddr)) {
1790 		unsafe_get_user(c, uaddr, out);
1791 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1792 	}
1793 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1794 	if (unlikely(end < start))
1795 		end = NULL;
1796 	while (uaddr != end) {
1797 		unsafe_get_user(c, uaddr, out);
1798 		uaddr += PAGE_SIZE;
1799 	}
1800 
1801 out:
1802 	user_read_access_end();
1803 	(void)c;
1804 	if (size > uaddr - start)
1805 		return size - (uaddr - start);
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL(fault_in_readable);
1809 
1810 /**
1811  * get_dump_page() - pin user page in memory while writing it to core dump
1812  * @addr: user address
1813  *
1814  * Returns struct page pointer of user page pinned for dump,
1815  * to be freed afterwards by put_page().
1816  *
1817  * Returns NULL on any kind of failure - a hole must then be inserted into
1818  * the corefile, to preserve alignment with its headers; and also returns
1819  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1820  * allowing a hole to be left in the corefile to save disk space.
1821  *
1822  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1823  */
1824 #ifdef CONFIG_ELF_CORE
1825 struct page *get_dump_page(unsigned long addr)
1826 {
1827 	struct mm_struct *mm = current->mm;
1828 	struct page *page;
1829 	int locked = 1;
1830 	int ret;
1831 
1832 	if (mmap_read_lock_killable(mm))
1833 		return NULL;
1834 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1835 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1836 	if (locked)
1837 		mmap_read_unlock(mm);
1838 	return (ret == 1) ? page : NULL;
1839 }
1840 #endif /* CONFIG_ELF_CORE */
1841 
1842 #ifdef CONFIG_MIGRATION
1843 /*
1844  * Returns the number of collected pages. Return value is always >= 0.
1845  */
1846 static unsigned long collect_longterm_unpinnable_pages(
1847 					struct list_head *movable_page_list,
1848 					unsigned long nr_pages,
1849 					struct page **pages)
1850 {
1851 	unsigned long i, collected = 0;
1852 	struct folio *prev_folio = NULL;
1853 	bool drain_allow = true;
1854 
1855 	for (i = 0; i < nr_pages; i++) {
1856 		struct folio *folio = page_folio(pages[i]);
1857 
1858 		if (folio == prev_folio)
1859 			continue;
1860 		prev_folio = folio;
1861 
1862 		if (folio_is_longterm_pinnable(folio))
1863 			continue;
1864 
1865 		collected++;
1866 
1867 		if (folio_is_device_coherent(folio))
1868 			continue;
1869 
1870 		if (folio_test_hugetlb(folio)) {
1871 			isolate_hugetlb(&folio->page, movable_page_list);
1872 			continue;
1873 		}
1874 
1875 		if (!folio_test_lru(folio) && drain_allow) {
1876 			lru_add_drain_all();
1877 			drain_allow = false;
1878 		}
1879 
1880 		if (!folio_isolate_lru(folio))
1881 			continue;
1882 
1883 		list_add_tail(&folio->lru, movable_page_list);
1884 		node_stat_mod_folio(folio,
1885 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1886 				    folio_nr_pages(folio));
1887 	}
1888 
1889 	return collected;
1890 }
1891 
1892 /*
1893  * Unpins all pages and migrates device coherent pages and movable_page_list.
1894  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1895  * (or partial success).
1896  */
1897 static int migrate_longterm_unpinnable_pages(
1898 					struct list_head *movable_page_list,
1899 					unsigned long nr_pages,
1900 					struct page **pages)
1901 {
1902 	int ret;
1903 	unsigned long i;
1904 
1905 	for (i = 0; i < nr_pages; i++) {
1906 		struct folio *folio = page_folio(pages[i]);
1907 
1908 		if (folio_is_device_coherent(folio)) {
1909 			/*
1910 			 * Migration will fail if the page is pinned, so convert
1911 			 * the pin on the source page to a normal reference.
1912 			 */
1913 			pages[i] = NULL;
1914 			folio_get(folio);
1915 			gup_put_folio(folio, 1, FOLL_PIN);
1916 
1917 			if (migrate_device_coherent_page(&folio->page)) {
1918 				ret = -EBUSY;
1919 				goto err;
1920 			}
1921 
1922 			continue;
1923 		}
1924 
1925 		/*
1926 		 * We can't migrate pages with unexpected references, so drop
1927 		 * the reference obtained by __get_user_pages_locked().
1928 		 * Migrating pages have been added to movable_page_list after
1929 		 * calling folio_isolate_lru() which takes a reference so the
1930 		 * page won't be freed if it's migrating.
1931 		 */
1932 		unpin_user_page(pages[i]);
1933 		pages[i] = NULL;
1934 	}
1935 
1936 	if (!list_empty(movable_page_list)) {
1937 		struct migration_target_control mtc = {
1938 			.nid = NUMA_NO_NODE,
1939 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1940 		};
1941 
1942 		if (migrate_pages(movable_page_list, alloc_migration_target,
1943 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1944 				  MR_LONGTERM_PIN, NULL)) {
1945 			ret = -ENOMEM;
1946 			goto err;
1947 		}
1948 	}
1949 
1950 	putback_movable_pages(movable_page_list);
1951 
1952 	return -EAGAIN;
1953 
1954 err:
1955 	for (i = 0; i < nr_pages; i++)
1956 		if (pages[i])
1957 			unpin_user_page(pages[i]);
1958 	putback_movable_pages(movable_page_list);
1959 
1960 	return ret;
1961 }
1962 
1963 /*
1964  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
1965  * pages in the range are required to be pinned via FOLL_PIN, before calling
1966  * this routine.
1967  *
1968  * If any pages in the range are not allowed to be pinned, then this routine
1969  * will migrate those pages away, unpin all the pages in the range and return
1970  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
1971  * call this routine again.
1972  *
1973  * If an error other than -EAGAIN occurs, this indicates a migration failure.
1974  * The caller should give up, and propagate the error back up the call stack.
1975  *
1976  * If everything is OK and all pages in the range are allowed to be pinned, then
1977  * this routine leaves all pages pinned and returns zero for success.
1978  */
1979 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1980 					    struct page **pages)
1981 {
1982 	unsigned long collected;
1983 	LIST_HEAD(movable_page_list);
1984 
1985 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
1986 						nr_pages, pages);
1987 	if (!collected)
1988 		return 0;
1989 
1990 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
1991 						pages);
1992 }
1993 #else
1994 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1995 					    struct page **pages)
1996 {
1997 	return 0;
1998 }
1999 #endif /* CONFIG_MIGRATION */
2000 
2001 /*
2002  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2003  * allows us to process the FOLL_LONGTERM flag.
2004  */
2005 static long __gup_longterm_locked(struct mm_struct *mm,
2006 				  unsigned long start,
2007 				  unsigned long nr_pages,
2008 				  struct page **pages,
2009 				  struct vm_area_struct **vmas,
2010 				  int *locked,
2011 				  unsigned int gup_flags)
2012 {
2013 	bool must_unlock = false;
2014 	unsigned int flags;
2015 	long rc, nr_pinned_pages;
2016 
2017 	if (locked && WARN_ON_ONCE(!*locked))
2018 		return -EINVAL;
2019 
2020 	if (!(gup_flags & FOLL_LONGTERM))
2021 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2022 					       locked, gup_flags);
2023 
2024 	/*
2025 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2026 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2027 	 * correct to unconditionally call check_and_migrate_movable_pages()
2028 	 * which assumes pages have been pinned via FOLL_PIN.
2029 	 *
2030 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2031 	 */
2032 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2033 		return -EINVAL;
2034 	flags = memalloc_pin_save();
2035 	do {
2036 		if (locked && !*locked) {
2037 			mmap_read_lock(mm);
2038 			must_unlock = true;
2039 			*locked = 1;
2040 		}
2041 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2042 							  pages, vmas, locked,
2043 							  gup_flags);
2044 		if (nr_pinned_pages <= 0) {
2045 			rc = nr_pinned_pages;
2046 			break;
2047 		}
2048 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2049 	} while (rc == -EAGAIN);
2050 	memalloc_pin_restore(flags);
2051 
2052 	if (locked && *locked && must_unlock) {
2053 		mmap_read_unlock(mm);
2054 		*locked = 0;
2055 	}
2056 	return rc ? rc : nr_pinned_pages;
2057 }
2058 
2059 static bool is_valid_gup_flags(unsigned int gup_flags)
2060 {
2061 	/*
2062 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2063 	 * never directly by the caller, so enforce that with an assertion:
2064 	 */
2065 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2066 		return false;
2067 	/*
2068 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2069 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2070 	 * FOLL_PIN.
2071 	 */
2072 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2073 		return false;
2074 
2075 	return true;
2076 }
2077 
2078 #ifdef CONFIG_MMU
2079 /**
2080  * get_user_pages_remote() - pin user pages in memory
2081  * @mm:		mm_struct of target mm
2082  * @start:	starting user address
2083  * @nr_pages:	number of pages from start to pin
2084  * @gup_flags:	flags modifying lookup behaviour
2085  * @pages:	array that receives pointers to the pages pinned.
2086  *		Should be at least nr_pages long. Or NULL, if caller
2087  *		only intends to ensure the pages are faulted in.
2088  * @vmas:	array of pointers to vmas corresponding to each page.
2089  *		Or NULL if the caller does not require them.
2090  * @locked:	pointer to lock flag indicating whether lock is held and
2091  *		subsequently whether VM_FAULT_RETRY functionality can be
2092  *		utilised. Lock must initially be held.
2093  *
2094  * Returns either number of pages pinned (which may be less than the
2095  * number requested), or an error. Details about the return value:
2096  *
2097  * -- If nr_pages is 0, returns 0.
2098  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2099  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2100  *    pages pinned. Again, this may be less than nr_pages.
2101  *
2102  * The caller is responsible for releasing returned @pages, via put_page().
2103  *
2104  * @vmas are valid only as long as mmap_lock is held.
2105  *
2106  * Must be called with mmap_lock held for read or write.
2107  *
2108  * get_user_pages_remote walks a process's page tables and takes a reference
2109  * to each struct page that each user address corresponds to at a given
2110  * instant. That is, it takes the page that would be accessed if a user
2111  * thread accesses the given user virtual address at that instant.
2112  *
2113  * This does not guarantee that the page exists in the user mappings when
2114  * get_user_pages_remote returns, and there may even be a completely different
2115  * page there in some cases (eg. if mmapped pagecache has been invalidated
2116  * and subsequently re faulted). However it does guarantee that the page
2117  * won't be freed completely. And mostly callers simply care that the page
2118  * contains data that was valid *at some point in time*. Typically, an IO
2119  * or similar operation cannot guarantee anything stronger anyway because
2120  * locks can't be held over the syscall boundary.
2121  *
2122  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2123  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2124  * be called after the page is finished with, and before put_page is called.
2125  *
2126  * get_user_pages_remote is typically used for fewer-copy IO operations,
2127  * to get a handle on the memory by some means other than accesses
2128  * via the user virtual addresses. The pages may be submitted for
2129  * DMA to devices or accessed via their kernel linear mapping (via the
2130  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2131  *
2132  * See also get_user_pages_fast, for performance critical applications.
2133  *
2134  * get_user_pages_remote should be phased out in favor of
2135  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2136  * should use get_user_pages_remote because it cannot pass
2137  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2138  */
2139 long get_user_pages_remote(struct mm_struct *mm,
2140 		unsigned long start, unsigned long nr_pages,
2141 		unsigned int gup_flags, struct page **pages,
2142 		struct vm_area_struct **vmas, int *locked)
2143 {
2144 	if (!is_valid_gup_flags(gup_flags))
2145 		return -EINVAL;
2146 
2147 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2148 				     gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2149 }
2150 EXPORT_SYMBOL(get_user_pages_remote);
2151 
2152 #else /* CONFIG_MMU */
2153 long get_user_pages_remote(struct mm_struct *mm,
2154 			   unsigned long start, unsigned long nr_pages,
2155 			   unsigned int gup_flags, struct page **pages,
2156 			   struct vm_area_struct **vmas, int *locked)
2157 {
2158 	return 0;
2159 }
2160 #endif /* !CONFIG_MMU */
2161 
2162 /**
2163  * get_user_pages() - pin user pages in memory
2164  * @start:      starting user address
2165  * @nr_pages:   number of pages from start to pin
2166  * @gup_flags:  flags modifying lookup behaviour
2167  * @pages:      array that receives pointers to the pages pinned.
2168  *              Should be at least nr_pages long. Or NULL, if caller
2169  *              only intends to ensure the pages are faulted in.
2170  * @vmas:       array of pointers to vmas corresponding to each page.
2171  *              Or NULL if the caller does not require them.
2172  *
2173  * This is the same as get_user_pages_remote(), just with a less-flexible
2174  * calling convention where we assume that the mm being operated on belongs to
2175  * the current task, and doesn't allow passing of a locked parameter.  We also
2176  * obviously don't pass FOLL_REMOTE in here.
2177  */
2178 long get_user_pages(unsigned long start, unsigned long nr_pages,
2179 		unsigned int gup_flags, struct page **pages,
2180 		struct vm_area_struct **vmas)
2181 {
2182 	if (!is_valid_gup_flags(gup_flags))
2183 		return -EINVAL;
2184 
2185 	return __gup_longterm_locked(current->mm, start, nr_pages,
2186 				     pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2187 }
2188 EXPORT_SYMBOL(get_user_pages);
2189 
2190 /*
2191  * get_user_pages_unlocked() is suitable to replace the form:
2192  *
2193  *      mmap_read_lock(mm);
2194  *      get_user_pages(mm, ..., pages, NULL);
2195  *      mmap_read_unlock(mm);
2196  *
2197  *  with:
2198  *
2199  *      get_user_pages_unlocked(mm, ..., pages);
2200  *
2201  * It is functionally equivalent to get_user_pages_fast so
2202  * get_user_pages_fast should be used instead if specific gup_flags
2203  * (e.g. FOLL_FORCE) are not required.
2204  */
2205 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2206 			     struct page **pages, unsigned int gup_flags)
2207 {
2208 	struct mm_struct *mm = current->mm;
2209 	int locked = 1;
2210 	long ret;
2211 
2212 	mmap_read_lock(mm);
2213 	ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2214 				    gup_flags | FOLL_TOUCH);
2215 	if (locked)
2216 		mmap_read_unlock(mm);
2217 	return ret;
2218 }
2219 EXPORT_SYMBOL(get_user_pages_unlocked);
2220 
2221 /*
2222  * Fast GUP
2223  *
2224  * get_user_pages_fast attempts to pin user pages by walking the page
2225  * tables directly and avoids taking locks. Thus the walker needs to be
2226  * protected from page table pages being freed from under it, and should
2227  * block any THP splits.
2228  *
2229  * One way to achieve this is to have the walker disable interrupts, and
2230  * rely on IPIs from the TLB flushing code blocking before the page table
2231  * pages are freed. This is unsuitable for architectures that do not need
2232  * to broadcast an IPI when invalidating TLBs.
2233  *
2234  * Another way to achieve this is to batch up page table containing pages
2235  * belonging to more than one mm_user, then rcu_sched a callback to free those
2236  * pages. Disabling interrupts will allow the fast_gup walker to both block
2237  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2238  * (which is a relatively rare event). The code below adopts this strategy.
2239  *
2240  * Before activating this code, please be aware that the following assumptions
2241  * are currently made:
2242  *
2243  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2244  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2245  *
2246  *  *) ptes can be read atomically by the architecture.
2247  *
2248  *  *) access_ok is sufficient to validate userspace address ranges.
2249  *
2250  * The last two assumptions can be relaxed by the addition of helper functions.
2251  *
2252  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2253  */
2254 #ifdef CONFIG_HAVE_FAST_GUP
2255 
2256 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2257 					    unsigned int flags,
2258 					    struct page **pages)
2259 {
2260 	while ((*nr) - nr_start) {
2261 		struct page *page = pages[--(*nr)];
2262 
2263 		ClearPageReferenced(page);
2264 		if (flags & FOLL_PIN)
2265 			unpin_user_page(page);
2266 		else
2267 			put_page(page);
2268 	}
2269 }
2270 
2271 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2272 /*
2273  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2274  * operations.
2275  *
2276  * To pin the page, fast-gup needs to do below in order:
2277  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2278  *
2279  * For the rest of pgtable operations where pgtable updates can be racy
2280  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2281  * is pinned.
2282  *
2283  * Above will work for all pte-level operations, including THP split.
2284  *
2285  * For THP collapse, it's a bit more complicated because fast-gup may be
2286  * walking a pgtable page that is being freed (pte is still valid but pmd
2287  * can be cleared already).  To avoid race in such condition, we need to
2288  * also check pmd here to make sure pmd doesn't change (corresponds to
2289  * pmdp_collapse_flush() in the THP collapse code path).
2290  */
2291 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2292 			 unsigned long end, unsigned int flags,
2293 			 struct page **pages, int *nr)
2294 {
2295 	struct dev_pagemap *pgmap = NULL;
2296 	int nr_start = *nr, ret = 0;
2297 	pte_t *ptep, *ptem;
2298 
2299 	ptem = ptep = pte_offset_map(&pmd, addr);
2300 	do {
2301 		pte_t pte = ptep_get_lockless(ptep);
2302 		struct page *page;
2303 		struct folio *folio;
2304 
2305 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2306 			goto pte_unmap;
2307 
2308 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2309 			goto pte_unmap;
2310 
2311 		if (pte_devmap(pte)) {
2312 			if (unlikely(flags & FOLL_LONGTERM))
2313 				goto pte_unmap;
2314 
2315 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2316 			if (unlikely(!pgmap)) {
2317 				undo_dev_pagemap(nr, nr_start, flags, pages);
2318 				goto pte_unmap;
2319 			}
2320 		} else if (pte_special(pte))
2321 			goto pte_unmap;
2322 
2323 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2324 		page = pte_page(pte);
2325 
2326 		folio = try_grab_folio(page, 1, flags);
2327 		if (!folio)
2328 			goto pte_unmap;
2329 
2330 		if (unlikely(page_is_secretmem(page))) {
2331 			gup_put_folio(folio, 1, flags);
2332 			goto pte_unmap;
2333 		}
2334 
2335 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2336 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2337 			gup_put_folio(folio, 1, flags);
2338 			goto pte_unmap;
2339 		}
2340 
2341 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2342 			gup_put_folio(folio, 1, flags);
2343 			goto pte_unmap;
2344 		}
2345 
2346 		/*
2347 		 * We need to make the page accessible if and only if we are
2348 		 * going to access its content (the FOLL_PIN case).  Please
2349 		 * see Documentation/core-api/pin_user_pages.rst for
2350 		 * details.
2351 		 */
2352 		if (flags & FOLL_PIN) {
2353 			ret = arch_make_page_accessible(page);
2354 			if (ret) {
2355 				gup_put_folio(folio, 1, flags);
2356 				goto pte_unmap;
2357 			}
2358 		}
2359 		folio_set_referenced(folio);
2360 		pages[*nr] = page;
2361 		(*nr)++;
2362 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2363 
2364 	ret = 1;
2365 
2366 pte_unmap:
2367 	if (pgmap)
2368 		put_dev_pagemap(pgmap);
2369 	pte_unmap(ptem);
2370 	return ret;
2371 }
2372 #else
2373 
2374 /*
2375  * If we can't determine whether or not a pte is special, then fail immediately
2376  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2377  * to be special.
2378  *
2379  * For a futex to be placed on a THP tail page, get_futex_key requires a
2380  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2381  * useful to have gup_huge_pmd even if we can't operate on ptes.
2382  */
2383 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2384 			 unsigned long end, unsigned int flags,
2385 			 struct page **pages, int *nr)
2386 {
2387 	return 0;
2388 }
2389 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2390 
2391 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2392 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2393 			     unsigned long end, unsigned int flags,
2394 			     struct page **pages, int *nr)
2395 {
2396 	int nr_start = *nr;
2397 	struct dev_pagemap *pgmap = NULL;
2398 
2399 	do {
2400 		struct page *page = pfn_to_page(pfn);
2401 
2402 		pgmap = get_dev_pagemap(pfn, pgmap);
2403 		if (unlikely(!pgmap)) {
2404 			undo_dev_pagemap(nr, nr_start, flags, pages);
2405 			break;
2406 		}
2407 		SetPageReferenced(page);
2408 		pages[*nr] = page;
2409 		if (unlikely(!try_grab_page(page, flags))) {
2410 			undo_dev_pagemap(nr, nr_start, flags, pages);
2411 			break;
2412 		}
2413 		(*nr)++;
2414 		pfn++;
2415 	} while (addr += PAGE_SIZE, addr != end);
2416 
2417 	put_dev_pagemap(pgmap);
2418 	return addr == end;
2419 }
2420 
2421 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2422 				 unsigned long end, unsigned int flags,
2423 				 struct page **pages, int *nr)
2424 {
2425 	unsigned long fault_pfn;
2426 	int nr_start = *nr;
2427 
2428 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2429 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2430 		return 0;
2431 
2432 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2433 		undo_dev_pagemap(nr, nr_start, flags, pages);
2434 		return 0;
2435 	}
2436 	return 1;
2437 }
2438 
2439 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2440 				 unsigned long end, unsigned int flags,
2441 				 struct page **pages, int *nr)
2442 {
2443 	unsigned long fault_pfn;
2444 	int nr_start = *nr;
2445 
2446 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2447 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2448 		return 0;
2449 
2450 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2451 		undo_dev_pagemap(nr, nr_start, flags, pages);
2452 		return 0;
2453 	}
2454 	return 1;
2455 }
2456 #else
2457 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2458 				 unsigned long end, unsigned int flags,
2459 				 struct page **pages, int *nr)
2460 {
2461 	BUILD_BUG();
2462 	return 0;
2463 }
2464 
2465 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2466 				 unsigned long end, unsigned int flags,
2467 				 struct page **pages, int *nr)
2468 {
2469 	BUILD_BUG();
2470 	return 0;
2471 }
2472 #endif
2473 
2474 static int record_subpages(struct page *page, unsigned long addr,
2475 			   unsigned long end, struct page **pages)
2476 {
2477 	int nr;
2478 
2479 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2480 		pages[nr] = nth_page(page, nr);
2481 
2482 	return nr;
2483 }
2484 
2485 #ifdef CONFIG_ARCH_HAS_HUGEPD
2486 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2487 				      unsigned long sz)
2488 {
2489 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2490 	return (__boundary - 1 < end - 1) ? __boundary : end;
2491 }
2492 
2493 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2494 		       unsigned long end, unsigned int flags,
2495 		       struct page **pages, int *nr)
2496 {
2497 	unsigned long pte_end;
2498 	struct page *page;
2499 	struct folio *folio;
2500 	pte_t pte;
2501 	int refs;
2502 
2503 	pte_end = (addr + sz) & ~(sz-1);
2504 	if (pte_end < end)
2505 		end = pte_end;
2506 
2507 	pte = huge_ptep_get(ptep);
2508 
2509 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2510 		return 0;
2511 
2512 	/* hugepages are never "special" */
2513 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2514 
2515 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2516 	refs = record_subpages(page, addr, end, pages + *nr);
2517 
2518 	folio = try_grab_folio(page, refs, flags);
2519 	if (!folio)
2520 		return 0;
2521 
2522 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2523 		gup_put_folio(folio, refs, flags);
2524 		return 0;
2525 	}
2526 
2527 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2528 		gup_put_folio(folio, refs, flags);
2529 		return 0;
2530 	}
2531 
2532 	*nr += refs;
2533 	folio_set_referenced(folio);
2534 	return 1;
2535 }
2536 
2537 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2538 		unsigned int pdshift, unsigned long end, unsigned int flags,
2539 		struct page **pages, int *nr)
2540 {
2541 	pte_t *ptep;
2542 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2543 	unsigned long next;
2544 
2545 	ptep = hugepte_offset(hugepd, addr, pdshift);
2546 	do {
2547 		next = hugepte_addr_end(addr, end, sz);
2548 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2549 			return 0;
2550 	} while (ptep++, addr = next, addr != end);
2551 
2552 	return 1;
2553 }
2554 #else
2555 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2556 		unsigned int pdshift, unsigned long end, unsigned int flags,
2557 		struct page **pages, int *nr)
2558 {
2559 	return 0;
2560 }
2561 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2562 
2563 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2564 			unsigned long end, unsigned int flags,
2565 			struct page **pages, int *nr)
2566 {
2567 	struct page *page;
2568 	struct folio *folio;
2569 	int refs;
2570 
2571 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2572 		return 0;
2573 
2574 	if (pmd_devmap(orig)) {
2575 		if (unlikely(flags & FOLL_LONGTERM))
2576 			return 0;
2577 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2578 					     pages, nr);
2579 	}
2580 
2581 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2582 	refs = record_subpages(page, addr, end, pages + *nr);
2583 
2584 	folio = try_grab_folio(page, refs, flags);
2585 	if (!folio)
2586 		return 0;
2587 
2588 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2589 		gup_put_folio(folio, refs, flags);
2590 		return 0;
2591 	}
2592 
2593 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2594 		gup_put_folio(folio, refs, flags);
2595 		return 0;
2596 	}
2597 
2598 	*nr += refs;
2599 	folio_set_referenced(folio);
2600 	return 1;
2601 }
2602 
2603 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2604 			unsigned long end, unsigned int flags,
2605 			struct page **pages, int *nr)
2606 {
2607 	struct page *page;
2608 	struct folio *folio;
2609 	int refs;
2610 
2611 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2612 		return 0;
2613 
2614 	if (pud_devmap(orig)) {
2615 		if (unlikely(flags & FOLL_LONGTERM))
2616 			return 0;
2617 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2618 					     pages, nr);
2619 	}
2620 
2621 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2622 	refs = record_subpages(page, addr, end, pages + *nr);
2623 
2624 	folio = try_grab_folio(page, refs, flags);
2625 	if (!folio)
2626 		return 0;
2627 
2628 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2629 		gup_put_folio(folio, refs, flags);
2630 		return 0;
2631 	}
2632 
2633 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2634 		gup_put_folio(folio, refs, flags);
2635 		return 0;
2636 	}
2637 
2638 	*nr += refs;
2639 	folio_set_referenced(folio);
2640 	return 1;
2641 }
2642 
2643 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2644 			unsigned long end, unsigned int flags,
2645 			struct page **pages, int *nr)
2646 {
2647 	int refs;
2648 	struct page *page;
2649 	struct folio *folio;
2650 
2651 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2652 		return 0;
2653 
2654 	BUILD_BUG_ON(pgd_devmap(orig));
2655 
2656 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2657 	refs = record_subpages(page, addr, end, pages + *nr);
2658 
2659 	folio = try_grab_folio(page, refs, flags);
2660 	if (!folio)
2661 		return 0;
2662 
2663 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2664 		gup_put_folio(folio, refs, flags);
2665 		return 0;
2666 	}
2667 
2668 	*nr += refs;
2669 	folio_set_referenced(folio);
2670 	return 1;
2671 }
2672 
2673 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2674 		unsigned int flags, struct page **pages, int *nr)
2675 {
2676 	unsigned long next;
2677 	pmd_t *pmdp;
2678 
2679 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2680 	do {
2681 		pmd_t pmd = READ_ONCE(*pmdp);
2682 
2683 		next = pmd_addr_end(addr, end);
2684 		if (!pmd_present(pmd))
2685 			return 0;
2686 
2687 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2688 			     pmd_devmap(pmd))) {
2689 			if (pmd_protnone(pmd) &&
2690 			    !gup_can_follow_protnone(flags))
2691 				return 0;
2692 
2693 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2694 				pages, nr))
2695 				return 0;
2696 
2697 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2698 			/*
2699 			 * architecture have different format for hugetlbfs
2700 			 * pmd format and THP pmd format
2701 			 */
2702 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2703 					 PMD_SHIFT, next, flags, pages, nr))
2704 				return 0;
2705 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2706 			return 0;
2707 	} while (pmdp++, addr = next, addr != end);
2708 
2709 	return 1;
2710 }
2711 
2712 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2713 			 unsigned int flags, struct page **pages, int *nr)
2714 {
2715 	unsigned long next;
2716 	pud_t *pudp;
2717 
2718 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2719 	do {
2720 		pud_t pud = READ_ONCE(*pudp);
2721 
2722 		next = pud_addr_end(addr, end);
2723 		if (unlikely(!pud_present(pud)))
2724 			return 0;
2725 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2726 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2727 					  pages, nr))
2728 				return 0;
2729 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2730 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2731 					 PUD_SHIFT, next, flags, pages, nr))
2732 				return 0;
2733 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2734 			return 0;
2735 	} while (pudp++, addr = next, addr != end);
2736 
2737 	return 1;
2738 }
2739 
2740 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2741 			 unsigned int flags, struct page **pages, int *nr)
2742 {
2743 	unsigned long next;
2744 	p4d_t *p4dp;
2745 
2746 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2747 	do {
2748 		p4d_t p4d = READ_ONCE(*p4dp);
2749 
2750 		next = p4d_addr_end(addr, end);
2751 		if (p4d_none(p4d))
2752 			return 0;
2753 		BUILD_BUG_ON(p4d_huge(p4d));
2754 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2755 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2756 					 P4D_SHIFT, next, flags, pages, nr))
2757 				return 0;
2758 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2759 			return 0;
2760 	} while (p4dp++, addr = next, addr != end);
2761 
2762 	return 1;
2763 }
2764 
2765 static void gup_pgd_range(unsigned long addr, unsigned long end,
2766 		unsigned int flags, struct page **pages, int *nr)
2767 {
2768 	unsigned long next;
2769 	pgd_t *pgdp;
2770 
2771 	pgdp = pgd_offset(current->mm, addr);
2772 	do {
2773 		pgd_t pgd = READ_ONCE(*pgdp);
2774 
2775 		next = pgd_addr_end(addr, end);
2776 		if (pgd_none(pgd))
2777 			return;
2778 		if (unlikely(pgd_huge(pgd))) {
2779 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2780 					  pages, nr))
2781 				return;
2782 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2783 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2784 					 PGDIR_SHIFT, next, flags, pages, nr))
2785 				return;
2786 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2787 			return;
2788 	} while (pgdp++, addr = next, addr != end);
2789 }
2790 #else
2791 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2792 		unsigned int flags, struct page **pages, int *nr)
2793 {
2794 }
2795 #endif /* CONFIG_HAVE_FAST_GUP */
2796 
2797 #ifndef gup_fast_permitted
2798 /*
2799  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2800  * we need to fall back to the slow version:
2801  */
2802 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2803 {
2804 	return true;
2805 }
2806 #endif
2807 
2808 static unsigned long lockless_pages_from_mm(unsigned long start,
2809 					    unsigned long end,
2810 					    unsigned int gup_flags,
2811 					    struct page **pages)
2812 {
2813 	unsigned long flags;
2814 	int nr_pinned = 0;
2815 	unsigned seq;
2816 
2817 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2818 	    !gup_fast_permitted(start, end))
2819 		return 0;
2820 
2821 	if (gup_flags & FOLL_PIN) {
2822 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2823 		if (seq & 1)
2824 			return 0;
2825 	}
2826 
2827 	/*
2828 	 * Disable interrupts. The nested form is used, in order to allow full,
2829 	 * general purpose use of this routine.
2830 	 *
2831 	 * With interrupts disabled, we block page table pages from being freed
2832 	 * from under us. See struct mmu_table_batch comments in
2833 	 * include/asm-generic/tlb.h for more details.
2834 	 *
2835 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2836 	 * that come from THPs splitting.
2837 	 */
2838 	local_irq_save(flags);
2839 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2840 	local_irq_restore(flags);
2841 
2842 	/*
2843 	 * When pinning pages for DMA there could be a concurrent write protect
2844 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2845 	 */
2846 	if (gup_flags & FOLL_PIN) {
2847 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2848 			unpin_user_pages_lockless(pages, nr_pinned);
2849 			return 0;
2850 		} else {
2851 			sanity_check_pinned_pages(pages, nr_pinned);
2852 		}
2853 	}
2854 	return nr_pinned;
2855 }
2856 
2857 static int internal_get_user_pages_fast(unsigned long start,
2858 					unsigned long nr_pages,
2859 					unsigned int gup_flags,
2860 					struct page **pages)
2861 {
2862 	unsigned long len, end;
2863 	unsigned long nr_pinned;
2864 	int ret;
2865 
2866 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2867 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2868 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2869 		return -EINVAL;
2870 
2871 	if (gup_flags & FOLL_PIN)
2872 		mm_set_has_pinned_flag(&current->mm->flags);
2873 
2874 	if (!(gup_flags & FOLL_FAST_ONLY))
2875 		might_lock_read(&current->mm->mmap_lock);
2876 
2877 	start = untagged_addr(start) & PAGE_MASK;
2878 	len = nr_pages << PAGE_SHIFT;
2879 	if (check_add_overflow(start, len, &end))
2880 		return 0;
2881 	if (unlikely(!access_ok((void __user *)start, len)))
2882 		return -EFAULT;
2883 
2884 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2885 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2886 		return nr_pinned;
2887 
2888 	/* Slow path: try to get the remaining pages with get_user_pages */
2889 	start += nr_pinned << PAGE_SHIFT;
2890 	pages += nr_pinned;
2891 	ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2892 				      gup_flags);
2893 	if (ret < 0) {
2894 		/*
2895 		 * The caller has to unpin the pages we already pinned so
2896 		 * returning -errno is not an option
2897 		 */
2898 		if (nr_pinned)
2899 			return nr_pinned;
2900 		return ret;
2901 	}
2902 	return ret + nr_pinned;
2903 }
2904 
2905 /**
2906  * get_user_pages_fast_only() - pin user pages in memory
2907  * @start:      starting user address
2908  * @nr_pages:   number of pages from start to pin
2909  * @gup_flags:  flags modifying pin behaviour
2910  * @pages:      array that receives pointers to the pages pinned.
2911  *              Should be at least nr_pages long.
2912  *
2913  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2914  * the regular GUP.
2915  * Note a difference with get_user_pages_fast: this always returns the
2916  * number of pages pinned, 0 if no pages were pinned.
2917  *
2918  * If the architecture does not support this function, simply return with no
2919  * pages pinned.
2920  *
2921  * Careful, careful! COW breaking can go either way, so a non-write
2922  * access can get ambiguous page results. If you call this function without
2923  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2924  */
2925 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2926 			     unsigned int gup_flags, struct page **pages)
2927 {
2928 	int nr_pinned;
2929 	/*
2930 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2931 	 * because gup fast is always a "pin with a +1 page refcount" request.
2932 	 *
2933 	 * FOLL_FAST_ONLY is required in order to match the API description of
2934 	 * this routine: no fall back to regular ("slow") GUP.
2935 	 */
2936 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2937 
2938 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2939 						 pages);
2940 
2941 	/*
2942 	 * As specified in the API description above, this routine is not
2943 	 * allowed to return negative values. However, the common core
2944 	 * routine internal_get_user_pages_fast() *can* return -errno.
2945 	 * Therefore, correct for that here:
2946 	 */
2947 	if (nr_pinned < 0)
2948 		nr_pinned = 0;
2949 
2950 	return nr_pinned;
2951 }
2952 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2953 
2954 /**
2955  * get_user_pages_fast() - pin user pages in memory
2956  * @start:      starting user address
2957  * @nr_pages:   number of pages from start to pin
2958  * @gup_flags:  flags modifying pin behaviour
2959  * @pages:      array that receives pointers to the pages pinned.
2960  *              Should be at least nr_pages long.
2961  *
2962  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2963  * If not successful, it will fall back to taking the lock and
2964  * calling get_user_pages().
2965  *
2966  * Returns number of pages pinned. This may be fewer than the number requested.
2967  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2968  * -errno.
2969  */
2970 int get_user_pages_fast(unsigned long start, int nr_pages,
2971 			unsigned int gup_flags, struct page **pages)
2972 {
2973 	if (!is_valid_gup_flags(gup_flags))
2974 		return -EINVAL;
2975 
2976 	/*
2977 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2978 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2979 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2980 	 * request.
2981 	 */
2982 	gup_flags |= FOLL_GET;
2983 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2984 }
2985 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2986 
2987 /**
2988  * pin_user_pages_fast() - pin user pages in memory without taking locks
2989  *
2990  * @start:      starting user address
2991  * @nr_pages:   number of pages from start to pin
2992  * @gup_flags:  flags modifying pin behaviour
2993  * @pages:      array that receives pointers to the pages pinned.
2994  *              Should be at least nr_pages long.
2995  *
2996  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2997  * get_user_pages_fast() for documentation on the function arguments, because
2998  * the arguments here are identical.
2999  *
3000  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3001  * see Documentation/core-api/pin_user_pages.rst for further details.
3002  */
3003 int pin_user_pages_fast(unsigned long start, int nr_pages,
3004 			unsigned int gup_flags, struct page **pages)
3005 {
3006 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3007 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3008 		return -EINVAL;
3009 
3010 	if (WARN_ON_ONCE(!pages))
3011 		return -EINVAL;
3012 
3013 	gup_flags |= FOLL_PIN;
3014 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3015 }
3016 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3017 
3018 /*
3019  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3020  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3021  *
3022  * The API rules are the same, too: no negative values may be returned.
3023  */
3024 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3025 			     unsigned int gup_flags, struct page **pages)
3026 {
3027 	int nr_pinned;
3028 
3029 	/*
3030 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3031 	 * rules require returning 0, rather than -errno:
3032 	 */
3033 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3034 		return 0;
3035 
3036 	if (WARN_ON_ONCE(!pages))
3037 		return 0;
3038 	/*
3039 	 * FOLL_FAST_ONLY is required in order to match the API description of
3040 	 * this routine: no fall back to regular ("slow") GUP.
3041 	 */
3042 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3043 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3044 						 pages);
3045 	/*
3046 	 * This routine is not allowed to return negative values. However,
3047 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3048 	 * correct for that here:
3049 	 */
3050 	if (nr_pinned < 0)
3051 		nr_pinned = 0;
3052 
3053 	return nr_pinned;
3054 }
3055 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3056 
3057 /**
3058  * pin_user_pages_remote() - pin pages of a remote process
3059  *
3060  * @mm:		mm_struct of target mm
3061  * @start:	starting user address
3062  * @nr_pages:	number of pages from start to pin
3063  * @gup_flags:	flags modifying lookup behaviour
3064  * @pages:	array that receives pointers to the pages pinned.
3065  *		Should be at least nr_pages long.
3066  * @vmas:	array of pointers to vmas corresponding to each page.
3067  *		Or NULL if the caller does not require them.
3068  * @locked:	pointer to lock flag indicating whether lock is held and
3069  *		subsequently whether VM_FAULT_RETRY functionality can be
3070  *		utilised. Lock must initially be held.
3071  *
3072  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3073  * get_user_pages_remote() for documentation on the function arguments, because
3074  * the arguments here are identical.
3075  *
3076  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3077  * see Documentation/core-api/pin_user_pages.rst for details.
3078  */
3079 long pin_user_pages_remote(struct mm_struct *mm,
3080 			   unsigned long start, unsigned long nr_pages,
3081 			   unsigned int gup_flags, struct page **pages,
3082 			   struct vm_area_struct **vmas, int *locked)
3083 {
3084 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3085 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3086 		return -EINVAL;
3087 
3088 	if (WARN_ON_ONCE(!pages))
3089 		return -EINVAL;
3090 
3091 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3092 				     gup_flags | FOLL_PIN | FOLL_TOUCH |
3093 					     FOLL_REMOTE);
3094 }
3095 EXPORT_SYMBOL(pin_user_pages_remote);
3096 
3097 /**
3098  * pin_user_pages() - pin user pages in memory for use by other devices
3099  *
3100  * @start:	starting user address
3101  * @nr_pages:	number of pages from start to pin
3102  * @gup_flags:	flags modifying lookup behaviour
3103  * @pages:	array that receives pointers to the pages pinned.
3104  *		Should be at least nr_pages long.
3105  * @vmas:	array of pointers to vmas corresponding to each page.
3106  *		Or NULL if the caller does not require them.
3107  *
3108  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3109  * FOLL_PIN is set.
3110  *
3111  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3112  * see Documentation/core-api/pin_user_pages.rst for details.
3113  */
3114 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3115 		    unsigned int gup_flags, struct page **pages,
3116 		    struct vm_area_struct **vmas)
3117 {
3118 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3119 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3120 		return -EINVAL;
3121 
3122 	if (WARN_ON_ONCE(!pages))
3123 		return -EINVAL;
3124 
3125 	gup_flags |= FOLL_PIN;
3126 	return __gup_longterm_locked(current->mm, start, nr_pages,
3127 				     pages, vmas, NULL, gup_flags);
3128 }
3129 EXPORT_SYMBOL(pin_user_pages);
3130 
3131 /*
3132  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3133  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3134  * FOLL_PIN and rejects FOLL_GET.
3135  */
3136 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3137 			     struct page **pages, unsigned int gup_flags)
3138 {
3139 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3140 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3141 		return -EINVAL;
3142 
3143 	if (WARN_ON_ONCE(!pages))
3144 		return -EINVAL;
3145 
3146 	gup_flags |= FOLL_PIN;
3147 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3148 }
3149 EXPORT_SYMBOL(pin_user_pages_unlocked);
3150