1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (flags & FOLL_GET) 127 return try_get_folio(page, refs); 128 else if (flags & FOLL_PIN) { 129 struct folio *folio; 130 131 /* 132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 133 * right zone, so fail and let the caller fall back to the slow 134 * path. 135 */ 136 if (unlikely((flags & FOLL_LONGTERM) && 137 !is_longterm_pinnable_page(page))) 138 return NULL; 139 140 /* 141 * CAUTION: Don't use compound_head() on the page before this 142 * point, the result won't be stable. 143 */ 144 folio = try_get_folio(page, refs); 145 if (!folio) 146 return NULL; 147 148 /* 149 * When pinning a large folio, use an exact count to track it. 150 * 151 * However, be sure to *also* increment the normal folio 152 * refcount field at least once, so that the folio really 153 * is pinned. That's why the refcount from the earlier 154 * try_get_folio() is left intact. 155 */ 156 if (folio_test_large(folio)) 157 atomic_add(refs, folio_pincount_ptr(folio)); 158 else 159 folio_ref_add(folio, 160 refs * (GUP_PIN_COUNTING_BIAS - 1)); 161 /* 162 * Adjust the pincount before re-checking the PTE for changes. 163 * This is essentially a smp_mb() and is paired with a memory 164 * barrier in page_try_share_anon_rmap(). 165 */ 166 smp_mb__after_atomic(); 167 168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 169 170 return folio; 171 } 172 173 WARN_ON_ONCE(1); 174 return NULL; 175 } 176 177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 178 { 179 if (flags & FOLL_PIN) { 180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 181 if (folio_test_large(folio)) 182 atomic_sub(refs, folio_pincount_ptr(folio)); 183 else 184 refs *= GUP_PIN_COUNTING_BIAS; 185 } 186 187 if (!put_devmap_managed_page_refs(&folio->page, refs)) 188 folio_put_refs(folio, refs); 189 } 190 191 /** 192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 193 * @page: pointer to page to be grabbed 194 * @flags: gup flags: these are the FOLL_* flag values. 195 * 196 * This might not do anything at all, depending on the flags argument. 197 * 198 * "grab" names in this file mean, "look at flags to decide whether to use 199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 200 * 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 202 * time. Cases: please see the try_grab_folio() documentation, with 203 * "refs=1". 204 * 205 * Return: true for success, or if no action was required (if neither FOLL_PIN 206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 207 * FOLL_PIN was set, but the page could not be grabbed. 208 */ 209 bool __must_check try_grab_page(struct page *page, unsigned int flags) 210 { 211 struct folio *folio = page_folio(page); 212 213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 215 return false; 216 217 if (flags & FOLL_GET) 218 folio_ref_inc(folio); 219 else if (flags & FOLL_PIN) { 220 /* 221 * Similar to try_grab_folio(): be sure to *also* 222 * increment the normal page refcount field at least once, 223 * so that the page really is pinned. 224 */ 225 if (folio_test_large(folio)) { 226 folio_ref_add(folio, 1); 227 atomic_add(1, folio_pincount_ptr(folio)); 228 } else { 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 233 } 234 235 return true; 236 } 237 238 /** 239 * unpin_user_page() - release a dma-pinned page 240 * @page: pointer to page to be released 241 * 242 * Pages that were pinned via pin_user_pages*() must be released via either 243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 244 * that such pages can be separately tracked and uniquely handled. In 245 * particular, interactions with RDMA and filesystems need special handling. 246 */ 247 void unpin_user_page(struct page *page) 248 { 249 sanity_check_pinned_pages(&page, 1); 250 gup_put_folio(page_folio(page), 1, FOLL_PIN); 251 } 252 EXPORT_SYMBOL(unpin_user_page); 253 254 static inline struct folio *gup_folio_range_next(struct page *start, 255 unsigned long npages, unsigned long i, unsigned int *ntails) 256 { 257 struct page *next = nth_page(start, i); 258 struct folio *folio = page_folio(next); 259 unsigned int nr = 1; 260 261 if (folio_test_large(folio)) 262 nr = min_t(unsigned int, npages - i, 263 folio_nr_pages(folio) - folio_page_idx(folio, next)); 264 265 *ntails = nr; 266 return folio; 267 } 268 269 static inline struct folio *gup_folio_next(struct page **list, 270 unsigned long npages, unsigned long i, unsigned int *ntails) 271 { 272 struct folio *folio = page_folio(list[i]); 273 unsigned int nr; 274 275 for (nr = i + 1; nr < npages; nr++) { 276 if (page_folio(list[nr]) != folio) 277 break; 278 } 279 280 *ntails = nr - i; 281 return folio; 282 } 283 284 /** 285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 286 * @pages: array of pages to be maybe marked dirty, and definitely released. 287 * @npages: number of pages in the @pages array. 288 * @make_dirty: whether to mark the pages dirty 289 * 290 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 291 * variants called on that page. 292 * 293 * For each page in the @pages array, make that page (or its head page, if a 294 * compound page) dirty, if @make_dirty is true, and if the page was previously 295 * listed as clean. In any case, releases all pages using unpin_user_page(), 296 * possibly via unpin_user_pages(), for the non-dirty case. 297 * 298 * Please see the unpin_user_page() documentation for details. 299 * 300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 301 * required, then the caller should a) verify that this is really correct, 302 * because _lock() is usually required, and b) hand code it: 303 * set_page_dirty_lock(), unpin_user_page(). 304 * 305 */ 306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 307 bool make_dirty) 308 { 309 unsigned long i; 310 struct folio *folio; 311 unsigned int nr; 312 313 if (!make_dirty) { 314 unpin_user_pages(pages, npages); 315 return; 316 } 317 318 sanity_check_pinned_pages(pages, npages); 319 for (i = 0; i < npages; i += nr) { 320 folio = gup_folio_next(pages, npages, i, &nr); 321 /* 322 * Checking PageDirty at this point may race with 323 * clear_page_dirty_for_io(), but that's OK. Two key 324 * cases: 325 * 326 * 1) This code sees the page as already dirty, so it 327 * skips the call to set_page_dirty(). That could happen 328 * because clear_page_dirty_for_io() called 329 * page_mkclean(), followed by set_page_dirty(). 330 * However, now the page is going to get written back, 331 * which meets the original intention of setting it 332 * dirty, so all is well: clear_page_dirty_for_io() goes 333 * on to call TestClearPageDirty(), and write the page 334 * back. 335 * 336 * 2) This code sees the page as clean, so it calls 337 * set_page_dirty(). The page stays dirty, despite being 338 * written back, so it gets written back again in the 339 * next writeback cycle. This is harmless. 340 */ 341 if (!folio_test_dirty(folio)) { 342 folio_lock(folio); 343 folio_mark_dirty(folio); 344 folio_unlock(folio); 345 } 346 gup_put_folio(folio, nr, FOLL_PIN); 347 } 348 } 349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 350 351 /** 352 * unpin_user_page_range_dirty_lock() - release and optionally dirty 353 * gup-pinned page range 354 * 355 * @page: the starting page of a range maybe marked dirty, and definitely released. 356 * @npages: number of consecutive pages to release. 357 * @make_dirty: whether to mark the pages dirty 358 * 359 * "gup-pinned page range" refers to a range of pages that has had one of the 360 * pin_user_pages() variants called on that page. 361 * 362 * For the page ranges defined by [page .. page+npages], make that range (or 363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 364 * page range was previously listed as clean. 365 * 366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 367 * required, then the caller should a) verify that this is really correct, 368 * because _lock() is usually required, and b) hand code it: 369 * set_page_dirty_lock(), unpin_user_page(). 370 * 371 */ 372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 373 bool make_dirty) 374 { 375 unsigned long i; 376 struct folio *folio; 377 unsigned int nr; 378 379 for (i = 0; i < npages; i += nr) { 380 folio = gup_folio_range_next(page, npages, i, &nr); 381 if (make_dirty && !folio_test_dirty(folio)) { 382 folio_lock(folio); 383 folio_mark_dirty(folio); 384 folio_unlock(folio); 385 } 386 gup_put_folio(folio, nr, FOLL_PIN); 387 } 388 } 389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 390 391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 392 { 393 unsigned long i; 394 struct folio *folio; 395 unsigned int nr; 396 397 /* 398 * Don't perform any sanity checks because we might have raced with 399 * fork() and some anonymous pages might now actually be shared -- 400 * which is why we're unpinning after all. 401 */ 402 for (i = 0; i < npages; i += nr) { 403 folio = gup_folio_next(pages, npages, i, &nr); 404 gup_put_folio(folio, nr, FOLL_PIN); 405 } 406 } 407 408 /** 409 * unpin_user_pages() - release an array of gup-pinned pages. 410 * @pages: array of pages to be marked dirty and released. 411 * @npages: number of pages in the @pages array. 412 * 413 * For each page in the @pages array, release the page using unpin_user_page(). 414 * 415 * Please see the unpin_user_page() documentation for details. 416 */ 417 void unpin_user_pages(struct page **pages, unsigned long npages) 418 { 419 unsigned long i; 420 struct folio *folio; 421 unsigned int nr; 422 423 /* 424 * If this WARN_ON() fires, then the system *might* be leaking pages (by 425 * leaving them pinned), but probably not. More likely, gup/pup returned 426 * a hard -ERRNO error to the caller, who erroneously passed it here. 427 */ 428 if (WARN_ON(IS_ERR_VALUE(npages))) 429 return; 430 431 sanity_check_pinned_pages(pages, npages); 432 for (i = 0; i < npages; i += nr) { 433 folio = gup_folio_next(pages, npages, i, &nr); 434 gup_put_folio(folio, nr, FOLL_PIN); 435 } 436 } 437 EXPORT_SYMBOL(unpin_user_pages); 438 439 /* 440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 442 * cache bouncing on large SMP machines for concurrent pinned gups. 443 */ 444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 445 { 446 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 447 set_bit(MMF_HAS_PINNED, mm_flags); 448 } 449 450 #ifdef CONFIG_MMU 451 static struct page *no_page_table(struct vm_area_struct *vma, 452 unsigned int flags) 453 { 454 /* 455 * When core dumping an enormous anonymous area that nobody 456 * has touched so far, we don't want to allocate unnecessary pages or 457 * page tables. Return error instead of NULL to skip handle_mm_fault, 458 * then get_dump_page() will return NULL to leave a hole in the dump. 459 * But we can only make this optimization where a hole would surely 460 * be zero-filled if handle_mm_fault() actually did handle it. 461 */ 462 if ((flags & FOLL_DUMP) && 463 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 464 return ERR_PTR(-EFAULT); 465 return NULL; 466 } 467 468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 469 pte_t *pte, unsigned int flags) 470 { 471 if (flags & FOLL_TOUCH) { 472 pte_t entry = *pte; 473 474 if (flags & FOLL_WRITE) 475 entry = pte_mkdirty(entry); 476 entry = pte_mkyoung(entry); 477 478 if (!pte_same(*pte, entry)) { 479 set_pte_at(vma->vm_mm, address, pte, entry); 480 update_mmu_cache(vma, address, pte); 481 } 482 } 483 484 /* Proper page table entry exists, but no corresponding struct page */ 485 return -EEXIST; 486 } 487 488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 489 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 490 struct vm_area_struct *vma, 491 unsigned int flags) 492 { 493 /* If the pte is writable, we can write to the page. */ 494 if (pte_write(pte)) 495 return true; 496 497 /* Maybe FOLL_FORCE is set to override it? */ 498 if (!(flags & FOLL_FORCE)) 499 return false; 500 501 /* But FOLL_FORCE has no effect on shared mappings */ 502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 503 return false; 504 505 /* ... or read-only private ones */ 506 if (!(vma->vm_flags & VM_MAYWRITE)) 507 return false; 508 509 /* ... or already writable ones that just need to take a write fault */ 510 if (vma->vm_flags & VM_WRITE) 511 return false; 512 513 /* 514 * See can_change_pte_writable(): we broke COW and could map the page 515 * writable if we have an exclusive anonymous page ... 516 */ 517 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 518 return false; 519 520 /* ... and a write-fault isn't required for other reasons. */ 521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 522 return false; 523 return !userfaultfd_pte_wp(vma, pte); 524 } 525 526 static struct page *follow_page_pte(struct vm_area_struct *vma, 527 unsigned long address, pmd_t *pmd, unsigned int flags, 528 struct dev_pagemap **pgmap) 529 { 530 struct mm_struct *mm = vma->vm_mm; 531 struct page *page; 532 spinlock_t *ptl; 533 pte_t *ptep, pte; 534 int ret; 535 536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 538 (FOLL_PIN | FOLL_GET))) 539 return ERR_PTR(-EINVAL); 540 if (unlikely(pmd_bad(*pmd))) 541 return no_page_table(vma, flags); 542 543 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 544 pte = *ptep; 545 if (!pte_present(pte)) 546 goto no_page; 547 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 548 goto no_page; 549 550 page = vm_normal_page(vma, address, pte); 551 552 /* 553 * We only care about anon pages in can_follow_write_pte() and don't 554 * have to worry about pte_devmap() because they are never anon. 555 */ 556 if ((flags & FOLL_WRITE) && 557 !can_follow_write_pte(pte, page, vma, flags)) { 558 page = NULL; 559 goto out; 560 } 561 562 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 563 /* 564 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 565 * case since they are only valid while holding the pgmap 566 * reference. 567 */ 568 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 569 if (*pgmap) 570 page = pte_page(pte); 571 else 572 goto no_page; 573 } else if (unlikely(!page)) { 574 if (flags & FOLL_DUMP) { 575 /* Avoid special (like zero) pages in core dumps */ 576 page = ERR_PTR(-EFAULT); 577 goto out; 578 } 579 580 if (is_zero_pfn(pte_pfn(pte))) { 581 page = pte_page(pte); 582 } else { 583 ret = follow_pfn_pte(vma, address, ptep, flags); 584 page = ERR_PTR(ret); 585 goto out; 586 } 587 } 588 589 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 590 page = ERR_PTR(-EMLINK); 591 goto out; 592 } 593 594 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 595 !PageAnonExclusive(page), page); 596 597 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 598 if (unlikely(!try_grab_page(page, flags))) { 599 page = ERR_PTR(-ENOMEM); 600 goto out; 601 } 602 /* 603 * We need to make the page accessible if and only if we are going 604 * to access its content (the FOLL_PIN case). Please see 605 * Documentation/core-api/pin_user_pages.rst for details. 606 */ 607 if (flags & FOLL_PIN) { 608 ret = arch_make_page_accessible(page); 609 if (ret) { 610 unpin_user_page(page); 611 page = ERR_PTR(ret); 612 goto out; 613 } 614 } 615 if (flags & FOLL_TOUCH) { 616 if ((flags & FOLL_WRITE) && 617 !pte_dirty(pte) && !PageDirty(page)) 618 set_page_dirty(page); 619 /* 620 * pte_mkyoung() would be more correct here, but atomic care 621 * is needed to avoid losing the dirty bit: it is easier to use 622 * mark_page_accessed(). 623 */ 624 mark_page_accessed(page); 625 } 626 out: 627 pte_unmap_unlock(ptep, ptl); 628 return page; 629 no_page: 630 pte_unmap_unlock(ptep, ptl); 631 if (!pte_none(pte)) 632 return NULL; 633 return no_page_table(vma, flags); 634 } 635 636 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 637 unsigned long address, pud_t *pudp, 638 unsigned int flags, 639 struct follow_page_context *ctx) 640 { 641 pmd_t *pmd, pmdval; 642 spinlock_t *ptl; 643 struct page *page; 644 struct mm_struct *mm = vma->vm_mm; 645 646 pmd = pmd_offset(pudp, address); 647 /* 648 * The READ_ONCE() will stabilize the pmdval in a register or 649 * on the stack so that it will stop changing under the code. 650 */ 651 pmdval = READ_ONCE(*pmd); 652 if (pmd_none(pmdval)) 653 return no_page_table(vma, flags); 654 if (!pmd_present(pmdval)) 655 return no_page_table(vma, flags); 656 if (pmd_devmap(pmdval)) { 657 ptl = pmd_lock(mm, pmd); 658 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 659 spin_unlock(ptl); 660 if (page) 661 return page; 662 } 663 if (likely(!pmd_trans_huge(pmdval))) 664 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 665 666 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 667 return no_page_table(vma, flags); 668 669 ptl = pmd_lock(mm, pmd); 670 if (unlikely(!pmd_present(*pmd))) { 671 spin_unlock(ptl); 672 return no_page_table(vma, flags); 673 } 674 if (unlikely(!pmd_trans_huge(*pmd))) { 675 spin_unlock(ptl); 676 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 677 } 678 if (flags & FOLL_SPLIT_PMD) { 679 int ret; 680 page = pmd_page(*pmd); 681 if (is_huge_zero_page(page)) { 682 spin_unlock(ptl); 683 ret = 0; 684 split_huge_pmd(vma, pmd, address); 685 if (pmd_trans_unstable(pmd)) 686 ret = -EBUSY; 687 } else { 688 spin_unlock(ptl); 689 split_huge_pmd(vma, pmd, address); 690 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 691 } 692 693 return ret ? ERR_PTR(ret) : 694 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 695 } 696 page = follow_trans_huge_pmd(vma, address, pmd, flags); 697 spin_unlock(ptl); 698 ctx->page_mask = HPAGE_PMD_NR - 1; 699 return page; 700 } 701 702 static struct page *follow_pud_mask(struct vm_area_struct *vma, 703 unsigned long address, p4d_t *p4dp, 704 unsigned int flags, 705 struct follow_page_context *ctx) 706 { 707 pud_t *pud; 708 spinlock_t *ptl; 709 struct page *page; 710 struct mm_struct *mm = vma->vm_mm; 711 712 pud = pud_offset(p4dp, address); 713 if (pud_none(*pud)) 714 return no_page_table(vma, flags); 715 if (pud_devmap(*pud)) { 716 ptl = pud_lock(mm, pud); 717 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 718 spin_unlock(ptl); 719 if (page) 720 return page; 721 } 722 if (unlikely(pud_bad(*pud))) 723 return no_page_table(vma, flags); 724 725 return follow_pmd_mask(vma, address, pud, flags, ctx); 726 } 727 728 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 729 unsigned long address, pgd_t *pgdp, 730 unsigned int flags, 731 struct follow_page_context *ctx) 732 { 733 p4d_t *p4d; 734 735 p4d = p4d_offset(pgdp, address); 736 if (p4d_none(*p4d)) 737 return no_page_table(vma, flags); 738 BUILD_BUG_ON(p4d_huge(*p4d)); 739 if (unlikely(p4d_bad(*p4d))) 740 return no_page_table(vma, flags); 741 742 return follow_pud_mask(vma, address, p4d, flags, ctx); 743 } 744 745 /** 746 * follow_page_mask - look up a page descriptor from a user-virtual address 747 * @vma: vm_area_struct mapping @address 748 * @address: virtual address to look up 749 * @flags: flags modifying lookup behaviour 750 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 751 * pointer to output page_mask 752 * 753 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 754 * 755 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 756 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 757 * 758 * When getting an anonymous page and the caller has to trigger unsharing 759 * of a shared anonymous page first, -EMLINK is returned. The caller should 760 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 761 * relevant with FOLL_PIN and !FOLL_WRITE. 762 * 763 * On output, the @ctx->page_mask is set according to the size of the page. 764 * 765 * Return: the mapped (struct page *), %NULL if no mapping exists, or 766 * an error pointer if there is a mapping to something not represented 767 * by a page descriptor (see also vm_normal_page()). 768 */ 769 static struct page *follow_page_mask(struct vm_area_struct *vma, 770 unsigned long address, unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 pgd_t *pgd; 774 struct page *page; 775 struct mm_struct *mm = vma->vm_mm; 776 777 ctx->page_mask = 0; 778 779 /* 780 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 781 * special hugetlb page table walking code. This eliminates the 782 * need to check for hugetlb entries in the general walking code. 783 * 784 * hugetlb_follow_page_mask is only for follow_page() handling here. 785 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 786 */ 787 if (is_vm_hugetlb_page(vma)) { 788 page = hugetlb_follow_page_mask(vma, address, flags); 789 if (!page) 790 page = no_page_table(vma, flags); 791 return page; 792 } 793 794 pgd = pgd_offset(mm, address); 795 796 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 797 return no_page_table(vma, flags); 798 799 return follow_p4d_mask(vma, address, pgd, flags, ctx); 800 } 801 802 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 803 unsigned int foll_flags) 804 { 805 struct follow_page_context ctx = { NULL }; 806 struct page *page; 807 808 if (vma_is_secretmem(vma)) 809 return NULL; 810 811 if (foll_flags & FOLL_PIN) 812 return NULL; 813 814 page = follow_page_mask(vma, address, foll_flags, &ctx); 815 if (ctx.pgmap) 816 put_dev_pagemap(ctx.pgmap); 817 return page; 818 } 819 820 static int get_gate_page(struct mm_struct *mm, unsigned long address, 821 unsigned int gup_flags, struct vm_area_struct **vma, 822 struct page **page) 823 { 824 pgd_t *pgd; 825 p4d_t *p4d; 826 pud_t *pud; 827 pmd_t *pmd; 828 pte_t *pte; 829 int ret = -EFAULT; 830 831 /* user gate pages are read-only */ 832 if (gup_flags & FOLL_WRITE) 833 return -EFAULT; 834 if (address > TASK_SIZE) 835 pgd = pgd_offset_k(address); 836 else 837 pgd = pgd_offset_gate(mm, address); 838 if (pgd_none(*pgd)) 839 return -EFAULT; 840 p4d = p4d_offset(pgd, address); 841 if (p4d_none(*p4d)) 842 return -EFAULT; 843 pud = pud_offset(p4d, address); 844 if (pud_none(*pud)) 845 return -EFAULT; 846 pmd = pmd_offset(pud, address); 847 if (!pmd_present(*pmd)) 848 return -EFAULT; 849 VM_BUG_ON(pmd_trans_huge(*pmd)); 850 pte = pte_offset_map(pmd, address); 851 if (pte_none(*pte)) 852 goto unmap; 853 *vma = get_gate_vma(mm); 854 if (!page) 855 goto out; 856 *page = vm_normal_page(*vma, address, *pte); 857 if (!*page) { 858 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 859 goto unmap; 860 *page = pte_page(*pte); 861 } 862 if (unlikely(!try_grab_page(*page, gup_flags))) { 863 ret = -ENOMEM; 864 goto unmap; 865 } 866 out: 867 ret = 0; 868 unmap: 869 pte_unmap(pte); 870 return ret; 871 } 872 873 /* 874 * mmap_lock must be held on entry. If @locked != NULL and *@flags 875 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 876 * is, *@locked will be set to 0 and -EBUSY returned. 877 */ 878 static int faultin_page(struct vm_area_struct *vma, 879 unsigned long address, unsigned int *flags, bool unshare, 880 int *locked) 881 { 882 unsigned int fault_flags = 0; 883 vm_fault_t ret; 884 885 if (*flags & FOLL_NOFAULT) 886 return -EFAULT; 887 if (*flags & FOLL_WRITE) 888 fault_flags |= FAULT_FLAG_WRITE; 889 if (*flags & FOLL_REMOTE) 890 fault_flags |= FAULT_FLAG_REMOTE; 891 if (locked) 892 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 893 if (*flags & FOLL_NOWAIT) 894 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 895 if (*flags & FOLL_TRIED) { 896 /* 897 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 898 * can co-exist 899 */ 900 fault_flags |= FAULT_FLAG_TRIED; 901 } 902 if (unshare) { 903 fault_flags |= FAULT_FLAG_UNSHARE; 904 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 905 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 906 } 907 908 ret = handle_mm_fault(vma, address, fault_flags, NULL); 909 910 if (ret & VM_FAULT_COMPLETED) { 911 /* 912 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 913 * mmap lock in the page fault handler. Sanity check this. 914 */ 915 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 916 if (locked) 917 *locked = 0; 918 /* 919 * We should do the same as VM_FAULT_RETRY, but let's not 920 * return -EBUSY since that's not reflecting the reality of 921 * what has happened - we've just fully completed a page 922 * fault, with the mmap lock released. Use -EAGAIN to show 923 * that we want to take the mmap lock _again_. 924 */ 925 return -EAGAIN; 926 } 927 928 if (ret & VM_FAULT_ERROR) { 929 int err = vm_fault_to_errno(ret, *flags); 930 931 if (err) 932 return err; 933 BUG(); 934 } 935 936 if (ret & VM_FAULT_RETRY) { 937 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 938 *locked = 0; 939 return -EBUSY; 940 } 941 942 return 0; 943 } 944 945 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 946 { 947 vm_flags_t vm_flags = vma->vm_flags; 948 int write = (gup_flags & FOLL_WRITE); 949 int foreign = (gup_flags & FOLL_REMOTE); 950 951 if (vm_flags & (VM_IO | VM_PFNMAP)) 952 return -EFAULT; 953 954 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 955 return -EFAULT; 956 957 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 958 return -EOPNOTSUPP; 959 960 if (vma_is_secretmem(vma)) 961 return -EFAULT; 962 963 if (write) { 964 if (!(vm_flags & VM_WRITE)) { 965 if (!(gup_flags & FOLL_FORCE)) 966 return -EFAULT; 967 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 968 if (is_vm_hugetlb_page(vma)) 969 return -EFAULT; 970 /* 971 * We used to let the write,force case do COW in a 972 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 973 * set a breakpoint in a read-only mapping of an 974 * executable, without corrupting the file (yet only 975 * when that file had been opened for writing!). 976 * Anon pages in shared mappings are surprising: now 977 * just reject it. 978 */ 979 if (!is_cow_mapping(vm_flags)) 980 return -EFAULT; 981 } 982 } else if (!(vm_flags & VM_READ)) { 983 if (!(gup_flags & FOLL_FORCE)) 984 return -EFAULT; 985 /* 986 * Is there actually any vma we can reach here which does not 987 * have VM_MAYREAD set? 988 */ 989 if (!(vm_flags & VM_MAYREAD)) 990 return -EFAULT; 991 } 992 /* 993 * gups are always data accesses, not instruction 994 * fetches, so execute=false here 995 */ 996 if (!arch_vma_access_permitted(vma, write, false, foreign)) 997 return -EFAULT; 998 return 0; 999 } 1000 1001 /** 1002 * __get_user_pages() - pin user pages in memory 1003 * @mm: mm_struct of target mm 1004 * @start: starting user address 1005 * @nr_pages: number of pages from start to pin 1006 * @gup_flags: flags modifying pin behaviour 1007 * @pages: array that receives pointers to the pages pinned. 1008 * Should be at least nr_pages long. Or NULL, if caller 1009 * only intends to ensure the pages are faulted in. 1010 * @vmas: array of pointers to vmas corresponding to each page. 1011 * Or NULL if the caller does not require them. 1012 * @locked: whether we're still with the mmap_lock held 1013 * 1014 * Returns either number of pages pinned (which may be less than the 1015 * number requested), or an error. Details about the return value: 1016 * 1017 * -- If nr_pages is 0, returns 0. 1018 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1019 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1020 * pages pinned. Again, this may be less than nr_pages. 1021 * -- 0 return value is possible when the fault would need to be retried. 1022 * 1023 * The caller is responsible for releasing returned @pages, via put_page(). 1024 * 1025 * @vmas are valid only as long as mmap_lock is held. 1026 * 1027 * Must be called with mmap_lock held. It may be released. See below. 1028 * 1029 * __get_user_pages walks a process's page tables and takes a reference to 1030 * each struct page that each user address corresponds to at a given 1031 * instant. That is, it takes the page that would be accessed if a user 1032 * thread accesses the given user virtual address at that instant. 1033 * 1034 * This does not guarantee that the page exists in the user mappings when 1035 * __get_user_pages returns, and there may even be a completely different 1036 * page there in some cases (eg. if mmapped pagecache has been invalidated 1037 * and subsequently re faulted). However it does guarantee that the page 1038 * won't be freed completely. And mostly callers simply care that the page 1039 * contains data that was valid *at some point in time*. Typically, an IO 1040 * or similar operation cannot guarantee anything stronger anyway because 1041 * locks can't be held over the syscall boundary. 1042 * 1043 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1044 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1045 * appropriate) must be called after the page is finished with, and 1046 * before put_page is called. 1047 * 1048 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1049 * released by an up_read(). That can happen if @gup_flags does not 1050 * have FOLL_NOWAIT. 1051 * 1052 * A caller using such a combination of @locked and @gup_flags 1053 * must therefore hold the mmap_lock for reading only, and recognize 1054 * when it's been released. Otherwise, it must be held for either 1055 * reading or writing and will not be released. 1056 * 1057 * In most cases, get_user_pages or get_user_pages_fast should be used 1058 * instead of __get_user_pages. __get_user_pages should be used only if 1059 * you need some special @gup_flags. 1060 */ 1061 static long __get_user_pages(struct mm_struct *mm, 1062 unsigned long start, unsigned long nr_pages, 1063 unsigned int gup_flags, struct page **pages, 1064 struct vm_area_struct **vmas, int *locked) 1065 { 1066 long ret = 0, i = 0; 1067 struct vm_area_struct *vma = NULL; 1068 struct follow_page_context ctx = { NULL }; 1069 1070 if (!nr_pages) 1071 return 0; 1072 1073 start = untagged_addr(start); 1074 1075 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1076 1077 do { 1078 struct page *page; 1079 unsigned int foll_flags = gup_flags; 1080 unsigned int page_increm; 1081 1082 /* first iteration or cross vma bound */ 1083 if (!vma || start >= vma->vm_end) { 1084 vma = find_extend_vma(mm, start); 1085 if (!vma && in_gate_area(mm, start)) { 1086 ret = get_gate_page(mm, start & PAGE_MASK, 1087 gup_flags, &vma, 1088 pages ? &pages[i] : NULL); 1089 if (ret) 1090 goto out; 1091 ctx.page_mask = 0; 1092 goto next_page; 1093 } 1094 1095 if (!vma) { 1096 ret = -EFAULT; 1097 goto out; 1098 } 1099 ret = check_vma_flags(vma, gup_flags); 1100 if (ret) 1101 goto out; 1102 1103 if (is_vm_hugetlb_page(vma)) { 1104 i = follow_hugetlb_page(mm, vma, pages, vmas, 1105 &start, &nr_pages, i, 1106 gup_flags, locked); 1107 if (locked && *locked == 0) { 1108 /* 1109 * We've got a VM_FAULT_RETRY 1110 * and we've lost mmap_lock. 1111 * We must stop here. 1112 */ 1113 BUG_ON(gup_flags & FOLL_NOWAIT); 1114 goto out; 1115 } 1116 continue; 1117 } 1118 } 1119 retry: 1120 /* 1121 * If we have a pending SIGKILL, don't keep faulting pages and 1122 * potentially allocating memory. 1123 */ 1124 if (fatal_signal_pending(current)) { 1125 ret = -EINTR; 1126 goto out; 1127 } 1128 cond_resched(); 1129 1130 page = follow_page_mask(vma, start, foll_flags, &ctx); 1131 if (!page || PTR_ERR(page) == -EMLINK) { 1132 ret = faultin_page(vma, start, &foll_flags, 1133 PTR_ERR(page) == -EMLINK, locked); 1134 switch (ret) { 1135 case 0: 1136 goto retry; 1137 case -EBUSY: 1138 case -EAGAIN: 1139 ret = 0; 1140 fallthrough; 1141 case -EFAULT: 1142 case -ENOMEM: 1143 case -EHWPOISON: 1144 goto out; 1145 } 1146 BUG(); 1147 } else if (PTR_ERR(page) == -EEXIST) { 1148 /* 1149 * Proper page table entry exists, but no corresponding 1150 * struct page. If the caller expects **pages to be 1151 * filled in, bail out now, because that can't be done 1152 * for this page. 1153 */ 1154 if (pages) { 1155 ret = PTR_ERR(page); 1156 goto out; 1157 } 1158 1159 goto next_page; 1160 } else if (IS_ERR(page)) { 1161 ret = PTR_ERR(page); 1162 goto out; 1163 } 1164 if (pages) { 1165 pages[i] = page; 1166 flush_anon_page(vma, page, start); 1167 flush_dcache_page(page); 1168 ctx.page_mask = 0; 1169 } 1170 next_page: 1171 if (vmas) { 1172 vmas[i] = vma; 1173 ctx.page_mask = 0; 1174 } 1175 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1176 if (page_increm > nr_pages) 1177 page_increm = nr_pages; 1178 i += page_increm; 1179 start += page_increm * PAGE_SIZE; 1180 nr_pages -= page_increm; 1181 } while (nr_pages); 1182 out: 1183 if (ctx.pgmap) 1184 put_dev_pagemap(ctx.pgmap); 1185 return i ? i : ret; 1186 } 1187 1188 static bool vma_permits_fault(struct vm_area_struct *vma, 1189 unsigned int fault_flags) 1190 { 1191 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1192 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1193 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1194 1195 if (!(vm_flags & vma->vm_flags)) 1196 return false; 1197 1198 /* 1199 * The architecture might have a hardware protection 1200 * mechanism other than read/write that can deny access. 1201 * 1202 * gup always represents data access, not instruction 1203 * fetches, so execute=false here: 1204 */ 1205 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 /** 1212 * fixup_user_fault() - manually resolve a user page fault 1213 * @mm: mm_struct of target mm 1214 * @address: user address 1215 * @fault_flags:flags to pass down to handle_mm_fault() 1216 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1217 * does not allow retry. If NULL, the caller must guarantee 1218 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1219 * 1220 * This is meant to be called in the specific scenario where for locking reasons 1221 * we try to access user memory in atomic context (within a pagefault_disable() 1222 * section), this returns -EFAULT, and we want to resolve the user fault before 1223 * trying again. 1224 * 1225 * Typically this is meant to be used by the futex code. 1226 * 1227 * The main difference with get_user_pages() is that this function will 1228 * unconditionally call handle_mm_fault() which will in turn perform all the 1229 * necessary SW fixup of the dirty and young bits in the PTE, while 1230 * get_user_pages() only guarantees to update these in the struct page. 1231 * 1232 * This is important for some architectures where those bits also gate the 1233 * access permission to the page because they are maintained in software. On 1234 * such architectures, gup() will not be enough to make a subsequent access 1235 * succeed. 1236 * 1237 * This function will not return with an unlocked mmap_lock. So it has not the 1238 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1239 */ 1240 int fixup_user_fault(struct mm_struct *mm, 1241 unsigned long address, unsigned int fault_flags, 1242 bool *unlocked) 1243 { 1244 struct vm_area_struct *vma; 1245 vm_fault_t ret; 1246 1247 address = untagged_addr(address); 1248 1249 if (unlocked) 1250 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1251 1252 retry: 1253 vma = find_extend_vma(mm, address); 1254 if (!vma || address < vma->vm_start) 1255 return -EFAULT; 1256 1257 if (!vma_permits_fault(vma, fault_flags)) 1258 return -EFAULT; 1259 1260 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1261 fatal_signal_pending(current)) 1262 return -EINTR; 1263 1264 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1265 1266 if (ret & VM_FAULT_COMPLETED) { 1267 /* 1268 * NOTE: it's a pity that we need to retake the lock here 1269 * to pair with the unlock() in the callers. Ideally we 1270 * could tell the callers so they do not need to unlock. 1271 */ 1272 mmap_read_lock(mm); 1273 *unlocked = true; 1274 return 0; 1275 } 1276 1277 if (ret & VM_FAULT_ERROR) { 1278 int err = vm_fault_to_errno(ret, 0); 1279 1280 if (err) 1281 return err; 1282 BUG(); 1283 } 1284 1285 if (ret & VM_FAULT_RETRY) { 1286 mmap_read_lock(mm); 1287 *unlocked = true; 1288 fault_flags |= FAULT_FLAG_TRIED; 1289 goto retry; 1290 } 1291 1292 return 0; 1293 } 1294 EXPORT_SYMBOL_GPL(fixup_user_fault); 1295 1296 /* 1297 * Please note that this function, unlike __get_user_pages will not 1298 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1299 */ 1300 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1301 unsigned long start, 1302 unsigned long nr_pages, 1303 struct page **pages, 1304 struct vm_area_struct **vmas, 1305 int *locked, 1306 unsigned int flags) 1307 { 1308 long ret, pages_done; 1309 bool lock_dropped; 1310 1311 if (locked) { 1312 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1313 BUG_ON(vmas); 1314 /* check caller initialized locked */ 1315 BUG_ON(*locked != 1); 1316 } 1317 1318 if (flags & FOLL_PIN) 1319 mm_set_has_pinned_flag(&mm->flags); 1320 1321 /* 1322 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1323 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1324 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1325 * for FOLL_GET, not for the newer FOLL_PIN. 1326 * 1327 * FOLL_PIN always expects pages to be non-null, but no need to assert 1328 * that here, as any failures will be obvious enough. 1329 */ 1330 if (pages && !(flags & FOLL_PIN)) 1331 flags |= FOLL_GET; 1332 1333 pages_done = 0; 1334 lock_dropped = false; 1335 for (;;) { 1336 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1337 vmas, locked); 1338 if (!locked) 1339 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1340 return ret; 1341 1342 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1343 if (!*locked) { 1344 BUG_ON(ret < 0); 1345 BUG_ON(ret >= nr_pages); 1346 } 1347 1348 if (ret > 0) { 1349 nr_pages -= ret; 1350 pages_done += ret; 1351 if (!nr_pages) 1352 break; 1353 } 1354 if (*locked) { 1355 /* 1356 * VM_FAULT_RETRY didn't trigger or it was a 1357 * FOLL_NOWAIT. 1358 */ 1359 if (!pages_done) 1360 pages_done = ret; 1361 break; 1362 } 1363 /* 1364 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1365 * For the prefault case (!pages) we only update counts. 1366 */ 1367 if (likely(pages)) 1368 pages += ret; 1369 start += ret << PAGE_SHIFT; 1370 lock_dropped = true; 1371 1372 retry: 1373 /* 1374 * Repeat on the address that fired VM_FAULT_RETRY 1375 * with both FAULT_FLAG_ALLOW_RETRY and 1376 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1377 * by fatal signals, so we need to check it before we 1378 * start trying again otherwise it can loop forever. 1379 */ 1380 1381 if (fatal_signal_pending(current)) { 1382 if (!pages_done) 1383 pages_done = -EINTR; 1384 break; 1385 } 1386 1387 ret = mmap_read_lock_killable(mm); 1388 if (ret) { 1389 BUG_ON(ret > 0); 1390 if (!pages_done) 1391 pages_done = ret; 1392 break; 1393 } 1394 1395 *locked = 1; 1396 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1397 pages, NULL, locked); 1398 if (!*locked) { 1399 /* Continue to retry until we succeeded */ 1400 BUG_ON(ret != 0); 1401 goto retry; 1402 } 1403 if (ret != 1) { 1404 BUG_ON(ret > 1); 1405 if (!pages_done) 1406 pages_done = ret; 1407 break; 1408 } 1409 nr_pages--; 1410 pages_done++; 1411 if (!nr_pages) 1412 break; 1413 if (likely(pages)) 1414 pages++; 1415 start += PAGE_SIZE; 1416 } 1417 if (lock_dropped && *locked) { 1418 /* 1419 * We must let the caller know we temporarily dropped the lock 1420 * and so the critical section protected by it was lost. 1421 */ 1422 mmap_read_unlock(mm); 1423 *locked = 0; 1424 } 1425 return pages_done; 1426 } 1427 1428 /** 1429 * populate_vma_page_range() - populate a range of pages in the vma. 1430 * @vma: target vma 1431 * @start: start address 1432 * @end: end address 1433 * @locked: whether the mmap_lock is still held 1434 * 1435 * This takes care of mlocking the pages too if VM_LOCKED is set. 1436 * 1437 * Return either number of pages pinned in the vma, or a negative error 1438 * code on error. 1439 * 1440 * vma->vm_mm->mmap_lock must be held. 1441 * 1442 * If @locked is NULL, it may be held for read or write and will 1443 * be unperturbed. 1444 * 1445 * If @locked is non-NULL, it must held for read only and may be 1446 * released. If it's released, *@locked will be set to 0. 1447 */ 1448 long populate_vma_page_range(struct vm_area_struct *vma, 1449 unsigned long start, unsigned long end, int *locked) 1450 { 1451 struct mm_struct *mm = vma->vm_mm; 1452 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1453 int gup_flags; 1454 long ret; 1455 1456 VM_BUG_ON(!PAGE_ALIGNED(start)); 1457 VM_BUG_ON(!PAGE_ALIGNED(end)); 1458 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1459 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1460 mmap_assert_locked(mm); 1461 1462 /* 1463 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1464 * faultin_page() to break COW, so it has no work to do here. 1465 */ 1466 if (vma->vm_flags & VM_LOCKONFAULT) 1467 return nr_pages; 1468 1469 gup_flags = FOLL_TOUCH; 1470 /* 1471 * We want to touch writable mappings with a write fault in order 1472 * to break COW, except for shared mappings because these don't COW 1473 * and we would not want to dirty them for nothing. 1474 */ 1475 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1476 gup_flags |= FOLL_WRITE; 1477 1478 /* 1479 * We want mlock to succeed for regions that have any permissions 1480 * other than PROT_NONE. 1481 */ 1482 if (vma_is_accessible(vma)) 1483 gup_flags |= FOLL_FORCE; 1484 1485 /* 1486 * We made sure addr is within a VMA, so the following will 1487 * not result in a stack expansion that recurses back here. 1488 */ 1489 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1490 NULL, NULL, locked); 1491 lru_add_drain(); 1492 return ret; 1493 } 1494 1495 /* 1496 * faultin_vma_page_range() - populate (prefault) page tables inside the 1497 * given VMA range readable/writable 1498 * 1499 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1500 * 1501 * @vma: target vma 1502 * @start: start address 1503 * @end: end address 1504 * @write: whether to prefault readable or writable 1505 * @locked: whether the mmap_lock is still held 1506 * 1507 * Returns either number of processed pages in the vma, or a negative error 1508 * code on error (see __get_user_pages()). 1509 * 1510 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1511 * covered by the VMA. 1512 * 1513 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1514 * 1515 * If @locked is non-NULL, it must held for read only and may be released. If 1516 * it's released, *@locked will be set to 0. 1517 */ 1518 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1519 unsigned long end, bool write, int *locked) 1520 { 1521 struct mm_struct *mm = vma->vm_mm; 1522 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1523 int gup_flags; 1524 long ret; 1525 1526 VM_BUG_ON(!PAGE_ALIGNED(start)); 1527 VM_BUG_ON(!PAGE_ALIGNED(end)); 1528 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1529 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1530 mmap_assert_locked(mm); 1531 1532 /* 1533 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1534 * the page dirty with FOLL_WRITE -- which doesn't make a 1535 * difference with !FOLL_FORCE, because the page is writable 1536 * in the page table. 1537 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1538 * a poisoned page. 1539 * !FOLL_FORCE: Require proper access permissions. 1540 */ 1541 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1542 if (write) 1543 gup_flags |= FOLL_WRITE; 1544 1545 /* 1546 * We want to report -EINVAL instead of -EFAULT for any permission 1547 * problems or incompatible mappings. 1548 */ 1549 if (check_vma_flags(vma, gup_flags)) 1550 return -EINVAL; 1551 1552 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1553 NULL, NULL, locked); 1554 lru_add_drain(); 1555 return ret; 1556 } 1557 1558 /* 1559 * __mm_populate - populate and/or mlock pages within a range of address space. 1560 * 1561 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1562 * flags. VMAs must be already marked with the desired vm_flags, and 1563 * mmap_lock must not be held. 1564 */ 1565 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1566 { 1567 struct mm_struct *mm = current->mm; 1568 unsigned long end, nstart, nend; 1569 struct vm_area_struct *vma = NULL; 1570 int locked = 0; 1571 long ret = 0; 1572 1573 end = start + len; 1574 1575 for (nstart = start; nstart < end; nstart = nend) { 1576 /* 1577 * We want to fault in pages for [nstart; end) address range. 1578 * Find first corresponding VMA. 1579 */ 1580 if (!locked) { 1581 locked = 1; 1582 mmap_read_lock(mm); 1583 vma = find_vma_intersection(mm, nstart, end); 1584 } else if (nstart >= vma->vm_end) 1585 vma = find_vma_intersection(mm, vma->vm_end, end); 1586 1587 if (!vma) 1588 break; 1589 /* 1590 * Set [nstart; nend) to intersection of desired address 1591 * range with the first VMA. Also, skip undesirable VMA types. 1592 */ 1593 nend = min(end, vma->vm_end); 1594 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1595 continue; 1596 if (nstart < vma->vm_start) 1597 nstart = vma->vm_start; 1598 /* 1599 * Now fault in a range of pages. populate_vma_page_range() 1600 * double checks the vma flags, so that it won't mlock pages 1601 * if the vma was already munlocked. 1602 */ 1603 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1604 if (ret < 0) { 1605 if (ignore_errors) { 1606 ret = 0; 1607 continue; /* continue at next VMA */ 1608 } 1609 break; 1610 } 1611 nend = nstart + ret * PAGE_SIZE; 1612 ret = 0; 1613 } 1614 if (locked) 1615 mmap_read_unlock(mm); 1616 return ret; /* 0 or negative error code */ 1617 } 1618 #else /* CONFIG_MMU */ 1619 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1620 unsigned long nr_pages, struct page **pages, 1621 struct vm_area_struct **vmas, int *locked, 1622 unsigned int foll_flags) 1623 { 1624 struct vm_area_struct *vma; 1625 unsigned long vm_flags; 1626 long i; 1627 1628 /* calculate required read or write permissions. 1629 * If FOLL_FORCE is set, we only require the "MAY" flags. 1630 */ 1631 vm_flags = (foll_flags & FOLL_WRITE) ? 1632 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1633 vm_flags &= (foll_flags & FOLL_FORCE) ? 1634 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1635 1636 for (i = 0; i < nr_pages; i++) { 1637 vma = find_vma(mm, start); 1638 if (!vma) 1639 goto finish_or_fault; 1640 1641 /* protect what we can, including chardevs */ 1642 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1643 !(vm_flags & vma->vm_flags)) 1644 goto finish_or_fault; 1645 1646 if (pages) { 1647 pages[i] = virt_to_page((void *)start); 1648 if (pages[i]) 1649 get_page(pages[i]); 1650 } 1651 if (vmas) 1652 vmas[i] = vma; 1653 start = (start + PAGE_SIZE) & PAGE_MASK; 1654 } 1655 1656 return i; 1657 1658 finish_or_fault: 1659 return i ? : -EFAULT; 1660 } 1661 #endif /* !CONFIG_MMU */ 1662 1663 /** 1664 * fault_in_writeable - fault in userspace address range for writing 1665 * @uaddr: start of address range 1666 * @size: size of address range 1667 * 1668 * Returns the number of bytes not faulted in (like copy_to_user() and 1669 * copy_from_user()). 1670 */ 1671 size_t fault_in_writeable(char __user *uaddr, size_t size) 1672 { 1673 char __user *start = uaddr, *end; 1674 1675 if (unlikely(size == 0)) 1676 return 0; 1677 if (!user_write_access_begin(uaddr, size)) 1678 return size; 1679 if (!PAGE_ALIGNED(uaddr)) { 1680 unsafe_put_user(0, uaddr, out); 1681 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1682 } 1683 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1684 if (unlikely(end < start)) 1685 end = NULL; 1686 while (uaddr != end) { 1687 unsafe_put_user(0, uaddr, out); 1688 uaddr += PAGE_SIZE; 1689 } 1690 1691 out: 1692 user_write_access_end(); 1693 if (size > uaddr - start) 1694 return size - (uaddr - start); 1695 return 0; 1696 } 1697 EXPORT_SYMBOL(fault_in_writeable); 1698 1699 /** 1700 * fault_in_subpage_writeable - fault in an address range for writing 1701 * @uaddr: start of address range 1702 * @size: size of address range 1703 * 1704 * Fault in a user address range for writing while checking for permissions at 1705 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1706 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1707 * 1708 * Returns the number of bytes not faulted in (like copy_to_user() and 1709 * copy_from_user()). 1710 */ 1711 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1712 { 1713 size_t faulted_in; 1714 1715 /* 1716 * Attempt faulting in at page granularity first for page table 1717 * permission checking. The arch-specific probe_subpage_writeable() 1718 * functions may not check for this. 1719 */ 1720 faulted_in = size - fault_in_writeable(uaddr, size); 1721 if (faulted_in) 1722 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1723 1724 return size - faulted_in; 1725 } 1726 EXPORT_SYMBOL(fault_in_subpage_writeable); 1727 1728 /* 1729 * fault_in_safe_writeable - fault in an address range for writing 1730 * @uaddr: start of address range 1731 * @size: length of address range 1732 * 1733 * Faults in an address range for writing. This is primarily useful when we 1734 * already know that some or all of the pages in the address range aren't in 1735 * memory. 1736 * 1737 * Unlike fault_in_writeable(), this function is non-destructive. 1738 * 1739 * Note that we don't pin or otherwise hold the pages referenced that we fault 1740 * in. There's no guarantee that they'll stay in memory for any duration of 1741 * time. 1742 * 1743 * Returns the number of bytes not faulted in, like copy_to_user() and 1744 * copy_from_user(). 1745 */ 1746 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1747 { 1748 unsigned long start = (unsigned long)uaddr, end; 1749 struct mm_struct *mm = current->mm; 1750 bool unlocked = false; 1751 1752 if (unlikely(size == 0)) 1753 return 0; 1754 end = PAGE_ALIGN(start + size); 1755 if (end < start) 1756 end = 0; 1757 1758 mmap_read_lock(mm); 1759 do { 1760 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1761 break; 1762 start = (start + PAGE_SIZE) & PAGE_MASK; 1763 } while (start != end); 1764 mmap_read_unlock(mm); 1765 1766 if (size > (unsigned long)uaddr - start) 1767 return size - ((unsigned long)uaddr - start); 1768 return 0; 1769 } 1770 EXPORT_SYMBOL(fault_in_safe_writeable); 1771 1772 /** 1773 * fault_in_readable - fault in userspace address range for reading 1774 * @uaddr: start of user address range 1775 * @size: size of user address range 1776 * 1777 * Returns the number of bytes not faulted in (like copy_to_user() and 1778 * copy_from_user()). 1779 */ 1780 size_t fault_in_readable(const char __user *uaddr, size_t size) 1781 { 1782 const char __user *start = uaddr, *end; 1783 volatile char c; 1784 1785 if (unlikely(size == 0)) 1786 return 0; 1787 if (!user_read_access_begin(uaddr, size)) 1788 return size; 1789 if (!PAGE_ALIGNED(uaddr)) { 1790 unsafe_get_user(c, uaddr, out); 1791 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1792 } 1793 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1794 if (unlikely(end < start)) 1795 end = NULL; 1796 while (uaddr != end) { 1797 unsafe_get_user(c, uaddr, out); 1798 uaddr += PAGE_SIZE; 1799 } 1800 1801 out: 1802 user_read_access_end(); 1803 (void)c; 1804 if (size > uaddr - start) 1805 return size - (uaddr - start); 1806 return 0; 1807 } 1808 EXPORT_SYMBOL(fault_in_readable); 1809 1810 /** 1811 * get_dump_page() - pin user page in memory while writing it to core dump 1812 * @addr: user address 1813 * 1814 * Returns struct page pointer of user page pinned for dump, 1815 * to be freed afterwards by put_page(). 1816 * 1817 * Returns NULL on any kind of failure - a hole must then be inserted into 1818 * the corefile, to preserve alignment with its headers; and also returns 1819 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1820 * allowing a hole to be left in the corefile to save disk space. 1821 * 1822 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1823 */ 1824 #ifdef CONFIG_ELF_CORE 1825 struct page *get_dump_page(unsigned long addr) 1826 { 1827 struct mm_struct *mm = current->mm; 1828 struct page *page; 1829 int locked = 1; 1830 int ret; 1831 1832 if (mmap_read_lock_killable(mm)) 1833 return NULL; 1834 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1835 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1836 if (locked) 1837 mmap_read_unlock(mm); 1838 return (ret == 1) ? page : NULL; 1839 } 1840 #endif /* CONFIG_ELF_CORE */ 1841 1842 #ifdef CONFIG_MIGRATION 1843 /* 1844 * Returns the number of collected pages. Return value is always >= 0. 1845 */ 1846 static unsigned long collect_longterm_unpinnable_pages( 1847 struct list_head *movable_page_list, 1848 unsigned long nr_pages, 1849 struct page **pages) 1850 { 1851 unsigned long i, collected = 0; 1852 struct folio *prev_folio = NULL; 1853 bool drain_allow = true; 1854 1855 for (i = 0; i < nr_pages; i++) { 1856 struct folio *folio = page_folio(pages[i]); 1857 1858 if (folio == prev_folio) 1859 continue; 1860 prev_folio = folio; 1861 1862 if (folio_is_longterm_pinnable(folio)) 1863 continue; 1864 1865 collected++; 1866 1867 if (folio_is_device_coherent(folio)) 1868 continue; 1869 1870 if (folio_test_hugetlb(folio)) { 1871 isolate_hugetlb(&folio->page, movable_page_list); 1872 continue; 1873 } 1874 1875 if (!folio_test_lru(folio) && drain_allow) { 1876 lru_add_drain_all(); 1877 drain_allow = false; 1878 } 1879 1880 if (!folio_isolate_lru(folio)) 1881 continue; 1882 1883 list_add_tail(&folio->lru, movable_page_list); 1884 node_stat_mod_folio(folio, 1885 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1886 folio_nr_pages(folio)); 1887 } 1888 1889 return collected; 1890 } 1891 1892 /* 1893 * Unpins all pages and migrates device coherent pages and movable_page_list. 1894 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1895 * (or partial success). 1896 */ 1897 static int migrate_longterm_unpinnable_pages( 1898 struct list_head *movable_page_list, 1899 unsigned long nr_pages, 1900 struct page **pages) 1901 { 1902 int ret; 1903 unsigned long i; 1904 1905 for (i = 0; i < nr_pages; i++) { 1906 struct folio *folio = page_folio(pages[i]); 1907 1908 if (folio_is_device_coherent(folio)) { 1909 /* 1910 * Migration will fail if the page is pinned, so convert 1911 * the pin on the source page to a normal reference. 1912 */ 1913 pages[i] = NULL; 1914 folio_get(folio); 1915 gup_put_folio(folio, 1, FOLL_PIN); 1916 1917 if (migrate_device_coherent_page(&folio->page)) { 1918 ret = -EBUSY; 1919 goto err; 1920 } 1921 1922 continue; 1923 } 1924 1925 /* 1926 * We can't migrate pages with unexpected references, so drop 1927 * the reference obtained by __get_user_pages_locked(). 1928 * Migrating pages have been added to movable_page_list after 1929 * calling folio_isolate_lru() which takes a reference so the 1930 * page won't be freed if it's migrating. 1931 */ 1932 unpin_user_page(pages[i]); 1933 pages[i] = NULL; 1934 } 1935 1936 if (!list_empty(movable_page_list)) { 1937 struct migration_target_control mtc = { 1938 .nid = NUMA_NO_NODE, 1939 .gfp_mask = GFP_USER | __GFP_NOWARN, 1940 }; 1941 1942 if (migrate_pages(movable_page_list, alloc_migration_target, 1943 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1944 MR_LONGTERM_PIN, NULL)) { 1945 ret = -ENOMEM; 1946 goto err; 1947 } 1948 } 1949 1950 putback_movable_pages(movable_page_list); 1951 1952 return -EAGAIN; 1953 1954 err: 1955 for (i = 0; i < nr_pages; i++) 1956 if (pages[i]) 1957 unpin_user_page(pages[i]); 1958 putback_movable_pages(movable_page_list); 1959 1960 return ret; 1961 } 1962 1963 /* 1964 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 1965 * pages in the range are required to be pinned via FOLL_PIN, before calling 1966 * this routine. 1967 * 1968 * If any pages in the range are not allowed to be pinned, then this routine 1969 * will migrate those pages away, unpin all the pages in the range and return 1970 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 1971 * call this routine again. 1972 * 1973 * If an error other than -EAGAIN occurs, this indicates a migration failure. 1974 * The caller should give up, and propagate the error back up the call stack. 1975 * 1976 * If everything is OK and all pages in the range are allowed to be pinned, then 1977 * this routine leaves all pages pinned and returns zero for success. 1978 */ 1979 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1980 struct page **pages) 1981 { 1982 unsigned long collected; 1983 LIST_HEAD(movable_page_list); 1984 1985 collected = collect_longterm_unpinnable_pages(&movable_page_list, 1986 nr_pages, pages); 1987 if (!collected) 1988 return 0; 1989 1990 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 1991 pages); 1992 } 1993 #else 1994 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1995 struct page **pages) 1996 { 1997 return 0; 1998 } 1999 #endif /* CONFIG_MIGRATION */ 2000 2001 /* 2002 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2003 * allows us to process the FOLL_LONGTERM flag. 2004 */ 2005 static long __gup_longterm_locked(struct mm_struct *mm, 2006 unsigned long start, 2007 unsigned long nr_pages, 2008 struct page **pages, 2009 struct vm_area_struct **vmas, 2010 int *locked, 2011 unsigned int gup_flags) 2012 { 2013 bool must_unlock = false; 2014 unsigned int flags; 2015 long rc, nr_pinned_pages; 2016 2017 if (locked && WARN_ON_ONCE(!*locked)) 2018 return -EINVAL; 2019 2020 if (!(gup_flags & FOLL_LONGTERM)) 2021 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2022 locked, gup_flags); 2023 2024 /* 2025 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM 2026 * implies FOLL_PIN (although the reverse is not true). Therefore it is 2027 * correct to unconditionally call check_and_migrate_movable_pages() 2028 * which assumes pages have been pinned via FOLL_PIN. 2029 * 2030 * Enforce the above reasoning by asserting that FOLL_PIN is set. 2031 */ 2032 if (WARN_ON(!(gup_flags & FOLL_PIN))) 2033 return -EINVAL; 2034 flags = memalloc_pin_save(); 2035 do { 2036 if (locked && !*locked) { 2037 mmap_read_lock(mm); 2038 must_unlock = true; 2039 *locked = 1; 2040 } 2041 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2042 pages, vmas, locked, 2043 gup_flags); 2044 if (nr_pinned_pages <= 0) { 2045 rc = nr_pinned_pages; 2046 break; 2047 } 2048 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2049 } while (rc == -EAGAIN); 2050 memalloc_pin_restore(flags); 2051 2052 if (locked && *locked && must_unlock) { 2053 mmap_read_unlock(mm); 2054 *locked = 0; 2055 } 2056 return rc ? rc : nr_pinned_pages; 2057 } 2058 2059 static bool is_valid_gup_flags(unsigned int gup_flags) 2060 { 2061 /* 2062 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2063 * never directly by the caller, so enforce that with an assertion: 2064 */ 2065 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2066 return false; 2067 /* 2068 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2069 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2070 * FOLL_PIN. 2071 */ 2072 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2073 return false; 2074 2075 return true; 2076 } 2077 2078 #ifdef CONFIG_MMU 2079 /** 2080 * get_user_pages_remote() - pin user pages in memory 2081 * @mm: mm_struct of target mm 2082 * @start: starting user address 2083 * @nr_pages: number of pages from start to pin 2084 * @gup_flags: flags modifying lookup behaviour 2085 * @pages: array that receives pointers to the pages pinned. 2086 * Should be at least nr_pages long. Or NULL, if caller 2087 * only intends to ensure the pages are faulted in. 2088 * @vmas: array of pointers to vmas corresponding to each page. 2089 * Or NULL if the caller does not require them. 2090 * @locked: pointer to lock flag indicating whether lock is held and 2091 * subsequently whether VM_FAULT_RETRY functionality can be 2092 * utilised. Lock must initially be held. 2093 * 2094 * Returns either number of pages pinned (which may be less than the 2095 * number requested), or an error. Details about the return value: 2096 * 2097 * -- If nr_pages is 0, returns 0. 2098 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2099 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2100 * pages pinned. Again, this may be less than nr_pages. 2101 * 2102 * The caller is responsible for releasing returned @pages, via put_page(). 2103 * 2104 * @vmas are valid only as long as mmap_lock is held. 2105 * 2106 * Must be called with mmap_lock held for read or write. 2107 * 2108 * get_user_pages_remote walks a process's page tables and takes a reference 2109 * to each struct page that each user address corresponds to at a given 2110 * instant. That is, it takes the page that would be accessed if a user 2111 * thread accesses the given user virtual address at that instant. 2112 * 2113 * This does not guarantee that the page exists in the user mappings when 2114 * get_user_pages_remote returns, and there may even be a completely different 2115 * page there in some cases (eg. if mmapped pagecache has been invalidated 2116 * and subsequently re faulted). However it does guarantee that the page 2117 * won't be freed completely. And mostly callers simply care that the page 2118 * contains data that was valid *at some point in time*. Typically, an IO 2119 * or similar operation cannot guarantee anything stronger anyway because 2120 * locks can't be held over the syscall boundary. 2121 * 2122 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2123 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2124 * be called after the page is finished with, and before put_page is called. 2125 * 2126 * get_user_pages_remote is typically used for fewer-copy IO operations, 2127 * to get a handle on the memory by some means other than accesses 2128 * via the user virtual addresses. The pages may be submitted for 2129 * DMA to devices or accessed via their kernel linear mapping (via the 2130 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2131 * 2132 * See also get_user_pages_fast, for performance critical applications. 2133 * 2134 * get_user_pages_remote should be phased out in favor of 2135 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2136 * should use get_user_pages_remote because it cannot pass 2137 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2138 */ 2139 long get_user_pages_remote(struct mm_struct *mm, 2140 unsigned long start, unsigned long nr_pages, 2141 unsigned int gup_flags, struct page **pages, 2142 struct vm_area_struct **vmas, int *locked) 2143 { 2144 if (!is_valid_gup_flags(gup_flags)) 2145 return -EINVAL; 2146 2147 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 2148 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2149 } 2150 EXPORT_SYMBOL(get_user_pages_remote); 2151 2152 #else /* CONFIG_MMU */ 2153 long get_user_pages_remote(struct mm_struct *mm, 2154 unsigned long start, unsigned long nr_pages, 2155 unsigned int gup_flags, struct page **pages, 2156 struct vm_area_struct **vmas, int *locked) 2157 { 2158 return 0; 2159 } 2160 #endif /* !CONFIG_MMU */ 2161 2162 /** 2163 * get_user_pages() - pin user pages in memory 2164 * @start: starting user address 2165 * @nr_pages: number of pages from start to pin 2166 * @gup_flags: flags modifying lookup behaviour 2167 * @pages: array that receives pointers to the pages pinned. 2168 * Should be at least nr_pages long. Or NULL, if caller 2169 * only intends to ensure the pages are faulted in. 2170 * @vmas: array of pointers to vmas corresponding to each page. 2171 * Or NULL if the caller does not require them. 2172 * 2173 * This is the same as get_user_pages_remote(), just with a less-flexible 2174 * calling convention where we assume that the mm being operated on belongs to 2175 * the current task, and doesn't allow passing of a locked parameter. We also 2176 * obviously don't pass FOLL_REMOTE in here. 2177 */ 2178 long get_user_pages(unsigned long start, unsigned long nr_pages, 2179 unsigned int gup_flags, struct page **pages, 2180 struct vm_area_struct **vmas) 2181 { 2182 if (!is_valid_gup_flags(gup_flags)) 2183 return -EINVAL; 2184 2185 return __gup_longterm_locked(current->mm, start, nr_pages, 2186 pages, vmas, NULL, gup_flags | FOLL_TOUCH); 2187 } 2188 EXPORT_SYMBOL(get_user_pages); 2189 2190 /* 2191 * get_user_pages_unlocked() is suitable to replace the form: 2192 * 2193 * mmap_read_lock(mm); 2194 * get_user_pages(mm, ..., pages, NULL); 2195 * mmap_read_unlock(mm); 2196 * 2197 * with: 2198 * 2199 * get_user_pages_unlocked(mm, ..., pages); 2200 * 2201 * It is functionally equivalent to get_user_pages_fast so 2202 * get_user_pages_fast should be used instead if specific gup_flags 2203 * (e.g. FOLL_FORCE) are not required. 2204 */ 2205 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2206 struct page **pages, unsigned int gup_flags) 2207 { 2208 struct mm_struct *mm = current->mm; 2209 int locked = 1; 2210 long ret; 2211 2212 mmap_read_lock(mm); 2213 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked, 2214 gup_flags | FOLL_TOUCH); 2215 if (locked) 2216 mmap_read_unlock(mm); 2217 return ret; 2218 } 2219 EXPORT_SYMBOL(get_user_pages_unlocked); 2220 2221 /* 2222 * Fast GUP 2223 * 2224 * get_user_pages_fast attempts to pin user pages by walking the page 2225 * tables directly and avoids taking locks. Thus the walker needs to be 2226 * protected from page table pages being freed from under it, and should 2227 * block any THP splits. 2228 * 2229 * One way to achieve this is to have the walker disable interrupts, and 2230 * rely on IPIs from the TLB flushing code blocking before the page table 2231 * pages are freed. This is unsuitable for architectures that do not need 2232 * to broadcast an IPI when invalidating TLBs. 2233 * 2234 * Another way to achieve this is to batch up page table containing pages 2235 * belonging to more than one mm_user, then rcu_sched a callback to free those 2236 * pages. Disabling interrupts will allow the fast_gup walker to both block 2237 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2238 * (which is a relatively rare event). The code below adopts this strategy. 2239 * 2240 * Before activating this code, please be aware that the following assumptions 2241 * are currently made: 2242 * 2243 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2244 * free pages containing page tables or TLB flushing requires IPI broadcast. 2245 * 2246 * *) ptes can be read atomically by the architecture. 2247 * 2248 * *) access_ok is sufficient to validate userspace address ranges. 2249 * 2250 * The last two assumptions can be relaxed by the addition of helper functions. 2251 * 2252 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2253 */ 2254 #ifdef CONFIG_HAVE_FAST_GUP 2255 2256 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2257 unsigned int flags, 2258 struct page **pages) 2259 { 2260 while ((*nr) - nr_start) { 2261 struct page *page = pages[--(*nr)]; 2262 2263 ClearPageReferenced(page); 2264 if (flags & FOLL_PIN) 2265 unpin_user_page(page); 2266 else 2267 put_page(page); 2268 } 2269 } 2270 2271 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2272 /* 2273 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2274 * operations. 2275 * 2276 * To pin the page, fast-gup needs to do below in order: 2277 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2278 * 2279 * For the rest of pgtable operations where pgtable updates can be racy 2280 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2281 * is pinned. 2282 * 2283 * Above will work for all pte-level operations, including THP split. 2284 * 2285 * For THP collapse, it's a bit more complicated because fast-gup may be 2286 * walking a pgtable page that is being freed (pte is still valid but pmd 2287 * can be cleared already). To avoid race in such condition, we need to 2288 * also check pmd here to make sure pmd doesn't change (corresponds to 2289 * pmdp_collapse_flush() in the THP collapse code path). 2290 */ 2291 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2292 unsigned long end, unsigned int flags, 2293 struct page **pages, int *nr) 2294 { 2295 struct dev_pagemap *pgmap = NULL; 2296 int nr_start = *nr, ret = 0; 2297 pte_t *ptep, *ptem; 2298 2299 ptem = ptep = pte_offset_map(&pmd, addr); 2300 do { 2301 pte_t pte = ptep_get_lockless(ptep); 2302 struct page *page; 2303 struct folio *folio; 2304 2305 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2306 goto pte_unmap; 2307 2308 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2309 goto pte_unmap; 2310 2311 if (pte_devmap(pte)) { 2312 if (unlikely(flags & FOLL_LONGTERM)) 2313 goto pte_unmap; 2314 2315 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2316 if (unlikely(!pgmap)) { 2317 undo_dev_pagemap(nr, nr_start, flags, pages); 2318 goto pte_unmap; 2319 } 2320 } else if (pte_special(pte)) 2321 goto pte_unmap; 2322 2323 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2324 page = pte_page(pte); 2325 2326 folio = try_grab_folio(page, 1, flags); 2327 if (!folio) 2328 goto pte_unmap; 2329 2330 if (unlikely(page_is_secretmem(page))) { 2331 gup_put_folio(folio, 1, flags); 2332 goto pte_unmap; 2333 } 2334 2335 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2336 unlikely(pte_val(pte) != pte_val(*ptep))) { 2337 gup_put_folio(folio, 1, flags); 2338 goto pte_unmap; 2339 } 2340 2341 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2342 gup_put_folio(folio, 1, flags); 2343 goto pte_unmap; 2344 } 2345 2346 /* 2347 * We need to make the page accessible if and only if we are 2348 * going to access its content (the FOLL_PIN case). Please 2349 * see Documentation/core-api/pin_user_pages.rst for 2350 * details. 2351 */ 2352 if (flags & FOLL_PIN) { 2353 ret = arch_make_page_accessible(page); 2354 if (ret) { 2355 gup_put_folio(folio, 1, flags); 2356 goto pte_unmap; 2357 } 2358 } 2359 folio_set_referenced(folio); 2360 pages[*nr] = page; 2361 (*nr)++; 2362 } while (ptep++, addr += PAGE_SIZE, addr != end); 2363 2364 ret = 1; 2365 2366 pte_unmap: 2367 if (pgmap) 2368 put_dev_pagemap(pgmap); 2369 pte_unmap(ptem); 2370 return ret; 2371 } 2372 #else 2373 2374 /* 2375 * If we can't determine whether or not a pte is special, then fail immediately 2376 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2377 * to be special. 2378 * 2379 * For a futex to be placed on a THP tail page, get_futex_key requires a 2380 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2381 * useful to have gup_huge_pmd even if we can't operate on ptes. 2382 */ 2383 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2384 unsigned long end, unsigned int flags, 2385 struct page **pages, int *nr) 2386 { 2387 return 0; 2388 } 2389 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2390 2391 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2392 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2393 unsigned long end, unsigned int flags, 2394 struct page **pages, int *nr) 2395 { 2396 int nr_start = *nr; 2397 struct dev_pagemap *pgmap = NULL; 2398 2399 do { 2400 struct page *page = pfn_to_page(pfn); 2401 2402 pgmap = get_dev_pagemap(pfn, pgmap); 2403 if (unlikely(!pgmap)) { 2404 undo_dev_pagemap(nr, nr_start, flags, pages); 2405 break; 2406 } 2407 SetPageReferenced(page); 2408 pages[*nr] = page; 2409 if (unlikely(!try_grab_page(page, flags))) { 2410 undo_dev_pagemap(nr, nr_start, flags, pages); 2411 break; 2412 } 2413 (*nr)++; 2414 pfn++; 2415 } while (addr += PAGE_SIZE, addr != end); 2416 2417 put_dev_pagemap(pgmap); 2418 return addr == end; 2419 } 2420 2421 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2422 unsigned long end, unsigned int flags, 2423 struct page **pages, int *nr) 2424 { 2425 unsigned long fault_pfn; 2426 int nr_start = *nr; 2427 2428 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2429 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2430 return 0; 2431 2432 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2433 undo_dev_pagemap(nr, nr_start, flags, pages); 2434 return 0; 2435 } 2436 return 1; 2437 } 2438 2439 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2440 unsigned long end, unsigned int flags, 2441 struct page **pages, int *nr) 2442 { 2443 unsigned long fault_pfn; 2444 int nr_start = *nr; 2445 2446 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2447 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2448 return 0; 2449 2450 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2451 undo_dev_pagemap(nr, nr_start, flags, pages); 2452 return 0; 2453 } 2454 return 1; 2455 } 2456 #else 2457 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2458 unsigned long end, unsigned int flags, 2459 struct page **pages, int *nr) 2460 { 2461 BUILD_BUG(); 2462 return 0; 2463 } 2464 2465 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2466 unsigned long end, unsigned int flags, 2467 struct page **pages, int *nr) 2468 { 2469 BUILD_BUG(); 2470 return 0; 2471 } 2472 #endif 2473 2474 static int record_subpages(struct page *page, unsigned long addr, 2475 unsigned long end, struct page **pages) 2476 { 2477 int nr; 2478 2479 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2480 pages[nr] = nth_page(page, nr); 2481 2482 return nr; 2483 } 2484 2485 #ifdef CONFIG_ARCH_HAS_HUGEPD 2486 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2487 unsigned long sz) 2488 { 2489 unsigned long __boundary = (addr + sz) & ~(sz-1); 2490 return (__boundary - 1 < end - 1) ? __boundary : end; 2491 } 2492 2493 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2494 unsigned long end, unsigned int flags, 2495 struct page **pages, int *nr) 2496 { 2497 unsigned long pte_end; 2498 struct page *page; 2499 struct folio *folio; 2500 pte_t pte; 2501 int refs; 2502 2503 pte_end = (addr + sz) & ~(sz-1); 2504 if (pte_end < end) 2505 end = pte_end; 2506 2507 pte = huge_ptep_get(ptep); 2508 2509 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2510 return 0; 2511 2512 /* hugepages are never "special" */ 2513 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2514 2515 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2516 refs = record_subpages(page, addr, end, pages + *nr); 2517 2518 folio = try_grab_folio(page, refs, flags); 2519 if (!folio) 2520 return 0; 2521 2522 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2523 gup_put_folio(folio, refs, flags); 2524 return 0; 2525 } 2526 2527 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2528 gup_put_folio(folio, refs, flags); 2529 return 0; 2530 } 2531 2532 *nr += refs; 2533 folio_set_referenced(folio); 2534 return 1; 2535 } 2536 2537 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2538 unsigned int pdshift, unsigned long end, unsigned int flags, 2539 struct page **pages, int *nr) 2540 { 2541 pte_t *ptep; 2542 unsigned long sz = 1UL << hugepd_shift(hugepd); 2543 unsigned long next; 2544 2545 ptep = hugepte_offset(hugepd, addr, pdshift); 2546 do { 2547 next = hugepte_addr_end(addr, end, sz); 2548 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2549 return 0; 2550 } while (ptep++, addr = next, addr != end); 2551 2552 return 1; 2553 } 2554 #else 2555 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2556 unsigned int pdshift, unsigned long end, unsigned int flags, 2557 struct page **pages, int *nr) 2558 { 2559 return 0; 2560 } 2561 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2562 2563 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2564 unsigned long end, unsigned int flags, 2565 struct page **pages, int *nr) 2566 { 2567 struct page *page; 2568 struct folio *folio; 2569 int refs; 2570 2571 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2572 return 0; 2573 2574 if (pmd_devmap(orig)) { 2575 if (unlikely(flags & FOLL_LONGTERM)) 2576 return 0; 2577 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2578 pages, nr); 2579 } 2580 2581 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2582 refs = record_subpages(page, addr, end, pages + *nr); 2583 2584 folio = try_grab_folio(page, refs, flags); 2585 if (!folio) 2586 return 0; 2587 2588 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2589 gup_put_folio(folio, refs, flags); 2590 return 0; 2591 } 2592 2593 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2594 gup_put_folio(folio, refs, flags); 2595 return 0; 2596 } 2597 2598 *nr += refs; 2599 folio_set_referenced(folio); 2600 return 1; 2601 } 2602 2603 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2604 unsigned long end, unsigned int flags, 2605 struct page **pages, int *nr) 2606 { 2607 struct page *page; 2608 struct folio *folio; 2609 int refs; 2610 2611 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2612 return 0; 2613 2614 if (pud_devmap(orig)) { 2615 if (unlikely(flags & FOLL_LONGTERM)) 2616 return 0; 2617 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2618 pages, nr); 2619 } 2620 2621 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2622 refs = record_subpages(page, addr, end, pages + *nr); 2623 2624 folio = try_grab_folio(page, refs, flags); 2625 if (!folio) 2626 return 0; 2627 2628 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2629 gup_put_folio(folio, refs, flags); 2630 return 0; 2631 } 2632 2633 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2634 gup_put_folio(folio, refs, flags); 2635 return 0; 2636 } 2637 2638 *nr += refs; 2639 folio_set_referenced(folio); 2640 return 1; 2641 } 2642 2643 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2644 unsigned long end, unsigned int flags, 2645 struct page **pages, int *nr) 2646 { 2647 int refs; 2648 struct page *page; 2649 struct folio *folio; 2650 2651 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2652 return 0; 2653 2654 BUILD_BUG_ON(pgd_devmap(orig)); 2655 2656 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2657 refs = record_subpages(page, addr, end, pages + *nr); 2658 2659 folio = try_grab_folio(page, refs, flags); 2660 if (!folio) 2661 return 0; 2662 2663 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2664 gup_put_folio(folio, refs, flags); 2665 return 0; 2666 } 2667 2668 *nr += refs; 2669 folio_set_referenced(folio); 2670 return 1; 2671 } 2672 2673 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2674 unsigned int flags, struct page **pages, int *nr) 2675 { 2676 unsigned long next; 2677 pmd_t *pmdp; 2678 2679 pmdp = pmd_offset_lockless(pudp, pud, addr); 2680 do { 2681 pmd_t pmd = READ_ONCE(*pmdp); 2682 2683 next = pmd_addr_end(addr, end); 2684 if (!pmd_present(pmd)) 2685 return 0; 2686 2687 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2688 pmd_devmap(pmd))) { 2689 if (pmd_protnone(pmd) && 2690 !gup_can_follow_protnone(flags)) 2691 return 0; 2692 2693 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2694 pages, nr)) 2695 return 0; 2696 2697 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2698 /* 2699 * architecture have different format for hugetlbfs 2700 * pmd format and THP pmd format 2701 */ 2702 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2703 PMD_SHIFT, next, flags, pages, nr)) 2704 return 0; 2705 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2706 return 0; 2707 } while (pmdp++, addr = next, addr != end); 2708 2709 return 1; 2710 } 2711 2712 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2713 unsigned int flags, struct page **pages, int *nr) 2714 { 2715 unsigned long next; 2716 pud_t *pudp; 2717 2718 pudp = pud_offset_lockless(p4dp, p4d, addr); 2719 do { 2720 pud_t pud = READ_ONCE(*pudp); 2721 2722 next = pud_addr_end(addr, end); 2723 if (unlikely(!pud_present(pud))) 2724 return 0; 2725 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2726 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2727 pages, nr)) 2728 return 0; 2729 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2730 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2731 PUD_SHIFT, next, flags, pages, nr)) 2732 return 0; 2733 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2734 return 0; 2735 } while (pudp++, addr = next, addr != end); 2736 2737 return 1; 2738 } 2739 2740 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2741 unsigned int flags, struct page **pages, int *nr) 2742 { 2743 unsigned long next; 2744 p4d_t *p4dp; 2745 2746 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2747 do { 2748 p4d_t p4d = READ_ONCE(*p4dp); 2749 2750 next = p4d_addr_end(addr, end); 2751 if (p4d_none(p4d)) 2752 return 0; 2753 BUILD_BUG_ON(p4d_huge(p4d)); 2754 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2755 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2756 P4D_SHIFT, next, flags, pages, nr)) 2757 return 0; 2758 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2759 return 0; 2760 } while (p4dp++, addr = next, addr != end); 2761 2762 return 1; 2763 } 2764 2765 static void gup_pgd_range(unsigned long addr, unsigned long end, 2766 unsigned int flags, struct page **pages, int *nr) 2767 { 2768 unsigned long next; 2769 pgd_t *pgdp; 2770 2771 pgdp = pgd_offset(current->mm, addr); 2772 do { 2773 pgd_t pgd = READ_ONCE(*pgdp); 2774 2775 next = pgd_addr_end(addr, end); 2776 if (pgd_none(pgd)) 2777 return; 2778 if (unlikely(pgd_huge(pgd))) { 2779 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2780 pages, nr)) 2781 return; 2782 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2783 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2784 PGDIR_SHIFT, next, flags, pages, nr)) 2785 return; 2786 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2787 return; 2788 } while (pgdp++, addr = next, addr != end); 2789 } 2790 #else 2791 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2792 unsigned int flags, struct page **pages, int *nr) 2793 { 2794 } 2795 #endif /* CONFIG_HAVE_FAST_GUP */ 2796 2797 #ifndef gup_fast_permitted 2798 /* 2799 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2800 * we need to fall back to the slow version: 2801 */ 2802 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2803 { 2804 return true; 2805 } 2806 #endif 2807 2808 static unsigned long lockless_pages_from_mm(unsigned long start, 2809 unsigned long end, 2810 unsigned int gup_flags, 2811 struct page **pages) 2812 { 2813 unsigned long flags; 2814 int nr_pinned = 0; 2815 unsigned seq; 2816 2817 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2818 !gup_fast_permitted(start, end)) 2819 return 0; 2820 2821 if (gup_flags & FOLL_PIN) { 2822 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2823 if (seq & 1) 2824 return 0; 2825 } 2826 2827 /* 2828 * Disable interrupts. The nested form is used, in order to allow full, 2829 * general purpose use of this routine. 2830 * 2831 * With interrupts disabled, we block page table pages from being freed 2832 * from under us. See struct mmu_table_batch comments in 2833 * include/asm-generic/tlb.h for more details. 2834 * 2835 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2836 * that come from THPs splitting. 2837 */ 2838 local_irq_save(flags); 2839 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2840 local_irq_restore(flags); 2841 2842 /* 2843 * When pinning pages for DMA there could be a concurrent write protect 2844 * from fork() via copy_page_range(), in this case always fail fast GUP. 2845 */ 2846 if (gup_flags & FOLL_PIN) { 2847 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2848 unpin_user_pages_lockless(pages, nr_pinned); 2849 return 0; 2850 } else { 2851 sanity_check_pinned_pages(pages, nr_pinned); 2852 } 2853 } 2854 return nr_pinned; 2855 } 2856 2857 static int internal_get_user_pages_fast(unsigned long start, 2858 unsigned long nr_pages, 2859 unsigned int gup_flags, 2860 struct page **pages) 2861 { 2862 unsigned long len, end; 2863 unsigned long nr_pinned; 2864 int ret; 2865 2866 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2867 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2868 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2869 return -EINVAL; 2870 2871 if (gup_flags & FOLL_PIN) 2872 mm_set_has_pinned_flag(¤t->mm->flags); 2873 2874 if (!(gup_flags & FOLL_FAST_ONLY)) 2875 might_lock_read(¤t->mm->mmap_lock); 2876 2877 start = untagged_addr(start) & PAGE_MASK; 2878 len = nr_pages << PAGE_SHIFT; 2879 if (check_add_overflow(start, len, &end)) 2880 return 0; 2881 if (unlikely(!access_ok((void __user *)start, len))) 2882 return -EFAULT; 2883 2884 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2885 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2886 return nr_pinned; 2887 2888 /* Slow path: try to get the remaining pages with get_user_pages */ 2889 start += nr_pinned << PAGE_SHIFT; 2890 pages += nr_pinned; 2891 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages, 2892 gup_flags); 2893 if (ret < 0) { 2894 /* 2895 * The caller has to unpin the pages we already pinned so 2896 * returning -errno is not an option 2897 */ 2898 if (nr_pinned) 2899 return nr_pinned; 2900 return ret; 2901 } 2902 return ret + nr_pinned; 2903 } 2904 2905 /** 2906 * get_user_pages_fast_only() - pin user pages in memory 2907 * @start: starting user address 2908 * @nr_pages: number of pages from start to pin 2909 * @gup_flags: flags modifying pin behaviour 2910 * @pages: array that receives pointers to the pages pinned. 2911 * Should be at least nr_pages long. 2912 * 2913 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2914 * the regular GUP. 2915 * Note a difference with get_user_pages_fast: this always returns the 2916 * number of pages pinned, 0 if no pages were pinned. 2917 * 2918 * If the architecture does not support this function, simply return with no 2919 * pages pinned. 2920 * 2921 * Careful, careful! COW breaking can go either way, so a non-write 2922 * access can get ambiguous page results. If you call this function without 2923 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2924 */ 2925 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2926 unsigned int gup_flags, struct page **pages) 2927 { 2928 int nr_pinned; 2929 /* 2930 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2931 * because gup fast is always a "pin with a +1 page refcount" request. 2932 * 2933 * FOLL_FAST_ONLY is required in order to match the API description of 2934 * this routine: no fall back to regular ("slow") GUP. 2935 */ 2936 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2937 2938 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2939 pages); 2940 2941 /* 2942 * As specified in the API description above, this routine is not 2943 * allowed to return negative values. However, the common core 2944 * routine internal_get_user_pages_fast() *can* return -errno. 2945 * Therefore, correct for that here: 2946 */ 2947 if (nr_pinned < 0) 2948 nr_pinned = 0; 2949 2950 return nr_pinned; 2951 } 2952 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2953 2954 /** 2955 * get_user_pages_fast() - pin user pages in memory 2956 * @start: starting user address 2957 * @nr_pages: number of pages from start to pin 2958 * @gup_flags: flags modifying pin behaviour 2959 * @pages: array that receives pointers to the pages pinned. 2960 * Should be at least nr_pages long. 2961 * 2962 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2963 * If not successful, it will fall back to taking the lock and 2964 * calling get_user_pages(). 2965 * 2966 * Returns number of pages pinned. This may be fewer than the number requested. 2967 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2968 * -errno. 2969 */ 2970 int get_user_pages_fast(unsigned long start, int nr_pages, 2971 unsigned int gup_flags, struct page **pages) 2972 { 2973 if (!is_valid_gup_flags(gup_flags)) 2974 return -EINVAL; 2975 2976 /* 2977 * The caller may or may not have explicitly set FOLL_GET; either way is 2978 * OK. However, internally (within mm/gup.c), gup fast variants must set 2979 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2980 * request. 2981 */ 2982 gup_flags |= FOLL_GET; 2983 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2984 } 2985 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2986 2987 /** 2988 * pin_user_pages_fast() - pin user pages in memory without taking locks 2989 * 2990 * @start: starting user address 2991 * @nr_pages: number of pages from start to pin 2992 * @gup_flags: flags modifying pin behaviour 2993 * @pages: array that receives pointers to the pages pinned. 2994 * Should be at least nr_pages long. 2995 * 2996 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2997 * get_user_pages_fast() for documentation on the function arguments, because 2998 * the arguments here are identical. 2999 * 3000 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3001 * see Documentation/core-api/pin_user_pages.rst for further details. 3002 */ 3003 int pin_user_pages_fast(unsigned long start, int nr_pages, 3004 unsigned int gup_flags, struct page **pages) 3005 { 3006 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3007 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3008 return -EINVAL; 3009 3010 if (WARN_ON_ONCE(!pages)) 3011 return -EINVAL; 3012 3013 gup_flags |= FOLL_PIN; 3014 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3015 } 3016 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3017 3018 /* 3019 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3020 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3021 * 3022 * The API rules are the same, too: no negative values may be returned. 3023 */ 3024 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3025 unsigned int gup_flags, struct page **pages) 3026 { 3027 int nr_pinned; 3028 3029 /* 3030 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3031 * rules require returning 0, rather than -errno: 3032 */ 3033 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3034 return 0; 3035 3036 if (WARN_ON_ONCE(!pages)) 3037 return 0; 3038 /* 3039 * FOLL_FAST_ONLY is required in order to match the API description of 3040 * this routine: no fall back to regular ("slow") GUP. 3041 */ 3042 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3043 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3044 pages); 3045 /* 3046 * This routine is not allowed to return negative values. However, 3047 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3048 * correct for that here: 3049 */ 3050 if (nr_pinned < 0) 3051 nr_pinned = 0; 3052 3053 return nr_pinned; 3054 } 3055 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3056 3057 /** 3058 * pin_user_pages_remote() - pin pages of a remote process 3059 * 3060 * @mm: mm_struct of target mm 3061 * @start: starting user address 3062 * @nr_pages: number of pages from start to pin 3063 * @gup_flags: flags modifying lookup behaviour 3064 * @pages: array that receives pointers to the pages pinned. 3065 * Should be at least nr_pages long. 3066 * @vmas: array of pointers to vmas corresponding to each page. 3067 * Or NULL if the caller does not require them. 3068 * @locked: pointer to lock flag indicating whether lock is held and 3069 * subsequently whether VM_FAULT_RETRY functionality can be 3070 * utilised. Lock must initially be held. 3071 * 3072 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3073 * get_user_pages_remote() for documentation on the function arguments, because 3074 * the arguments here are identical. 3075 * 3076 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3077 * see Documentation/core-api/pin_user_pages.rst for details. 3078 */ 3079 long pin_user_pages_remote(struct mm_struct *mm, 3080 unsigned long start, unsigned long nr_pages, 3081 unsigned int gup_flags, struct page **pages, 3082 struct vm_area_struct **vmas, int *locked) 3083 { 3084 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3085 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3086 return -EINVAL; 3087 3088 if (WARN_ON_ONCE(!pages)) 3089 return -EINVAL; 3090 3091 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 3092 gup_flags | FOLL_PIN | FOLL_TOUCH | 3093 FOLL_REMOTE); 3094 } 3095 EXPORT_SYMBOL(pin_user_pages_remote); 3096 3097 /** 3098 * pin_user_pages() - pin user pages in memory for use by other devices 3099 * 3100 * @start: starting user address 3101 * @nr_pages: number of pages from start to pin 3102 * @gup_flags: flags modifying lookup behaviour 3103 * @pages: array that receives pointers to the pages pinned. 3104 * Should be at least nr_pages long. 3105 * @vmas: array of pointers to vmas corresponding to each page. 3106 * Or NULL if the caller does not require them. 3107 * 3108 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3109 * FOLL_PIN is set. 3110 * 3111 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3112 * see Documentation/core-api/pin_user_pages.rst for details. 3113 */ 3114 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3115 unsigned int gup_flags, struct page **pages, 3116 struct vm_area_struct **vmas) 3117 { 3118 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3119 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3120 return -EINVAL; 3121 3122 if (WARN_ON_ONCE(!pages)) 3123 return -EINVAL; 3124 3125 gup_flags |= FOLL_PIN; 3126 return __gup_longterm_locked(current->mm, start, nr_pages, 3127 pages, vmas, NULL, gup_flags); 3128 } 3129 EXPORT_SYMBOL(pin_user_pages); 3130 3131 /* 3132 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3133 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3134 * FOLL_PIN and rejects FOLL_GET. 3135 */ 3136 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3137 struct page **pages, unsigned int gup_flags) 3138 { 3139 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3140 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3141 return -EINVAL; 3142 3143 if (WARN_ON_ONCE(!pages)) 3144 return -EINVAL; 3145 3146 gup_flags |= FOLL_PIN; 3147 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3148 } 3149 EXPORT_SYMBOL(pin_user_pages_unlocked); 3150