xref: /openbmc/linux/mm/gup.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (flags & FOLL_GET)
127 		return try_get_folio(page, refs);
128 	else if (flags & FOLL_PIN) {
129 		struct folio *folio;
130 
131 		/*
132 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 		 * right zone, so fail and let the caller fall back to the slow
134 		 * path.
135 		 */
136 		if (unlikely((flags & FOLL_LONGTERM) &&
137 			     !is_longterm_pinnable_page(page)))
138 			return NULL;
139 
140 		/*
141 		 * CAUTION: Don't use compound_head() on the page before this
142 		 * point, the result won't be stable.
143 		 */
144 		folio = try_get_folio(page, refs);
145 		if (!folio)
146 			return NULL;
147 
148 		/*
149 		 * When pinning a large folio, use an exact count to track it.
150 		 *
151 		 * However, be sure to *also* increment the normal folio
152 		 * refcount field at least once, so that the folio really
153 		 * is pinned.  That's why the refcount from the earlier
154 		 * try_get_folio() is left intact.
155 		 */
156 		if (folio_test_large(folio))
157 			atomic_add(refs, folio_pincount_ptr(folio));
158 		else
159 			folio_ref_add(folio,
160 					refs * (GUP_PIN_COUNTING_BIAS - 1));
161 		/*
162 		 * Adjust the pincount before re-checking the PTE for changes.
163 		 * This is essentially a smp_mb() and is paired with a memory
164 		 * barrier in page_try_share_anon_rmap().
165 		 */
166 		smp_mb__after_atomic();
167 
168 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
169 
170 		return folio;
171 	}
172 
173 	WARN_ON_ONCE(1);
174 	return NULL;
175 }
176 
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
178 {
179 	if (flags & FOLL_PIN) {
180 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 		if (folio_test_large(folio))
182 			atomic_sub(refs, folio_pincount_ptr(folio));
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	if (!put_devmap_managed_page_refs(&folio->page, refs))
188 		folio_put_refs(folio, refs);
189 }
190 
191 /**
192  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193  * @page:    pointer to page to be grabbed
194  * @flags:   gup flags: these are the FOLL_* flag values.
195  *
196  * This might not do anything at all, depending on the flags argument.
197  *
198  * "grab" names in this file mean, "look at flags to decide whether to use
199  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_folio() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	struct folio *folio = page_folio(page);
212 
213 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
215 		return false;
216 
217 	if (flags & FOLL_GET)
218 		folio_ref_inc(folio);
219 	else if (flags & FOLL_PIN) {
220 		/*
221 		 * Similar to try_grab_folio(): be sure to *also*
222 		 * increment the normal page refcount field at least once,
223 		 * so that the page really is pinned.
224 		 */
225 		if (folio_test_large(folio)) {
226 			folio_ref_add(folio, 1);
227 			atomic_add(1, folio_pincount_ptr(folio));
228 		} else {
229 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 		}
231 
232 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
233 	}
234 
235 	return true;
236 }
237 
238 /**
239  * unpin_user_page() - release a dma-pinned page
240  * @page:            pointer to page to be released
241  *
242  * Pages that were pinned via pin_user_pages*() must be released via either
243  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244  * that such pages can be separately tracked and uniquely handled. In
245  * particular, interactions with RDMA and filesystems need special handling.
246  */
247 void unpin_user_page(struct page *page)
248 {
249 	sanity_check_pinned_pages(&page, 1);
250 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
251 }
252 EXPORT_SYMBOL(unpin_user_page);
253 
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 		unsigned long npages, unsigned long i, unsigned int *ntails)
256 {
257 	struct page *next = nth_page(start, i);
258 	struct folio *folio = page_folio(next);
259 	unsigned int nr = 1;
260 
261 	if (folio_test_large(folio))
262 		nr = min_t(unsigned int, npages - i,
263 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
264 
265 	*ntails = nr;
266 	return folio;
267 }
268 
269 static inline struct folio *gup_folio_next(struct page **list,
270 		unsigned long npages, unsigned long i, unsigned int *ntails)
271 {
272 	struct folio *folio = page_folio(list[i]);
273 	unsigned int nr;
274 
275 	for (nr = i + 1; nr < npages; nr++) {
276 		if (page_folio(list[nr]) != folio)
277 			break;
278 	}
279 
280 	*ntails = nr - i;
281 	return folio;
282 }
283 
284 /**
285  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286  * @pages:  array of pages to be maybe marked dirty, and definitely released.
287  * @npages: number of pages in the @pages array.
288  * @make_dirty: whether to mark the pages dirty
289  *
290  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291  * variants called on that page.
292  *
293  * For each page in the @pages array, make that page (or its head page, if a
294  * compound page) dirty, if @make_dirty is true, and if the page was previously
295  * listed as clean. In any case, releases all pages using unpin_user_page(),
296  * possibly via unpin_user_pages(), for the non-dirty case.
297  *
298  * Please see the unpin_user_page() documentation for details.
299  *
300  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301  * required, then the caller should a) verify that this is really correct,
302  * because _lock() is usually required, and b) hand code it:
303  * set_page_dirty_lock(), unpin_user_page().
304  *
305  */
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 				 bool make_dirty)
308 {
309 	unsigned long i;
310 	struct folio *folio;
311 	unsigned int nr;
312 
313 	if (!make_dirty) {
314 		unpin_user_pages(pages, npages);
315 		return;
316 	}
317 
318 	sanity_check_pinned_pages(pages, npages);
319 	for (i = 0; i < npages; i += nr) {
320 		folio = gup_folio_next(pages, npages, i, &nr);
321 		/*
322 		 * Checking PageDirty at this point may race with
323 		 * clear_page_dirty_for_io(), but that's OK. Two key
324 		 * cases:
325 		 *
326 		 * 1) This code sees the page as already dirty, so it
327 		 * skips the call to set_page_dirty(). That could happen
328 		 * because clear_page_dirty_for_io() called
329 		 * page_mkclean(), followed by set_page_dirty().
330 		 * However, now the page is going to get written back,
331 		 * which meets the original intention of setting it
332 		 * dirty, so all is well: clear_page_dirty_for_io() goes
333 		 * on to call TestClearPageDirty(), and write the page
334 		 * back.
335 		 *
336 		 * 2) This code sees the page as clean, so it calls
337 		 * set_page_dirty(). The page stays dirty, despite being
338 		 * written back, so it gets written back again in the
339 		 * next writeback cycle. This is harmless.
340 		 */
341 		if (!folio_test_dirty(folio)) {
342 			folio_lock(folio);
343 			folio_mark_dirty(folio);
344 			folio_unlock(folio);
345 		}
346 		gup_put_folio(folio, nr, FOLL_PIN);
347 	}
348 }
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
350 
351 /**
352  * unpin_user_page_range_dirty_lock() - release and optionally dirty
353  * gup-pinned page range
354  *
355  * @page:  the starting page of a range maybe marked dirty, and definitely released.
356  * @npages: number of consecutive pages to release.
357  * @make_dirty: whether to mark the pages dirty
358  *
359  * "gup-pinned page range" refers to a range of pages that has had one of the
360  * pin_user_pages() variants called on that page.
361  *
362  * For the page ranges defined by [page .. page+npages], make that range (or
363  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364  * page range was previously listed as clean.
365  *
366  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367  * required, then the caller should a) verify that this is really correct,
368  * because _lock() is usually required, and b) hand code it:
369  * set_page_dirty_lock(), unpin_user_page().
370  *
371  */
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
373 				      bool make_dirty)
374 {
375 	unsigned long i;
376 	struct folio *folio;
377 	unsigned int nr;
378 
379 	for (i = 0; i < npages; i += nr) {
380 		folio = gup_folio_range_next(page, npages, i, &nr);
381 		if (make_dirty && !folio_test_dirty(folio)) {
382 			folio_lock(folio);
383 			folio_mark_dirty(folio);
384 			folio_unlock(folio);
385 		}
386 		gup_put_folio(folio, nr, FOLL_PIN);
387 	}
388 }
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
390 
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
392 {
393 	unsigned long i;
394 	struct folio *folio;
395 	unsigned int nr;
396 
397 	/*
398 	 * Don't perform any sanity checks because we might have raced with
399 	 * fork() and some anonymous pages might now actually be shared --
400 	 * which is why we're unpinning after all.
401 	 */
402 	for (i = 0; i < npages; i += nr) {
403 		folio = gup_folio_next(pages, npages, i, &nr);
404 		gup_put_folio(folio, nr, FOLL_PIN);
405 	}
406 }
407 
408 /**
409  * unpin_user_pages() - release an array of gup-pinned pages.
410  * @pages:  array of pages to be marked dirty and released.
411  * @npages: number of pages in the @pages array.
412  *
413  * For each page in the @pages array, release the page using unpin_user_page().
414  *
415  * Please see the unpin_user_page() documentation for details.
416  */
417 void unpin_user_pages(struct page **pages, unsigned long npages)
418 {
419 	unsigned long i;
420 	struct folio *folio;
421 	unsigned int nr;
422 
423 	/*
424 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 	 * leaving them pinned), but probably not. More likely, gup/pup returned
426 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 	 */
428 	if (WARN_ON(IS_ERR_VALUE(npages)))
429 		return;
430 
431 	sanity_check_pinned_pages(pages, npages);
432 	for (i = 0; i < npages; i += nr) {
433 		folio = gup_folio_next(pages, npages, i, &nr);
434 		gup_put_folio(folio, nr, FOLL_PIN);
435 	}
436 }
437 EXPORT_SYMBOL(unpin_user_pages);
438 
439 /*
440  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
442  * cache bouncing on large SMP machines for concurrent pinned gups.
443  */
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
445 {
446 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 		set_bit(MMF_HAS_PINNED, mm_flags);
448 }
449 
450 #ifdef CONFIG_MMU
451 static struct page *no_page_table(struct vm_area_struct *vma,
452 		unsigned int flags)
453 {
454 	/*
455 	 * When core dumping an enormous anonymous area that nobody
456 	 * has touched so far, we don't want to allocate unnecessary pages or
457 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
458 	 * then get_dump_page() will return NULL to leave a hole in the dump.
459 	 * But we can only make this optimization where a hole would surely
460 	 * be zero-filled if handle_mm_fault() actually did handle it.
461 	 */
462 	if ((flags & FOLL_DUMP) &&
463 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 		return ERR_PTR(-EFAULT);
465 	return NULL;
466 }
467 
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 		pte_t *pte, unsigned int flags)
470 {
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 					struct vm_area_struct *vma,
491 					unsigned int flags)
492 {
493 	/* If the pte is writable, we can write to the page. */
494 	if (pte_write(pte))
495 		return true;
496 
497 	/* Maybe FOLL_FORCE is set to override it? */
498 	if (!(flags & FOLL_FORCE))
499 		return false;
500 
501 	/* But FOLL_FORCE has no effect on shared mappings */
502 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
503 		return false;
504 
505 	/* ... or read-only private ones */
506 	if (!(vma->vm_flags & VM_MAYWRITE))
507 		return false;
508 
509 	/* ... or already writable ones that just need to take a write fault */
510 	if (vma->vm_flags & VM_WRITE)
511 		return false;
512 
513 	/*
514 	 * See can_change_pte_writable(): we broke COW and could map the page
515 	 * writable if we have an exclusive anonymous page ...
516 	 */
517 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
518 		return false;
519 
520 	/* ... and a write-fault isn't required for other reasons. */
521 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
522 		return false;
523 	return !userfaultfd_pte_wp(vma, pte);
524 }
525 
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 		unsigned long address, pmd_t *pmd, unsigned int flags,
528 		struct dev_pagemap **pgmap)
529 {
530 	struct mm_struct *mm = vma->vm_mm;
531 	struct page *page;
532 	spinlock_t *ptl;
533 	pte_t *ptep, pte;
534 	int ret;
535 
536 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 			 (FOLL_PIN | FOLL_GET)))
539 		return ERR_PTR(-EINVAL);
540 
541 	/*
542 	 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
543 	 * ARM64 architecture.
544 	 */
545 	if (is_vm_hugetlb_page(vma)) {
546 		page = follow_huge_pmd_pte(vma, address, flags);
547 		if (page)
548 			return page;
549 		return no_page_table(vma, flags);
550 	}
551 
552 retry:
553 	if (unlikely(pmd_bad(*pmd)))
554 		return no_page_table(vma, flags);
555 
556 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
557 	pte = *ptep;
558 	if (!pte_present(pte)) {
559 		swp_entry_t entry;
560 		/*
561 		 * KSM's break_ksm() relies upon recognizing a ksm page
562 		 * even while it is being migrated, so for that case we
563 		 * need migration_entry_wait().
564 		 */
565 		if (likely(!(flags & FOLL_MIGRATION)))
566 			goto no_page;
567 		if (pte_none(pte))
568 			goto no_page;
569 		entry = pte_to_swp_entry(pte);
570 		if (!is_migration_entry(entry))
571 			goto no_page;
572 		pte_unmap_unlock(ptep, ptl);
573 		migration_entry_wait(mm, pmd, address);
574 		goto retry;
575 	}
576 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
577 		goto no_page;
578 
579 	page = vm_normal_page(vma, address, pte);
580 
581 	/*
582 	 * We only care about anon pages in can_follow_write_pte() and don't
583 	 * have to worry about pte_devmap() because they are never anon.
584 	 */
585 	if ((flags & FOLL_WRITE) &&
586 	    !can_follow_write_pte(pte, page, vma, flags)) {
587 		page = NULL;
588 		goto out;
589 	}
590 
591 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
592 		/*
593 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
594 		 * case since they are only valid while holding the pgmap
595 		 * reference.
596 		 */
597 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
598 		if (*pgmap)
599 			page = pte_page(pte);
600 		else
601 			goto no_page;
602 	} else if (unlikely(!page)) {
603 		if (flags & FOLL_DUMP) {
604 			/* Avoid special (like zero) pages in core dumps */
605 			page = ERR_PTR(-EFAULT);
606 			goto out;
607 		}
608 
609 		if (is_zero_pfn(pte_pfn(pte))) {
610 			page = pte_page(pte);
611 		} else {
612 			ret = follow_pfn_pte(vma, address, ptep, flags);
613 			page = ERR_PTR(ret);
614 			goto out;
615 		}
616 	}
617 
618 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
619 		page = ERR_PTR(-EMLINK);
620 		goto out;
621 	}
622 
623 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
624 		       !PageAnonExclusive(page), page);
625 
626 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
627 	if (unlikely(!try_grab_page(page, flags))) {
628 		page = ERR_PTR(-ENOMEM);
629 		goto out;
630 	}
631 	/*
632 	 * We need to make the page accessible if and only if we are going
633 	 * to access its content (the FOLL_PIN case).  Please see
634 	 * Documentation/core-api/pin_user_pages.rst for details.
635 	 */
636 	if (flags & FOLL_PIN) {
637 		ret = arch_make_page_accessible(page);
638 		if (ret) {
639 			unpin_user_page(page);
640 			page = ERR_PTR(ret);
641 			goto out;
642 		}
643 	}
644 	if (flags & FOLL_TOUCH) {
645 		if ((flags & FOLL_WRITE) &&
646 		    !pte_dirty(pte) && !PageDirty(page))
647 			set_page_dirty(page);
648 		/*
649 		 * pte_mkyoung() would be more correct here, but atomic care
650 		 * is needed to avoid losing the dirty bit: it is easier to use
651 		 * mark_page_accessed().
652 		 */
653 		mark_page_accessed(page);
654 	}
655 out:
656 	pte_unmap_unlock(ptep, ptl);
657 	return page;
658 no_page:
659 	pte_unmap_unlock(ptep, ptl);
660 	if (!pte_none(pte))
661 		return NULL;
662 	return no_page_table(vma, flags);
663 }
664 
665 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
666 				    unsigned long address, pud_t *pudp,
667 				    unsigned int flags,
668 				    struct follow_page_context *ctx)
669 {
670 	pmd_t *pmd, pmdval;
671 	spinlock_t *ptl;
672 	struct page *page;
673 	struct mm_struct *mm = vma->vm_mm;
674 
675 	pmd = pmd_offset(pudp, address);
676 	/*
677 	 * The READ_ONCE() will stabilize the pmdval in a register or
678 	 * on the stack so that it will stop changing under the code.
679 	 */
680 	pmdval = READ_ONCE(*pmd);
681 	if (pmd_none(pmdval))
682 		return no_page_table(vma, flags);
683 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
684 		page = follow_huge_pmd_pte(vma, address, flags);
685 		if (page)
686 			return page;
687 		return no_page_table(vma, flags);
688 	}
689 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
690 		page = follow_huge_pd(vma, address,
691 				      __hugepd(pmd_val(pmdval)), flags,
692 				      PMD_SHIFT);
693 		if (page)
694 			return page;
695 		return no_page_table(vma, flags);
696 	}
697 retry:
698 	if (!pmd_present(pmdval)) {
699 		/*
700 		 * Should never reach here, if thp migration is not supported;
701 		 * Otherwise, it must be a thp migration entry.
702 		 */
703 		VM_BUG_ON(!thp_migration_supported() ||
704 				  !is_pmd_migration_entry(pmdval));
705 
706 		if (likely(!(flags & FOLL_MIGRATION)))
707 			return no_page_table(vma, flags);
708 
709 		pmd_migration_entry_wait(mm, pmd);
710 		pmdval = READ_ONCE(*pmd);
711 		/*
712 		 * MADV_DONTNEED may convert the pmd to null because
713 		 * mmap_lock is held in read mode
714 		 */
715 		if (pmd_none(pmdval))
716 			return no_page_table(vma, flags);
717 		goto retry;
718 	}
719 	if (pmd_devmap(pmdval)) {
720 		ptl = pmd_lock(mm, pmd);
721 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
722 		spin_unlock(ptl);
723 		if (page)
724 			return page;
725 	}
726 	if (likely(!pmd_trans_huge(pmdval)))
727 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728 
729 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
730 		return no_page_table(vma, flags);
731 
732 retry_locked:
733 	ptl = pmd_lock(mm, pmd);
734 	if (unlikely(pmd_none(*pmd))) {
735 		spin_unlock(ptl);
736 		return no_page_table(vma, flags);
737 	}
738 	if (unlikely(!pmd_present(*pmd))) {
739 		spin_unlock(ptl);
740 		if (likely(!(flags & FOLL_MIGRATION)))
741 			return no_page_table(vma, flags);
742 		pmd_migration_entry_wait(mm, pmd);
743 		goto retry_locked;
744 	}
745 	if (unlikely(!pmd_trans_huge(*pmd))) {
746 		spin_unlock(ptl);
747 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 	}
749 	if (flags & FOLL_SPLIT_PMD) {
750 		int ret;
751 		page = pmd_page(*pmd);
752 		if (is_huge_zero_page(page)) {
753 			spin_unlock(ptl);
754 			ret = 0;
755 			split_huge_pmd(vma, pmd, address);
756 			if (pmd_trans_unstable(pmd))
757 				ret = -EBUSY;
758 		} else {
759 			spin_unlock(ptl);
760 			split_huge_pmd(vma, pmd, address);
761 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
762 		}
763 
764 		return ret ? ERR_PTR(ret) :
765 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
766 	}
767 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
768 	spin_unlock(ptl);
769 	ctx->page_mask = HPAGE_PMD_NR - 1;
770 	return page;
771 }
772 
773 static struct page *follow_pud_mask(struct vm_area_struct *vma,
774 				    unsigned long address, p4d_t *p4dp,
775 				    unsigned int flags,
776 				    struct follow_page_context *ctx)
777 {
778 	pud_t *pud;
779 	spinlock_t *ptl;
780 	struct page *page;
781 	struct mm_struct *mm = vma->vm_mm;
782 
783 	pud = pud_offset(p4dp, address);
784 	if (pud_none(*pud))
785 		return no_page_table(vma, flags);
786 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
787 		page = follow_huge_pud(mm, address, pud, flags);
788 		if (page)
789 			return page;
790 		return no_page_table(vma, flags);
791 	}
792 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
793 		page = follow_huge_pd(vma, address,
794 				      __hugepd(pud_val(*pud)), flags,
795 				      PUD_SHIFT);
796 		if (page)
797 			return page;
798 		return no_page_table(vma, flags);
799 	}
800 	if (pud_devmap(*pud)) {
801 		ptl = pud_lock(mm, pud);
802 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
803 		spin_unlock(ptl);
804 		if (page)
805 			return page;
806 	}
807 	if (unlikely(pud_bad(*pud)))
808 		return no_page_table(vma, flags);
809 
810 	return follow_pmd_mask(vma, address, pud, flags, ctx);
811 }
812 
813 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
814 				    unsigned long address, pgd_t *pgdp,
815 				    unsigned int flags,
816 				    struct follow_page_context *ctx)
817 {
818 	p4d_t *p4d;
819 	struct page *page;
820 
821 	p4d = p4d_offset(pgdp, address);
822 	if (p4d_none(*p4d))
823 		return no_page_table(vma, flags);
824 	BUILD_BUG_ON(p4d_huge(*p4d));
825 	if (unlikely(p4d_bad(*p4d)))
826 		return no_page_table(vma, flags);
827 
828 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
829 		page = follow_huge_pd(vma, address,
830 				      __hugepd(p4d_val(*p4d)), flags,
831 				      P4D_SHIFT);
832 		if (page)
833 			return page;
834 		return no_page_table(vma, flags);
835 	}
836 	return follow_pud_mask(vma, address, p4d, flags, ctx);
837 }
838 
839 /**
840  * follow_page_mask - look up a page descriptor from a user-virtual address
841  * @vma: vm_area_struct mapping @address
842  * @address: virtual address to look up
843  * @flags: flags modifying lookup behaviour
844  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
845  *       pointer to output page_mask
846  *
847  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
848  *
849  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
850  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
851  *
852  * When getting an anonymous page and the caller has to trigger unsharing
853  * of a shared anonymous page first, -EMLINK is returned. The caller should
854  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
855  * relevant with FOLL_PIN and !FOLL_WRITE.
856  *
857  * On output, the @ctx->page_mask is set according to the size of the page.
858  *
859  * Return: the mapped (struct page *), %NULL if no mapping exists, or
860  * an error pointer if there is a mapping to something not represented
861  * by a page descriptor (see also vm_normal_page()).
862  */
863 static struct page *follow_page_mask(struct vm_area_struct *vma,
864 			      unsigned long address, unsigned int flags,
865 			      struct follow_page_context *ctx)
866 {
867 	pgd_t *pgd;
868 	struct page *page;
869 	struct mm_struct *mm = vma->vm_mm;
870 
871 	ctx->page_mask = 0;
872 
873 	/* make this handle hugepd */
874 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
875 	if (!IS_ERR(page)) {
876 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
877 		return page;
878 	}
879 
880 	pgd = pgd_offset(mm, address);
881 
882 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
883 		return no_page_table(vma, flags);
884 
885 	if (pgd_huge(*pgd)) {
886 		page = follow_huge_pgd(mm, address, pgd, flags);
887 		if (page)
888 			return page;
889 		return no_page_table(vma, flags);
890 	}
891 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
892 		page = follow_huge_pd(vma, address,
893 				      __hugepd(pgd_val(*pgd)), flags,
894 				      PGDIR_SHIFT);
895 		if (page)
896 			return page;
897 		return no_page_table(vma, flags);
898 	}
899 
900 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
901 }
902 
903 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904 			 unsigned int foll_flags)
905 {
906 	struct follow_page_context ctx = { NULL };
907 	struct page *page;
908 
909 	if (vma_is_secretmem(vma))
910 		return NULL;
911 
912 	if (foll_flags & FOLL_PIN)
913 		return NULL;
914 
915 	page = follow_page_mask(vma, address, foll_flags, &ctx);
916 	if (ctx.pgmap)
917 		put_dev_pagemap(ctx.pgmap);
918 	return page;
919 }
920 
921 static int get_gate_page(struct mm_struct *mm, unsigned long address,
922 		unsigned int gup_flags, struct vm_area_struct **vma,
923 		struct page **page)
924 {
925 	pgd_t *pgd;
926 	p4d_t *p4d;
927 	pud_t *pud;
928 	pmd_t *pmd;
929 	pte_t *pte;
930 	int ret = -EFAULT;
931 
932 	/* user gate pages are read-only */
933 	if (gup_flags & FOLL_WRITE)
934 		return -EFAULT;
935 	if (address > TASK_SIZE)
936 		pgd = pgd_offset_k(address);
937 	else
938 		pgd = pgd_offset_gate(mm, address);
939 	if (pgd_none(*pgd))
940 		return -EFAULT;
941 	p4d = p4d_offset(pgd, address);
942 	if (p4d_none(*p4d))
943 		return -EFAULT;
944 	pud = pud_offset(p4d, address);
945 	if (pud_none(*pud))
946 		return -EFAULT;
947 	pmd = pmd_offset(pud, address);
948 	if (!pmd_present(*pmd))
949 		return -EFAULT;
950 	VM_BUG_ON(pmd_trans_huge(*pmd));
951 	pte = pte_offset_map(pmd, address);
952 	if (pte_none(*pte))
953 		goto unmap;
954 	*vma = get_gate_vma(mm);
955 	if (!page)
956 		goto out;
957 	*page = vm_normal_page(*vma, address, *pte);
958 	if (!*page) {
959 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
960 			goto unmap;
961 		*page = pte_page(*pte);
962 	}
963 	if (unlikely(!try_grab_page(*page, gup_flags))) {
964 		ret = -ENOMEM;
965 		goto unmap;
966 	}
967 out:
968 	ret = 0;
969 unmap:
970 	pte_unmap(pte);
971 	return ret;
972 }
973 
974 /*
975  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
976  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
977  * is, *@locked will be set to 0 and -EBUSY returned.
978  */
979 static int faultin_page(struct vm_area_struct *vma,
980 		unsigned long address, unsigned int *flags, bool unshare,
981 		int *locked)
982 {
983 	unsigned int fault_flags = 0;
984 	vm_fault_t ret;
985 
986 	if (*flags & FOLL_NOFAULT)
987 		return -EFAULT;
988 	if (*flags & FOLL_WRITE)
989 		fault_flags |= FAULT_FLAG_WRITE;
990 	if (*flags & FOLL_REMOTE)
991 		fault_flags |= FAULT_FLAG_REMOTE;
992 	if (locked)
993 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
994 	if (*flags & FOLL_NOWAIT)
995 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
996 	if (*flags & FOLL_TRIED) {
997 		/*
998 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
999 		 * can co-exist
1000 		 */
1001 		fault_flags |= FAULT_FLAG_TRIED;
1002 	}
1003 	if (unshare) {
1004 		fault_flags |= FAULT_FLAG_UNSHARE;
1005 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1006 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1007 	}
1008 
1009 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1010 
1011 	if (ret & VM_FAULT_COMPLETED) {
1012 		/*
1013 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1014 		 * mmap lock in the page fault handler. Sanity check this.
1015 		 */
1016 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1017 		if (locked)
1018 			*locked = 0;
1019 		/*
1020 		 * We should do the same as VM_FAULT_RETRY, but let's not
1021 		 * return -EBUSY since that's not reflecting the reality of
1022 		 * what has happened - we've just fully completed a page
1023 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1024 		 * that we want to take the mmap lock _again_.
1025 		 */
1026 		return -EAGAIN;
1027 	}
1028 
1029 	if (ret & VM_FAULT_ERROR) {
1030 		int err = vm_fault_to_errno(ret, *flags);
1031 
1032 		if (err)
1033 			return err;
1034 		BUG();
1035 	}
1036 
1037 	if (ret & VM_FAULT_RETRY) {
1038 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1039 			*locked = 0;
1040 		return -EBUSY;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1047 {
1048 	vm_flags_t vm_flags = vma->vm_flags;
1049 	int write = (gup_flags & FOLL_WRITE);
1050 	int foreign = (gup_flags & FOLL_REMOTE);
1051 
1052 	if (vm_flags & (VM_IO | VM_PFNMAP))
1053 		return -EFAULT;
1054 
1055 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1056 		return -EFAULT;
1057 
1058 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1059 		return -EOPNOTSUPP;
1060 
1061 	if (vma_is_secretmem(vma))
1062 		return -EFAULT;
1063 
1064 	if (write) {
1065 		if (!(vm_flags & VM_WRITE)) {
1066 			if (!(gup_flags & FOLL_FORCE))
1067 				return -EFAULT;
1068 			/*
1069 			 * We used to let the write,force case do COW in a
1070 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1071 			 * set a breakpoint in a read-only mapping of an
1072 			 * executable, without corrupting the file (yet only
1073 			 * when that file had been opened for writing!).
1074 			 * Anon pages in shared mappings are surprising: now
1075 			 * just reject it.
1076 			 */
1077 			if (!is_cow_mapping(vm_flags))
1078 				return -EFAULT;
1079 		}
1080 	} else if (!(vm_flags & VM_READ)) {
1081 		if (!(gup_flags & FOLL_FORCE))
1082 			return -EFAULT;
1083 		/*
1084 		 * Is there actually any vma we can reach here which does not
1085 		 * have VM_MAYREAD set?
1086 		 */
1087 		if (!(vm_flags & VM_MAYREAD))
1088 			return -EFAULT;
1089 	}
1090 	/*
1091 	 * gups are always data accesses, not instruction
1092 	 * fetches, so execute=false here
1093 	 */
1094 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1095 		return -EFAULT;
1096 	return 0;
1097 }
1098 
1099 /**
1100  * __get_user_pages() - pin user pages in memory
1101  * @mm:		mm_struct of target mm
1102  * @start:	starting user address
1103  * @nr_pages:	number of pages from start to pin
1104  * @gup_flags:	flags modifying pin behaviour
1105  * @pages:	array that receives pointers to the pages pinned.
1106  *		Should be at least nr_pages long. Or NULL, if caller
1107  *		only intends to ensure the pages are faulted in.
1108  * @vmas:	array of pointers to vmas corresponding to each page.
1109  *		Or NULL if the caller does not require them.
1110  * @locked:     whether we're still with the mmap_lock held
1111  *
1112  * Returns either number of pages pinned (which may be less than the
1113  * number requested), or an error. Details about the return value:
1114  *
1115  * -- If nr_pages is 0, returns 0.
1116  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1117  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1118  *    pages pinned. Again, this may be less than nr_pages.
1119  * -- 0 return value is possible when the fault would need to be retried.
1120  *
1121  * The caller is responsible for releasing returned @pages, via put_page().
1122  *
1123  * @vmas are valid only as long as mmap_lock is held.
1124  *
1125  * Must be called with mmap_lock held.  It may be released.  See below.
1126  *
1127  * __get_user_pages walks a process's page tables and takes a reference to
1128  * each struct page that each user address corresponds to at a given
1129  * instant. That is, it takes the page that would be accessed if a user
1130  * thread accesses the given user virtual address at that instant.
1131  *
1132  * This does not guarantee that the page exists in the user mappings when
1133  * __get_user_pages returns, and there may even be a completely different
1134  * page there in some cases (eg. if mmapped pagecache has been invalidated
1135  * and subsequently re faulted). However it does guarantee that the page
1136  * won't be freed completely. And mostly callers simply care that the page
1137  * contains data that was valid *at some point in time*. Typically, an IO
1138  * or similar operation cannot guarantee anything stronger anyway because
1139  * locks can't be held over the syscall boundary.
1140  *
1141  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1142  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1143  * appropriate) must be called after the page is finished with, and
1144  * before put_page is called.
1145  *
1146  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1147  * released by an up_read().  That can happen if @gup_flags does not
1148  * have FOLL_NOWAIT.
1149  *
1150  * A caller using such a combination of @locked and @gup_flags
1151  * must therefore hold the mmap_lock for reading only, and recognize
1152  * when it's been released.  Otherwise, it must be held for either
1153  * reading or writing and will not be released.
1154  *
1155  * In most cases, get_user_pages or get_user_pages_fast should be used
1156  * instead of __get_user_pages. __get_user_pages should be used only if
1157  * you need some special @gup_flags.
1158  */
1159 static long __get_user_pages(struct mm_struct *mm,
1160 		unsigned long start, unsigned long nr_pages,
1161 		unsigned int gup_flags, struct page **pages,
1162 		struct vm_area_struct **vmas, int *locked)
1163 {
1164 	long ret = 0, i = 0;
1165 	struct vm_area_struct *vma = NULL;
1166 	struct follow_page_context ctx = { NULL };
1167 
1168 	if (!nr_pages)
1169 		return 0;
1170 
1171 	start = untagged_addr(start);
1172 
1173 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1174 
1175 	do {
1176 		struct page *page;
1177 		unsigned int foll_flags = gup_flags;
1178 		unsigned int page_increm;
1179 
1180 		/* first iteration or cross vma bound */
1181 		if (!vma || start >= vma->vm_end) {
1182 			vma = find_extend_vma(mm, start);
1183 			if (!vma && in_gate_area(mm, start)) {
1184 				ret = get_gate_page(mm, start & PAGE_MASK,
1185 						gup_flags, &vma,
1186 						pages ? &pages[i] : NULL);
1187 				if (ret)
1188 					goto out;
1189 				ctx.page_mask = 0;
1190 				goto next_page;
1191 			}
1192 
1193 			if (!vma) {
1194 				ret = -EFAULT;
1195 				goto out;
1196 			}
1197 			ret = check_vma_flags(vma, gup_flags);
1198 			if (ret)
1199 				goto out;
1200 
1201 			if (is_vm_hugetlb_page(vma)) {
1202 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1203 						&start, &nr_pages, i,
1204 						gup_flags, locked);
1205 				if (locked && *locked == 0) {
1206 					/*
1207 					 * We've got a VM_FAULT_RETRY
1208 					 * and we've lost mmap_lock.
1209 					 * We must stop here.
1210 					 */
1211 					BUG_ON(gup_flags & FOLL_NOWAIT);
1212 					goto out;
1213 				}
1214 				continue;
1215 			}
1216 		}
1217 retry:
1218 		/*
1219 		 * If we have a pending SIGKILL, don't keep faulting pages and
1220 		 * potentially allocating memory.
1221 		 */
1222 		if (fatal_signal_pending(current)) {
1223 			ret = -EINTR;
1224 			goto out;
1225 		}
1226 		cond_resched();
1227 
1228 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1229 		if (!page || PTR_ERR(page) == -EMLINK) {
1230 			ret = faultin_page(vma, start, &foll_flags,
1231 					   PTR_ERR(page) == -EMLINK, locked);
1232 			switch (ret) {
1233 			case 0:
1234 				goto retry;
1235 			case -EBUSY:
1236 			case -EAGAIN:
1237 				ret = 0;
1238 				fallthrough;
1239 			case -EFAULT:
1240 			case -ENOMEM:
1241 			case -EHWPOISON:
1242 				goto out;
1243 			}
1244 			BUG();
1245 		} else if (PTR_ERR(page) == -EEXIST) {
1246 			/*
1247 			 * Proper page table entry exists, but no corresponding
1248 			 * struct page. If the caller expects **pages to be
1249 			 * filled in, bail out now, because that can't be done
1250 			 * for this page.
1251 			 */
1252 			if (pages) {
1253 				ret = PTR_ERR(page);
1254 				goto out;
1255 			}
1256 
1257 			goto next_page;
1258 		} else if (IS_ERR(page)) {
1259 			ret = PTR_ERR(page);
1260 			goto out;
1261 		}
1262 		if (pages) {
1263 			pages[i] = page;
1264 			flush_anon_page(vma, page, start);
1265 			flush_dcache_page(page);
1266 			ctx.page_mask = 0;
1267 		}
1268 next_page:
1269 		if (vmas) {
1270 			vmas[i] = vma;
1271 			ctx.page_mask = 0;
1272 		}
1273 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1274 		if (page_increm > nr_pages)
1275 			page_increm = nr_pages;
1276 		i += page_increm;
1277 		start += page_increm * PAGE_SIZE;
1278 		nr_pages -= page_increm;
1279 	} while (nr_pages);
1280 out:
1281 	if (ctx.pgmap)
1282 		put_dev_pagemap(ctx.pgmap);
1283 	return i ? i : ret;
1284 }
1285 
1286 static bool vma_permits_fault(struct vm_area_struct *vma,
1287 			      unsigned int fault_flags)
1288 {
1289 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1290 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1291 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1292 
1293 	if (!(vm_flags & vma->vm_flags))
1294 		return false;
1295 
1296 	/*
1297 	 * The architecture might have a hardware protection
1298 	 * mechanism other than read/write that can deny access.
1299 	 *
1300 	 * gup always represents data access, not instruction
1301 	 * fetches, so execute=false here:
1302 	 */
1303 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1304 		return false;
1305 
1306 	return true;
1307 }
1308 
1309 /**
1310  * fixup_user_fault() - manually resolve a user page fault
1311  * @mm:		mm_struct of target mm
1312  * @address:	user address
1313  * @fault_flags:flags to pass down to handle_mm_fault()
1314  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1315  *		does not allow retry. If NULL, the caller must guarantee
1316  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1317  *
1318  * This is meant to be called in the specific scenario where for locking reasons
1319  * we try to access user memory in atomic context (within a pagefault_disable()
1320  * section), this returns -EFAULT, and we want to resolve the user fault before
1321  * trying again.
1322  *
1323  * Typically this is meant to be used by the futex code.
1324  *
1325  * The main difference with get_user_pages() is that this function will
1326  * unconditionally call handle_mm_fault() which will in turn perform all the
1327  * necessary SW fixup of the dirty and young bits in the PTE, while
1328  * get_user_pages() only guarantees to update these in the struct page.
1329  *
1330  * This is important for some architectures where those bits also gate the
1331  * access permission to the page because they are maintained in software.  On
1332  * such architectures, gup() will not be enough to make a subsequent access
1333  * succeed.
1334  *
1335  * This function will not return with an unlocked mmap_lock. So it has not the
1336  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1337  */
1338 int fixup_user_fault(struct mm_struct *mm,
1339 		     unsigned long address, unsigned int fault_flags,
1340 		     bool *unlocked)
1341 {
1342 	struct vm_area_struct *vma;
1343 	vm_fault_t ret;
1344 
1345 	address = untagged_addr(address);
1346 
1347 	if (unlocked)
1348 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1349 
1350 retry:
1351 	vma = find_extend_vma(mm, address);
1352 	if (!vma || address < vma->vm_start)
1353 		return -EFAULT;
1354 
1355 	if (!vma_permits_fault(vma, fault_flags))
1356 		return -EFAULT;
1357 
1358 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1359 	    fatal_signal_pending(current))
1360 		return -EINTR;
1361 
1362 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1363 
1364 	if (ret & VM_FAULT_COMPLETED) {
1365 		/*
1366 		 * NOTE: it's a pity that we need to retake the lock here
1367 		 * to pair with the unlock() in the callers. Ideally we
1368 		 * could tell the callers so they do not need to unlock.
1369 		 */
1370 		mmap_read_lock(mm);
1371 		*unlocked = true;
1372 		return 0;
1373 	}
1374 
1375 	if (ret & VM_FAULT_ERROR) {
1376 		int err = vm_fault_to_errno(ret, 0);
1377 
1378 		if (err)
1379 			return err;
1380 		BUG();
1381 	}
1382 
1383 	if (ret & VM_FAULT_RETRY) {
1384 		mmap_read_lock(mm);
1385 		*unlocked = true;
1386 		fault_flags |= FAULT_FLAG_TRIED;
1387 		goto retry;
1388 	}
1389 
1390 	return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(fixup_user_fault);
1393 
1394 /*
1395  * Please note that this function, unlike __get_user_pages will not
1396  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1397  */
1398 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1399 						unsigned long start,
1400 						unsigned long nr_pages,
1401 						struct page **pages,
1402 						struct vm_area_struct **vmas,
1403 						int *locked,
1404 						unsigned int flags)
1405 {
1406 	long ret, pages_done;
1407 	bool lock_dropped;
1408 
1409 	if (locked) {
1410 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1411 		BUG_ON(vmas);
1412 		/* check caller initialized locked */
1413 		BUG_ON(*locked != 1);
1414 	}
1415 
1416 	if (flags & FOLL_PIN)
1417 		mm_set_has_pinned_flag(&mm->flags);
1418 
1419 	/*
1420 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1421 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1422 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1423 	 * for FOLL_GET, not for the newer FOLL_PIN.
1424 	 *
1425 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1426 	 * that here, as any failures will be obvious enough.
1427 	 */
1428 	if (pages && !(flags & FOLL_PIN))
1429 		flags |= FOLL_GET;
1430 
1431 	pages_done = 0;
1432 	lock_dropped = false;
1433 	for (;;) {
1434 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1435 				       vmas, locked);
1436 		if (!locked)
1437 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1438 			return ret;
1439 
1440 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1441 		if (!*locked) {
1442 			BUG_ON(ret < 0);
1443 			BUG_ON(ret >= nr_pages);
1444 		}
1445 
1446 		if (ret > 0) {
1447 			nr_pages -= ret;
1448 			pages_done += ret;
1449 			if (!nr_pages)
1450 				break;
1451 		}
1452 		if (*locked) {
1453 			/*
1454 			 * VM_FAULT_RETRY didn't trigger or it was a
1455 			 * FOLL_NOWAIT.
1456 			 */
1457 			if (!pages_done)
1458 				pages_done = ret;
1459 			break;
1460 		}
1461 		/*
1462 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1463 		 * For the prefault case (!pages) we only update counts.
1464 		 */
1465 		if (likely(pages))
1466 			pages += ret;
1467 		start += ret << PAGE_SHIFT;
1468 		lock_dropped = true;
1469 
1470 retry:
1471 		/*
1472 		 * Repeat on the address that fired VM_FAULT_RETRY
1473 		 * with both FAULT_FLAG_ALLOW_RETRY and
1474 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1475 		 * by fatal signals, so we need to check it before we
1476 		 * start trying again otherwise it can loop forever.
1477 		 */
1478 
1479 		if (fatal_signal_pending(current)) {
1480 			if (!pages_done)
1481 				pages_done = -EINTR;
1482 			break;
1483 		}
1484 
1485 		ret = mmap_read_lock_killable(mm);
1486 		if (ret) {
1487 			BUG_ON(ret > 0);
1488 			if (!pages_done)
1489 				pages_done = ret;
1490 			break;
1491 		}
1492 
1493 		*locked = 1;
1494 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1495 				       pages, NULL, locked);
1496 		if (!*locked) {
1497 			/* Continue to retry until we succeeded */
1498 			BUG_ON(ret != 0);
1499 			goto retry;
1500 		}
1501 		if (ret != 1) {
1502 			BUG_ON(ret > 1);
1503 			if (!pages_done)
1504 				pages_done = ret;
1505 			break;
1506 		}
1507 		nr_pages--;
1508 		pages_done++;
1509 		if (!nr_pages)
1510 			break;
1511 		if (likely(pages))
1512 			pages++;
1513 		start += PAGE_SIZE;
1514 	}
1515 	if (lock_dropped && *locked) {
1516 		/*
1517 		 * We must let the caller know we temporarily dropped the lock
1518 		 * and so the critical section protected by it was lost.
1519 		 */
1520 		mmap_read_unlock(mm);
1521 		*locked = 0;
1522 	}
1523 	return pages_done;
1524 }
1525 
1526 /**
1527  * populate_vma_page_range() -  populate a range of pages in the vma.
1528  * @vma:   target vma
1529  * @start: start address
1530  * @end:   end address
1531  * @locked: whether the mmap_lock is still held
1532  *
1533  * This takes care of mlocking the pages too if VM_LOCKED is set.
1534  *
1535  * Return either number of pages pinned in the vma, or a negative error
1536  * code on error.
1537  *
1538  * vma->vm_mm->mmap_lock must be held.
1539  *
1540  * If @locked is NULL, it may be held for read or write and will
1541  * be unperturbed.
1542  *
1543  * If @locked is non-NULL, it must held for read only and may be
1544  * released.  If it's released, *@locked will be set to 0.
1545  */
1546 long populate_vma_page_range(struct vm_area_struct *vma,
1547 		unsigned long start, unsigned long end, int *locked)
1548 {
1549 	struct mm_struct *mm = vma->vm_mm;
1550 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1551 	int gup_flags;
1552 	long ret;
1553 
1554 	VM_BUG_ON(!PAGE_ALIGNED(start));
1555 	VM_BUG_ON(!PAGE_ALIGNED(end));
1556 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1557 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1558 	mmap_assert_locked(mm);
1559 
1560 	/*
1561 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1562 	 * faultin_page() to break COW, so it has no work to do here.
1563 	 */
1564 	if (vma->vm_flags & VM_LOCKONFAULT)
1565 		return nr_pages;
1566 
1567 	gup_flags = FOLL_TOUCH;
1568 	/*
1569 	 * We want to touch writable mappings with a write fault in order
1570 	 * to break COW, except for shared mappings because these don't COW
1571 	 * and we would not want to dirty them for nothing.
1572 	 */
1573 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1574 		gup_flags |= FOLL_WRITE;
1575 
1576 	/*
1577 	 * We want mlock to succeed for regions that have any permissions
1578 	 * other than PROT_NONE.
1579 	 */
1580 	if (vma_is_accessible(vma))
1581 		gup_flags |= FOLL_FORCE;
1582 
1583 	/*
1584 	 * We made sure addr is within a VMA, so the following will
1585 	 * not result in a stack expansion that recurses back here.
1586 	 */
1587 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1588 				NULL, NULL, locked);
1589 	lru_add_drain();
1590 	return ret;
1591 }
1592 
1593 /*
1594  * faultin_vma_page_range() - populate (prefault) page tables inside the
1595  *			      given VMA range readable/writable
1596  *
1597  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1598  *
1599  * @vma: target vma
1600  * @start: start address
1601  * @end: end address
1602  * @write: whether to prefault readable or writable
1603  * @locked: whether the mmap_lock is still held
1604  *
1605  * Returns either number of processed pages in the vma, or a negative error
1606  * code on error (see __get_user_pages()).
1607  *
1608  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1609  * covered by the VMA.
1610  *
1611  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1612  *
1613  * If @locked is non-NULL, it must held for read only and may be released.  If
1614  * it's released, *@locked will be set to 0.
1615  */
1616 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1617 			    unsigned long end, bool write, int *locked)
1618 {
1619 	struct mm_struct *mm = vma->vm_mm;
1620 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1621 	int gup_flags;
1622 	long ret;
1623 
1624 	VM_BUG_ON(!PAGE_ALIGNED(start));
1625 	VM_BUG_ON(!PAGE_ALIGNED(end));
1626 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1627 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1628 	mmap_assert_locked(mm);
1629 
1630 	/*
1631 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1632 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1633 	 *	       difference with !FOLL_FORCE, because the page is writable
1634 	 *	       in the page table.
1635 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1636 	 *		  a poisoned page.
1637 	 * !FOLL_FORCE: Require proper access permissions.
1638 	 */
1639 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1640 	if (write)
1641 		gup_flags |= FOLL_WRITE;
1642 
1643 	/*
1644 	 * We want to report -EINVAL instead of -EFAULT for any permission
1645 	 * problems or incompatible mappings.
1646 	 */
1647 	if (check_vma_flags(vma, gup_flags))
1648 		return -EINVAL;
1649 
1650 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1651 				NULL, NULL, locked);
1652 	lru_add_drain();
1653 	return ret;
1654 }
1655 
1656 /*
1657  * __mm_populate - populate and/or mlock pages within a range of address space.
1658  *
1659  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1660  * flags. VMAs must be already marked with the desired vm_flags, and
1661  * mmap_lock must not be held.
1662  */
1663 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1664 {
1665 	struct mm_struct *mm = current->mm;
1666 	unsigned long end, nstart, nend;
1667 	struct vm_area_struct *vma = NULL;
1668 	int locked = 0;
1669 	long ret = 0;
1670 
1671 	end = start + len;
1672 
1673 	for (nstart = start; nstart < end; nstart = nend) {
1674 		/*
1675 		 * We want to fault in pages for [nstart; end) address range.
1676 		 * Find first corresponding VMA.
1677 		 */
1678 		if (!locked) {
1679 			locked = 1;
1680 			mmap_read_lock(mm);
1681 			vma = find_vma_intersection(mm, nstart, end);
1682 		} else if (nstart >= vma->vm_end)
1683 			vma = find_vma_intersection(mm, vma->vm_end, end);
1684 
1685 		if (!vma)
1686 			break;
1687 		/*
1688 		 * Set [nstart; nend) to intersection of desired address
1689 		 * range with the first VMA. Also, skip undesirable VMA types.
1690 		 */
1691 		nend = min(end, vma->vm_end);
1692 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1693 			continue;
1694 		if (nstart < vma->vm_start)
1695 			nstart = vma->vm_start;
1696 		/*
1697 		 * Now fault in a range of pages. populate_vma_page_range()
1698 		 * double checks the vma flags, so that it won't mlock pages
1699 		 * if the vma was already munlocked.
1700 		 */
1701 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1702 		if (ret < 0) {
1703 			if (ignore_errors) {
1704 				ret = 0;
1705 				continue;	/* continue at next VMA */
1706 			}
1707 			break;
1708 		}
1709 		nend = nstart + ret * PAGE_SIZE;
1710 		ret = 0;
1711 	}
1712 	if (locked)
1713 		mmap_read_unlock(mm);
1714 	return ret;	/* 0 or negative error code */
1715 }
1716 #else /* CONFIG_MMU */
1717 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1718 		unsigned long nr_pages, struct page **pages,
1719 		struct vm_area_struct **vmas, int *locked,
1720 		unsigned int foll_flags)
1721 {
1722 	struct vm_area_struct *vma;
1723 	unsigned long vm_flags;
1724 	long i;
1725 
1726 	/* calculate required read or write permissions.
1727 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1728 	 */
1729 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1730 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1731 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1732 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1733 
1734 	for (i = 0; i < nr_pages; i++) {
1735 		vma = find_vma(mm, start);
1736 		if (!vma)
1737 			goto finish_or_fault;
1738 
1739 		/* protect what we can, including chardevs */
1740 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1741 		    !(vm_flags & vma->vm_flags))
1742 			goto finish_or_fault;
1743 
1744 		if (pages) {
1745 			pages[i] = virt_to_page((void *)start);
1746 			if (pages[i])
1747 				get_page(pages[i]);
1748 		}
1749 		if (vmas)
1750 			vmas[i] = vma;
1751 		start = (start + PAGE_SIZE) & PAGE_MASK;
1752 	}
1753 
1754 	return i;
1755 
1756 finish_or_fault:
1757 	return i ? : -EFAULT;
1758 }
1759 #endif /* !CONFIG_MMU */
1760 
1761 /**
1762  * fault_in_writeable - fault in userspace address range for writing
1763  * @uaddr: start of address range
1764  * @size: size of address range
1765  *
1766  * Returns the number of bytes not faulted in (like copy_to_user() and
1767  * copy_from_user()).
1768  */
1769 size_t fault_in_writeable(char __user *uaddr, size_t size)
1770 {
1771 	char __user *start = uaddr, *end;
1772 
1773 	if (unlikely(size == 0))
1774 		return 0;
1775 	if (!user_write_access_begin(uaddr, size))
1776 		return size;
1777 	if (!PAGE_ALIGNED(uaddr)) {
1778 		unsafe_put_user(0, uaddr, out);
1779 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1780 	}
1781 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1782 	if (unlikely(end < start))
1783 		end = NULL;
1784 	while (uaddr != end) {
1785 		unsafe_put_user(0, uaddr, out);
1786 		uaddr += PAGE_SIZE;
1787 	}
1788 
1789 out:
1790 	user_write_access_end();
1791 	if (size > uaddr - start)
1792 		return size - (uaddr - start);
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(fault_in_writeable);
1796 
1797 /**
1798  * fault_in_subpage_writeable - fault in an address range for writing
1799  * @uaddr: start of address range
1800  * @size: size of address range
1801  *
1802  * Fault in a user address range for writing while checking for permissions at
1803  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1804  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1805  *
1806  * Returns the number of bytes not faulted in (like copy_to_user() and
1807  * copy_from_user()).
1808  */
1809 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1810 {
1811 	size_t faulted_in;
1812 
1813 	/*
1814 	 * Attempt faulting in at page granularity first for page table
1815 	 * permission checking. The arch-specific probe_subpage_writeable()
1816 	 * functions may not check for this.
1817 	 */
1818 	faulted_in = size - fault_in_writeable(uaddr, size);
1819 	if (faulted_in)
1820 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1821 
1822 	return size - faulted_in;
1823 }
1824 EXPORT_SYMBOL(fault_in_subpage_writeable);
1825 
1826 /*
1827  * fault_in_safe_writeable - fault in an address range for writing
1828  * @uaddr: start of address range
1829  * @size: length of address range
1830  *
1831  * Faults in an address range for writing.  This is primarily useful when we
1832  * already know that some or all of the pages in the address range aren't in
1833  * memory.
1834  *
1835  * Unlike fault_in_writeable(), this function is non-destructive.
1836  *
1837  * Note that we don't pin or otherwise hold the pages referenced that we fault
1838  * in.  There's no guarantee that they'll stay in memory for any duration of
1839  * time.
1840  *
1841  * Returns the number of bytes not faulted in, like copy_to_user() and
1842  * copy_from_user().
1843  */
1844 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1845 {
1846 	unsigned long start = (unsigned long)uaddr, end;
1847 	struct mm_struct *mm = current->mm;
1848 	bool unlocked = false;
1849 
1850 	if (unlikely(size == 0))
1851 		return 0;
1852 	end = PAGE_ALIGN(start + size);
1853 	if (end < start)
1854 		end = 0;
1855 
1856 	mmap_read_lock(mm);
1857 	do {
1858 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1859 			break;
1860 		start = (start + PAGE_SIZE) & PAGE_MASK;
1861 	} while (start != end);
1862 	mmap_read_unlock(mm);
1863 
1864 	if (size > (unsigned long)uaddr - start)
1865 		return size - ((unsigned long)uaddr - start);
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(fault_in_safe_writeable);
1869 
1870 /**
1871  * fault_in_readable - fault in userspace address range for reading
1872  * @uaddr: start of user address range
1873  * @size: size of user address range
1874  *
1875  * Returns the number of bytes not faulted in (like copy_to_user() and
1876  * copy_from_user()).
1877  */
1878 size_t fault_in_readable(const char __user *uaddr, size_t size)
1879 {
1880 	const char __user *start = uaddr, *end;
1881 	volatile char c;
1882 
1883 	if (unlikely(size == 0))
1884 		return 0;
1885 	if (!user_read_access_begin(uaddr, size))
1886 		return size;
1887 	if (!PAGE_ALIGNED(uaddr)) {
1888 		unsafe_get_user(c, uaddr, out);
1889 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1890 	}
1891 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1892 	if (unlikely(end < start))
1893 		end = NULL;
1894 	while (uaddr != end) {
1895 		unsafe_get_user(c, uaddr, out);
1896 		uaddr += PAGE_SIZE;
1897 	}
1898 
1899 out:
1900 	user_read_access_end();
1901 	(void)c;
1902 	if (size > uaddr - start)
1903 		return size - (uaddr - start);
1904 	return 0;
1905 }
1906 EXPORT_SYMBOL(fault_in_readable);
1907 
1908 /**
1909  * get_dump_page() - pin user page in memory while writing it to core dump
1910  * @addr: user address
1911  *
1912  * Returns struct page pointer of user page pinned for dump,
1913  * to be freed afterwards by put_page().
1914  *
1915  * Returns NULL on any kind of failure - a hole must then be inserted into
1916  * the corefile, to preserve alignment with its headers; and also returns
1917  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1918  * allowing a hole to be left in the corefile to save disk space.
1919  *
1920  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1921  */
1922 #ifdef CONFIG_ELF_CORE
1923 struct page *get_dump_page(unsigned long addr)
1924 {
1925 	struct mm_struct *mm = current->mm;
1926 	struct page *page;
1927 	int locked = 1;
1928 	int ret;
1929 
1930 	if (mmap_read_lock_killable(mm))
1931 		return NULL;
1932 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1933 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1934 	if (locked)
1935 		mmap_read_unlock(mm);
1936 	return (ret == 1) ? page : NULL;
1937 }
1938 #endif /* CONFIG_ELF_CORE */
1939 
1940 #ifdef CONFIG_MIGRATION
1941 /*
1942  * Returns the number of collected pages. Return value is always >= 0.
1943  */
1944 static unsigned long collect_longterm_unpinnable_pages(
1945 					struct list_head *movable_page_list,
1946 					unsigned long nr_pages,
1947 					struct page **pages)
1948 {
1949 	unsigned long i, collected = 0;
1950 	struct folio *prev_folio = NULL;
1951 	bool drain_allow = true;
1952 
1953 	for (i = 0; i < nr_pages; i++) {
1954 		struct folio *folio = page_folio(pages[i]);
1955 
1956 		if (folio == prev_folio)
1957 			continue;
1958 		prev_folio = folio;
1959 
1960 		if (folio_is_longterm_pinnable(folio))
1961 			continue;
1962 
1963 		collected++;
1964 
1965 		if (folio_is_device_coherent(folio))
1966 			continue;
1967 
1968 		if (folio_test_hugetlb(folio)) {
1969 			isolate_hugetlb(&folio->page, movable_page_list);
1970 			continue;
1971 		}
1972 
1973 		if (!folio_test_lru(folio) && drain_allow) {
1974 			lru_add_drain_all();
1975 			drain_allow = false;
1976 		}
1977 
1978 		if (!folio_isolate_lru(folio))
1979 			continue;
1980 
1981 		list_add_tail(&folio->lru, movable_page_list);
1982 		node_stat_mod_folio(folio,
1983 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1984 				    folio_nr_pages(folio));
1985 	}
1986 
1987 	return collected;
1988 }
1989 
1990 /*
1991  * Unpins all pages and migrates device coherent pages and movable_page_list.
1992  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1993  * (or partial success).
1994  */
1995 static int migrate_longterm_unpinnable_pages(
1996 					struct list_head *movable_page_list,
1997 					unsigned long nr_pages,
1998 					struct page **pages)
1999 {
2000 	int ret;
2001 	unsigned long i;
2002 
2003 	for (i = 0; i < nr_pages; i++) {
2004 		struct folio *folio = page_folio(pages[i]);
2005 
2006 		if (folio_is_device_coherent(folio)) {
2007 			/*
2008 			 * Migration will fail if the page is pinned, so convert
2009 			 * the pin on the source page to a normal reference.
2010 			 */
2011 			pages[i] = NULL;
2012 			folio_get(folio);
2013 			gup_put_folio(folio, 1, FOLL_PIN);
2014 
2015 			if (migrate_device_coherent_page(&folio->page)) {
2016 				ret = -EBUSY;
2017 				goto err;
2018 			}
2019 
2020 			continue;
2021 		}
2022 
2023 		/*
2024 		 * We can't migrate pages with unexpected references, so drop
2025 		 * the reference obtained by __get_user_pages_locked().
2026 		 * Migrating pages have been added to movable_page_list after
2027 		 * calling folio_isolate_lru() which takes a reference so the
2028 		 * page won't be freed if it's migrating.
2029 		 */
2030 		unpin_user_page(pages[i]);
2031 		pages[i] = NULL;
2032 	}
2033 
2034 	if (!list_empty(movable_page_list)) {
2035 		struct migration_target_control mtc = {
2036 			.nid = NUMA_NO_NODE,
2037 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2038 		};
2039 
2040 		if (migrate_pages(movable_page_list, alloc_migration_target,
2041 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2042 				  MR_LONGTERM_PIN, NULL)) {
2043 			ret = -ENOMEM;
2044 			goto err;
2045 		}
2046 	}
2047 
2048 	putback_movable_pages(movable_page_list);
2049 
2050 	return -EAGAIN;
2051 
2052 err:
2053 	for (i = 0; i < nr_pages; i++)
2054 		if (pages[i])
2055 			unpin_user_page(pages[i]);
2056 	putback_movable_pages(movable_page_list);
2057 
2058 	return ret;
2059 }
2060 
2061 /*
2062  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2063  * pages in the range are required to be pinned via FOLL_PIN, before calling
2064  * this routine.
2065  *
2066  * If any pages in the range are not allowed to be pinned, then this routine
2067  * will migrate those pages away, unpin all the pages in the range and return
2068  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2069  * call this routine again.
2070  *
2071  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2072  * The caller should give up, and propagate the error back up the call stack.
2073  *
2074  * If everything is OK and all pages in the range are allowed to be pinned, then
2075  * this routine leaves all pages pinned and returns zero for success.
2076  */
2077 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2078 					    struct page **pages)
2079 {
2080 	unsigned long collected;
2081 	LIST_HEAD(movable_page_list);
2082 
2083 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2084 						nr_pages, pages);
2085 	if (!collected)
2086 		return 0;
2087 
2088 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2089 						pages);
2090 }
2091 #else
2092 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2093 					    struct page **pages)
2094 {
2095 	return 0;
2096 }
2097 #endif /* CONFIG_MIGRATION */
2098 
2099 /*
2100  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2101  * allows us to process the FOLL_LONGTERM flag.
2102  */
2103 static long __gup_longterm_locked(struct mm_struct *mm,
2104 				  unsigned long start,
2105 				  unsigned long nr_pages,
2106 				  struct page **pages,
2107 				  struct vm_area_struct **vmas,
2108 				  unsigned int gup_flags)
2109 {
2110 	unsigned int flags;
2111 	long rc, nr_pinned_pages;
2112 
2113 	if (!(gup_flags & FOLL_LONGTERM))
2114 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2115 					       NULL, gup_flags);
2116 
2117 	/*
2118 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2119 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2120 	 * correct to unconditionally call check_and_migrate_movable_pages()
2121 	 * which assumes pages have been pinned via FOLL_PIN.
2122 	 *
2123 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2124 	 */
2125 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2126 		return -EINVAL;
2127 	flags = memalloc_pin_save();
2128 	do {
2129 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2130 							  pages, vmas, NULL,
2131 							  gup_flags);
2132 		if (nr_pinned_pages <= 0) {
2133 			rc = nr_pinned_pages;
2134 			break;
2135 		}
2136 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2137 	} while (rc == -EAGAIN);
2138 	memalloc_pin_restore(flags);
2139 
2140 	return rc ? rc : nr_pinned_pages;
2141 }
2142 
2143 static bool is_valid_gup_flags(unsigned int gup_flags)
2144 {
2145 	/*
2146 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2147 	 * never directly by the caller, so enforce that with an assertion:
2148 	 */
2149 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2150 		return false;
2151 	/*
2152 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2153 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2154 	 * FOLL_PIN.
2155 	 */
2156 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2157 		return false;
2158 
2159 	return true;
2160 }
2161 
2162 #ifdef CONFIG_MMU
2163 static long __get_user_pages_remote(struct mm_struct *mm,
2164 				    unsigned long start, unsigned long nr_pages,
2165 				    unsigned int gup_flags, struct page **pages,
2166 				    struct vm_area_struct **vmas, int *locked)
2167 {
2168 	/*
2169 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2170 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2171 	 * vmas. However, this only comes up if locked is set, and there are
2172 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2173 	 * allow what we can.
2174 	 */
2175 	if (gup_flags & FOLL_LONGTERM) {
2176 		if (WARN_ON_ONCE(locked))
2177 			return -EINVAL;
2178 		/*
2179 		 * This will check the vmas (even if our vmas arg is NULL)
2180 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2181 		 */
2182 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2183 					     vmas, gup_flags | FOLL_TOUCH |
2184 					     FOLL_REMOTE);
2185 	}
2186 
2187 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2188 				       locked,
2189 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2190 }
2191 
2192 /**
2193  * get_user_pages_remote() - pin user pages in memory
2194  * @mm:		mm_struct of target mm
2195  * @start:	starting user address
2196  * @nr_pages:	number of pages from start to pin
2197  * @gup_flags:	flags modifying lookup behaviour
2198  * @pages:	array that receives pointers to the pages pinned.
2199  *		Should be at least nr_pages long. Or NULL, if caller
2200  *		only intends to ensure the pages are faulted in.
2201  * @vmas:	array of pointers to vmas corresponding to each page.
2202  *		Or NULL if the caller does not require them.
2203  * @locked:	pointer to lock flag indicating whether lock is held and
2204  *		subsequently whether VM_FAULT_RETRY functionality can be
2205  *		utilised. Lock must initially be held.
2206  *
2207  * Returns either number of pages pinned (which may be less than the
2208  * number requested), or an error. Details about the return value:
2209  *
2210  * -- If nr_pages is 0, returns 0.
2211  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2212  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2213  *    pages pinned. Again, this may be less than nr_pages.
2214  *
2215  * The caller is responsible for releasing returned @pages, via put_page().
2216  *
2217  * @vmas are valid only as long as mmap_lock is held.
2218  *
2219  * Must be called with mmap_lock held for read or write.
2220  *
2221  * get_user_pages_remote walks a process's page tables and takes a reference
2222  * to each struct page that each user address corresponds to at a given
2223  * instant. That is, it takes the page that would be accessed if a user
2224  * thread accesses the given user virtual address at that instant.
2225  *
2226  * This does not guarantee that the page exists in the user mappings when
2227  * get_user_pages_remote returns, and there may even be a completely different
2228  * page there in some cases (eg. if mmapped pagecache has been invalidated
2229  * and subsequently re faulted). However it does guarantee that the page
2230  * won't be freed completely. And mostly callers simply care that the page
2231  * contains data that was valid *at some point in time*. Typically, an IO
2232  * or similar operation cannot guarantee anything stronger anyway because
2233  * locks can't be held over the syscall boundary.
2234  *
2235  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2236  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2237  * be called after the page is finished with, and before put_page is called.
2238  *
2239  * get_user_pages_remote is typically used for fewer-copy IO operations,
2240  * to get a handle on the memory by some means other than accesses
2241  * via the user virtual addresses. The pages may be submitted for
2242  * DMA to devices or accessed via their kernel linear mapping (via the
2243  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2244  *
2245  * See also get_user_pages_fast, for performance critical applications.
2246  *
2247  * get_user_pages_remote should be phased out in favor of
2248  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2249  * should use get_user_pages_remote because it cannot pass
2250  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2251  */
2252 long get_user_pages_remote(struct mm_struct *mm,
2253 		unsigned long start, unsigned long nr_pages,
2254 		unsigned int gup_flags, struct page **pages,
2255 		struct vm_area_struct **vmas, int *locked)
2256 {
2257 	if (!is_valid_gup_flags(gup_flags))
2258 		return -EINVAL;
2259 
2260 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2261 				       pages, vmas, locked);
2262 }
2263 EXPORT_SYMBOL(get_user_pages_remote);
2264 
2265 #else /* CONFIG_MMU */
2266 long get_user_pages_remote(struct mm_struct *mm,
2267 			   unsigned long start, unsigned long nr_pages,
2268 			   unsigned int gup_flags, struct page **pages,
2269 			   struct vm_area_struct **vmas, int *locked)
2270 {
2271 	return 0;
2272 }
2273 
2274 static long __get_user_pages_remote(struct mm_struct *mm,
2275 				    unsigned long start, unsigned long nr_pages,
2276 				    unsigned int gup_flags, struct page **pages,
2277 				    struct vm_area_struct **vmas, int *locked)
2278 {
2279 	return 0;
2280 }
2281 #endif /* !CONFIG_MMU */
2282 
2283 /**
2284  * get_user_pages() - pin user pages in memory
2285  * @start:      starting user address
2286  * @nr_pages:   number of pages from start to pin
2287  * @gup_flags:  flags modifying lookup behaviour
2288  * @pages:      array that receives pointers to the pages pinned.
2289  *              Should be at least nr_pages long. Or NULL, if caller
2290  *              only intends to ensure the pages are faulted in.
2291  * @vmas:       array of pointers to vmas corresponding to each page.
2292  *              Or NULL if the caller does not require them.
2293  *
2294  * This is the same as get_user_pages_remote(), just with a less-flexible
2295  * calling convention where we assume that the mm being operated on belongs to
2296  * the current task, and doesn't allow passing of a locked parameter.  We also
2297  * obviously don't pass FOLL_REMOTE in here.
2298  */
2299 long get_user_pages(unsigned long start, unsigned long nr_pages,
2300 		unsigned int gup_flags, struct page **pages,
2301 		struct vm_area_struct **vmas)
2302 {
2303 	if (!is_valid_gup_flags(gup_flags))
2304 		return -EINVAL;
2305 
2306 	return __gup_longterm_locked(current->mm, start, nr_pages,
2307 				     pages, vmas, gup_flags | FOLL_TOUCH);
2308 }
2309 EXPORT_SYMBOL(get_user_pages);
2310 
2311 /*
2312  * get_user_pages_unlocked() is suitable to replace the form:
2313  *
2314  *      mmap_read_lock(mm);
2315  *      get_user_pages(mm, ..., pages, NULL);
2316  *      mmap_read_unlock(mm);
2317  *
2318  *  with:
2319  *
2320  *      get_user_pages_unlocked(mm, ..., pages);
2321  *
2322  * It is functionally equivalent to get_user_pages_fast so
2323  * get_user_pages_fast should be used instead if specific gup_flags
2324  * (e.g. FOLL_FORCE) are not required.
2325  */
2326 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2327 			     struct page **pages, unsigned int gup_flags)
2328 {
2329 	struct mm_struct *mm = current->mm;
2330 	int locked = 1;
2331 	long ret;
2332 
2333 	/*
2334 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2335 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2336 	 * vmas.  As there are no users of this flag in this call we simply
2337 	 * disallow this option for now.
2338 	 */
2339 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2340 		return -EINVAL;
2341 
2342 	mmap_read_lock(mm);
2343 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2344 				      &locked, gup_flags | FOLL_TOUCH);
2345 	if (locked)
2346 		mmap_read_unlock(mm);
2347 	return ret;
2348 }
2349 EXPORT_SYMBOL(get_user_pages_unlocked);
2350 
2351 /*
2352  * Fast GUP
2353  *
2354  * get_user_pages_fast attempts to pin user pages by walking the page
2355  * tables directly and avoids taking locks. Thus the walker needs to be
2356  * protected from page table pages being freed from under it, and should
2357  * block any THP splits.
2358  *
2359  * One way to achieve this is to have the walker disable interrupts, and
2360  * rely on IPIs from the TLB flushing code blocking before the page table
2361  * pages are freed. This is unsuitable for architectures that do not need
2362  * to broadcast an IPI when invalidating TLBs.
2363  *
2364  * Another way to achieve this is to batch up page table containing pages
2365  * belonging to more than one mm_user, then rcu_sched a callback to free those
2366  * pages. Disabling interrupts will allow the fast_gup walker to both block
2367  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2368  * (which is a relatively rare event). The code below adopts this strategy.
2369  *
2370  * Before activating this code, please be aware that the following assumptions
2371  * are currently made:
2372  *
2373  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2374  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2375  *
2376  *  *) ptes can be read atomically by the architecture.
2377  *
2378  *  *) access_ok is sufficient to validate userspace address ranges.
2379  *
2380  * The last two assumptions can be relaxed by the addition of helper functions.
2381  *
2382  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2383  */
2384 #ifdef CONFIG_HAVE_FAST_GUP
2385 
2386 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2387 					    unsigned int flags,
2388 					    struct page **pages)
2389 {
2390 	while ((*nr) - nr_start) {
2391 		struct page *page = pages[--(*nr)];
2392 
2393 		ClearPageReferenced(page);
2394 		if (flags & FOLL_PIN)
2395 			unpin_user_page(page);
2396 		else
2397 			put_page(page);
2398 	}
2399 }
2400 
2401 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2402 /*
2403  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2404  * operations.
2405  *
2406  * To pin the page, fast-gup needs to do below in order:
2407  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2408  *
2409  * For the rest of pgtable operations where pgtable updates can be racy
2410  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2411  * is pinned.
2412  *
2413  * Above will work for all pte-level operations, including THP split.
2414  *
2415  * For THP collapse, it's a bit more complicated because fast-gup may be
2416  * walking a pgtable page that is being freed (pte is still valid but pmd
2417  * can be cleared already).  To avoid race in such condition, we need to
2418  * also check pmd here to make sure pmd doesn't change (corresponds to
2419  * pmdp_collapse_flush() in the THP collapse code path).
2420  */
2421 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2422 			 unsigned long end, unsigned int flags,
2423 			 struct page **pages, int *nr)
2424 {
2425 	struct dev_pagemap *pgmap = NULL;
2426 	int nr_start = *nr, ret = 0;
2427 	pte_t *ptep, *ptem;
2428 
2429 	ptem = ptep = pte_offset_map(&pmd, addr);
2430 	do {
2431 		pte_t pte = ptep_get_lockless(ptep);
2432 		struct page *page;
2433 		struct folio *folio;
2434 
2435 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2436 			goto pte_unmap;
2437 
2438 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2439 			goto pte_unmap;
2440 
2441 		if (pte_devmap(pte)) {
2442 			if (unlikely(flags & FOLL_LONGTERM))
2443 				goto pte_unmap;
2444 
2445 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2446 			if (unlikely(!pgmap)) {
2447 				undo_dev_pagemap(nr, nr_start, flags, pages);
2448 				goto pte_unmap;
2449 			}
2450 		} else if (pte_special(pte))
2451 			goto pte_unmap;
2452 
2453 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2454 		page = pte_page(pte);
2455 
2456 		folio = try_grab_folio(page, 1, flags);
2457 		if (!folio)
2458 			goto pte_unmap;
2459 
2460 		if (unlikely(page_is_secretmem(page))) {
2461 			gup_put_folio(folio, 1, flags);
2462 			goto pte_unmap;
2463 		}
2464 
2465 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2466 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2467 			gup_put_folio(folio, 1, flags);
2468 			goto pte_unmap;
2469 		}
2470 
2471 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2472 			gup_put_folio(folio, 1, flags);
2473 			goto pte_unmap;
2474 		}
2475 
2476 		/*
2477 		 * We need to make the page accessible if and only if we are
2478 		 * going to access its content (the FOLL_PIN case).  Please
2479 		 * see Documentation/core-api/pin_user_pages.rst for
2480 		 * details.
2481 		 */
2482 		if (flags & FOLL_PIN) {
2483 			ret = arch_make_page_accessible(page);
2484 			if (ret) {
2485 				gup_put_folio(folio, 1, flags);
2486 				goto pte_unmap;
2487 			}
2488 		}
2489 		folio_set_referenced(folio);
2490 		pages[*nr] = page;
2491 		(*nr)++;
2492 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2493 
2494 	ret = 1;
2495 
2496 pte_unmap:
2497 	if (pgmap)
2498 		put_dev_pagemap(pgmap);
2499 	pte_unmap(ptem);
2500 	return ret;
2501 }
2502 #else
2503 
2504 /*
2505  * If we can't determine whether or not a pte is special, then fail immediately
2506  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2507  * to be special.
2508  *
2509  * For a futex to be placed on a THP tail page, get_futex_key requires a
2510  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2511  * useful to have gup_huge_pmd even if we can't operate on ptes.
2512  */
2513 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2514 			 unsigned long end, unsigned int flags,
2515 			 struct page **pages, int *nr)
2516 {
2517 	return 0;
2518 }
2519 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2520 
2521 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2522 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2523 			     unsigned long end, unsigned int flags,
2524 			     struct page **pages, int *nr)
2525 {
2526 	int nr_start = *nr;
2527 	struct dev_pagemap *pgmap = NULL;
2528 
2529 	do {
2530 		struct page *page = pfn_to_page(pfn);
2531 
2532 		pgmap = get_dev_pagemap(pfn, pgmap);
2533 		if (unlikely(!pgmap)) {
2534 			undo_dev_pagemap(nr, nr_start, flags, pages);
2535 			break;
2536 		}
2537 		SetPageReferenced(page);
2538 		pages[*nr] = page;
2539 		if (unlikely(!try_grab_page(page, flags))) {
2540 			undo_dev_pagemap(nr, nr_start, flags, pages);
2541 			break;
2542 		}
2543 		(*nr)++;
2544 		pfn++;
2545 	} while (addr += PAGE_SIZE, addr != end);
2546 
2547 	put_dev_pagemap(pgmap);
2548 	return addr == end;
2549 }
2550 
2551 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2552 				 unsigned long end, unsigned int flags,
2553 				 struct page **pages, int *nr)
2554 {
2555 	unsigned long fault_pfn;
2556 	int nr_start = *nr;
2557 
2558 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2559 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2560 		return 0;
2561 
2562 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2563 		undo_dev_pagemap(nr, nr_start, flags, pages);
2564 		return 0;
2565 	}
2566 	return 1;
2567 }
2568 
2569 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2570 				 unsigned long end, unsigned int flags,
2571 				 struct page **pages, int *nr)
2572 {
2573 	unsigned long fault_pfn;
2574 	int nr_start = *nr;
2575 
2576 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2577 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2578 		return 0;
2579 
2580 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2581 		undo_dev_pagemap(nr, nr_start, flags, pages);
2582 		return 0;
2583 	}
2584 	return 1;
2585 }
2586 #else
2587 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2588 				 unsigned long end, unsigned int flags,
2589 				 struct page **pages, int *nr)
2590 {
2591 	BUILD_BUG();
2592 	return 0;
2593 }
2594 
2595 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2596 				 unsigned long end, unsigned int flags,
2597 				 struct page **pages, int *nr)
2598 {
2599 	BUILD_BUG();
2600 	return 0;
2601 }
2602 #endif
2603 
2604 static int record_subpages(struct page *page, unsigned long addr,
2605 			   unsigned long end, struct page **pages)
2606 {
2607 	int nr;
2608 
2609 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2610 		pages[nr] = nth_page(page, nr);
2611 
2612 	return nr;
2613 }
2614 
2615 #ifdef CONFIG_ARCH_HAS_HUGEPD
2616 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2617 				      unsigned long sz)
2618 {
2619 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2620 	return (__boundary - 1 < end - 1) ? __boundary : end;
2621 }
2622 
2623 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2624 		       unsigned long end, unsigned int flags,
2625 		       struct page **pages, int *nr)
2626 {
2627 	unsigned long pte_end;
2628 	struct page *page;
2629 	struct folio *folio;
2630 	pte_t pte;
2631 	int refs;
2632 
2633 	pte_end = (addr + sz) & ~(sz-1);
2634 	if (pte_end < end)
2635 		end = pte_end;
2636 
2637 	pte = huge_ptep_get(ptep);
2638 
2639 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2640 		return 0;
2641 
2642 	/* hugepages are never "special" */
2643 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2644 
2645 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2646 	refs = record_subpages(page, addr, end, pages + *nr);
2647 
2648 	folio = try_grab_folio(page, refs, flags);
2649 	if (!folio)
2650 		return 0;
2651 
2652 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2653 		gup_put_folio(folio, refs, flags);
2654 		return 0;
2655 	}
2656 
2657 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2658 		gup_put_folio(folio, refs, flags);
2659 		return 0;
2660 	}
2661 
2662 	*nr += refs;
2663 	folio_set_referenced(folio);
2664 	return 1;
2665 }
2666 
2667 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2668 		unsigned int pdshift, unsigned long end, unsigned int flags,
2669 		struct page **pages, int *nr)
2670 {
2671 	pte_t *ptep;
2672 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2673 	unsigned long next;
2674 
2675 	ptep = hugepte_offset(hugepd, addr, pdshift);
2676 	do {
2677 		next = hugepte_addr_end(addr, end, sz);
2678 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2679 			return 0;
2680 	} while (ptep++, addr = next, addr != end);
2681 
2682 	return 1;
2683 }
2684 #else
2685 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2686 		unsigned int pdshift, unsigned long end, unsigned int flags,
2687 		struct page **pages, int *nr)
2688 {
2689 	return 0;
2690 }
2691 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2692 
2693 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2694 			unsigned long end, unsigned int flags,
2695 			struct page **pages, int *nr)
2696 {
2697 	struct page *page;
2698 	struct folio *folio;
2699 	int refs;
2700 
2701 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2702 		return 0;
2703 
2704 	if (pmd_devmap(orig)) {
2705 		if (unlikely(flags & FOLL_LONGTERM))
2706 			return 0;
2707 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2708 					     pages, nr);
2709 	}
2710 
2711 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2712 	refs = record_subpages(page, addr, end, pages + *nr);
2713 
2714 	folio = try_grab_folio(page, refs, flags);
2715 	if (!folio)
2716 		return 0;
2717 
2718 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2719 		gup_put_folio(folio, refs, flags);
2720 		return 0;
2721 	}
2722 
2723 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2724 		gup_put_folio(folio, refs, flags);
2725 		return 0;
2726 	}
2727 
2728 	*nr += refs;
2729 	folio_set_referenced(folio);
2730 	return 1;
2731 }
2732 
2733 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2734 			unsigned long end, unsigned int flags,
2735 			struct page **pages, int *nr)
2736 {
2737 	struct page *page;
2738 	struct folio *folio;
2739 	int refs;
2740 
2741 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2742 		return 0;
2743 
2744 	if (pud_devmap(orig)) {
2745 		if (unlikely(flags & FOLL_LONGTERM))
2746 			return 0;
2747 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2748 					     pages, nr);
2749 	}
2750 
2751 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2752 	refs = record_subpages(page, addr, end, pages + *nr);
2753 
2754 	folio = try_grab_folio(page, refs, flags);
2755 	if (!folio)
2756 		return 0;
2757 
2758 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2759 		gup_put_folio(folio, refs, flags);
2760 		return 0;
2761 	}
2762 
2763 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2764 		gup_put_folio(folio, refs, flags);
2765 		return 0;
2766 	}
2767 
2768 	*nr += refs;
2769 	folio_set_referenced(folio);
2770 	return 1;
2771 }
2772 
2773 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2774 			unsigned long end, unsigned int flags,
2775 			struct page **pages, int *nr)
2776 {
2777 	int refs;
2778 	struct page *page;
2779 	struct folio *folio;
2780 
2781 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2782 		return 0;
2783 
2784 	BUILD_BUG_ON(pgd_devmap(orig));
2785 
2786 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2787 	refs = record_subpages(page, addr, end, pages + *nr);
2788 
2789 	folio = try_grab_folio(page, refs, flags);
2790 	if (!folio)
2791 		return 0;
2792 
2793 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2794 		gup_put_folio(folio, refs, flags);
2795 		return 0;
2796 	}
2797 
2798 	*nr += refs;
2799 	folio_set_referenced(folio);
2800 	return 1;
2801 }
2802 
2803 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2804 		unsigned int flags, struct page **pages, int *nr)
2805 {
2806 	unsigned long next;
2807 	pmd_t *pmdp;
2808 
2809 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2810 	do {
2811 		pmd_t pmd = READ_ONCE(*pmdp);
2812 
2813 		next = pmd_addr_end(addr, end);
2814 		if (!pmd_present(pmd))
2815 			return 0;
2816 
2817 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2818 			     pmd_devmap(pmd))) {
2819 			if (pmd_protnone(pmd) &&
2820 			    !gup_can_follow_protnone(flags))
2821 				return 0;
2822 
2823 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2824 				pages, nr))
2825 				return 0;
2826 
2827 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2828 			/*
2829 			 * architecture have different format for hugetlbfs
2830 			 * pmd format and THP pmd format
2831 			 */
2832 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2833 					 PMD_SHIFT, next, flags, pages, nr))
2834 				return 0;
2835 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2836 			return 0;
2837 	} while (pmdp++, addr = next, addr != end);
2838 
2839 	return 1;
2840 }
2841 
2842 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2843 			 unsigned int flags, struct page **pages, int *nr)
2844 {
2845 	unsigned long next;
2846 	pud_t *pudp;
2847 
2848 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2849 	do {
2850 		pud_t pud = READ_ONCE(*pudp);
2851 
2852 		next = pud_addr_end(addr, end);
2853 		if (unlikely(!pud_present(pud)))
2854 			return 0;
2855 		if (unlikely(pud_huge(pud))) {
2856 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2857 					  pages, nr))
2858 				return 0;
2859 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2860 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2861 					 PUD_SHIFT, next, flags, pages, nr))
2862 				return 0;
2863 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2864 			return 0;
2865 	} while (pudp++, addr = next, addr != end);
2866 
2867 	return 1;
2868 }
2869 
2870 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2871 			 unsigned int flags, struct page **pages, int *nr)
2872 {
2873 	unsigned long next;
2874 	p4d_t *p4dp;
2875 
2876 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2877 	do {
2878 		p4d_t p4d = READ_ONCE(*p4dp);
2879 
2880 		next = p4d_addr_end(addr, end);
2881 		if (p4d_none(p4d))
2882 			return 0;
2883 		BUILD_BUG_ON(p4d_huge(p4d));
2884 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2885 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2886 					 P4D_SHIFT, next, flags, pages, nr))
2887 				return 0;
2888 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2889 			return 0;
2890 	} while (p4dp++, addr = next, addr != end);
2891 
2892 	return 1;
2893 }
2894 
2895 static void gup_pgd_range(unsigned long addr, unsigned long end,
2896 		unsigned int flags, struct page **pages, int *nr)
2897 {
2898 	unsigned long next;
2899 	pgd_t *pgdp;
2900 
2901 	pgdp = pgd_offset(current->mm, addr);
2902 	do {
2903 		pgd_t pgd = READ_ONCE(*pgdp);
2904 
2905 		next = pgd_addr_end(addr, end);
2906 		if (pgd_none(pgd))
2907 			return;
2908 		if (unlikely(pgd_huge(pgd))) {
2909 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2910 					  pages, nr))
2911 				return;
2912 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2913 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2914 					 PGDIR_SHIFT, next, flags, pages, nr))
2915 				return;
2916 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2917 			return;
2918 	} while (pgdp++, addr = next, addr != end);
2919 }
2920 #else
2921 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2922 		unsigned int flags, struct page **pages, int *nr)
2923 {
2924 }
2925 #endif /* CONFIG_HAVE_FAST_GUP */
2926 
2927 #ifndef gup_fast_permitted
2928 /*
2929  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2930  * we need to fall back to the slow version:
2931  */
2932 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2933 {
2934 	return true;
2935 }
2936 #endif
2937 
2938 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2939 				   unsigned int gup_flags, struct page **pages)
2940 {
2941 	int ret;
2942 
2943 	/*
2944 	 * FIXME: FOLL_LONGTERM does not work with
2945 	 * get_user_pages_unlocked() (see comments in that function)
2946 	 */
2947 	if (gup_flags & FOLL_LONGTERM) {
2948 		mmap_read_lock(current->mm);
2949 		ret = __gup_longterm_locked(current->mm,
2950 					    start, nr_pages,
2951 					    pages, NULL, gup_flags);
2952 		mmap_read_unlock(current->mm);
2953 	} else {
2954 		ret = get_user_pages_unlocked(start, nr_pages,
2955 					      pages, gup_flags);
2956 	}
2957 
2958 	return ret;
2959 }
2960 
2961 static unsigned long lockless_pages_from_mm(unsigned long start,
2962 					    unsigned long end,
2963 					    unsigned int gup_flags,
2964 					    struct page **pages)
2965 {
2966 	unsigned long flags;
2967 	int nr_pinned = 0;
2968 	unsigned seq;
2969 
2970 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2971 	    !gup_fast_permitted(start, end))
2972 		return 0;
2973 
2974 	if (gup_flags & FOLL_PIN) {
2975 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2976 		if (seq & 1)
2977 			return 0;
2978 	}
2979 
2980 	/*
2981 	 * Disable interrupts. The nested form is used, in order to allow full,
2982 	 * general purpose use of this routine.
2983 	 *
2984 	 * With interrupts disabled, we block page table pages from being freed
2985 	 * from under us. See struct mmu_table_batch comments in
2986 	 * include/asm-generic/tlb.h for more details.
2987 	 *
2988 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2989 	 * that come from THPs splitting.
2990 	 */
2991 	local_irq_save(flags);
2992 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2993 	local_irq_restore(flags);
2994 
2995 	/*
2996 	 * When pinning pages for DMA there could be a concurrent write protect
2997 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2998 	 */
2999 	if (gup_flags & FOLL_PIN) {
3000 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3001 			unpin_user_pages_lockless(pages, nr_pinned);
3002 			return 0;
3003 		} else {
3004 			sanity_check_pinned_pages(pages, nr_pinned);
3005 		}
3006 	}
3007 	return nr_pinned;
3008 }
3009 
3010 static int internal_get_user_pages_fast(unsigned long start,
3011 					unsigned long nr_pages,
3012 					unsigned int gup_flags,
3013 					struct page **pages)
3014 {
3015 	unsigned long len, end;
3016 	unsigned long nr_pinned;
3017 	int ret;
3018 
3019 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3020 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3021 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
3022 		return -EINVAL;
3023 
3024 	if (gup_flags & FOLL_PIN)
3025 		mm_set_has_pinned_flag(&current->mm->flags);
3026 
3027 	if (!(gup_flags & FOLL_FAST_ONLY))
3028 		might_lock_read(&current->mm->mmap_lock);
3029 
3030 	start = untagged_addr(start) & PAGE_MASK;
3031 	len = nr_pages << PAGE_SHIFT;
3032 	if (check_add_overflow(start, len, &end))
3033 		return 0;
3034 	if (unlikely(!access_ok((void __user *)start, len)))
3035 		return -EFAULT;
3036 
3037 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3038 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3039 		return nr_pinned;
3040 
3041 	/* Slow path: try to get the remaining pages with get_user_pages */
3042 	start += nr_pinned << PAGE_SHIFT;
3043 	pages += nr_pinned;
3044 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3045 				      pages);
3046 	if (ret < 0) {
3047 		/*
3048 		 * The caller has to unpin the pages we already pinned so
3049 		 * returning -errno is not an option
3050 		 */
3051 		if (nr_pinned)
3052 			return nr_pinned;
3053 		return ret;
3054 	}
3055 	return ret + nr_pinned;
3056 }
3057 
3058 /**
3059  * get_user_pages_fast_only() - pin user pages in memory
3060  * @start:      starting user address
3061  * @nr_pages:   number of pages from start to pin
3062  * @gup_flags:  flags modifying pin behaviour
3063  * @pages:      array that receives pointers to the pages pinned.
3064  *              Should be at least nr_pages long.
3065  *
3066  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3067  * the regular GUP.
3068  * Note a difference with get_user_pages_fast: this always returns the
3069  * number of pages pinned, 0 if no pages were pinned.
3070  *
3071  * If the architecture does not support this function, simply return with no
3072  * pages pinned.
3073  *
3074  * Careful, careful! COW breaking can go either way, so a non-write
3075  * access can get ambiguous page results. If you call this function without
3076  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3077  */
3078 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3079 			     unsigned int gup_flags, struct page **pages)
3080 {
3081 	int nr_pinned;
3082 	/*
3083 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3084 	 * because gup fast is always a "pin with a +1 page refcount" request.
3085 	 *
3086 	 * FOLL_FAST_ONLY is required in order to match the API description of
3087 	 * this routine: no fall back to regular ("slow") GUP.
3088 	 */
3089 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3090 
3091 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3092 						 pages);
3093 
3094 	/*
3095 	 * As specified in the API description above, this routine is not
3096 	 * allowed to return negative values. However, the common core
3097 	 * routine internal_get_user_pages_fast() *can* return -errno.
3098 	 * Therefore, correct for that here:
3099 	 */
3100 	if (nr_pinned < 0)
3101 		nr_pinned = 0;
3102 
3103 	return nr_pinned;
3104 }
3105 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3106 
3107 /**
3108  * get_user_pages_fast() - pin user pages in memory
3109  * @start:      starting user address
3110  * @nr_pages:   number of pages from start to pin
3111  * @gup_flags:  flags modifying pin behaviour
3112  * @pages:      array that receives pointers to the pages pinned.
3113  *              Should be at least nr_pages long.
3114  *
3115  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3116  * If not successful, it will fall back to taking the lock and
3117  * calling get_user_pages().
3118  *
3119  * Returns number of pages pinned. This may be fewer than the number requested.
3120  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3121  * -errno.
3122  */
3123 int get_user_pages_fast(unsigned long start, int nr_pages,
3124 			unsigned int gup_flags, struct page **pages)
3125 {
3126 	if (!is_valid_gup_flags(gup_flags))
3127 		return -EINVAL;
3128 
3129 	/*
3130 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3131 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3132 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3133 	 * request.
3134 	 */
3135 	gup_flags |= FOLL_GET;
3136 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3137 }
3138 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3139 
3140 /**
3141  * pin_user_pages_fast() - pin user pages in memory without taking locks
3142  *
3143  * @start:      starting user address
3144  * @nr_pages:   number of pages from start to pin
3145  * @gup_flags:  flags modifying pin behaviour
3146  * @pages:      array that receives pointers to the pages pinned.
3147  *              Should be at least nr_pages long.
3148  *
3149  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3150  * get_user_pages_fast() for documentation on the function arguments, because
3151  * the arguments here are identical.
3152  *
3153  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3154  * see Documentation/core-api/pin_user_pages.rst for further details.
3155  */
3156 int pin_user_pages_fast(unsigned long start, int nr_pages,
3157 			unsigned int gup_flags, struct page **pages)
3158 {
3159 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3160 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3161 		return -EINVAL;
3162 
3163 	if (WARN_ON_ONCE(!pages))
3164 		return -EINVAL;
3165 
3166 	gup_flags |= FOLL_PIN;
3167 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3168 }
3169 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3170 
3171 /*
3172  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3173  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3174  *
3175  * The API rules are the same, too: no negative values may be returned.
3176  */
3177 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3178 			     unsigned int gup_flags, struct page **pages)
3179 {
3180 	int nr_pinned;
3181 
3182 	/*
3183 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3184 	 * rules require returning 0, rather than -errno:
3185 	 */
3186 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3187 		return 0;
3188 
3189 	if (WARN_ON_ONCE(!pages))
3190 		return 0;
3191 	/*
3192 	 * FOLL_FAST_ONLY is required in order to match the API description of
3193 	 * this routine: no fall back to regular ("slow") GUP.
3194 	 */
3195 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3196 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3197 						 pages);
3198 	/*
3199 	 * This routine is not allowed to return negative values. However,
3200 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3201 	 * correct for that here:
3202 	 */
3203 	if (nr_pinned < 0)
3204 		nr_pinned = 0;
3205 
3206 	return nr_pinned;
3207 }
3208 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3209 
3210 /**
3211  * pin_user_pages_remote() - pin pages of a remote process
3212  *
3213  * @mm:		mm_struct of target mm
3214  * @start:	starting user address
3215  * @nr_pages:	number of pages from start to pin
3216  * @gup_flags:	flags modifying lookup behaviour
3217  * @pages:	array that receives pointers to the pages pinned.
3218  *		Should be at least nr_pages long.
3219  * @vmas:	array of pointers to vmas corresponding to each page.
3220  *		Or NULL if the caller does not require them.
3221  * @locked:	pointer to lock flag indicating whether lock is held and
3222  *		subsequently whether VM_FAULT_RETRY functionality can be
3223  *		utilised. Lock must initially be held.
3224  *
3225  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3226  * get_user_pages_remote() for documentation on the function arguments, because
3227  * the arguments here are identical.
3228  *
3229  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3230  * see Documentation/core-api/pin_user_pages.rst for details.
3231  */
3232 long pin_user_pages_remote(struct mm_struct *mm,
3233 			   unsigned long start, unsigned long nr_pages,
3234 			   unsigned int gup_flags, struct page **pages,
3235 			   struct vm_area_struct **vmas, int *locked)
3236 {
3237 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3238 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3239 		return -EINVAL;
3240 
3241 	if (WARN_ON_ONCE(!pages))
3242 		return -EINVAL;
3243 
3244 	gup_flags |= FOLL_PIN;
3245 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3246 				       pages, vmas, locked);
3247 }
3248 EXPORT_SYMBOL(pin_user_pages_remote);
3249 
3250 /**
3251  * pin_user_pages() - pin user pages in memory for use by other devices
3252  *
3253  * @start:	starting user address
3254  * @nr_pages:	number of pages from start to pin
3255  * @gup_flags:	flags modifying lookup behaviour
3256  * @pages:	array that receives pointers to the pages pinned.
3257  *		Should be at least nr_pages long.
3258  * @vmas:	array of pointers to vmas corresponding to each page.
3259  *		Or NULL if the caller does not require them.
3260  *
3261  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3262  * FOLL_PIN is set.
3263  *
3264  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3265  * see Documentation/core-api/pin_user_pages.rst for details.
3266  */
3267 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3268 		    unsigned int gup_flags, struct page **pages,
3269 		    struct vm_area_struct **vmas)
3270 {
3271 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3272 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3273 		return -EINVAL;
3274 
3275 	if (WARN_ON_ONCE(!pages))
3276 		return -EINVAL;
3277 
3278 	gup_flags |= FOLL_PIN;
3279 	return __gup_longterm_locked(current->mm, start, nr_pages,
3280 				     pages, vmas, gup_flags);
3281 }
3282 EXPORT_SYMBOL(pin_user_pages);
3283 
3284 /*
3285  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3286  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3287  * FOLL_PIN and rejects FOLL_GET.
3288  */
3289 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3290 			     struct page **pages, unsigned int gup_flags)
3291 {
3292 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3293 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3294 		return -EINVAL;
3295 
3296 	if (WARN_ON_ONCE(!pages))
3297 		return -EINVAL;
3298 
3299 	gup_flags |= FOLL_PIN;
3300 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3301 }
3302 EXPORT_SYMBOL(pin_user_pages_unlocked);
3303