xref: /openbmc/linux/mm/gup.c (revision 83268fa6)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 struct follow_page_context {
24 	struct dev_pagemap *pgmap;
25 	unsigned int page_mask;
26 };
27 
28 static struct page *no_page_table(struct vm_area_struct *vma,
29 		unsigned int flags)
30 {
31 	/*
32 	 * When core dumping an enormous anonymous area that nobody
33 	 * has touched so far, we don't want to allocate unnecessary pages or
34 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
35 	 * then get_dump_page() will return NULL to leave a hole in the dump.
36 	 * But we can only make this optimization where a hole would surely
37 	 * be zero-filled if handle_mm_fault() actually did handle it.
38 	 */
39 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
40 		return ERR_PTR(-EFAULT);
41 	return NULL;
42 }
43 
44 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
45 		pte_t *pte, unsigned int flags)
46 {
47 	/* No page to get reference */
48 	if (flags & FOLL_GET)
49 		return -EFAULT;
50 
51 	if (flags & FOLL_TOUCH) {
52 		pte_t entry = *pte;
53 
54 		if (flags & FOLL_WRITE)
55 			entry = pte_mkdirty(entry);
56 		entry = pte_mkyoung(entry);
57 
58 		if (!pte_same(*pte, entry)) {
59 			set_pte_at(vma->vm_mm, address, pte, entry);
60 			update_mmu_cache(vma, address, pte);
61 		}
62 	}
63 
64 	/* Proper page table entry exists, but no corresponding struct page */
65 	return -EEXIST;
66 }
67 
68 /*
69  * FOLL_FORCE can write to even unwritable pte's, but only
70  * after we've gone through a COW cycle and they are dirty.
71  */
72 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
73 {
74 	return pte_write(pte) ||
75 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
76 }
77 
78 static struct page *follow_page_pte(struct vm_area_struct *vma,
79 		unsigned long address, pmd_t *pmd, unsigned int flags,
80 		struct dev_pagemap **pgmap)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	struct page *page;
84 	spinlock_t *ptl;
85 	pte_t *ptep, pte;
86 
87 retry:
88 	if (unlikely(pmd_bad(*pmd)))
89 		return no_page_table(vma, flags);
90 
91 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
92 	pte = *ptep;
93 	if (!pte_present(pte)) {
94 		swp_entry_t entry;
95 		/*
96 		 * KSM's break_ksm() relies upon recognizing a ksm page
97 		 * even while it is being migrated, so for that case we
98 		 * need migration_entry_wait().
99 		 */
100 		if (likely(!(flags & FOLL_MIGRATION)))
101 			goto no_page;
102 		if (pte_none(pte))
103 			goto no_page;
104 		entry = pte_to_swp_entry(pte);
105 		if (!is_migration_entry(entry))
106 			goto no_page;
107 		pte_unmap_unlock(ptep, ptl);
108 		migration_entry_wait(mm, pmd, address);
109 		goto retry;
110 	}
111 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
112 		goto no_page;
113 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
114 		pte_unmap_unlock(ptep, ptl);
115 		return NULL;
116 	}
117 
118 	page = vm_normal_page(vma, address, pte);
119 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
120 		/*
121 		 * Only return device mapping pages in the FOLL_GET case since
122 		 * they are only valid while holding the pgmap reference.
123 		 */
124 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
125 		if (*pgmap)
126 			page = pte_page(pte);
127 		else
128 			goto no_page;
129 	} else if (unlikely(!page)) {
130 		if (flags & FOLL_DUMP) {
131 			/* Avoid special (like zero) pages in core dumps */
132 			page = ERR_PTR(-EFAULT);
133 			goto out;
134 		}
135 
136 		if (is_zero_pfn(pte_pfn(pte))) {
137 			page = pte_page(pte);
138 		} else {
139 			int ret;
140 
141 			ret = follow_pfn_pte(vma, address, ptep, flags);
142 			page = ERR_PTR(ret);
143 			goto out;
144 		}
145 	}
146 
147 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
148 		int ret;
149 		get_page(page);
150 		pte_unmap_unlock(ptep, ptl);
151 		lock_page(page);
152 		ret = split_huge_page(page);
153 		unlock_page(page);
154 		put_page(page);
155 		if (ret)
156 			return ERR_PTR(ret);
157 		goto retry;
158 	}
159 
160 	if (flags & FOLL_GET)
161 		get_page(page);
162 	if (flags & FOLL_TOUCH) {
163 		if ((flags & FOLL_WRITE) &&
164 		    !pte_dirty(pte) && !PageDirty(page))
165 			set_page_dirty(page);
166 		/*
167 		 * pte_mkyoung() would be more correct here, but atomic care
168 		 * is needed to avoid losing the dirty bit: it is easier to use
169 		 * mark_page_accessed().
170 		 */
171 		mark_page_accessed(page);
172 	}
173 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
174 		/* Do not mlock pte-mapped THP */
175 		if (PageTransCompound(page))
176 			goto out;
177 
178 		/*
179 		 * The preliminary mapping check is mainly to avoid the
180 		 * pointless overhead of lock_page on the ZERO_PAGE
181 		 * which might bounce very badly if there is contention.
182 		 *
183 		 * If the page is already locked, we don't need to
184 		 * handle it now - vmscan will handle it later if and
185 		 * when it attempts to reclaim the page.
186 		 */
187 		if (page->mapping && trylock_page(page)) {
188 			lru_add_drain();  /* push cached pages to LRU */
189 			/*
190 			 * Because we lock page here, and migration is
191 			 * blocked by the pte's page reference, and we
192 			 * know the page is still mapped, we don't even
193 			 * need to check for file-cache page truncation.
194 			 */
195 			mlock_vma_page(page);
196 			unlock_page(page);
197 		}
198 	}
199 out:
200 	pte_unmap_unlock(ptep, ptl);
201 	return page;
202 no_page:
203 	pte_unmap_unlock(ptep, ptl);
204 	if (!pte_none(pte))
205 		return NULL;
206 	return no_page_table(vma, flags);
207 }
208 
209 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
210 				    unsigned long address, pud_t *pudp,
211 				    unsigned int flags,
212 				    struct follow_page_context *ctx)
213 {
214 	pmd_t *pmd, pmdval;
215 	spinlock_t *ptl;
216 	struct page *page;
217 	struct mm_struct *mm = vma->vm_mm;
218 
219 	pmd = pmd_offset(pudp, address);
220 	/*
221 	 * The READ_ONCE() will stabilize the pmdval in a register or
222 	 * on the stack so that it will stop changing under the code.
223 	 */
224 	pmdval = READ_ONCE(*pmd);
225 	if (pmd_none(pmdval))
226 		return no_page_table(vma, flags);
227 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
228 		page = follow_huge_pmd(mm, address, pmd, flags);
229 		if (page)
230 			return page;
231 		return no_page_table(vma, flags);
232 	}
233 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
234 		page = follow_huge_pd(vma, address,
235 				      __hugepd(pmd_val(pmdval)), flags,
236 				      PMD_SHIFT);
237 		if (page)
238 			return page;
239 		return no_page_table(vma, flags);
240 	}
241 retry:
242 	if (!pmd_present(pmdval)) {
243 		if (likely(!(flags & FOLL_MIGRATION)))
244 			return no_page_table(vma, flags);
245 		VM_BUG_ON(thp_migration_supported() &&
246 				  !is_pmd_migration_entry(pmdval));
247 		if (is_pmd_migration_entry(pmdval))
248 			pmd_migration_entry_wait(mm, pmd);
249 		pmdval = READ_ONCE(*pmd);
250 		/*
251 		 * MADV_DONTNEED may convert the pmd to null because
252 		 * mmap_sem is held in read mode
253 		 */
254 		if (pmd_none(pmdval))
255 			return no_page_table(vma, flags);
256 		goto retry;
257 	}
258 	if (pmd_devmap(pmdval)) {
259 		ptl = pmd_lock(mm, pmd);
260 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
261 		spin_unlock(ptl);
262 		if (page)
263 			return page;
264 	}
265 	if (likely(!pmd_trans_huge(pmdval)))
266 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
267 
268 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
269 		return no_page_table(vma, flags);
270 
271 retry_locked:
272 	ptl = pmd_lock(mm, pmd);
273 	if (unlikely(pmd_none(*pmd))) {
274 		spin_unlock(ptl);
275 		return no_page_table(vma, flags);
276 	}
277 	if (unlikely(!pmd_present(*pmd))) {
278 		spin_unlock(ptl);
279 		if (likely(!(flags & FOLL_MIGRATION)))
280 			return no_page_table(vma, flags);
281 		pmd_migration_entry_wait(mm, pmd);
282 		goto retry_locked;
283 	}
284 	if (unlikely(!pmd_trans_huge(*pmd))) {
285 		spin_unlock(ptl);
286 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
287 	}
288 	if (flags & FOLL_SPLIT) {
289 		int ret;
290 		page = pmd_page(*pmd);
291 		if (is_huge_zero_page(page)) {
292 			spin_unlock(ptl);
293 			ret = 0;
294 			split_huge_pmd(vma, pmd, address);
295 			if (pmd_trans_unstable(pmd))
296 				ret = -EBUSY;
297 		} else {
298 			get_page(page);
299 			spin_unlock(ptl);
300 			lock_page(page);
301 			ret = split_huge_page(page);
302 			unlock_page(page);
303 			put_page(page);
304 			if (pmd_none(*pmd))
305 				return no_page_table(vma, flags);
306 		}
307 
308 		return ret ? ERR_PTR(ret) :
309 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
310 	}
311 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
312 	spin_unlock(ptl);
313 	ctx->page_mask = HPAGE_PMD_NR - 1;
314 	return page;
315 }
316 
317 static struct page *follow_pud_mask(struct vm_area_struct *vma,
318 				    unsigned long address, p4d_t *p4dp,
319 				    unsigned int flags,
320 				    struct follow_page_context *ctx)
321 {
322 	pud_t *pud;
323 	spinlock_t *ptl;
324 	struct page *page;
325 	struct mm_struct *mm = vma->vm_mm;
326 
327 	pud = pud_offset(p4dp, address);
328 	if (pud_none(*pud))
329 		return no_page_table(vma, flags);
330 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
331 		page = follow_huge_pud(mm, address, pud, flags);
332 		if (page)
333 			return page;
334 		return no_page_table(vma, flags);
335 	}
336 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
337 		page = follow_huge_pd(vma, address,
338 				      __hugepd(pud_val(*pud)), flags,
339 				      PUD_SHIFT);
340 		if (page)
341 			return page;
342 		return no_page_table(vma, flags);
343 	}
344 	if (pud_devmap(*pud)) {
345 		ptl = pud_lock(mm, pud);
346 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
347 		spin_unlock(ptl);
348 		if (page)
349 			return page;
350 	}
351 	if (unlikely(pud_bad(*pud)))
352 		return no_page_table(vma, flags);
353 
354 	return follow_pmd_mask(vma, address, pud, flags, ctx);
355 }
356 
357 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
358 				    unsigned long address, pgd_t *pgdp,
359 				    unsigned int flags,
360 				    struct follow_page_context *ctx)
361 {
362 	p4d_t *p4d;
363 	struct page *page;
364 
365 	p4d = p4d_offset(pgdp, address);
366 	if (p4d_none(*p4d))
367 		return no_page_table(vma, flags);
368 	BUILD_BUG_ON(p4d_huge(*p4d));
369 	if (unlikely(p4d_bad(*p4d)))
370 		return no_page_table(vma, flags);
371 
372 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
373 		page = follow_huge_pd(vma, address,
374 				      __hugepd(p4d_val(*p4d)), flags,
375 				      P4D_SHIFT);
376 		if (page)
377 			return page;
378 		return no_page_table(vma, flags);
379 	}
380 	return follow_pud_mask(vma, address, p4d, flags, ctx);
381 }
382 
383 /**
384  * follow_page_mask - look up a page descriptor from a user-virtual address
385  * @vma: vm_area_struct mapping @address
386  * @address: virtual address to look up
387  * @flags: flags modifying lookup behaviour
388  * @page_mask: on output, *page_mask is set according to the size of the page
389  *
390  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
391  *
392  * Returns the mapped (struct page *), %NULL if no mapping exists, or
393  * an error pointer if there is a mapping to something not represented
394  * by a page descriptor (see also vm_normal_page()).
395  */
396 struct page *follow_page_mask(struct vm_area_struct *vma,
397 			      unsigned long address, unsigned int flags,
398 			      struct follow_page_context *ctx)
399 {
400 	pgd_t *pgd;
401 	struct page *page;
402 	struct mm_struct *mm = vma->vm_mm;
403 
404 	ctx->page_mask = 0;
405 
406 	/* make this handle hugepd */
407 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
408 	if (!IS_ERR(page)) {
409 		BUG_ON(flags & FOLL_GET);
410 		return page;
411 	}
412 
413 	pgd = pgd_offset(mm, address);
414 
415 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
416 		return no_page_table(vma, flags);
417 
418 	if (pgd_huge(*pgd)) {
419 		page = follow_huge_pgd(mm, address, pgd, flags);
420 		if (page)
421 			return page;
422 		return no_page_table(vma, flags);
423 	}
424 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
425 		page = follow_huge_pd(vma, address,
426 				      __hugepd(pgd_val(*pgd)), flags,
427 				      PGDIR_SHIFT);
428 		if (page)
429 			return page;
430 		return no_page_table(vma, flags);
431 	}
432 
433 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
434 }
435 
436 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
437 			 unsigned int foll_flags)
438 {
439 	struct follow_page_context ctx = { NULL };
440 	struct page *page;
441 
442 	page = follow_page_mask(vma, address, foll_flags, &ctx);
443 	if (ctx.pgmap)
444 		put_dev_pagemap(ctx.pgmap);
445 	return page;
446 }
447 
448 static int get_gate_page(struct mm_struct *mm, unsigned long address,
449 		unsigned int gup_flags, struct vm_area_struct **vma,
450 		struct page **page)
451 {
452 	pgd_t *pgd;
453 	p4d_t *p4d;
454 	pud_t *pud;
455 	pmd_t *pmd;
456 	pte_t *pte;
457 	int ret = -EFAULT;
458 
459 	/* user gate pages are read-only */
460 	if (gup_flags & FOLL_WRITE)
461 		return -EFAULT;
462 	if (address > TASK_SIZE)
463 		pgd = pgd_offset_k(address);
464 	else
465 		pgd = pgd_offset_gate(mm, address);
466 	BUG_ON(pgd_none(*pgd));
467 	p4d = p4d_offset(pgd, address);
468 	BUG_ON(p4d_none(*p4d));
469 	pud = pud_offset(p4d, address);
470 	BUG_ON(pud_none(*pud));
471 	pmd = pmd_offset(pud, address);
472 	if (!pmd_present(*pmd))
473 		return -EFAULT;
474 	VM_BUG_ON(pmd_trans_huge(*pmd));
475 	pte = pte_offset_map(pmd, address);
476 	if (pte_none(*pte))
477 		goto unmap;
478 	*vma = get_gate_vma(mm);
479 	if (!page)
480 		goto out;
481 	*page = vm_normal_page(*vma, address, *pte);
482 	if (!*page) {
483 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
484 			goto unmap;
485 		*page = pte_page(*pte);
486 
487 		/*
488 		 * This should never happen (a device public page in the gate
489 		 * area).
490 		 */
491 		if (is_device_public_page(*page))
492 			goto unmap;
493 	}
494 	get_page(*page);
495 out:
496 	ret = 0;
497 unmap:
498 	pte_unmap(pte);
499 	return ret;
500 }
501 
502 /*
503  * mmap_sem must be held on entry.  If @nonblocking != NULL and
504  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
505  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
506  */
507 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
508 		unsigned long address, unsigned int *flags, int *nonblocking)
509 {
510 	unsigned int fault_flags = 0;
511 	vm_fault_t ret;
512 
513 	/* mlock all present pages, but do not fault in new pages */
514 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
515 		return -ENOENT;
516 	if (*flags & FOLL_WRITE)
517 		fault_flags |= FAULT_FLAG_WRITE;
518 	if (*flags & FOLL_REMOTE)
519 		fault_flags |= FAULT_FLAG_REMOTE;
520 	if (nonblocking)
521 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
522 	if (*flags & FOLL_NOWAIT)
523 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
524 	if (*flags & FOLL_TRIED) {
525 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
526 		fault_flags |= FAULT_FLAG_TRIED;
527 	}
528 
529 	ret = handle_mm_fault(vma, address, fault_flags);
530 	if (ret & VM_FAULT_ERROR) {
531 		int err = vm_fault_to_errno(ret, *flags);
532 
533 		if (err)
534 			return err;
535 		BUG();
536 	}
537 
538 	if (tsk) {
539 		if (ret & VM_FAULT_MAJOR)
540 			tsk->maj_flt++;
541 		else
542 			tsk->min_flt++;
543 	}
544 
545 	if (ret & VM_FAULT_RETRY) {
546 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
547 			*nonblocking = 0;
548 		return -EBUSY;
549 	}
550 
551 	/*
552 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
553 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
554 	 * can thus safely do subsequent page lookups as if they were reads.
555 	 * But only do so when looping for pte_write is futile: in some cases
556 	 * userspace may also be wanting to write to the gotten user page,
557 	 * which a read fault here might prevent (a readonly page might get
558 	 * reCOWed by userspace write).
559 	 */
560 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
561 		*flags |= FOLL_COW;
562 	return 0;
563 }
564 
565 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
566 {
567 	vm_flags_t vm_flags = vma->vm_flags;
568 	int write = (gup_flags & FOLL_WRITE);
569 	int foreign = (gup_flags & FOLL_REMOTE);
570 
571 	if (vm_flags & (VM_IO | VM_PFNMAP))
572 		return -EFAULT;
573 
574 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
575 		return -EFAULT;
576 
577 	if (write) {
578 		if (!(vm_flags & VM_WRITE)) {
579 			if (!(gup_flags & FOLL_FORCE))
580 				return -EFAULT;
581 			/*
582 			 * We used to let the write,force case do COW in a
583 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
584 			 * set a breakpoint in a read-only mapping of an
585 			 * executable, without corrupting the file (yet only
586 			 * when that file had been opened for writing!).
587 			 * Anon pages in shared mappings are surprising: now
588 			 * just reject it.
589 			 */
590 			if (!is_cow_mapping(vm_flags))
591 				return -EFAULT;
592 		}
593 	} else if (!(vm_flags & VM_READ)) {
594 		if (!(gup_flags & FOLL_FORCE))
595 			return -EFAULT;
596 		/*
597 		 * Is there actually any vma we can reach here which does not
598 		 * have VM_MAYREAD set?
599 		 */
600 		if (!(vm_flags & VM_MAYREAD))
601 			return -EFAULT;
602 	}
603 	/*
604 	 * gups are always data accesses, not instruction
605 	 * fetches, so execute=false here
606 	 */
607 	if (!arch_vma_access_permitted(vma, write, false, foreign))
608 		return -EFAULT;
609 	return 0;
610 }
611 
612 /**
613  * __get_user_pages() - pin user pages in memory
614  * @tsk:	task_struct of target task
615  * @mm:		mm_struct of target mm
616  * @start:	starting user address
617  * @nr_pages:	number of pages from start to pin
618  * @gup_flags:	flags modifying pin behaviour
619  * @pages:	array that receives pointers to the pages pinned.
620  *		Should be at least nr_pages long. Or NULL, if caller
621  *		only intends to ensure the pages are faulted in.
622  * @vmas:	array of pointers to vmas corresponding to each page.
623  *		Or NULL if the caller does not require them.
624  * @nonblocking: whether waiting for disk IO or mmap_sem contention
625  *
626  * Returns number of pages pinned. This may be fewer than the number
627  * requested. If nr_pages is 0 or negative, returns 0. If no pages
628  * were pinned, returns -errno. Each page returned must be released
629  * with a put_page() call when it is finished with. vmas will only
630  * remain valid while mmap_sem is held.
631  *
632  * Must be called with mmap_sem held.  It may be released.  See below.
633  *
634  * __get_user_pages walks a process's page tables and takes a reference to
635  * each struct page that each user address corresponds to at a given
636  * instant. That is, it takes the page that would be accessed if a user
637  * thread accesses the given user virtual address at that instant.
638  *
639  * This does not guarantee that the page exists in the user mappings when
640  * __get_user_pages returns, and there may even be a completely different
641  * page there in some cases (eg. if mmapped pagecache has been invalidated
642  * and subsequently re faulted). However it does guarantee that the page
643  * won't be freed completely. And mostly callers simply care that the page
644  * contains data that was valid *at some point in time*. Typically, an IO
645  * or similar operation cannot guarantee anything stronger anyway because
646  * locks can't be held over the syscall boundary.
647  *
648  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
649  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
650  * appropriate) must be called after the page is finished with, and
651  * before put_page is called.
652  *
653  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
654  * or mmap_sem contention, and if waiting is needed to pin all pages,
655  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
656  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
657  * this case.
658  *
659  * A caller using such a combination of @nonblocking and @gup_flags
660  * must therefore hold the mmap_sem for reading only, and recognize
661  * when it's been released.  Otherwise, it must be held for either
662  * reading or writing and will not be released.
663  *
664  * In most cases, get_user_pages or get_user_pages_fast should be used
665  * instead of __get_user_pages. __get_user_pages should be used only if
666  * you need some special @gup_flags.
667  */
668 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
669 		unsigned long start, unsigned long nr_pages,
670 		unsigned int gup_flags, struct page **pages,
671 		struct vm_area_struct **vmas, int *nonblocking)
672 {
673 	long ret = 0, i = 0;
674 	struct vm_area_struct *vma = NULL;
675 	struct follow_page_context ctx = { NULL };
676 
677 	if (!nr_pages)
678 		return 0;
679 
680 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
681 
682 	/*
683 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
684 	 * fault information is unrelated to the reference behaviour of a task
685 	 * using the address space
686 	 */
687 	if (!(gup_flags & FOLL_FORCE))
688 		gup_flags |= FOLL_NUMA;
689 
690 	do {
691 		struct page *page;
692 		unsigned int foll_flags = gup_flags;
693 		unsigned int page_increm;
694 
695 		/* first iteration or cross vma bound */
696 		if (!vma || start >= vma->vm_end) {
697 			vma = find_extend_vma(mm, start);
698 			if (!vma && in_gate_area(mm, start)) {
699 				int ret;
700 				ret = get_gate_page(mm, start & PAGE_MASK,
701 						gup_flags, &vma,
702 						pages ? &pages[i] : NULL);
703 				if (ret)
704 					return i ? : ret;
705 				ctx.page_mask = 0;
706 				goto next_page;
707 			}
708 
709 			if (!vma || check_vma_flags(vma, gup_flags)) {
710 				ret = -EFAULT;
711 				goto out;
712 			}
713 			if (is_vm_hugetlb_page(vma)) {
714 				i = follow_hugetlb_page(mm, vma, pages, vmas,
715 						&start, &nr_pages, i,
716 						gup_flags, nonblocking);
717 				continue;
718 			}
719 		}
720 retry:
721 		/*
722 		 * If we have a pending SIGKILL, don't keep faulting pages and
723 		 * potentially allocating memory.
724 		 */
725 		if (unlikely(fatal_signal_pending(current))) {
726 			ret = -ERESTARTSYS;
727 			goto out;
728 		}
729 		cond_resched();
730 
731 		page = follow_page_mask(vma, start, foll_flags, &ctx);
732 		if (!page) {
733 			ret = faultin_page(tsk, vma, start, &foll_flags,
734 					nonblocking);
735 			switch (ret) {
736 			case 0:
737 				goto retry;
738 			case -EBUSY:
739 				ret = 0;
740 				/* FALLTHRU */
741 			case -EFAULT:
742 			case -ENOMEM:
743 			case -EHWPOISON:
744 				goto out;
745 			case -ENOENT:
746 				goto next_page;
747 			}
748 			BUG();
749 		} else if (PTR_ERR(page) == -EEXIST) {
750 			/*
751 			 * Proper page table entry exists, but no corresponding
752 			 * struct page.
753 			 */
754 			goto next_page;
755 		} else if (IS_ERR(page)) {
756 			ret = PTR_ERR(page);
757 			goto out;
758 		}
759 		if (pages) {
760 			pages[i] = page;
761 			flush_anon_page(vma, page, start);
762 			flush_dcache_page(page);
763 			ctx.page_mask = 0;
764 		}
765 next_page:
766 		if (vmas) {
767 			vmas[i] = vma;
768 			ctx.page_mask = 0;
769 		}
770 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
771 		if (page_increm > nr_pages)
772 			page_increm = nr_pages;
773 		i += page_increm;
774 		start += page_increm * PAGE_SIZE;
775 		nr_pages -= page_increm;
776 	} while (nr_pages);
777 out:
778 	if (ctx.pgmap)
779 		put_dev_pagemap(ctx.pgmap);
780 	return i ? i : ret;
781 }
782 
783 static bool vma_permits_fault(struct vm_area_struct *vma,
784 			      unsigned int fault_flags)
785 {
786 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
787 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
788 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
789 
790 	if (!(vm_flags & vma->vm_flags))
791 		return false;
792 
793 	/*
794 	 * The architecture might have a hardware protection
795 	 * mechanism other than read/write that can deny access.
796 	 *
797 	 * gup always represents data access, not instruction
798 	 * fetches, so execute=false here:
799 	 */
800 	if (!arch_vma_access_permitted(vma, write, false, foreign))
801 		return false;
802 
803 	return true;
804 }
805 
806 /*
807  * fixup_user_fault() - manually resolve a user page fault
808  * @tsk:	the task_struct to use for page fault accounting, or
809  *		NULL if faults are not to be recorded.
810  * @mm:		mm_struct of target mm
811  * @address:	user address
812  * @fault_flags:flags to pass down to handle_mm_fault()
813  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
814  *		does not allow retry
815  *
816  * This is meant to be called in the specific scenario where for locking reasons
817  * we try to access user memory in atomic context (within a pagefault_disable()
818  * section), this returns -EFAULT, and we want to resolve the user fault before
819  * trying again.
820  *
821  * Typically this is meant to be used by the futex code.
822  *
823  * The main difference with get_user_pages() is that this function will
824  * unconditionally call handle_mm_fault() which will in turn perform all the
825  * necessary SW fixup of the dirty and young bits in the PTE, while
826  * get_user_pages() only guarantees to update these in the struct page.
827  *
828  * This is important for some architectures where those bits also gate the
829  * access permission to the page because they are maintained in software.  On
830  * such architectures, gup() will not be enough to make a subsequent access
831  * succeed.
832  *
833  * This function will not return with an unlocked mmap_sem. So it has not the
834  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
835  */
836 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
837 		     unsigned long address, unsigned int fault_flags,
838 		     bool *unlocked)
839 {
840 	struct vm_area_struct *vma;
841 	vm_fault_t ret, major = 0;
842 
843 	if (unlocked)
844 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
845 
846 retry:
847 	vma = find_extend_vma(mm, address);
848 	if (!vma || address < vma->vm_start)
849 		return -EFAULT;
850 
851 	if (!vma_permits_fault(vma, fault_flags))
852 		return -EFAULT;
853 
854 	ret = handle_mm_fault(vma, address, fault_flags);
855 	major |= ret & VM_FAULT_MAJOR;
856 	if (ret & VM_FAULT_ERROR) {
857 		int err = vm_fault_to_errno(ret, 0);
858 
859 		if (err)
860 			return err;
861 		BUG();
862 	}
863 
864 	if (ret & VM_FAULT_RETRY) {
865 		down_read(&mm->mmap_sem);
866 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
867 			*unlocked = true;
868 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
869 			fault_flags |= FAULT_FLAG_TRIED;
870 			goto retry;
871 		}
872 	}
873 
874 	if (tsk) {
875 		if (major)
876 			tsk->maj_flt++;
877 		else
878 			tsk->min_flt++;
879 	}
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(fixup_user_fault);
883 
884 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
885 						struct mm_struct *mm,
886 						unsigned long start,
887 						unsigned long nr_pages,
888 						struct page **pages,
889 						struct vm_area_struct **vmas,
890 						int *locked,
891 						unsigned int flags)
892 {
893 	long ret, pages_done;
894 	bool lock_dropped;
895 
896 	if (locked) {
897 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
898 		BUG_ON(vmas);
899 		/* check caller initialized locked */
900 		BUG_ON(*locked != 1);
901 	}
902 
903 	if (pages)
904 		flags |= FOLL_GET;
905 
906 	pages_done = 0;
907 	lock_dropped = false;
908 	for (;;) {
909 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
910 				       vmas, locked);
911 		if (!locked)
912 			/* VM_FAULT_RETRY couldn't trigger, bypass */
913 			return ret;
914 
915 		/* VM_FAULT_RETRY cannot return errors */
916 		if (!*locked) {
917 			BUG_ON(ret < 0);
918 			BUG_ON(ret >= nr_pages);
919 		}
920 
921 		if (!pages)
922 			/* If it's a prefault don't insist harder */
923 			return ret;
924 
925 		if (ret > 0) {
926 			nr_pages -= ret;
927 			pages_done += ret;
928 			if (!nr_pages)
929 				break;
930 		}
931 		if (*locked) {
932 			/*
933 			 * VM_FAULT_RETRY didn't trigger or it was a
934 			 * FOLL_NOWAIT.
935 			 */
936 			if (!pages_done)
937 				pages_done = ret;
938 			break;
939 		}
940 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
941 		pages += ret;
942 		start += ret << PAGE_SHIFT;
943 
944 		/*
945 		 * Repeat on the address that fired VM_FAULT_RETRY
946 		 * without FAULT_FLAG_ALLOW_RETRY but with
947 		 * FAULT_FLAG_TRIED.
948 		 */
949 		*locked = 1;
950 		lock_dropped = true;
951 		down_read(&mm->mmap_sem);
952 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
953 				       pages, NULL, NULL);
954 		if (ret != 1) {
955 			BUG_ON(ret > 1);
956 			if (!pages_done)
957 				pages_done = ret;
958 			break;
959 		}
960 		nr_pages--;
961 		pages_done++;
962 		if (!nr_pages)
963 			break;
964 		pages++;
965 		start += PAGE_SIZE;
966 	}
967 	if (lock_dropped && *locked) {
968 		/*
969 		 * We must let the caller know we temporarily dropped the lock
970 		 * and so the critical section protected by it was lost.
971 		 */
972 		up_read(&mm->mmap_sem);
973 		*locked = 0;
974 	}
975 	return pages_done;
976 }
977 
978 /*
979  * We can leverage the VM_FAULT_RETRY functionality in the page fault
980  * paths better by using either get_user_pages_locked() or
981  * get_user_pages_unlocked().
982  *
983  * get_user_pages_locked() is suitable to replace the form:
984  *
985  *      down_read(&mm->mmap_sem);
986  *      do_something()
987  *      get_user_pages(tsk, mm, ..., pages, NULL);
988  *      up_read(&mm->mmap_sem);
989  *
990  *  to:
991  *
992  *      int locked = 1;
993  *      down_read(&mm->mmap_sem);
994  *      do_something()
995  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
996  *      if (locked)
997  *          up_read(&mm->mmap_sem);
998  */
999 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1000 			   unsigned int gup_flags, struct page **pages,
1001 			   int *locked)
1002 {
1003 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1004 				       pages, NULL, locked,
1005 				       gup_flags | FOLL_TOUCH);
1006 }
1007 EXPORT_SYMBOL(get_user_pages_locked);
1008 
1009 /*
1010  * get_user_pages_unlocked() is suitable to replace the form:
1011  *
1012  *      down_read(&mm->mmap_sem);
1013  *      get_user_pages(tsk, mm, ..., pages, NULL);
1014  *      up_read(&mm->mmap_sem);
1015  *
1016  *  with:
1017  *
1018  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1019  *
1020  * It is functionally equivalent to get_user_pages_fast so
1021  * get_user_pages_fast should be used instead if specific gup_flags
1022  * (e.g. FOLL_FORCE) are not required.
1023  */
1024 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1025 			     struct page **pages, unsigned int gup_flags)
1026 {
1027 	struct mm_struct *mm = current->mm;
1028 	int locked = 1;
1029 	long ret;
1030 
1031 	down_read(&mm->mmap_sem);
1032 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1033 				      &locked, gup_flags | FOLL_TOUCH);
1034 	if (locked)
1035 		up_read(&mm->mmap_sem);
1036 	return ret;
1037 }
1038 EXPORT_SYMBOL(get_user_pages_unlocked);
1039 
1040 /*
1041  * get_user_pages_remote() - pin user pages in memory
1042  * @tsk:	the task_struct to use for page fault accounting, or
1043  *		NULL if faults are not to be recorded.
1044  * @mm:		mm_struct of target mm
1045  * @start:	starting user address
1046  * @nr_pages:	number of pages from start to pin
1047  * @gup_flags:	flags modifying lookup behaviour
1048  * @pages:	array that receives pointers to the pages pinned.
1049  *		Should be at least nr_pages long. Or NULL, if caller
1050  *		only intends to ensure the pages are faulted in.
1051  * @vmas:	array of pointers to vmas corresponding to each page.
1052  *		Or NULL if the caller does not require them.
1053  * @locked:	pointer to lock flag indicating whether lock is held and
1054  *		subsequently whether VM_FAULT_RETRY functionality can be
1055  *		utilised. Lock must initially be held.
1056  *
1057  * Returns number of pages pinned. This may be fewer than the number
1058  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1059  * were pinned, returns -errno. Each page returned must be released
1060  * with a put_page() call when it is finished with. vmas will only
1061  * remain valid while mmap_sem is held.
1062  *
1063  * Must be called with mmap_sem held for read or write.
1064  *
1065  * get_user_pages walks a process's page tables and takes a reference to
1066  * each struct page that each user address corresponds to at a given
1067  * instant. That is, it takes the page that would be accessed if a user
1068  * thread accesses the given user virtual address at that instant.
1069  *
1070  * This does not guarantee that the page exists in the user mappings when
1071  * get_user_pages returns, and there may even be a completely different
1072  * page there in some cases (eg. if mmapped pagecache has been invalidated
1073  * and subsequently re faulted). However it does guarantee that the page
1074  * won't be freed completely. And mostly callers simply care that the page
1075  * contains data that was valid *at some point in time*. Typically, an IO
1076  * or similar operation cannot guarantee anything stronger anyway because
1077  * locks can't be held over the syscall boundary.
1078  *
1079  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1080  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1081  * be called after the page is finished with, and before put_page is called.
1082  *
1083  * get_user_pages is typically used for fewer-copy IO operations, to get a
1084  * handle on the memory by some means other than accesses via the user virtual
1085  * addresses. The pages may be submitted for DMA to devices or accessed via
1086  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1087  * use the correct cache flushing APIs.
1088  *
1089  * See also get_user_pages_fast, for performance critical applications.
1090  *
1091  * get_user_pages should be phased out in favor of
1092  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1093  * should use get_user_pages because it cannot pass
1094  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1095  */
1096 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1097 		unsigned long start, unsigned long nr_pages,
1098 		unsigned int gup_flags, struct page **pages,
1099 		struct vm_area_struct **vmas, int *locked)
1100 {
1101 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1102 				       locked,
1103 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1104 }
1105 EXPORT_SYMBOL(get_user_pages_remote);
1106 
1107 /*
1108  * This is the same as get_user_pages_remote(), just with a
1109  * less-flexible calling convention where we assume that the task
1110  * and mm being operated on are the current task's and don't allow
1111  * passing of a locked parameter.  We also obviously don't pass
1112  * FOLL_REMOTE in here.
1113  */
1114 long get_user_pages(unsigned long start, unsigned long nr_pages,
1115 		unsigned int gup_flags, struct page **pages,
1116 		struct vm_area_struct **vmas)
1117 {
1118 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1119 				       pages, vmas, NULL,
1120 				       gup_flags | FOLL_TOUCH);
1121 }
1122 EXPORT_SYMBOL(get_user_pages);
1123 
1124 #ifdef CONFIG_FS_DAX
1125 /*
1126  * This is the same as get_user_pages() in that it assumes we are
1127  * operating on the current task's mm, but it goes further to validate
1128  * that the vmas associated with the address range are suitable for
1129  * longterm elevated page reference counts. For example, filesystem-dax
1130  * mappings are subject to the lifetime enforced by the filesystem and
1131  * we need guarantees that longterm users like RDMA and V4L2 only
1132  * establish mappings that have a kernel enforced revocation mechanism.
1133  *
1134  * "longterm" == userspace controlled elevated page count lifetime.
1135  * Contrast this to iov_iter_get_pages() usages which are transient.
1136  */
1137 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1138 		unsigned int gup_flags, struct page **pages,
1139 		struct vm_area_struct **vmas_arg)
1140 {
1141 	struct vm_area_struct **vmas = vmas_arg;
1142 	struct vm_area_struct *vma_prev = NULL;
1143 	long rc, i;
1144 
1145 	if (!pages)
1146 		return -EINVAL;
1147 
1148 	if (!vmas) {
1149 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1150 			       GFP_KERNEL);
1151 		if (!vmas)
1152 			return -ENOMEM;
1153 	}
1154 
1155 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1156 
1157 	for (i = 0; i < rc; i++) {
1158 		struct vm_area_struct *vma = vmas[i];
1159 
1160 		if (vma == vma_prev)
1161 			continue;
1162 
1163 		vma_prev = vma;
1164 
1165 		if (vma_is_fsdax(vma))
1166 			break;
1167 	}
1168 
1169 	/*
1170 	 * Either get_user_pages() failed, or the vma validation
1171 	 * succeeded, in either case we don't need to put_page() before
1172 	 * returning.
1173 	 */
1174 	if (i >= rc)
1175 		goto out;
1176 
1177 	for (i = 0; i < rc; i++)
1178 		put_page(pages[i]);
1179 	rc = -EOPNOTSUPP;
1180 out:
1181 	if (vmas != vmas_arg)
1182 		kfree(vmas);
1183 	return rc;
1184 }
1185 EXPORT_SYMBOL(get_user_pages_longterm);
1186 #endif /* CONFIG_FS_DAX */
1187 
1188 /**
1189  * populate_vma_page_range() -  populate a range of pages in the vma.
1190  * @vma:   target vma
1191  * @start: start address
1192  * @end:   end address
1193  * @nonblocking:
1194  *
1195  * This takes care of mlocking the pages too if VM_LOCKED is set.
1196  *
1197  * return 0 on success, negative error code on error.
1198  *
1199  * vma->vm_mm->mmap_sem must be held.
1200  *
1201  * If @nonblocking is NULL, it may be held for read or write and will
1202  * be unperturbed.
1203  *
1204  * If @nonblocking is non-NULL, it must held for read only and may be
1205  * released.  If it's released, *@nonblocking will be set to 0.
1206  */
1207 long populate_vma_page_range(struct vm_area_struct *vma,
1208 		unsigned long start, unsigned long end, int *nonblocking)
1209 {
1210 	struct mm_struct *mm = vma->vm_mm;
1211 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1212 	int gup_flags;
1213 
1214 	VM_BUG_ON(start & ~PAGE_MASK);
1215 	VM_BUG_ON(end   & ~PAGE_MASK);
1216 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1217 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1218 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1219 
1220 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1221 	if (vma->vm_flags & VM_LOCKONFAULT)
1222 		gup_flags &= ~FOLL_POPULATE;
1223 	/*
1224 	 * We want to touch writable mappings with a write fault in order
1225 	 * to break COW, except for shared mappings because these don't COW
1226 	 * and we would not want to dirty them for nothing.
1227 	 */
1228 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1229 		gup_flags |= FOLL_WRITE;
1230 
1231 	/*
1232 	 * We want mlock to succeed for regions that have any permissions
1233 	 * other than PROT_NONE.
1234 	 */
1235 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1236 		gup_flags |= FOLL_FORCE;
1237 
1238 	/*
1239 	 * We made sure addr is within a VMA, so the following will
1240 	 * not result in a stack expansion that recurses back here.
1241 	 */
1242 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1243 				NULL, NULL, nonblocking);
1244 }
1245 
1246 /*
1247  * __mm_populate - populate and/or mlock pages within a range of address space.
1248  *
1249  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1250  * flags. VMAs must be already marked with the desired vm_flags, and
1251  * mmap_sem must not be held.
1252  */
1253 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1254 {
1255 	struct mm_struct *mm = current->mm;
1256 	unsigned long end, nstart, nend;
1257 	struct vm_area_struct *vma = NULL;
1258 	int locked = 0;
1259 	long ret = 0;
1260 
1261 	end = start + len;
1262 
1263 	for (nstart = start; nstart < end; nstart = nend) {
1264 		/*
1265 		 * We want to fault in pages for [nstart; end) address range.
1266 		 * Find first corresponding VMA.
1267 		 */
1268 		if (!locked) {
1269 			locked = 1;
1270 			down_read(&mm->mmap_sem);
1271 			vma = find_vma(mm, nstart);
1272 		} else if (nstart >= vma->vm_end)
1273 			vma = vma->vm_next;
1274 		if (!vma || vma->vm_start >= end)
1275 			break;
1276 		/*
1277 		 * Set [nstart; nend) to intersection of desired address
1278 		 * range with the first VMA. Also, skip undesirable VMA types.
1279 		 */
1280 		nend = min(end, vma->vm_end);
1281 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1282 			continue;
1283 		if (nstart < vma->vm_start)
1284 			nstart = vma->vm_start;
1285 		/*
1286 		 * Now fault in a range of pages. populate_vma_page_range()
1287 		 * double checks the vma flags, so that it won't mlock pages
1288 		 * if the vma was already munlocked.
1289 		 */
1290 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1291 		if (ret < 0) {
1292 			if (ignore_errors) {
1293 				ret = 0;
1294 				continue;	/* continue at next VMA */
1295 			}
1296 			break;
1297 		}
1298 		nend = nstart + ret * PAGE_SIZE;
1299 		ret = 0;
1300 	}
1301 	if (locked)
1302 		up_read(&mm->mmap_sem);
1303 	return ret;	/* 0 or negative error code */
1304 }
1305 
1306 /**
1307  * get_dump_page() - pin user page in memory while writing it to core dump
1308  * @addr: user address
1309  *
1310  * Returns struct page pointer of user page pinned for dump,
1311  * to be freed afterwards by put_page().
1312  *
1313  * Returns NULL on any kind of failure - a hole must then be inserted into
1314  * the corefile, to preserve alignment with its headers; and also returns
1315  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1316  * allowing a hole to be left in the corefile to save diskspace.
1317  *
1318  * Called without mmap_sem, but after all other threads have been killed.
1319  */
1320 #ifdef CONFIG_ELF_CORE
1321 struct page *get_dump_page(unsigned long addr)
1322 {
1323 	struct vm_area_struct *vma;
1324 	struct page *page;
1325 
1326 	if (__get_user_pages(current, current->mm, addr, 1,
1327 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1328 			     NULL) < 1)
1329 		return NULL;
1330 	flush_cache_page(vma, addr, page_to_pfn(page));
1331 	return page;
1332 }
1333 #endif /* CONFIG_ELF_CORE */
1334 
1335 /*
1336  * Generic Fast GUP
1337  *
1338  * get_user_pages_fast attempts to pin user pages by walking the page
1339  * tables directly and avoids taking locks. Thus the walker needs to be
1340  * protected from page table pages being freed from under it, and should
1341  * block any THP splits.
1342  *
1343  * One way to achieve this is to have the walker disable interrupts, and
1344  * rely on IPIs from the TLB flushing code blocking before the page table
1345  * pages are freed. This is unsuitable for architectures that do not need
1346  * to broadcast an IPI when invalidating TLBs.
1347  *
1348  * Another way to achieve this is to batch up page table containing pages
1349  * belonging to more than one mm_user, then rcu_sched a callback to free those
1350  * pages. Disabling interrupts will allow the fast_gup walker to both block
1351  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1352  * (which is a relatively rare event). The code below adopts this strategy.
1353  *
1354  * Before activating this code, please be aware that the following assumptions
1355  * are currently made:
1356  *
1357  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1358  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1359  *
1360  *  *) ptes can be read atomically by the architecture.
1361  *
1362  *  *) access_ok is sufficient to validate userspace address ranges.
1363  *
1364  * The last two assumptions can be relaxed by the addition of helper functions.
1365  *
1366  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1367  */
1368 #ifdef CONFIG_HAVE_GENERIC_GUP
1369 
1370 #ifndef gup_get_pte
1371 /*
1372  * We assume that the PTE can be read atomically. If this is not the case for
1373  * your architecture, please provide the helper.
1374  */
1375 static inline pte_t gup_get_pte(pte_t *ptep)
1376 {
1377 	return READ_ONCE(*ptep);
1378 }
1379 #endif
1380 
1381 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1382 {
1383 	while ((*nr) - nr_start) {
1384 		struct page *page = pages[--(*nr)];
1385 
1386 		ClearPageReferenced(page);
1387 		put_page(page);
1388 	}
1389 }
1390 
1391 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1392 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1393 			 int write, struct page **pages, int *nr)
1394 {
1395 	struct dev_pagemap *pgmap = NULL;
1396 	int nr_start = *nr, ret = 0;
1397 	pte_t *ptep, *ptem;
1398 
1399 	ptem = ptep = pte_offset_map(&pmd, addr);
1400 	do {
1401 		pte_t pte = gup_get_pte(ptep);
1402 		struct page *head, *page;
1403 
1404 		/*
1405 		 * Similar to the PMD case below, NUMA hinting must take slow
1406 		 * path using the pte_protnone check.
1407 		 */
1408 		if (pte_protnone(pte))
1409 			goto pte_unmap;
1410 
1411 		if (!pte_access_permitted(pte, write))
1412 			goto pte_unmap;
1413 
1414 		if (pte_devmap(pte)) {
1415 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1416 			if (unlikely(!pgmap)) {
1417 				undo_dev_pagemap(nr, nr_start, pages);
1418 				goto pte_unmap;
1419 			}
1420 		} else if (pte_special(pte))
1421 			goto pte_unmap;
1422 
1423 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1424 		page = pte_page(pte);
1425 		head = compound_head(page);
1426 
1427 		if (!page_cache_get_speculative(head))
1428 			goto pte_unmap;
1429 
1430 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1431 			put_page(head);
1432 			goto pte_unmap;
1433 		}
1434 
1435 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1436 
1437 		SetPageReferenced(page);
1438 		pages[*nr] = page;
1439 		(*nr)++;
1440 
1441 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1442 
1443 	ret = 1;
1444 
1445 pte_unmap:
1446 	if (pgmap)
1447 		put_dev_pagemap(pgmap);
1448 	pte_unmap(ptem);
1449 	return ret;
1450 }
1451 #else
1452 
1453 /*
1454  * If we can't determine whether or not a pte is special, then fail immediately
1455  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1456  * to be special.
1457  *
1458  * For a futex to be placed on a THP tail page, get_futex_key requires a
1459  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1460  * useful to have gup_huge_pmd even if we can't operate on ptes.
1461  */
1462 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1463 			 int write, struct page **pages, int *nr)
1464 {
1465 	return 0;
1466 }
1467 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1468 
1469 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1470 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1471 		unsigned long end, struct page **pages, int *nr)
1472 {
1473 	int nr_start = *nr;
1474 	struct dev_pagemap *pgmap = NULL;
1475 
1476 	do {
1477 		struct page *page = pfn_to_page(pfn);
1478 
1479 		pgmap = get_dev_pagemap(pfn, pgmap);
1480 		if (unlikely(!pgmap)) {
1481 			undo_dev_pagemap(nr, nr_start, pages);
1482 			return 0;
1483 		}
1484 		SetPageReferenced(page);
1485 		pages[*nr] = page;
1486 		get_page(page);
1487 		(*nr)++;
1488 		pfn++;
1489 	} while (addr += PAGE_SIZE, addr != end);
1490 
1491 	if (pgmap)
1492 		put_dev_pagemap(pgmap);
1493 	return 1;
1494 }
1495 
1496 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1497 		unsigned long end, struct page **pages, int *nr)
1498 {
1499 	unsigned long fault_pfn;
1500 	int nr_start = *nr;
1501 
1502 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1503 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1504 		return 0;
1505 
1506 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1507 		undo_dev_pagemap(nr, nr_start, pages);
1508 		return 0;
1509 	}
1510 	return 1;
1511 }
1512 
1513 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1514 		unsigned long end, struct page **pages, int *nr)
1515 {
1516 	unsigned long fault_pfn;
1517 	int nr_start = *nr;
1518 
1519 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1520 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1521 		return 0;
1522 
1523 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1524 		undo_dev_pagemap(nr, nr_start, pages);
1525 		return 0;
1526 	}
1527 	return 1;
1528 }
1529 #else
1530 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1531 		unsigned long end, struct page **pages, int *nr)
1532 {
1533 	BUILD_BUG();
1534 	return 0;
1535 }
1536 
1537 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1538 		unsigned long end, struct page **pages, int *nr)
1539 {
1540 	BUILD_BUG();
1541 	return 0;
1542 }
1543 #endif
1544 
1545 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1546 		unsigned long end, int write, struct page **pages, int *nr)
1547 {
1548 	struct page *head, *page;
1549 	int refs;
1550 
1551 	if (!pmd_access_permitted(orig, write))
1552 		return 0;
1553 
1554 	if (pmd_devmap(orig))
1555 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1556 
1557 	refs = 0;
1558 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1559 	do {
1560 		pages[*nr] = page;
1561 		(*nr)++;
1562 		page++;
1563 		refs++;
1564 	} while (addr += PAGE_SIZE, addr != end);
1565 
1566 	head = compound_head(pmd_page(orig));
1567 	if (!page_cache_add_speculative(head, refs)) {
1568 		*nr -= refs;
1569 		return 0;
1570 	}
1571 
1572 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1573 		*nr -= refs;
1574 		while (refs--)
1575 			put_page(head);
1576 		return 0;
1577 	}
1578 
1579 	SetPageReferenced(head);
1580 	return 1;
1581 }
1582 
1583 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1584 		unsigned long end, int write, struct page **pages, int *nr)
1585 {
1586 	struct page *head, *page;
1587 	int refs;
1588 
1589 	if (!pud_access_permitted(orig, write))
1590 		return 0;
1591 
1592 	if (pud_devmap(orig))
1593 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1594 
1595 	refs = 0;
1596 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1597 	do {
1598 		pages[*nr] = page;
1599 		(*nr)++;
1600 		page++;
1601 		refs++;
1602 	} while (addr += PAGE_SIZE, addr != end);
1603 
1604 	head = compound_head(pud_page(orig));
1605 	if (!page_cache_add_speculative(head, refs)) {
1606 		*nr -= refs;
1607 		return 0;
1608 	}
1609 
1610 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1611 		*nr -= refs;
1612 		while (refs--)
1613 			put_page(head);
1614 		return 0;
1615 	}
1616 
1617 	SetPageReferenced(head);
1618 	return 1;
1619 }
1620 
1621 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1622 			unsigned long end, int write,
1623 			struct page **pages, int *nr)
1624 {
1625 	int refs;
1626 	struct page *head, *page;
1627 
1628 	if (!pgd_access_permitted(orig, write))
1629 		return 0;
1630 
1631 	BUILD_BUG_ON(pgd_devmap(orig));
1632 	refs = 0;
1633 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1634 	do {
1635 		pages[*nr] = page;
1636 		(*nr)++;
1637 		page++;
1638 		refs++;
1639 	} while (addr += PAGE_SIZE, addr != end);
1640 
1641 	head = compound_head(pgd_page(orig));
1642 	if (!page_cache_add_speculative(head, refs)) {
1643 		*nr -= refs;
1644 		return 0;
1645 	}
1646 
1647 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1648 		*nr -= refs;
1649 		while (refs--)
1650 			put_page(head);
1651 		return 0;
1652 	}
1653 
1654 	SetPageReferenced(head);
1655 	return 1;
1656 }
1657 
1658 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1659 		int write, struct page **pages, int *nr)
1660 {
1661 	unsigned long next;
1662 	pmd_t *pmdp;
1663 
1664 	pmdp = pmd_offset(&pud, addr);
1665 	do {
1666 		pmd_t pmd = READ_ONCE(*pmdp);
1667 
1668 		next = pmd_addr_end(addr, end);
1669 		if (!pmd_present(pmd))
1670 			return 0;
1671 
1672 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1673 			/*
1674 			 * NUMA hinting faults need to be handled in the GUP
1675 			 * slowpath for accounting purposes and so that they
1676 			 * can be serialised against THP migration.
1677 			 */
1678 			if (pmd_protnone(pmd))
1679 				return 0;
1680 
1681 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1682 				pages, nr))
1683 				return 0;
1684 
1685 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1686 			/*
1687 			 * architecture have different format for hugetlbfs
1688 			 * pmd format and THP pmd format
1689 			 */
1690 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1691 					 PMD_SHIFT, next, write, pages, nr))
1692 				return 0;
1693 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1694 			return 0;
1695 	} while (pmdp++, addr = next, addr != end);
1696 
1697 	return 1;
1698 }
1699 
1700 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1701 			 int write, struct page **pages, int *nr)
1702 {
1703 	unsigned long next;
1704 	pud_t *pudp;
1705 
1706 	pudp = pud_offset(&p4d, addr);
1707 	do {
1708 		pud_t pud = READ_ONCE(*pudp);
1709 
1710 		next = pud_addr_end(addr, end);
1711 		if (pud_none(pud))
1712 			return 0;
1713 		if (unlikely(pud_huge(pud))) {
1714 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1715 					  pages, nr))
1716 				return 0;
1717 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1718 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1719 					 PUD_SHIFT, next, write, pages, nr))
1720 				return 0;
1721 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1722 			return 0;
1723 	} while (pudp++, addr = next, addr != end);
1724 
1725 	return 1;
1726 }
1727 
1728 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1729 			 int write, struct page **pages, int *nr)
1730 {
1731 	unsigned long next;
1732 	p4d_t *p4dp;
1733 
1734 	p4dp = p4d_offset(&pgd, addr);
1735 	do {
1736 		p4d_t p4d = READ_ONCE(*p4dp);
1737 
1738 		next = p4d_addr_end(addr, end);
1739 		if (p4d_none(p4d))
1740 			return 0;
1741 		BUILD_BUG_ON(p4d_huge(p4d));
1742 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1743 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1744 					 P4D_SHIFT, next, write, pages, nr))
1745 				return 0;
1746 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1747 			return 0;
1748 	} while (p4dp++, addr = next, addr != end);
1749 
1750 	return 1;
1751 }
1752 
1753 static void gup_pgd_range(unsigned long addr, unsigned long end,
1754 		int write, struct page **pages, int *nr)
1755 {
1756 	unsigned long next;
1757 	pgd_t *pgdp;
1758 
1759 	pgdp = pgd_offset(current->mm, addr);
1760 	do {
1761 		pgd_t pgd = READ_ONCE(*pgdp);
1762 
1763 		next = pgd_addr_end(addr, end);
1764 		if (pgd_none(pgd))
1765 			return;
1766 		if (unlikely(pgd_huge(pgd))) {
1767 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1768 					  pages, nr))
1769 				return;
1770 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1771 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1772 					 PGDIR_SHIFT, next, write, pages, nr))
1773 				return;
1774 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1775 			return;
1776 	} while (pgdp++, addr = next, addr != end);
1777 }
1778 
1779 #ifndef gup_fast_permitted
1780 /*
1781  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1782  * we need to fall back to the slow version:
1783  */
1784 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1785 {
1786 	unsigned long len, end;
1787 
1788 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1789 	end = start + len;
1790 	return end >= start;
1791 }
1792 #endif
1793 
1794 /*
1795  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1796  * the regular GUP.
1797  * Note a difference with get_user_pages_fast: this always returns the
1798  * number of pages pinned, 0 if no pages were pinned.
1799  */
1800 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1801 			  struct page **pages)
1802 {
1803 	unsigned long len, end;
1804 	unsigned long flags;
1805 	int nr = 0;
1806 
1807 	start &= PAGE_MASK;
1808 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1809 	end = start + len;
1810 
1811 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1812 					(void __user *)start, len)))
1813 		return 0;
1814 
1815 	/*
1816 	 * Disable interrupts.  We use the nested form as we can already have
1817 	 * interrupts disabled by get_futex_key.
1818 	 *
1819 	 * With interrupts disabled, we block page table pages from being
1820 	 * freed from under us. See struct mmu_table_batch comments in
1821 	 * include/asm-generic/tlb.h for more details.
1822 	 *
1823 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1824 	 * block IPIs that come from THPs splitting.
1825 	 */
1826 
1827 	if (gup_fast_permitted(start, nr_pages, write)) {
1828 		local_irq_save(flags);
1829 		gup_pgd_range(start, end, write, pages, &nr);
1830 		local_irq_restore(flags);
1831 	}
1832 
1833 	return nr;
1834 }
1835 
1836 /**
1837  * get_user_pages_fast() - pin user pages in memory
1838  * @start:	starting user address
1839  * @nr_pages:	number of pages from start to pin
1840  * @write:	whether pages will be written to
1841  * @pages:	array that receives pointers to the pages pinned.
1842  *		Should be at least nr_pages long.
1843  *
1844  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1845  * If not successful, it will fall back to taking the lock and
1846  * calling get_user_pages().
1847  *
1848  * Returns number of pages pinned. This may be fewer than the number
1849  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1850  * were pinned, returns -errno.
1851  */
1852 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1853 			struct page **pages)
1854 {
1855 	unsigned long addr, len, end;
1856 	int nr = 0, ret = 0;
1857 
1858 	start &= PAGE_MASK;
1859 	addr = start;
1860 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1861 	end = start + len;
1862 
1863 	if (nr_pages <= 0)
1864 		return 0;
1865 
1866 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1867 					(void __user *)start, len)))
1868 		return -EFAULT;
1869 
1870 	if (gup_fast_permitted(start, nr_pages, write)) {
1871 		local_irq_disable();
1872 		gup_pgd_range(addr, end, write, pages, &nr);
1873 		local_irq_enable();
1874 		ret = nr;
1875 	}
1876 
1877 	if (nr < nr_pages) {
1878 		/* Try to get the remaining pages with get_user_pages */
1879 		start += nr << PAGE_SHIFT;
1880 		pages += nr;
1881 
1882 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1883 				write ? FOLL_WRITE : 0);
1884 
1885 		/* Have to be a bit careful with return values */
1886 		if (nr > 0) {
1887 			if (ret < 0)
1888 				ret = nr;
1889 			else
1890 				ret += nr;
1891 		}
1892 	}
1893 
1894 	return ret;
1895 }
1896 
1897 #endif /* CONFIG_HAVE_GENERIC_GUP */
1898