1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in page_try_share_anon_rmap(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 } 714 if (likely(!pmd_trans_huge(pmdval))) 715 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 716 717 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 718 return no_page_table(vma, flags); 719 720 ptl = pmd_lock(mm, pmd); 721 if (unlikely(!pmd_present(*pmd))) { 722 spin_unlock(ptl); 723 return no_page_table(vma, flags); 724 } 725 if (unlikely(!pmd_trans_huge(*pmd))) { 726 spin_unlock(ptl); 727 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 728 } 729 if (flags & FOLL_SPLIT_PMD) { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 /* If pmd was left empty, stuff a page table in there quickly */ 733 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 734 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 735 } 736 page = follow_trans_huge_pmd(vma, address, pmd, flags); 737 spin_unlock(ptl); 738 ctx->page_mask = HPAGE_PMD_NR - 1; 739 return page; 740 } 741 742 static struct page *follow_pud_mask(struct vm_area_struct *vma, 743 unsigned long address, p4d_t *p4dp, 744 unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pud_t *pud; 748 spinlock_t *ptl; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 pud = pud_offset(p4dp, address); 753 if (pud_none(*pud)) 754 return no_page_table(vma, flags); 755 if (pud_devmap(*pud)) { 756 ptl = pud_lock(mm, pud); 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 758 spin_unlock(ptl); 759 if (page) 760 return page; 761 } 762 if (unlikely(pud_bad(*pud))) 763 return no_page_table(vma, flags); 764 765 return follow_pmd_mask(vma, address, pud, flags, ctx); 766 } 767 768 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 769 unsigned long address, pgd_t *pgdp, 770 unsigned int flags, 771 struct follow_page_context *ctx) 772 { 773 p4d_t *p4d; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 return follow_pud_mask(vma, address, p4d, flags, ctx); 783 } 784 785 /** 786 * follow_page_mask - look up a page descriptor from a user-virtual address 787 * @vma: vm_area_struct mapping @address 788 * @address: virtual address to look up 789 * @flags: flags modifying lookup behaviour 790 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 791 * pointer to output page_mask 792 * 793 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 794 * 795 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 796 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 797 * 798 * When getting an anonymous page and the caller has to trigger unsharing 799 * of a shared anonymous page first, -EMLINK is returned. The caller should 800 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 801 * relevant with FOLL_PIN and !FOLL_WRITE. 802 * 803 * On output, the @ctx->page_mask is set according to the size of the page. 804 * 805 * Return: the mapped (struct page *), %NULL if no mapping exists, or 806 * an error pointer if there is a mapping to something not represented 807 * by a page descriptor (see also vm_normal_page()). 808 */ 809 static struct page *follow_page_mask(struct vm_area_struct *vma, 810 unsigned long address, unsigned int flags, 811 struct follow_page_context *ctx) 812 { 813 pgd_t *pgd; 814 struct mm_struct *mm = vma->vm_mm; 815 816 ctx->page_mask = 0; 817 818 /* 819 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 820 * special hugetlb page table walking code. This eliminates the 821 * need to check for hugetlb entries in the general walking code. 822 */ 823 if (is_vm_hugetlb_page(vma)) 824 return hugetlb_follow_page_mask(vma, address, flags, 825 &ctx->page_mask); 826 827 pgd = pgd_offset(mm, address); 828 829 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 830 return no_page_table(vma, flags); 831 832 return follow_p4d_mask(vma, address, pgd, flags, ctx); 833 } 834 835 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 836 unsigned int foll_flags) 837 { 838 struct follow_page_context ctx = { NULL }; 839 struct page *page; 840 841 if (vma_is_secretmem(vma)) 842 return NULL; 843 844 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 845 return NULL; 846 847 /* 848 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 849 * to fail on PROT_NONE-mapped pages. 850 */ 851 page = follow_page_mask(vma, address, foll_flags, &ctx); 852 if (ctx.pgmap) 853 put_dev_pagemap(ctx.pgmap); 854 return page; 855 } 856 857 static int get_gate_page(struct mm_struct *mm, unsigned long address, 858 unsigned int gup_flags, struct vm_area_struct **vma, 859 struct page **page) 860 { 861 pgd_t *pgd; 862 p4d_t *p4d; 863 pud_t *pud; 864 pmd_t *pmd; 865 pte_t *pte; 866 pte_t entry; 867 int ret = -EFAULT; 868 869 /* user gate pages are read-only */ 870 if (gup_flags & FOLL_WRITE) 871 return -EFAULT; 872 if (address > TASK_SIZE) 873 pgd = pgd_offset_k(address); 874 else 875 pgd = pgd_offset_gate(mm, address); 876 if (pgd_none(*pgd)) 877 return -EFAULT; 878 p4d = p4d_offset(pgd, address); 879 if (p4d_none(*p4d)) 880 return -EFAULT; 881 pud = pud_offset(p4d, address); 882 if (pud_none(*pud)) 883 return -EFAULT; 884 pmd = pmd_offset(pud, address); 885 if (!pmd_present(*pmd)) 886 return -EFAULT; 887 pte = pte_offset_map(pmd, address); 888 if (!pte) 889 return -EFAULT; 890 entry = ptep_get(pte); 891 if (pte_none(entry)) 892 goto unmap; 893 *vma = get_gate_vma(mm); 894 if (!page) 895 goto out; 896 *page = vm_normal_page(*vma, address, entry); 897 if (!*page) { 898 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 899 goto unmap; 900 *page = pte_page(entry); 901 } 902 ret = try_grab_page(*page, gup_flags); 903 if (unlikely(ret)) 904 goto unmap; 905 out: 906 ret = 0; 907 unmap: 908 pte_unmap(pte); 909 return ret; 910 } 911 912 /* 913 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 914 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 915 * to 0 and -EBUSY returned. 916 */ 917 static int faultin_page(struct vm_area_struct *vma, 918 unsigned long address, unsigned int *flags, bool unshare, 919 int *locked) 920 { 921 unsigned int fault_flags = 0; 922 vm_fault_t ret; 923 924 if (*flags & FOLL_NOFAULT) 925 return -EFAULT; 926 if (*flags & FOLL_WRITE) 927 fault_flags |= FAULT_FLAG_WRITE; 928 if (*flags & FOLL_REMOTE) 929 fault_flags |= FAULT_FLAG_REMOTE; 930 if (*flags & FOLL_UNLOCKABLE) { 931 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 932 /* 933 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 934 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 935 * That's because some callers may not be prepared to 936 * handle early exits caused by non-fatal signals. 937 */ 938 if (*flags & FOLL_INTERRUPTIBLE) 939 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 940 } 941 if (*flags & FOLL_NOWAIT) 942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 943 if (*flags & FOLL_TRIED) { 944 /* 945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 946 * can co-exist 947 */ 948 fault_flags |= FAULT_FLAG_TRIED; 949 } 950 if (unshare) { 951 fault_flags |= FAULT_FLAG_UNSHARE; 952 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 953 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 954 } 955 956 ret = handle_mm_fault(vma, address, fault_flags, NULL); 957 958 if (ret & VM_FAULT_COMPLETED) { 959 /* 960 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 961 * mmap lock in the page fault handler. Sanity check this. 962 */ 963 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 964 *locked = 0; 965 966 /* 967 * We should do the same as VM_FAULT_RETRY, but let's not 968 * return -EBUSY since that's not reflecting the reality of 969 * what has happened - we've just fully completed a page 970 * fault, with the mmap lock released. Use -EAGAIN to show 971 * that we want to take the mmap lock _again_. 972 */ 973 return -EAGAIN; 974 } 975 976 if (ret & VM_FAULT_ERROR) { 977 int err = vm_fault_to_errno(ret, *flags); 978 979 if (err) 980 return err; 981 BUG(); 982 } 983 984 if (ret & VM_FAULT_RETRY) { 985 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 986 *locked = 0; 987 return -EBUSY; 988 } 989 990 return 0; 991 } 992 993 /* 994 * Writing to file-backed mappings which require folio dirty tracking using GUP 995 * is a fundamentally broken operation, as kernel write access to GUP mappings 996 * do not adhere to the semantics expected by a file system. 997 * 998 * Consider the following scenario:- 999 * 1000 * 1. A folio is written to via GUP which write-faults the memory, notifying 1001 * the file system and dirtying the folio. 1002 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1003 * the PTE being marked read-only. 1004 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1005 * direct mapping. 1006 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1007 * (though it does not have to). 1008 * 1009 * This results in both data being written to a folio without writenotify, and 1010 * the folio being dirtied unexpectedly (if the caller decides to do so). 1011 */ 1012 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1013 unsigned long gup_flags) 1014 { 1015 /* 1016 * If we aren't pinning then no problematic write can occur. A long term 1017 * pin is the most egregious case so this is the case we disallow. 1018 */ 1019 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1020 (FOLL_PIN | FOLL_LONGTERM)) 1021 return true; 1022 1023 /* 1024 * If the VMA does not require dirty tracking then no problematic write 1025 * can occur either. 1026 */ 1027 return !vma_needs_dirty_tracking(vma); 1028 } 1029 1030 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1031 { 1032 vm_flags_t vm_flags = vma->vm_flags; 1033 int write = (gup_flags & FOLL_WRITE); 1034 int foreign = (gup_flags & FOLL_REMOTE); 1035 bool vma_anon = vma_is_anonymous(vma); 1036 1037 if (vm_flags & (VM_IO | VM_PFNMAP)) 1038 return -EFAULT; 1039 1040 if ((gup_flags & FOLL_ANON) && !vma_anon) 1041 return -EFAULT; 1042 1043 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1044 return -EOPNOTSUPP; 1045 1046 if (vma_is_secretmem(vma)) 1047 return -EFAULT; 1048 1049 if (write) { 1050 if (!vma_anon && 1051 !writable_file_mapping_allowed(vma, gup_flags)) 1052 return -EFAULT; 1053 1054 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1055 if (!(gup_flags & FOLL_FORCE)) 1056 return -EFAULT; 1057 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1058 if (is_vm_hugetlb_page(vma)) 1059 return -EFAULT; 1060 /* 1061 * We used to let the write,force case do COW in a 1062 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1063 * set a breakpoint in a read-only mapping of an 1064 * executable, without corrupting the file (yet only 1065 * when that file had been opened for writing!). 1066 * Anon pages in shared mappings are surprising: now 1067 * just reject it. 1068 */ 1069 if (!is_cow_mapping(vm_flags)) 1070 return -EFAULT; 1071 } 1072 } else if (!(vm_flags & VM_READ)) { 1073 if (!(gup_flags & FOLL_FORCE)) 1074 return -EFAULT; 1075 /* 1076 * Is there actually any vma we can reach here which does not 1077 * have VM_MAYREAD set? 1078 */ 1079 if (!(vm_flags & VM_MAYREAD)) 1080 return -EFAULT; 1081 } 1082 /* 1083 * gups are always data accesses, not instruction 1084 * fetches, so execute=false here 1085 */ 1086 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1087 return -EFAULT; 1088 return 0; 1089 } 1090 1091 /* 1092 * This is "vma_lookup()", but with a warning if we would have 1093 * historically expanded the stack in the GUP code. 1094 */ 1095 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1096 unsigned long addr) 1097 { 1098 #ifdef CONFIG_STACK_GROWSUP 1099 return vma_lookup(mm, addr); 1100 #else 1101 static volatile unsigned long next_warn; 1102 struct vm_area_struct *vma; 1103 unsigned long now, next; 1104 1105 vma = find_vma(mm, addr); 1106 if (!vma || (addr >= vma->vm_start)) 1107 return vma; 1108 1109 /* Only warn for half-way relevant accesses */ 1110 if (!(vma->vm_flags & VM_GROWSDOWN)) 1111 return NULL; 1112 if (vma->vm_start - addr > 65536) 1113 return NULL; 1114 1115 /* Let's not warn more than once an hour.. */ 1116 now = jiffies; next = next_warn; 1117 if (next && time_before(now, next)) 1118 return NULL; 1119 next_warn = now + 60*60*HZ; 1120 1121 /* Let people know things may have changed. */ 1122 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1123 current->comm, task_pid_nr(current), 1124 vma->vm_start, vma->vm_end, addr); 1125 dump_stack(); 1126 return NULL; 1127 #endif 1128 } 1129 1130 /** 1131 * __get_user_pages() - pin user pages in memory 1132 * @mm: mm_struct of target mm 1133 * @start: starting user address 1134 * @nr_pages: number of pages from start to pin 1135 * @gup_flags: flags modifying pin behaviour 1136 * @pages: array that receives pointers to the pages pinned. 1137 * Should be at least nr_pages long. Or NULL, if caller 1138 * only intends to ensure the pages are faulted in. 1139 * @locked: whether we're still with the mmap_lock held 1140 * 1141 * Returns either number of pages pinned (which may be less than the 1142 * number requested), or an error. Details about the return value: 1143 * 1144 * -- If nr_pages is 0, returns 0. 1145 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1146 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1147 * pages pinned. Again, this may be less than nr_pages. 1148 * -- 0 return value is possible when the fault would need to be retried. 1149 * 1150 * The caller is responsible for releasing returned @pages, via put_page(). 1151 * 1152 * Must be called with mmap_lock held. It may be released. See below. 1153 * 1154 * __get_user_pages walks a process's page tables and takes a reference to 1155 * each struct page that each user address corresponds to at a given 1156 * instant. That is, it takes the page that would be accessed if a user 1157 * thread accesses the given user virtual address at that instant. 1158 * 1159 * This does not guarantee that the page exists in the user mappings when 1160 * __get_user_pages returns, and there may even be a completely different 1161 * page there in some cases (eg. if mmapped pagecache has been invalidated 1162 * and subsequently re-faulted). However it does guarantee that the page 1163 * won't be freed completely. And mostly callers simply care that the page 1164 * contains data that was valid *at some point in time*. Typically, an IO 1165 * or similar operation cannot guarantee anything stronger anyway because 1166 * locks can't be held over the syscall boundary. 1167 * 1168 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1169 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1170 * appropriate) must be called after the page is finished with, and 1171 * before put_page is called. 1172 * 1173 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1174 * be released. If this happens *@locked will be set to 0 on return. 1175 * 1176 * A caller using such a combination of @gup_flags must therefore hold the 1177 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1178 * it must be held for either reading or writing and will not be released. 1179 * 1180 * In most cases, get_user_pages or get_user_pages_fast should be used 1181 * instead of __get_user_pages. __get_user_pages should be used only if 1182 * you need some special @gup_flags. 1183 */ 1184 static long __get_user_pages(struct mm_struct *mm, 1185 unsigned long start, unsigned long nr_pages, 1186 unsigned int gup_flags, struct page **pages, 1187 int *locked) 1188 { 1189 long ret = 0, i = 0; 1190 struct vm_area_struct *vma = NULL; 1191 struct follow_page_context ctx = { NULL }; 1192 1193 if (!nr_pages) 1194 return 0; 1195 1196 start = untagged_addr_remote(mm, start); 1197 1198 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1199 1200 do { 1201 struct page *page; 1202 unsigned int foll_flags = gup_flags; 1203 unsigned int page_increm; 1204 1205 /* first iteration or cross vma bound */ 1206 if (!vma || start >= vma->vm_end) { 1207 /* 1208 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1209 * lookups+error reporting differently. 1210 */ 1211 if (gup_flags & FOLL_MADV_POPULATE) { 1212 vma = vma_lookup(mm, start); 1213 if (!vma) { 1214 ret = -ENOMEM; 1215 goto out; 1216 } 1217 if (check_vma_flags(vma, gup_flags)) { 1218 ret = -EINVAL; 1219 goto out; 1220 } 1221 goto retry; 1222 } 1223 vma = gup_vma_lookup(mm, start); 1224 if (!vma && in_gate_area(mm, start)) { 1225 ret = get_gate_page(mm, start & PAGE_MASK, 1226 gup_flags, &vma, 1227 pages ? &page : NULL); 1228 if (ret) 1229 goto out; 1230 ctx.page_mask = 0; 1231 goto next_page; 1232 } 1233 1234 if (!vma) { 1235 ret = -EFAULT; 1236 goto out; 1237 } 1238 ret = check_vma_flags(vma, gup_flags); 1239 if (ret) 1240 goto out; 1241 } 1242 retry: 1243 /* 1244 * If we have a pending SIGKILL, don't keep faulting pages and 1245 * potentially allocating memory. 1246 */ 1247 if (fatal_signal_pending(current)) { 1248 ret = -EINTR; 1249 goto out; 1250 } 1251 cond_resched(); 1252 1253 page = follow_page_mask(vma, start, foll_flags, &ctx); 1254 if (!page || PTR_ERR(page) == -EMLINK) { 1255 ret = faultin_page(vma, start, &foll_flags, 1256 PTR_ERR(page) == -EMLINK, locked); 1257 switch (ret) { 1258 case 0: 1259 goto retry; 1260 case -EBUSY: 1261 case -EAGAIN: 1262 ret = 0; 1263 fallthrough; 1264 case -EFAULT: 1265 case -ENOMEM: 1266 case -EHWPOISON: 1267 goto out; 1268 } 1269 BUG(); 1270 } else if (PTR_ERR(page) == -EEXIST) { 1271 /* 1272 * Proper page table entry exists, but no corresponding 1273 * struct page. If the caller expects **pages to be 1274 * filled in, bail out now, because that can't be done 1275 * for this page. 1276 */ 1277 if (pages) { 1278 ret = PTR_ERR(page); 1279 goto out; 1280 } 1281 } else if (IS_ERR(page)) { 1282 ret = PTR_ERR(page); 1283 goto out; 1284 } 1285 next_page: 1286 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1287 if (page_increm > nr_pages) 1288 page_increm = nr_pages; 1289 1290 if (pages) { 1291 struct page *subpage; 1292 unsigned int j; 1293 1294 /* 1295 * This must be a large folio (and doesn't need to 1296 * be the whole folio; it can be part of it), do 1297 * the refcount work for all the subpages too. 1298 * 1299 * NOTE: here the page may not be the head page 1300 * e.g. when start addr is not thp-size aligned. 1301 * try_grab_folio() should have taken care of tail 1302 * pages. 1303 */ 1304 if (page_increm > 1) { 1305 struct folio *folio; 1306 1307 /* 1308 * Since we already hold refcount on the 1309 * large folio, this should never fail. 1310 */ 1311 folio = try_grab_folio(page, page_increm - 1, 1312 foll_flags); 1313 if (WARN_ON_ONCE(!folio)) { 1314 /* 1315 * Release the 1st page ref if the 1316 * folio is problematic, fail hard. 1317 */ 1318 gup_put_folio(page_folio(page), 1, 1319 foll_flags); 1320 ret = -EFAULT; 1321 goto out; 1322 } 1323 } 1324 1325 for (j = 0; j < page_increm; j++) { 1326 subpage = nth_page(page, j); 1327 pages[i + j] = subpage; 1328 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1329 flush_dcache_page(subpage); 1330 } 1331 } 1332 1333 i += page_increm; 1334 start += page_increm * PAGE_SIZE; 1335 nr_pages -= page_increm; 1336 } while (nr_pages); 1337 out: 1338 if (ctx.pgmap) 1339 put_dev_pagemap(ctx.pgmap); 1340 return i ? i : ret; 1341 } 1342 1343 static bool vma_permits_fault(struct vm_area_struct *vma, 1344 unsigned int fault_flags) 1345 { 1346 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1347 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1348 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1349 1350 if (!(vm_flags & vma->vm_flags)) 1351 return false; 1352 1353 /* 1354 * The architecture might have a hardware protection 1355 * mechanism other than read/write that can deny access. 1356 * 1357 * gup always represents data access, not instruction 1358 * fetches, so execute=false here: 1359 */ 1360 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1361 return false; 1362 1363 return true; 1364 } 1365 1366 /** 1367 * fixup_user_fault() - manually resolve a user page fault 1368 * @mm: mm_struct of target mm 1369 * @address: user address 1370 * @fault_flags:flags to pass down to handle_mm_fault() 1371 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1372 * does not allow retry. If NULL, the caller must guarantee 1373 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1374 * 1375 * This is meant to be called in the specific scenario where for locking reasons 1376 * we try to access user memory in atomic context (within a pagefault_disable() 1377 * section), this returns -EFAULT, and we want to resolve the user fault before 1378 * trying again. 1379 * 1380 * Typically this is meant to be used by the futex code. 1381 * 1382 * The main difference with get_user_pages() is that this function will 1383 * unconditionally call handle_mm_fault() which will in turn perform all the 1384 * necessary SW fixup of the dirty and young bits in the PTE, while 1385 * get_user_pages() only guarantees to update these in the struct page. 1386 * 1387 * This is important for some architectures where those bits also gate the 1388 * access permission to the page because they are maintained in software. On 1389 * such architectures, gup() will not be enough to make a subsequent access 1390 * succeed. 1391 * 1392 * This function will not return with an unlocked mmap_lock. So it has not the 1393 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1394 */ 1395 int fixup_user_fault(struct mm_struct *mm, 1396 unsigned long address, unsigned int fault_flags, 1397 bool *unlocked) 1398 { 1399 struct vm_area_struct *vma; 1400 vm_fault_t ret; 1401 1402 address = untagged_addr_remote(mm, address); 1403 1404 if (unlocked) 1405 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1406 1407 retry: 1408 vma = gup_vma_lookup(mm, address); 1409 if (!vma) 1410 return -EFAULT; 1411 1412 if (!vma_permits_fault(vma, fault_flags)) 1413 return -EFAULT; 1414 1415 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1416 fatal_signal_pending(current)) 1417 return -EINTR; 1418 1419 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1420 1421 if (ret & VM_FAULT_COMPLETED) { 1422 /* 1423 * NOTE: it's a pity that we need to retake the lock here 1424 * to pair with the unlock() in the callers. Ideally we 1425 * could tell the callers so they do not need to unlock. 1426 */ 1427 mmap_read_lock(mm); 1428 *unlocked = true; 1429 return 0; 1430 } 1431 1432 if (ret & VM_FAULT_ERROR) { 1433 int err = vm_fault_to_errno(ret, 0); 1434 1435 if (err) 1436 return err; 1437 BUG(); 1438 } 1439 1440 if (ret & VM_FAULT_RETRY) { 1441 mmap_read_lock(mm); 1442 *unlocked = true; 1443 fault_flags |= FAULT_FLAG_TRIED; 1444 goto retry; 1445 } 1446 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(fixup_user_fault); 1450 1451 /* 1452 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1453 * specified, it'll also respond to generic signals. The caller of GUP 1454 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1455 */ 1456 static bool gup_signal_pending(unsigned int flags) 1457 { 1458 if (fatal_signal_pending(current)) 1459 return true; 1460 1461 if (!(flags & FOLL_INTERRUPTIBLE)) 1462 return false; 1463 1464 return signal_pending(current); 1465 } 1466 1467 /* 1468 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1469 * the caller. This function may drop the mmap_lock. If it does so, then it will 1470 * set (*locked = 0). 1471 * 1472 * (*locked == 0) means that the caller expects this function to acquire and 1473 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1474 * the function returns, even though it may have changed temporarily during 1475 * function execution. 1476 * 1477 * Please note that this function, unlike __get_user_pages(), will not return 0 1478 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1479 */ 1480 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1481 unsigned long start, 1482 unsigned long nr_pages, 1483 struct page **pages, 1484 int *locked, 1485 unsigned int flags) 1486 { 1487 long ret, pages_done; 1488 bool must_unlock = false; 1489 1490 /* 1491 * The internal caller expects GUP to manage the lock internally and the 1492 * lock must be released when this returns. 1493 */ 1494 if (!*locked) { 1495 if (mmap_read_lock_killable(mm)) 1496 return -EAGAIN; 1497 must_unlock = true; 1498 *locked = 1; 1499 } 1500 else 1501 mmap_assert_locked(mm); 1502 1503 if (flags & FOLL_PIN) 1504 mm_set_has_pinned_flag(&mm->flags); 1505 1506 /* 1507 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1508 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1509 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1510 * for FOLL_GET, not for the newer FOLL_PIN. 1511 * 1512 * FOLL_PIN always expects pages to be non-null, but no need to assert 1513 * that here, as any failures will be obvious enough. 1514 */ 1515 if (pages && !(flags & FOLL_PIN)) 1516 flags |= FOLL_GET; 1517 1518 pages_done = 0; 1519 for (;;) { 1520 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1521 locked); 1522 if (!(flags & FOLL_UNLOCKABLE)) { 1523 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1524 pages_done = ret; 1525 break; 1526 } 1527 1528 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1529 if (!*locked) { 1530 BUG_ON(ret < 0); 1531 BUG_ON(ret >= nr_pages); 1532 } 1533 1534 if (ret > 0) { 1535 nr_pages -= ret; 1536 pages_done += ret; 1537 if (!nr_pages) 1538 break; 1539 } 1540 if (*locked) { 1541 /* 1542 * VM_FAULT_RETRY didn't trigger or it was a 1543 * FOLL_NOWAIT. 1544 */ 1545 if (!pages_done) 1546 pages_done = ret; 1547 break; 1548 } 1549 /* 1550 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1551 * For the prefault case (!pages) we only update counts. 1552 */ 1553 if (likely(pages)) 1554 pages += ret; 1555 start += ret << PAGE_SHIFT; 1556 1557 /* The lock was temporarily dropped, so we must unlock later */ 1558 must_unlock = true; 1559 1560 retry: 1561 /* 1562 * Repeat on the address that fired VM_FAULT_RETRY 1563 * with both FAULT_FLAG_ALLOW_RETRY and 1564 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1565 * by fatal signals of even common signals, depending on 1566 * the caller's request. So we need to check it before we 1567 * start trying again otherwise it can loop forever. 1568 */ 1569 if (gup_signal_pending(flags)) { 1570 if (!pages_done) 1571 pages_done = -EINTR; 1572 break; 1573 } 1574 1575 ret = mmap_read_lock_killable(mm); 1576 if (ret) { 1577 BUG_ON(ret > 0); 1578 if (!pages_done) 1579 pages_done = ret; 1580 break; 1581 } 1582 1583 *locked = 1; 1584 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1585 pages, locked); 1586 if (!*locked) { 1587 /* Continue to retry until we succeeded */ 1588 BUG_ON(ret != 0); 1589 goto retry; 1590 } 1591 if (ret != 1) { 1592 BUG_ON(ret > 1); 1593 if (!pages_done) 1594 pages_done = ret; 1595 break; 1596 } 1597 nr_pages--; 1598 pages_done++; 1599 if (!nr_pages) 1600 break; 1601 if (likely(pages)) 1602 pages++; 1603 start += PAGE_SIZE; 1604 } 1605 if (must_unlock && *locked) { 1606 /* 1607 * We either temporarily dropped the lock, or the caller 1608 * requested that we both acquire and drop the lock. Either way, 1609 * we must now unlock, and notify the caller of that state. 1610 */ 1611 mmap_read_unlock(mm); 1612 *locked = 0; 1613 } 1614 return pages_done; 1615 } 1616 1617 /** 1618 * populate_vma_page_range() - populate a range of pages in the vma. 1619 * @vma: target vma 1620 * @start: start address 1621 * @end: end address 1622 * @locked: whether the mmap_lock is still held 1623 * 1624 * This takes care of mlocking the pages too if VM_LOCKED is set. 1625 * 1626 * Return either number of pages pinned in the vma, or a negative error 1627 * code on error. 1628 * 1629 * vma->vm_mm->mmap_lock must be held. 1630 * 1631 * If @locked is NULL, it may be held for read or write and will 1632 * be unperturbed. 1633 * 1634 * If @locked is non-NULL, it must held for read only and may be 1635 * released. If it's released, *@locked will be set to 0. 1636 */ 1637 long populate_vma_page_range(struct vm_area_struct *vma, 1638 unsigned long start, unsigned long end, int *locked) 1639 { 1640 struct mm_struct *mm = vma->vm_mm; 1641 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1642 int local_locked = 1; 1643 int gup_flags; 1644 long ret; 1645 1646 VM_BUG_ON(!PAGE_ALIGNED(start)); 1647 VM_BUG_ON(!PAGE_ALIGNED(end)); 1648 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1649 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1650 mmap_assert_locked(mm); 1651 1652 /* 1653 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1654 * faultin_page() to break COW, so it has no work to do here. 1655 */ 1656 if (vma->vm_flags & VM_LOCKONFAULT) 1657 return nr_pages; 1658 1659 gup_flags = FOLL_TOUCH; 1660 /* 1661 * We want to touch writable mappings with a write fault in order 1662 * to break COW, except for shared mappings because these don't COW 1663 * and we would not want to dirty them for nothing. 1664 */ 1665 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1666 gup_flags |= FOLL_WRITE; 1667 1668 /* 1669 * We want mlock to succeed for regions that have any permissions 1670 * other than PROT_NONE. 1671 */ 1672 if (vma_is_accessible(vma)) 1673 gup_flags |= FOLL_FORCE; 1674 1675 if (locked) 1676 gup_flags |= FOLL_UNLOCKABLE; 1677 1678 /* 1679 * We made sure addr is within a VMA, so the following will 1680 * not result in a stack expansion that recurses back here. 1681 */ 1682 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1683 NULL, locked ? locked : &local_locked); 1684 lru_add_drain(); 1685 return ret; 1686 } 1687 1688 /* 1689 * faultin_page_range() - populate (prefault) page tables inside the 1690 * given range readable/writable 1691 * 1692 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1693 * 1694 * @mm: the mm to populate page tables in 1695 * @start: start address 1696 * @end: end address 1697 * @write: whether to prefault readable or writable 1698 * @locked: whether the mmap_lock is still held 1699 * 1700 * Returns either number of processed pages in the MM, or a negative error 1701 * code on error (see __get_user_pages()). Note that this function reports 1702 * errors related to VMAs, such as incompatible mappings, as expected by 1703 * MADV_POPULATE_(READ|WRITE). 1704 * 1705 * The range must be page-aligned. 1706 * 1707 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1708 */ 1709 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1710 unsigned long end, bool write, int *locked) 1711 { 1712 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1713 int gup_flags; 1714 long ret; 1715 1716 VM_BUG_ON(!PAGE_ALIGNED(start)); 1717 VM_BUG_ON(!PAGE_ALIGNED(end)); 1718 mmap_assert_locked(mm); 1719 1720 /* 1721 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1722 * the page dirty with FOLL_WRITE -- which doesn't make a 1723 * difference with !FOLL_FORCE, because the page is writable 1724 * in the page table. 1725 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1726 * a poisoned page. 1727 * !FOLL_FORCE: Require proper access permissions. 1728 */ 1729 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1730 FOLL_MADV_POPULATE; 1731 if (write) 1732 gup_flags |= FOLL_WRITE; 1733 1734 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1735 gup_flags); 1736 lru_add_drain(); 1737 return ret; 1738 } 1739 1740 /* 1741 * __mm_populate - populate and/or mlock pages within a range of address space. 1742 * 1743 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1744 * flags. VMAs must be already marked with the desired vm_flags, and 1745 * mmap_lock must not be held. 1746 */ 1747 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1748 { 1749 struct mm_struct *mm = current->mm; 1750 unsigned long end, nstart, nend; 1751 struct vm_area_struct *vma = NULL; 1752 int locked = 0; 1753 long ret = 0; 1754 1755 end = start + len; 1756 1757 for (nstart = start; nstart < end; nstart = nend) { 1758 /* 1759 * We want to fault in pages for [nstart; end) address range. 1760 * Find first corresponding VMA. 1761 */ 1762 if (!locked) { 1763 locked = 1; 1764 mmap_read_lock(mm); 1765 vma = find_vma_intersection(mm, nstart, end); 1766 } else if (nstart >= vma->vm_end) 1767 vma = find_vma_intersection(mm, vma->vm_end, end); 1768 1769 if (!vma) 1770 break; 1771 /* 1772 * Set [nstart; nend) to intersection of desired address 1773 * range with the first VMA. Also, skip undesirable VMA types. 1774 */ 1775 nend = min(end, vma->vm_end); 1776 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1777 continue; 1778 if (nstart < vma->vm_start) 1779 nstart = vma->vm_start; 1780 /* 1781 * Now fault in a range of pages. populate_vma_page_range() 1782 * double checks the vma flags, so that it won't mlock pages 1783 * if the vma was already munlocked. 1784 */ 1785 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1786 if (ret < 0) { 1787 if (ignore_errors) { 1788 ret = 0; 1789 continue; /* continue at next VMA */ 1790 } 1791 break; 1792 } 1793 nend = nstart + ret * PAGE_SIZE; 1794 ret = 0; 1795 } 1796 if (locked) 1797 mmap_read_unlock(mm); 1798 return ret; /* 0 or negative error code */ 1799 } 1800 #else /* CONFIG_MMU */ 1801 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1802 unsigned long nr_pages, struct page **pages, 1803 int *locked, unsigned int foll_flags) 1804 { 1805 struct vm_area_struct *vma; 1806 bool must_unlock = false; 1807 unsigned long vm_flags; 1808 long i; 1809 1810 if (!nr_pages) 1811 return 0; 1812 1813 /* 1814 * The internal caller expects GUP to manage the lock internally and the 1815 * lock must be released when this returns. 1816 */ 1817 if (!*locked) { 1818 if (mmap_read_lock_killable(mm)) 1819 return -EAGAIN; 1820 must_unlock = true; 1821 *locked = 1; 1822 } 1823 1824 /* calculate required read or write permissions. 1825 * If FOLL_FORCE is set, we only require the "MAY" flags. 1826 */ 1827 vm_flags = (foll_flags & FOLL_WRITE) ? 1828 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1829 vm_flags &= (foll_flags & FOLL_FORCE) ? 1830 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1831 1832 for (i = 0; i < nr_pages; i++) { 1833 vma = find_vma(mm, start); 1834 if (!vma) 1835 break; 1836 1837 /* protect what we can, including chardevs */ 1838 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1839 !(vm_flags & vma->vm_flags)) 1840 break; 1841 1842 if (pages) { 1843 pages[i] = virt_to_page((void *)start); 1844 if (pages[i]) 1845 get_page(pages[i]); 1846 } 1847 1848 start = (start + PAGE_SIZE) & PAGE_MASK; 1849 } 1850 1851 if (must_unlock && *locked) { 1852 mmap_read_unlock(mm); 1853 *locked = 0; 1854 } 1855 1856 return i ? : -EFAULT; 1857 } 1858 #endif /* !CONFIG_MMU */ 1859 1860 /** 1861 * fault_in_writeable - fault in userspace address range for writing 1862 * @uaddr: start of address range 1863 * @size: size of address range 1864 * 1865 * Returns the number of bytes not faulted in (like copy_to_user() and 1866 * copy_from_user()). 1867 */ 1868 size_t fault_in_writeable(char __user *uaddr, size_t size) 1869 { 1870 char __user *start = uaddr, *end; 1871 1872 if (unlikely(size == 0)) 1873 return 0; 1874 if (!user_write_access_begin(uaddr, size)) 1875 return size; 1876 if (!PAGE_ALIGNED(uaddr)) { 1877 unsafe_put_user(0, uaddr, out); 1878 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1879 } 1880 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1881 if (unlikely(end < start)) 1882 end = NULL; 1883 while (uaddr != end) { 1884 unsafe_put_user(0, uaddr, out); 1885 uaddr += PAGE_SIZE; 1886 } 1887 1888 out: 1889 user_write_access_end(); 1890 if (size > uaddr - start) 1891 return size - (uaddr - start); 1892 return 0; 1893 } 1894 EXPORT_SYMBOL(fault_in_writeable); 1895 1896 /** 1897 * fault_in_subpage_writeable - fault in an address range for writing 1898 * @uaddr: start of address range 1899 * @size: size of address range 1900 * 1901 * Fault in a user address range for writing while checking for permissions at 1902 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1903 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1904 * 1905 * Returns the number of bytes not faulted in (like copy_to_user() and 1906 * copy_from_user()). 1907 */ 1908 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1909 { 1910 size_t faulted_in; 1911 1912 /* 1913 * Attempt faulting in at page granularity first for page table 1914 * permission checking. The arch-specific probe_subpage_writeable() 1915 * functions may not check for this. 1916 */ 1917 faulted_in = size - fault_in_writeable(uaddr, size); 1918 if (faulted_in) 1919 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1920 1921 return size - faulted_in; 1922 } 1923 EXPORT_SYMBOL(fault_in_subpage_writeable); 1924 1925 /* 1926 * fault_in_safe_writeable - fault in an address range for writing 1927 * @uaddr: start of address range 1928 * @size: length of address range 1929 * 1930 * Faults in an address range for writing. This is primarily useful when we 1931 * already know that some or all of the pages in the address range aren't in 1932 * memory. 1933 * 1934 * Unlike fault_in_writeable(), this function is non-destructive. 1935 * 1936 * Note that we don't pin or otherwise hold the pages referenced that we fault 1937 * in. There's no guarantee that they'll stay in memory for any duration of 1938 * time. 1939 * 1940 * Returns the number of bytes not faulted in, like copy_to_user() and 1941 * copy_from_user(). 1942 */ 1943 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1944 { 1945 unsigned long start = (unsigned long)uaddr, end; 1946 struct mm_struct *mm = current->mm; 1947 bool unlocked = false; 1948 1949 if (unlikely(size == 0)) 1950 return 0; 1951 end = PAGE_ALIGN(start + size); 1952 if (end < start) 1953 end = 0; 1954 1955 mmap_read_lock(mm); 1956 do { 1957 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1958 break; 1959 start = (start + PAGE_SIZE) & PAGE_MASK; 1960 } while (start != end); 1961 mmap_read_unlock(mm); 1962 1963 if (size > (unsigned long)uaddr - start) 1964 return size - ((unsigned long)uaddr - start); 1965 return 0; 1966 } 1967 EXPORT_SYMBOL(fault_in_safe_writeable); 1968 1969 /** 1970 * fault_in_readable - fault in userspace address range for reading 1971 * @uaddr: start of user address range 1972 * @size: size of user address range 1973 * 1974 * Returns the number of bytes not faulted in (like copy_to_user() and 1975 * copy_from_user()). 1976 */ 1977 size_t fault_in_readable(const char __user *uaddr, size_t size) 1978 { 1979 const char __user *start = uaddr, *end; 1980 volatile char c; 1981 1982 if (unlikely(size == 0)) 1983 return 0; 1984 if (!user_read_access_begin(uaddr, size)) 1985 return size; 1986 if (!PAGE_ALIGNED(uaddr)) { 1987 unsafe_get_user(c, uaddr, out); 1988 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1989 } 1990 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1991 if (unlikely(end < start)) 1992 end = NULL; 1993 while (uaddr != end) { 1994 unsafe_get_user(c, uaddr, out); 1995 uaddr += PAGE_SIZE; 1996 } 1997 1998 out: 1999 user_read_access_end(); 2000 (void)c; 2001 if (size > uaddr - start) 2002 return size - (uaddr - start); 2003 return 0; 2004 } 2005 EXPORT_SYMBOL(fault_in_readable); 2006 2007 /** 2008 * get_dump_page() - pin user page in memory while writing it to core dump 2009 * @addr: user address 2010 * 2011 * Returns struct page pointer of user page pinned for dump, 2012 * to be freed afterwards by put_page(). 2013 * 2014 * Returns NULL on any kind of failure - a hole must then be inserted into 2015 * the corefile, to preserve alignment with its headers; and also returns 2016 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2017 * allowing a hole to be left in the corefile to save disk space. 2018 * 2019 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2020 */ 2021 #ifdef CONFIG_ELF_CORE 2022 struct page *get_dump_page(unsigned long addr) 2023 { 2024 struct page *page; 2025 int locked = 0; 2026 int ret; 2027 2028 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2029 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2030 return (ret == 1) ? page : NULL; 2031 } 2032 #endif /* CONFIG_ELF_CORE */ 2033 2034 #ifdef CONFIG_MIGRATION 2035 /* 2036 * Returns the number of collected pages. Return value is always >= 0. 2037 */ 2038 static unsigned long collect_longterm_unpinnable_pages( 2039 struct list_head *movable_page_list, 2040 unsigned long nr_pages, 2041 struct page **pages) 2042 { 2043 unsigned long i, collected = 0; 2044 struct folio *prev_folio = NULL; 2045 bool drain_allow = true; 2046 2047 for (i = 0; i < nr_pages; i++) { 2048 struct folio *folio = page_folio(pages[i]); 2049 2050 if (folio == prev_folio) 2051 continue; 2052 prev_folio = folio; 2053 2054 if (folio_is_longterm_pinnable(folio)) 2055 continue; 2056 2057 collected++; 2058 2059 if (folio_is_device_coherent(folio)) 2060 continue; 2061 2062 if (folio_test_hugetlb(folio)) { 2063 isolate_hugetlb(folio, movable_page_list); 2064 continue; 2065 } 2066 2067 if (!folio_test_lru(folio) && drain_allow) { 2068 lru_add_drain_all(); 2069 drain_allow = false; 2070 } 2071 2072 if (!folio_isolate_lru(folio)) 2073 continue; 2074 2075 list_add_tail(&folio->lru, movable_page_list); 2076 node_stat_mod_folio(folio, 2077 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2078 folio_nr_pages(folio)); 2079 } 2080 2081 return collected; 2082 } 2083 2084 /* 2085 * Unpins all pages and migrates device coherent pages and movable_page_list. 2086 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2087 * (or partial success). 2088 */ 2089 static int migrate_longterm_unpinnable_pages( 2090 struct list_head *movable_page_list, 2091 unsigned long nr_pages, 2092 struct page **pages) 2093 { 2094 int ret; 2095 unsigned long i; 2096 2097 for (i = 0; i < nr_pages; i++) { 2098 struct folio *folio = page_folio(pages[i]); 2099 2100 if (folio_is_device_coherent(folio)) { 2101 /* 2102 * Migration will fail if the page is pinned, so convert 2103 * the pin on the source page to a normal reference. 2104 */ 2105 pages[i] = NULL; 2106 folio_get(folio); 2107 gup_put_folio(folio, 1, FOLL_PIN); 2108 2109 if (migrate_device_coherent_page(&folio->page)) { 2110 ret = -EBUSY; 2111 goto err; 2112 } 2113 2114 continue; 2115 } 2116 2117 /* 2118 * We can't migrate pages with unexpected references, so drop 2119 * the reference obtained by __get_user_pages_locked(). 2120 * Migrating pages have been added to movable_page_list after 2121 * calling folio_isolate_lru() which takes a reference so the 2122 * page won't be freed if it's migrating. 2123 */ 2124 unpin_user_page(pages[i]); 2125 pages[i] = NULL; 2126 } 2127 2128 if (!list_empty(movable_page_list)) { 2129 struct migration_target_control mtc = { 2130 .nid = NUMA_NO_NODE, 2131 .gfp_mask = GFP_USER | __GFP_NOWARN, 2132 }; 2133 2134 if (migrate_pages(movable_page_list, alloc_migration_target, 2135 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2136 MR_LONGTERM_PIN, NULL)) { 2137 ret = -ENOMEM; 2138 goto err; 2139 } 2140 } 2141 2142 putback_movable_pages(movable_page_list); 2143 2144 return -EAGAIN; 2145 2146 err: 2147 for (i = 0; i < nr_pages; i++) 2148 if (pages[i]) 2149 unpin_user_page(pages[i]); 2150 putback_movable_pages(movable_page_list); 2151 2152 return ret; 2153 } 2154 2155 /* 2156 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2157 * pages in the range are required to be pinned via FOLL_PIN, before calling 2158 * this routine. 2159 * 2160 * If any pages in the range are not allowed to be pinned, then this routine 2161 * will migrate those pages away, unpin all the pages in the range and return 2162 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2163 * call this routine again. 2164 * 2165 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2166 * The caller should give up, and propagate the error back up the call stack. 2167 * 2168 * If everything is OK and all pages in the range are allowed to be pinned, then 2169 * this routine leaves all pages pinned and returns zero for success. 2170 */ 2171 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2172 struct page **pages) 2173 { 2174 unsigned long collected; 2175 LIST_HEAD(movable_page_list); 2176 2177 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2178 nr_pages, pages); 2179 if (!collected) 2180 return 0; 2181 2182 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2183 pages); 2184 } 2185 #else 2186 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2187 struct page **pages) 2188 { 2189 return 0; 2190 } 2191 #endif /* CONFIG_MIGRATION */ 2192 2193 /* 2194 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2195 * allows us to process the FOLL_LONGTERM flag. 2196 */ 2197 static long __gup_longterm_locked(struct mm_struct *mm, 2198 unsigned long start, 2199 unsigned long nr_pages, 2200 struct page **pages, 2201 int *locked, 2202 unsigned int gup_flags) 2203 { 2204 unsigned int flags; 2205 long rc, nr_pinned_pages; 2206 2207 if (!(gup_flags & FOLL_LONGTERM)) 2208 return __get_user_pages_locked(mm, start, nr_pages, pages, 2209 locked, gup_flags); 2210 2211 flags = memalloc_pin_save(); 2212 do { 2213 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2214 pages, locked, 2215 gup_flags); 2216 if (nr_pinned_pages <= 0) { 2217 rc = nr_pinned_pages; 2218 break; 2219 } 2220 2221 /* FOLL_LONGTERM implies FOLL_PIN */ 2222 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2223 } while (rc == -EAGAIN); 2224 memalloc_pin_restore(flags); 2225 return rc ? rc : nr_pinned_pages; 2226 } 2227 2228 /* 2229 * Check that the given flags are valid for the exported gup/pup interface, and 2230 * update them with the required flags that the caller must have set. 2231 */ 2232 static bool is_valid_gup_args(struct page **pages, int *locked, 2233 unsigned int *gup_flags_p, unsigned int to_set) 2234 { 2235 unsigned int gup_flags = *gup_flags_p; 2236 2237 /* 2238 * These flags not allowed to be specified externally to the gup 2239 * interfaces: 2240 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2241 * - FOLL_REMOTE is internal only and used on follow_page() 2242 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2243 */ 2244 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2245 return false; 2246 2247 gup_flags |= to_set; 2248 if (locked) { 2249 /* At the external interface locked must be set */ 2250 if (WARN_ON_ONCE(*locked != 1)) 2251 return false; 2252 2253 gup_flags |= FOLL_UNLOCKABLE; 2254 } 2255 2256 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2257 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2258 (FOLL_PIN | FOLL_GET))) 2259 return false; 2260 2261 /* LONGTERM can only be specified when pinning */ 2262 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2263 return false; 2264 2265 /* Pages input must be given if using GET/PIN */ 2266 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2267 return false; 2268 2269 /* We want to allow the pgmap to be hot-unplugged at all times */ 2270 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2271 (gup_flags & FOLL_PCI_P2PDMA))) 2272 return false; 2273 2274 *gup_flags_p = gup_flags; 2275 return true; 2276 } 2277 2278 #ifdef CONFIG_MMU 2279 /** 2280 * get_user_pages_remote() - pin user pages in memory 2281 * @mm: mm_struct of target mm 2282 * @start: starting user address 2283 * @nr_pages: number of pages from start to pin 2284 * @gup_flags: flags modifying lookup behaviour 2285 * @pages: array that receives pointers to the pages pinned. 2286 * Should be at least nr_pages long. Or NULL, if caller 2287 * only intends to ensure the pages are faulted in. 2288 * @locked: pointer to lock flag indicating whether lock is held and 2289 * subsequently whether VM_FAULT_RETRY functionality can be 2290 * utilised. Lock must initially be held. 2291 * 2292 * Returns either number of pages pinned (which may be less than the 2293 * number requested), or an error. Details about the return value: 2294 * 2295 * -- If nr_pages is 0, returns 0. 2296 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2297 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2298 * pages pinned. Again, this may be less than nr_pages. 2299 * 2300 * The caller is responsible for releasing returned @pages, via put_page(). 2301 * 2302 * Must be called with mmap_lock held for read or write. 2303 * 2304 * get_user_pages_remote walks a process's page tables and takes a reference 2305 * to each struct page that each user address corresponds to at a given 2306 * instant. That is, it takes the page that would be accessed if a user 2307 * thread accesses the given user virtual address at that instant. 2308 * 2309 * This does not guarantee that the page exists in the user mappings when 2310 * get_user_pages_remote returns, and there may even be a completely different 2311 * page there in some cases (eg. if mmapped pagecache has been invalidated 2312 * and subsequently re-faulted). However it does guarantee that the page 2313 * won't be freed completely. And mostly callers simply care that the page 2314 * contains data that was valid *at some point in time*. Typically, an IO 2315 * or similar operation cannot guarantee anything stronger anyway because 2316 * locks can't be held over the syscall boundary. 2317 * 2318 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2319 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2320 * be called after the page is finished with, and before put_page is called. 2321 * 2322 * get_user_pages_remote is typically used for fewer-copy IO operations, 2323 * to get a handle on the memory by some means other than accesses 2324 * via the user virtual addresses. The pages may be submitted for 2325 * DMA to devices or accessed via their kernel linear mapping (via the 2326 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2327 * 2328 * See also get_user_pages_fast, for performance critical applications. 2329 * 2330 * get_user_pages_remote should be phased out in favor of 2331 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2332 * should use get_user_pages_remote because it cannot pass 2333 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2334 */ 2335 long get_user_pages_remote(struct mm_struct *mm, 2336 unsigned long start, unsigned long nr_pages, 2337 unsigned int gup_flags, struct page **pages, 2338 int *locked) 2339 { 2340 int local_locked = 1; 2341 2342 if (!is_valid_gup_args(pages, locked, &gup_flags, 2343 FOLL_TOUCH | FOLL_REMOTE)) 2344 return -EINVAL; 2345 2346 return __get_user_pages_locked(mm, start, nr_pages, pages, 2347 locked ? locked : &local_locked, 2348 gup_flags); 2349 } 2350 EXPORT_SYMBOL(get_user_pages_remote); 2351 2352 #else /* CONFIG_MMU */ 2353 long get_user_pages_remote(struct mm_struct *mm, 2354 unsigned long start, unsigned long nr_pages, 2355 unsigned int gup_flags, struct page **pages, 2356 int *locked) 2357 { 2358 return 0; 2359 } 2360 #endif /* !CONFIG_MMU */ 2361 2362 /** 2363 * get_user_pages() - pin user pages in memory 2364 * @start: starting user address 2365 * @nr_pages: number of pages from start to pin 2366 * @gup_flags: flags modifying lookup behaviour 2367 * @pages: array that receives pointers to the pages pinned. 2368 * Should be at least nr_pages long. Or NULL, if caller 2369 * only intends to ensure the pages are faulted in. 2370 * 2371 * This is the same as get_user_pages_remote(), just with a less-flexible 2372 * calling convention where we assume that the mm being operated on belongs to 2373 * the current task, and doesn't allow passing of a locked parameter. We also 2374 * obviously don't pass FOLL_REMOTE in here. 2375 */ 2376 long get_user_pages(unsigned long start, unsigned long nr_pages, 2377 unsigned int gup_flags, struct page **pages) 2378 { 2379 int locked = 1; 2380 2381 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2382 return -EINVAL; 2383 2384 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2385 &locked, gup_flags); 2386 } 2387 EXPORT_SYMBOL(get_user_pages); 2388 2389 /* 2390 * get_user_pages_unlocked() is suitable to replace the form: 2391 * 2392 * mmap_read_lock(mm); 2393 * get_user_pages(mm, ..., pages, NULL); 2394 * mmap_read_unlock(mm); 2395 * 2396 * with: 2397 * 2398 * get_user_pages_unlocked(mm, ..., pages); 2399 * 2400 * It is functionally equivalent to get_user_pages_fast so 2401 * get_user_pages_fast should be used instead if specific gup_flags 2402 * (e.g. FOLL_FORCE) are not required. 2403 */ 2404 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2405 struct page **pages, unsigned int gup_flags) 2406 { 2407 int locked = 0; 2408 2409 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2410 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2411 return -EINVAL; 2412 2413 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2414 &locked, gup_flags); 2415 } 2416 EXPORT_SYMBOL(get_user_pages_unlocked); 2417 2418 /* 2419 * Fast GUP 2420 * 2421 * get_user_pages_fast attempts to pin user pages by walking the page 2422 * tables directly and avoids taking locks. Thus the walker needs to be 2423 * protected from page table pages being freed from under it, and should 2424 * block any THP splits. 2425 * 2426 * One way to achieve this is to have the walker disable interrupts, and 2427 * rely on IPIs from the TLB flushing code blocking before the page table 2428 * pages are freed. This is unsuitable for architectures that do not need 2429 * to broadcast an IPI when invalidating TLBs. 2430 * 2431 * Another way to achieve this is to batch up page table containing pages 2432 * belonging to more than one mm_user, then rcu_sched a callback to free those 2433 * pages. Disabling interrupts will allow the fast_gup walker to both block 2434 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2435 * (which is a relatively rare event). The code below adopts this strategy. 2436 * 2437 * Before activating this code, please be aware that the following assumptions 2438 * are currently made: 2439 * 2440 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2441 * free pages containing page tables or TLB flushing requires IPI broadcast. 2442 * 2443 * *) ptes can be read atomically by the architecture. 2444 * 2445 * *) access_ok is sufficient to validate userspace address ranges. 2446 * 2447 * The last two assumptions can be relaxed by the addition of helper functions. 2448 * 2449 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2450 */ 2451 #ifdef CONFIG_HAVE_FAST_GUP 2452 2453 /* 2454 * Used in the GUP-fast path to determine whether a pin is permitted for a 2455 * specific folio. 2456 * 2457 * This call assumes the caller has pinned the folio, that the lowest page table 2458 * level still points to this folio, and that interrupts have been disabled. 2459 * 2460 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2461 * (see comment describing the writable_file_mapping_allowed() function). We 2462 * therefore try to avoid the most egregious case of a long-term mapping doing 2463 * so. 2464 * 2465 * This function cannot be as thorough as that one as the VMA is not available 2466 * in the fast path, so instead we whitelist known good cases and if in doubt, 2467 * fall back to the slow path. 2468 */ 2469 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2470 { 2471 struct address_space *mapping; 2472 unsigned long mapping_flags; 2473 2474 /* 2475 * If we aren't pinning then no problematic write can occur. A long term 2476 * pin is the most egregious case so this is the one we disallow. 2477 */ 2478 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2479 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2480 return true; 2481 2482 /* The folio is pinned, so we can safely access folio fields. */ 2483 2484 if (WARN_ON_ONCE(folio_test_slab(folio))) 2485 return false; 2486 2487 /* hugetlb mappings do not require dirty-tracking. */ 2488 if (folio_test_hugetlb(folio)) 2489 return true; 2490 2491 /* 2492 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2493 * cannot proceed, which means no actions performed under RCU can 2494 * proceed either. 2495 * 2496 * inodes and thus their mappings are freed under RCU, which means the 2497 * mapping cannot be freed beneath us and thus we can safely dereference 2498 * it. 2499 */ 2500 lockdep_assert_irqs_disabled(); 2501 2502 /* 2503 * However, there may be operations which _alter_ the mapping, so ensure 2504 * we read it once and only once. 2505 */ 2506 mapping = READ_ONCE(folio->mapping); 2507 2508 /* 2509 * The mapping may have been truncated, in any case we cannot determine 2510 * if this mapping is safe - fall back to slow path to determine how to 2511 * proceed. 2512 */ 2513 if (!mapping) 2514 return false; 2515 2516 /* Anonymous folios pose no problem. */ 2517 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2518 if (mapping_flags) 2519 return mapping_flags & PAGE_MAPPING_ANON; 2520 2521 /* 2522 * At this point, we know the mapping is non-null and points to an 2523 * address_space object. The only remaining whitelisted file system is 2524 * shmem. 2525 */ 2526 return shmem_mapping(mapping); 2527 } 2528 2529 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2530 unsigned int flags, 2531 struct page **pages) 2532 { 2533 while ((*nr) - nr_start) { 2534 struct page *page = pages[--(*nr)]; 2535 2536 ClearPageReferenced(page); 2537 if (flags & FOLL_PIN) 2538 unpin_user_page(page); 2539 else 2540 put_page(page); 2541 } 2542 } 2543 2544 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2545 /* 2546 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2547 * operations. 2548 * 2549 * To pin the page, fast-gup needs to do below in order: 2550 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2551 * 2552 * For the rest of pgtable operations where pgtable updates can be racy 2553 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2554 * is pinned. 2555 * 2556 * Above will work for all pte-level operations, including THP split. 2557 * 2558 * For THP collapse, it's a bit more complicated because fast-gup may be 2559 * walking a pgtable page that is being freed (pte is still valid but pmd 2560 * can be cleared already). To avoid race in such condition, we need to 2561 * also check pmd here to make sure pmd doesn't change (corresponds to 2562 * pmdp_collapse_flush() in the THP collapse code path). 2563 */ 2564 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2565 unsigned long end, unsigned int flags, 2566 struct page **pages, int *nr) 2567 { 2568 struct dev_pagemap *pgmap = NULL; 2569 int nr_start = *nr, ret = 0; 2570 pte_t *ptep, *ptem; 2571 2572 ptem = ptep = pte_offset_map(&pmd, addr); 2573 if (!ptep) 2574 return 0; 2575 do { 2576 pte_t pte = ptep_get_lockless(ptep); 2577 struct page *page; 2578 struct folio *folio; 2579 2580 /* 2581 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2582 * pte_access_permitted() better should reject these pages 2583 * either way: otherwise, GUP-fast might succeed in 2584 * cases where ordinary GUP would fail due to VMA access 2585 * permissions. 2586 */ 2587 if (pte_protnone(pte)) 2588 goto pte_unmap; 2589 2590 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2591 goto pte_unmap; 2592 2593 if (pte_devmap(pte)) { 2594 if (unlikely(flags & FOLL_LONGTERM)) 2595 goto pte_unmap; 2596 2597 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2598 if (unlikely(!pgmap)) { 2599 undo_dev_pagemap(nr, nr_start, flags, pages); 2600 goto pte_unmap; 2601 } 2602 } else if (pte_special(pte)) 2603 goto pte_unmap; 2604 2605 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2606 page = pte_page(pte); 2607 2608 folio = try_grab_folio(page, 1, flags); 2609 if (!folio) 2610 goto pte_unmap; 2611 2612 if (unlikely(folio_is_secretmem(folio))) { 2613 gup_put_folio(folio, 1, flags); 2614 goto pte_unmap; 2615 } 2616 2617 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2618 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2619 gup_put_folio(folio, 1, flags); 2620 goto pte_unmap; 2621 } 2622 2623 if (!folio_fast_pin_allowed(folio, flags)) { 2624 gup_put_folio(folio, 1, flags); 2625 goto pte_unmap; 2626 } 2627 2628 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2629 gup_put_folio(folio, 1, flags); 2630 goto pte_unmap; 2631 } 2632 2633 /* 2634 * We need to make the page accessible if and only if we are 2635 * going to access its content (the FOLL_PIN case). Please 2636 * see Documentation/core-api/pin_user_pages.rst for 2637 * details. 2638 */ 2639 if (flags & FOLL_PIN) { 2640 ret = arch_make_page_accessible(page); 2641 if (ret) { 2642 gup_put_folio(folio, 1, flags); 2643 goto pte_unmap; 2644 } 2645 } 2646 folio_set_referenced(folio); 2647 pages[*nr] = page; 2648 (*nr)++; 2649 } while (ptep++, addr += PAGE_SIZE, addr != end); 2650 2651 ret = 1; 2652 2653 pte_unmap: 2654 if (pgmap) 2655 put_dev_pagemap(pgmap); 2656 pte_unmap(ptem); 2657 return ret; 2658 } 2659 #else 2660 2661 /* 2662 * If we can't determine whether or not a pte is special, then fail immediately 2663 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2664 * to be special. 2665 * 2666 * For a futex to be placed on a THP tail page, get_futex_key requires a 2667 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2668 * useful to have gup_huge_pmd even if we can't operate on ptes. 2669 */ 2670 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2671 unsigned long end, unsigned int flags, 2672 struct page **pages, int *nr) 2673 { 2674 return 0; 2675 } 2676 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2677 2678 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2679 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2680 unsigned long end, unsigned int flags, 2681 struct page **pages, int *nr) 2682 { 2683 int nr_start = *nr; 2684 struct dev_pagemap *pgmap = NULL; 2685 2686 do { 2687 struct page *page = pfn_to_page(pfn); 2688 2689 pgmap = get_dev_pagemap(pfn, pgmap); 2690 if (unlikely(!pgmap)) { 2691 undo_dev_pagemap(nr, nr_start, flags, pages); 2692 break; 2693 } 2694 2695 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2696 undo_dev_pagemap(nr, nr_start, flags, pages); 2697 break; 2698 } 2699 2700 SetPageReferenced(page); 2701 pages[*nr] = page; 2702 if (unlikely(try_grab_page(page, flags))) { 2703 undo_dev_pagemap(nr, nr_start, flags, pages); 2704 break; 2705 } 2706 (*nr)++; 2707 pfn++; 2708 } while (addr += PAGE_SIZE, addr != end); 2709 2710 put_dev_pagemap(pgmap); 2711 return addr == end; 2712 } 2713 2714 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2715 unsigned long end, unsigned int flags, 2716 struct page **pages, int *nr) 2717 { 2718 unsigned long fault_pfn; 2719 int nr_start = *nr; 2720 2721 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2722 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2723 return 0; 2724 2725 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2726 undo_dev_pagemap(nr, nr_start, flags, pages); 2727 return 0; 2728 } 2729 return 1; 2730 } 2731 2732 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2733 unsigned long end, unsigned int flags, 2734 struct page **pages, int *nr) 2735 { 2736 unsigned long fault_pfn; 2737 int nr_start = *nr; 2738 2739 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2740 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2741 return 0; 2742 2743 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2744 undo_dev_pagemap(nr, nr_start, flags, pages); 2745 return 0; 2746 } 2747 return 1; 2748 } 2749 #else 2750 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2751 unsigned long end, unsigned int flags, 2752 struct page **pages, int *nr) 2753 { 2754 BUILD_BUG(); 2755 return 0; 2756 } 2757 2758 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2759 unsigned long end, unsigned int flags, 2760 struct page **pages, int *nr) 2761 { 2762 BUILD_BUG(); 2763 return 0; 2764 } 2765 #endif 2766 2767 static int record_subpages(struct page *page, unsigned long addr, 2768 unsigned long end, struct page **pages) 2769 { 2770 int nr; 2771 2772 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2773 pages[nr] = nth_page(page, nr); 2774 2775 return nr; 2776 } 2777 2778 #ifdef CONFIG_ARCH_HAS_HUGEPD 2779 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2780 unsigned long sz) 2781 { 2782 unsigned long __boundary = (addr + sz) & ~(sz-1); 2783 return (__boundary - 1 < end - 1) ? __boundary : end; 2784 } 2785 2786 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2787 unsigned long end, unsigned int flags, 2788 struct page **pages, int *nr) 2789 { 2790 unsigned long pte_end; 2791 struct page *page; 2792 struct folio *folio; 2793 pte_t pte; 2794 int refs; 2795 2796 pte_end = (addr + sz) & ~(sz-1); 2797 if (pte_end < end) 2798 end = pte_end; 2799 2800 pte = huge_ptep_get(ptep); 2801 2802 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2803 return 0; 2804 2805 /* hugepages are never "special" */ 2806 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2807 2808 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2809 refs = record_subpages(page, addr, end, pages + *nr); 2810 2811 folio = try_grab_folio(page, refs, flags); 2812 if (!folio) 2813 return 0; 2814 2815 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2816 gup_put_folio(folio, refs, flags); 2817 return 0; 2818 } 2819 2820 if (!folio_fast_pin_allowed(folio, flags)) { 2821 gup_put_folio(folio, refs, flags); 2822 return 0; 2823 } 2824 2825 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2826 gup_put_folio(folio, refs, flags); 2827 return 0; 2828 } 2829 2830 *nr += refs; 2831 folio_set_referenced(folio); 2832 return 1; 2833 } 2834 2835 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2836 unsigned int pdshift, unsigned long end, unsigned int flags, 2837 struct page **pages, int *nr) 2838 { 2839 pte_t *ptep; 2840 unsigned long sz = 1UL << hugepd_shift(hugepd); 2841 unsigned long next; 2842 2843 ptep = hugepte_offset(hugepd, addr, pdshift); 2844 do { 2845 next = hugepte_addr_end(addr, end, sz); 2846 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2847 return 0; 2848 } while (ptep++, addr = next, addr != end); 2849 2850 return 1; 2851 } 2852 #else 2853 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2854 unsigned int pdshift, unsigned long end, unsigned int flags, 2855 struct page **pages, int *nr) 2856 { 2857 return 0; 2858 } 2859 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2860 2861 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2862 unsigned long end, unsigned int flags, 2863 struct page **pages, int *nr) 2864 { 2865 struct page *page; 2866 struct folio *folio; 2867 int refs; 2868 2869 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2870 return 0; 2871 2872 if (pmd_devmap(orig)) { 2873 if (unlikely(flags & FOLL_LONGTERM)) 2874 return 0; 2875 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2876 pages, nr); 2877 } 2878 2879 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2880 refs = record_subpages(page, addr, end, pages + *nr); 2881 2882 folio = try_grab_folio(page, refs, flags); 2883 if (!folio) 2884 return 0; 2885 2886 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2887 gup_put_folio(folio, refs, flags); 2888 return 0; 2889 } 2890 2891 if (!folio_fast_pin_allowed(folio, flags)) { 2892 gup_put_folio(folio, refs, flags); 2893 return 0; 2894 } 2895 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2896 gup_put_folio(folio, refs, flags); 2897 return 0; 2898 } 2899 2900 *nr += refs; 2901 folio_set_referenced(folio); 2902 return 1; 2903 } 2904 2905 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2906 unsigned long end, unsigned int flags, 2907 struct page **pages, int *nr) 2908 { 2909 struct page *page; 2910 struct folio *folio; 2911 int refs; 2912 2913 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2914 return 0; 2915 2916 if (pud_devmap(orig)) { 2917 if (unlikely(flags & FOLL_LONGTERM)) 2918 return 0; 2919 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2920 pages, nr); 2921 } 2922 2923 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2924 refs = record_subpages(page, addr, end, pages + *nr); 2925 2926 folio = try_grab_folio(page, refs, flags); 2927 if (!folio) 2928 return 0; 2929 2930 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2931 gup_put_folio(folio, refs, flags); 2932 return 0; 2933 } 2934 2935 if (!folio_fast_pin_allowed(folio, flags)) { 2936 gup_put_folio(folio, refs, flags); 2937 return 0; 2938 } 2939 2940 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2941 gup_put_folio(folio, refs, flags); 2942 return 0; 2943 } 2944 2945 *nr += refs; 2946 folio_set_referenced(folio); 2947 return 1; 2948 } 2949 2950 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2951 unsigned long end, unsigned int flags, 2952 struct page **pages, int *nr) 2953 { 2954 int refs; 2955 struct page *page; 2956 struct folio *folio; 2957 2958 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2959 return 0; 2960 2961 BUILD_BUG_ON(pgd_devmap(orig)); 2962 2963 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2964 refs = record_subpages(page, addr, end, pages + *nr); 2965 2966 folio = try_grab_folio(page, refs, flags); 2967 if (!folio) 2968 return 0; 2969 2970 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2971 gup_put_folio(folio, refs, flags); 2972 return 0; 2973 } 2974 2975 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2976 gup_put_folio(folio, refs, flags); 2977 return 0; 2978 } 2979 2980 if (!folio_fast_pin_allowed(folio, flags)) { 2981 gup_put_folio(folio, refs, flags); 2982 return 0; 2983 } 2984 2985 *nr += refs; 2986 folio_set_referenced(folio); 2987 return 1; 2988 } 2989 2990 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2991 unsigned int flags, struct page **pages, int *nr) 2992 { 2993 unsigned long next; 2994 pmd_t *pmdp; 2995 2996 pmdp = pmd_offset_lockless(pudp, pud, addr); 2997 do { 2998 pmd_t pmd = pmdp_get_lockless(pmdp); 2999 3000 next = pmd_addr_end(addr, end); 3001 if (!pmd_present(pmd)) 3002 return 0; 3003 3004 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 3005 pmd_devmap(pmd))) { 3006 /* See gup_pte_range() */ 3007 if (pmd_protnone(pmd)) 3008 return 0; 3009 3010 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 3011 pages, nr)) 3012 return 0; 3013 3014 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3015 /* 3016 * architecture have different format for hugetlbfs 3017 * pmd format and THP pmd format 3018 */ 3019 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 3020 PMD_SHIFT, next, flags, pages, nr)) 3021 return 0; 3022 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 3023 return 0; 3024 } while (pmdp++, addr = next, addr != end); 3025 3026 return 1; 3027 } 3028 3029 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 3030 unsigned int flags, struct page **pages, int *nr) 3031 { 3032 unsigned long next; 3033 pud_t *pudp; 3034 3035 pudp = pud_offset_lockless(p4dp, p4d, addr); 3036 do { 3037 pud_t pud = READ_ONCE(*pudp); 3038 3039 next = pud_addr_end(addr, end); 3040 if (unlikely(!pud_present(pud))) 3041 return 0; 3042 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3043 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3044 pages, nr)) 3045 return 0; 3046 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3047 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3048 PUD_SHIFT, next, flags, pages, nr)) 3049 return 0; 3050 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3051 return 0; 3052 } while (pudp++, addr = next, addr != end); 3053 3054 return 1; 3055 } 3056 3057 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3058 unsigned int flags, struct page **pages, int *nr) 3059 { 3060 unsigned long next; 3061 p4d_t *p4dp; 3062 3063 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3064 do { 3065 p4d_t p4d = READ_ONCE(*p4dp); 3066 3067 next = p4d_addr_end(addr, end); 3068 if (p4d_none(p4d)) 3069 return 0; 3070 BUILD_BUG_ON(p4d_huge(p4d)); 3071 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3072 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3073 P4D_SHIFT, next, flags, pages, nr)) 3074 return 0; 3075 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3076 return 0; 3077 } while (p4dp++, addr = next, addr != end); 3078 3079 return 1; 3080 } 3081 3082 static void gup_pgd_range(unsigned long addr, unsigned long end, 3083 unsigned int flags, struct page **pages, int *nr) 3084 { 3085 unsigned long next; 3086 pgd_t *pgdp; 3087 3088 pgdp = pgd_offset(current->mm, addr); 3089 do { 3090 pgd_t pgd = READ_ONCE(*pgdp); 3091 3092 next = pgd_addr_end(addr, end); 3093 if (pgd_none(pgd)) 3094 return; 3095 if (unlikely(pgd_huge(pgd))) { 3096 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3097 pages, nr)) 3098 return; 3099 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3100 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3101 PGDIR_SHIFT, next, flags, pages, nr)) 3102 return; 3103 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3104 return; 3105 } while (pgdp++, addr = next, addr != end); 3106 } 3107 #else 3108 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3109 unsigned int flags, struct page **pages, int *nr) 3110 { 3111 } 3112 #endif /* CONFIG_HAVE_FAST_GUP */ 3113 3114 #ifndef gup_fast_permitted 3115 /* 3116 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3117 * we need to fall back to the slow version: 3118 */ 3119 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3120 { 3121 return true; 3122 } 3123 #endif 3124 3125 static unsigned long lockless_pages_from_mm(unsigned long start, 3126 unsigned long end, 3127 unsigned int gup_flags, 3128 struct page **pages) 3129 { 3130 unsigned long flags; 3131 int nr_pinned = 0; 3132 unsigned seq; 3133 3134 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3135 !gup_fast_permitted(start, end)) 3136 return 0; 3137 3138 if (gup_flags & FOLL_PIN) { 3139 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3140 if (seq & 1) 3141 return 0; 3142 } 3143 3144 /* 3145 * Disable interrupts. The nested form is used, in order to allow full, 3146 * general purpose use of this routine. 3147 * 3148 * With interrupts disabled, we block page table pages from being freed 3149 * from under us. See struct mmu_table_batch comments in 3150 * include/asm-generic/tlb.h for more details. 3151 * 3152 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3153 * that come from THPs splitting. 3154 */ 3155 local_irq_save(flags); 3156 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3157 local_irq_restore(flags); 3158 3159 /* 3160 * When pinning pages for DMA there could be a concurrent write protect 3161 * from fork() via copy_page_range(), in this case always fail fast GUP. 3162 */ 3163 if (gup_flags & FOLL_PIN) { 3164 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3165 unpin_user_pages_lockless(pages, nr_pinned); 3166 return 0; 3167 } else { 3168 sanity_check_pinned_pages(pages, nr_pinned); 3169 } 3170 } 3171 return nr_pinned; 3172 } 3173 3174 static int internal_get_user_pages_fast(unsigned long start, 3175 unsigned long nr_pages, 3176 unsigned int gup_flags, 3177 struct page **pages) 3178 { 3179 unsigned long len, end; 3180 unsigned long nr_pinned; 3181 int locked = 0; 3182 int ret; 3183 3184 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3185 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3186 FOLL_FAST_ONLY | FOLL_NOFAULT | 3187 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3188 return -EINVAL; 3189 3190 if (gup_flags & FOLL_PIN) 3191 mm_set_has_pinned_flag(¤t->mm->flags); 3192 3193 if (!(gup_flags & FOLL_FAST_ONLY)) 3194 might_lock_read(¤t->mm->mmap_lock); 3195 3196 start = untagged_addr(start) & PAGE_MASK; 3197 len = nr_pages << PAGE_SHIFT; 3198 if (check_add_overflow(start, len, &end)) 3199 return -EOVERFLOW; 3200 if (end > TASK_SIZE_MAX) 3201 return -EFAULT; 3202 if (unlikely(!access_ok((void __user *)start, len))) 3203 return -EFAULT; 3204 3205 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3206 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3207 return nr_pinned; 3208 3209 /* Slow path: try to get the remaining pages with get_user_pages */ 3210 start += nr_pinned << PAGE_SHIFT; 3211 pages += nr_pinned; 3212 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3213 pages, &locked, 3214 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3215 if (ret < 0) { 3216 /* 3217 * The caller has to unpin the pages we already pinned so 3218 * returning -errno is not an option 3219 */ 3220 if (nr_pinned) 3221 return nr_pinned; 3222 return ret; 3223 } 3224 return ret + nr_pinned; 3225 } 3226 3227 /** 3228 * get_user_pages_fast_only() - pin user pages in memory 3229 * @start: starting user address 3230 * @nr_pages: number of pages from start to pin 3231 * @gup_flags: flags modifying pin behaviour 3232 * @pages: array that receives pointers to the pages pinned. 3233 * Should be at least nr_pages long. 3234 * 3235 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3236 * the regular GUP. 3237 * 3238 * If the architecture does not support this function, simply return with no 3239 * pages pinned. 3240 * 3241 * Careful, careful! COW breaking can go either way, so a non-write 3242 * access can get ambiguous page results. If you call this function without 3243 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3244 */ 3245 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3246 unsigned int gup_flags, struct page **pages) 3247 { 3248 /* 3249 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3250 * because gup fast is always a "pin with a +1 page refcount" request. 3251 * 3252 * FOLL_FAST_ONLY is required in order to match the API description of 3253 * this routine: no fall back to regular ("slow") GUP. 3254 */ 3255 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3256 FOLL_GET | FOLL_FAST_ONLY)) 3257 return -EINVAL; 3258 3259 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3260 } 3261 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3262 3263 /** 3264 * get_user_pages_fast() - pin user pages in memory 3265 * @start: starting user address 3266 * @nr_pages: number of pages from start to pin 3267 * @gup_flags: flags modifying pin behaviour 3268 * @pages: array that receives pointers to the pages pinned. 3269 * Should be at least nr_pages long. 3270 * 3271 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3272 * If not successful, it will fall back to taking the lock and 3273 * calling get_user_pages(). 3274 * 3275 * Returns number of pages pinned. This may be fewer than the number requested. 3276 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3277 * -errno. 3278 */ 3279 int get_user_pages_fast(unsigned long start, int nr_pages, 3280 unsigned int gup_flags, struct page **pages) 3281 { 3282 /* 3283 * The caller may or may not have explicitly set FOLL_GET; either way is 3284 * OK. However, internally (within mm/gup.c), gup fast variants must set 3285 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3286 * request. 3287 */ 3288 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3289 return -EINVAL; 3290 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3291 } 3292 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3293 3294 /** 3295 * pin_user_pages_fast() - pin user pages in memory without taking locks 3296 * 3297 * @start: starting user address 3298 * @nr_pages: number of pages from start to pin 3299 * @gup_flags: flags modifying pin behaviour 3300 * @pages: array that receives pointers to the pages pinned. 3301 * Should be at least nr_pages long. 3302 * 3303 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3304 * get_user_pages_fast() for documentation on the function arguments, because 3305 * the arguments here are identical. 3306 * 3307 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3308 * see Documentation/core-api/pin_user_pages.rst for further details. 3309 * 3310 * Note that if a zero_page is amongst the returned pages, it will not have 3311 * pins in it and unpin_user_page() will not remove pins from it. 3312 */ 3313 int pin_user_pages_fast(unsigned long start, int nr_pages, 3314 unsigned int gup_flags, struct page **pages) 3315 { 3316 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3317 return -EINVAL; 3318 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3319 } 3320 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3321 3322 /** 3323 * pin_user_pages_remote() - pin pages of a remote process 3324 * 3325 * @mm: mm_struct of target mm 3326 * @start: starting user address 3327 * @nr_pages: number of pages from start to pin 3328 * @gup_flags: flags modifying lookup behaviour 3329 * @pages: array that receives pointers to the pages pinned. 3330 * Should be at least nr_pages long. 3331 * @locked: pointer to lock flag indicating whether lock is held and 3332 * subsequently whether VM_FAULT_RETRY functionality can be 3333 * utilised. Lock must initially be held. 3334 * 3335 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3336 * get_user_pages_remote() for documentation on the function arguments, because 3337 * the arguments here are identical. 3338 * 3339 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3340 * see Documentation/core-api/pin_user_pages.rst for details. 3341 * 3342 * Note that if a zero_page is amongst the returned pages, it will not have 3343 * pins in it and unpin_user_page*() will not remove pins from it. 3344 */ 3345 long pin_user_pages_remote(struct mm_struct *mm, 3346 unsigned long start, unsigned long nr_pages, 3347 unsigned int gup_flags, struct page **pages, 3348 int *locked) 3349 { 3350 int local_locked = 1; 3351 3352 if (!is_valid_gup_args(pages, locked, &gup_flags, 3353 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3354 return 0; 3355 return __gup_longterm_locked(mm, start, nr_pages, pages, 3356 locked ? locked : &local_locked, 3357 gup_flags); 3358 } 3359 EXPORT_SYMBOL(pin_user_pages_remote); 3360 3361 /** 3362 * pin_user_pages() - pin user pages in memory for use by other devices 3363 * 3364 * @start: starting user address 3365 * @nr_pages: number of pages from start to pin 3366 * @gup_flags: flags modifying lookup behaviour 3367 * @pages: array that receives pointers to the pages pinned. 3368 * Should be at least nr_pages long. 3369 * 3370 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3371 * FOLL_PIN is set. 3372 * 3373 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3374 * see Documentation/core-api/pin_user_pages.rst for details. 3375 * 3376 * Note that if a zero_page is amongst the returned pages, it will not have 3377 * pins in it and unpin_user_page*() will not remove pins from it. 3378 */ 3379 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3380 unsigned int gup_flags, struct page **pages) 3381 { 3382 int locked = 1; 3383 3384 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3385 return 0; 3386 return __gup_longterm_locked(current->mm, start, nr_pages, 3387 pages, &locked, gup_flags); 3388 } 3389 EXPORT_SYMBOL(pin_user_pages); 3390 3391 /* 3392 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3393 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3394 * FOLL_PIN and rejects FOLL_GET. 3395 * 3396 * Note that if a zero_page is amongst the returned pages, it will not have 3397 * pins in it and unpin_user_page*() will not remove pins from it. 3398 */ 3399 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3400 struct page **pages, unsigned int gup_flags) 3401 { 3402 int locked = 0; 3403 3404 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3405 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3406 return 0; 3407 3408 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3409 &locked, gup_flags); 3410 } 3411 EXPORT_SYMBOL(pin_user_pages_unlocked); 3412