xref: /openbmc/linux/mm/gup.c (revision 8047f98c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /*
66  * Return the compound head page with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 	struct page *head = compound_head(page);
72 
73 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 		return NULL;
75 	if (unlikely(!page_cache_add_speculative(head, refs)))
76 		return NULL;
77 
78 	/*
79 	 * At this point we have a stable reference to the head page; but it
80 	 * could be that between the compound_head() lookup and the refcount
81 	 * increment, the compound page was split, in which case we'd end up
82 	 * holding a reference on a page that has nothing to do with the page
83 	 * we were given anymore.
84 	 * So now that the head page is stable, recheck that the pages still
85 	 * belong together.
86 	 */
87 	if (unlikely(compound_head(page) != head)) {
88 		put_page_refs(head, refs);
89 		return NULL;
90 	}
91 
92 	return head;
93 }
94 
95 /**
96  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97  * flags-dependent amount.
98  *
99  * Even though the name includes "compound_head", this function is still
100  * appropriate for callers that have a non-compound @page to get.
101  *
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the page's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: page's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
116  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
117  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
120  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121  *
122  * Return: head page (with refcount appropriately incremented) for success, or
123  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124  * considered failure, and furthermore, a likely bug in the caller, so a warning
125  * is also emitted.
126  */
127 __maybe_unused struct page *try_grab_compound_head(struct page *page,
128 						   int refs, unsigned int flags)
129 {
130 	if (flags & FOLL_GET)
131 		return try_get_compound_head(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 		 * right zone, so fail and let the caller fall back to the slow
136 		 * path.
137 		 */
138 		if (unlikely((flags & FOLL_LONGTERM) &&
139 			     !is_pinnable_page(page)))
140 			return NULL;
141 
142 		/*
143 		 * CAUTION: Don't use compound_head() on the page before this
144 		 * point, the result won't be stable.
145 		 */
146 		page = try_get_compound_head(page, refs);
147 		if (!page)
148 			return NULL;
149 
150 		/*
151 		 * When pinning a compound page of order > 1 (which is what
152 		 * hpage_pincount_available() checks for), use an exact count to
153 		 * track it, via hpage_pincount_add/_sub().
154 		 *
155 		 * However, be sure to *also* increment the normal page refcount
156 		 * field at least once, so that the page really is pinned.
157 		 * That's why the refcount from the earlier
158 		 * try_get_compound_head() is left intact.
159 		 */
160 		if (hpage_pincount_available(page))
161 			hpage_pincount_add(page, refs);
162 		else
163 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164 
165 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 				    refs);
167 
168 		return page;
169 	}
170 
171 	WARN_ON_ONCE(1);
172 	return NULL;
173 }
174 
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 	if (flags & FOLL_PIN) {
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 				    refs);
180 
181 		if (hpage_pincount_available(page))
182 			hpage_pincount_sub(page, refs);
183 		else
184 			refs *= GUP_PIN_COUNTING_BIAS;
185 	}
186 
187 	put_page_refs(page, refs);
188 }
189 
190 /**
191  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192  *
193  * This might not do anything at all, depending on the flags argument.
194  *
195  * "grab" names in this file mean, "look at flags to decide whether to use
196  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197  *
198  * @page:    pointer to page to be grabbed
199  * @flags:   gup flags: these are the FOLL_* flag values.
200  *
201  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202  * time. Cases: please see the try_grab_compound_head() documentation, with
203  * "refs=1".
204  *
205  * Return: true for success, or if no action was required (if neither FOLL_PIN
206  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207  * FOLL_PIN was set, but the page could not be grabbed.
208  */
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
212 
213 	if (flags & FOLL_GET)
214 		return try_get_page(page);
215 	else if (flags & FOLL_PIN) {
216 		int refs = 1;
217 
218 		page = compound_head(page);
219 
220 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
221 			return false;
222 
223 		if (hpage_pincount_available(page))
224 			hpage_pincount_add(page, 1);
225 		else
226 			refs = GUP_PIN_COUNTING_BIAS;
227 
228 		/*
229 		 * Similar to try_grab_compound_head(): even if using the
230 		 * hpage_pincount_add/_sub() routines, be sure to
231 		 * *also* increment the normal page refcount field at least
232 		 * once, so that the page really is pinned.
233 		 */
234 		page_ref_add(page, refs);
235 
236 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
237 	}
238 
239 	return true;
240 }
241 
242 /**
243  * unpin_user_page() - release a dma-pinned page
244  * @page:            pointer to page to be released
245  *
246  * Pages that were pinned via pin_user_pages*() must be released via either
247  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248  * that such pages can be separately tracked and uniquely handled. In
249  * particular, interactions with RDMA and filesystems need special handling.
250  */
251 void unpin_user_page(struct page *page)
252 {
253 	put_compound_head(compound_head(page), 1, FOLL_PIN);
254 }
255 EXPORT_SYMBOL(unpin_user_page);
256 
257 static inline void compound_range_next(unsigned long i, unsigned long npages,
258 				       struct page **list, struct page **head,
259 				       unsigned int *ntails)
260 {
261 	struct page *next, *page;
262 	unsigned int nr = 1;
263 
264 	if (i >= npages)
265 		return;
266 
267 	next = *list + i;
268 	page = compound_head(next);
269 	if (PageCompound(page) && compound_order(page) >= 1)
270 		nr = min_t(unsigned int,
271 			   page + compound_nr(page) - next, npages - i);
272 
273 	*head = page;
274 	*ntails = nr;
275 }
276 
277 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
278 	for (__i = 0, \
279 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280 	     __i < __npages; __i += __ntails, \
281 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
282 
283 static inline void compound_next(unsigned long i, unsigned long npages,
284 				 struct page **list, struct page **head,
285 				 unsigned int *ntails)
286 {
287 	struct page *page;
288 	unsigned int nr;
289 
290 	if (i >= npages)
291 		return;
292 
293 	page = compound_head(list[i]);
294 	for (nr = i + 1; nr < npages; nr++) {
295 		if (compound_head(list[nr]) != page)
296 			break;
297 	}
298 
299 	*head = page;
300 	*ntails = nr - i;
301 }
302 
303 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
304 	for (__i = 0, \
305 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306 	     __i < __npages; __i += __ntails, \
307 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
308 
309 /**
310  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
311  * @pages:  array of pages to be maybe marked dirty, and definitely released.
312  * @npages: number of pages in the @pages array.
313  * @make_dirty: whether to mark the pages dirty
314  *
315  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316  * variants called on that page.
317  *
318  * For each page in the @pages array, make that page (or its head page, if a
319  * compound page) dirty, if @make_dirty is true, and if the page was previously
320  * listed as clean. In any case, releases all pages using unpin_user_page(),
321  * possibly via unpin_user_pages(), for the non-dirty case.
322  *
323  * Please see the unpin_user_page() documentation for details.
324  *
325  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326  * required, then the caller should a) verify that this is really correct,
327  * because _lock() is usually required, and b) hand code it:
328  * set_page_dirty_lock(), unpin_user_page().
329  *
330  */
331 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
332 				 bool make_dirty)
333 {
334 	unsigned long index;
335 	struct page *head;
336 	unsigned int ntails;
337 
338 	if (!make_dirty) {
339 		unpin_user_pages(pages, npages);
340 		return;
341 	}
342 
343 	for_each_compound_head(index, pages, npages, head, ntails) {
344 		/*
345 		 * Checking PageDirty at this point may race with
346 		 * clear_page_dirty_for_io(), but that's OK. Two key
347 		 * cases:
348 		 *
349 		 * 1) This code sees the page as already dirty, so it
350 		 * skips the call to set_page_dirty(). That could happen
351 		 * because clear_page_dirty_for_io() called
352 		 * page_mkclean(), followed by set_page_dirty().
353 		 * However, now the page is going to get written back,
354 		 * which meets the original intention of setting it
355 		 * dirty, so all is well: clear_page_dirty_for_io() goes
356 		 * on to call TestClearPageDirty(), and write the page
357 		 * back.
358 		 *
359 		 * 2) This code sees the page as clean, so it calls
360 		 * set_page_dirty(). The page stays dirty, despite being
361 		 * written back, so it gets written back again in the
362 		 * next writeback cycle. This is harmless.
363 		 */
364 		if (!PageDirty(head))
365 			set_page_dirty_lock(head);
366 		put_compound_head(head, ntails, FOLL_PIN);
367 	}
368 }
369 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
370 
371 /**
372  * unpin_user_page_range_dirty_lock() - release and optionally dirty
373  * gup-pinned page range
374  *
375  * @page:  the starting page of a range maybe marked dirty, and definitely released.
376  * @npages: number of consecutive pages to release.
377  * @make_dirty: whether to mark the pages dirty
378  *
379  * "gup-pinned page range" refers to a range of pages that has had one of the
380  * pin_user_pages() variants called on that page.
381  *
382  * For the page ranges defined by [page .. page+npages], make that range (or
383  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384  * page range was previously listed as clean.
385  *
386  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387  * required, then the caller should a) verify that this is really correct,
388  * because _lock() is usually required, and b) hand code it:
389  * set_page_dirty_lock(), unpin_user_page().
390  *
391  */
392 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
393 				      bool make_dirty)
394 {
395 	unsigned long index;
396 	struct page *head;
397 	unsigned int ntails;
398 
399 	for_each_compound_range(index, &page, npages, head, ntails) {
400 		if (make_dirty && !PageDirty(head))
401 			set_page_dirty_lock(head);
402 		put_compound_head(head, ntails, FOLL_PIN);
403 	}
404 }
405 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
406 
407 /**
408  * unpin_user_pages() - release an array of gup-pinned pages.
409  * @pages:  array of pages to be marked dirty and released.
410  * @npages: number of pages in the @pages array.
411  *
412  * For each page in the @pages array, release the page using unpin_user_page().
413  *
414  * Please see the unpin_user_page() documentation for details.
415  */
416 void unpin_user_pages(struct page **pages, unsigned long npages)
417 {
418 	unsigned long index;
419 	struct page *head;
420 	unsigned int ntails;
421 
422 	/*
423 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424 	 * leaving them pinned), but probably not. More likely, gup/pup returned
425 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
426 	 */
427 	if (WARN_ON(IS_ERR_VALUE(npages)))
428 		return;
429 
430 	for_each_compound_head(index, pages, npages, head, ntails)
431 		put_compound_head(head, ntails, FOLL_PIN);
432 }
433 EXPORT_SYMBOL(unpin_user_pages);
434 
435 /*
436  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
438  * cache bouncing on large SMP machines for concurrent pinned gups.
439  */
440 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
441 {
442 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
443 		set_bit(MMF_HAS_PINNED, mm_flags);
444 }
445 
446 #ifdef CONFIG_MMU
447 static struct page *no_page_table(struct vm_area_struct *vma,
448 		unsigned int flags)
449 {
450 	/*
451 	 * When core dumping an enormous anonymous area that nobody
452 	 * has touched so far, we don't want to allocate unnecessary pages or
453 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
454 	 * then get_dump_page() will return NULL to leave a hole in the dump.
455 	 * But we can only make this optimization where a hole would surely
456 	 * be zero-filled if handle_mm_fault() actually did handle it.
457 	 */
458 	if ((flags & FOLL_DUMP) &&
459 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
460 		return ERR_PTR(-EFAULT);
461 	return NULL;
462 }
463 
464 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465 		pte_t *pte, unsigned int flags)
466 {
467 	/* No page to get reference */
468 	if (flags & FOLL_GET)
469 		return -EFAULT;
470 
471 	if (flags & FOLL_TOUCH) {
472 		pte_t entry = *pte;
473 
474 		if (flags & FOLL_WRITE)
475 			entry = pte_mkdirty(entry);
476 		entry = pte_mkyoung(entry);
477 
478 		if (!pte_same(*pte, entry)) {
479 			set_pte_at(vma->vm_mm, address, pte, entry);
480 			update_mmu_cache(vma, address, pte);
481 		}
482 	}
483 
484 	/* Proper page table entry exists, but no corresponding struct page */
485 	return -EEXIST;
486 }
487 
488 /*
489  * FOLL_FORCE can write to even unwritable pte's, but only
490  * after we've gone through a COW cycle and they are dirty.
491  */
492 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
493 {
494 	return pte_write(pte) ||
495 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
496 }
497 
498 static struct page *follow_page_pte(struct vm_area_struct *vma,
499 		unsigned long address, pmd_t *pmd, unsigned int flags,
500 		struct dev_pagemap **pgmap)
501 {
502 	struct mm_struct *mm = vma->vm_mm;
503 	struct page *page;
504 	spinlock_t *ptl;
505 	pte_t *ptep, pte;
506 	int ret;
507 
508 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
509 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510 			 (FOLL_PIN | FOLL_GET)))
511 		return ERR_PTR(-EINVAL);
512 retry:
513 	if (unlikely(pmd_bad(*pmd)))
514 		return no_page_table(vma, flags);
515 
516 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
517 	pte = *ptep;
518 	if (!pte_present(pte)) {
519 		swp_entry_t entry;
520 		/*
521 		 * KSM's break_ksm() relies upon recognizing a ksm page
522 		 * even while it is being migrated, so for that case we
523 		 * need migration_entry_wait().
524 		 */
525 		if (likely(!(flags & FOLL_MIGRATION)))
526 			goto no_page;
527 		if (pte_none(pte))
528 			goto no_page;
529 		entry = pte_to_swp_entry(pte);
530 		if (!is_migration_entry(entry))
531 			goto no_page;
532 		pte_unmap_unlock(ptep, ptl);
533 		migration_entry_wait(mm, pmd, address);
534 		goto retry;
535 	}
536 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
537 		goto no_page;
538 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
539 		pte_unmap_unlock(ptep, ptl);
540 		return NULL;
541 	}
542 
543 	page = vm_normal_page(vma, address, pte);
544 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
545 		/*
546 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547 		 * case since they are only valid while holding the pgmap
548 		 * reference.
549 		 */
550 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
551 		if (*pgmap)
552 			page = pte_page(pte);
553 		else
554 			goto no_page;
555 	} else if (unlikely(!page)) {
556 		if (flags & FOLL_DUMP) {
557 			/* Avoid special (like zero) pages in core dumps */
558 			page = ERR_PTR(-EFAULT);
559 			goto out;
560 		}
561 
562 		if (is_zero_pfn(pte_pfn(pte))) {
563 			page = pte_page(pte);
564 		} else {
565 			ret = follow_pfn_pte(vma, address, ptep, flags);
566 			page = ERR_PTR(ret);
567 			goto out;
568 		}
569 	}
570 
571 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572 	if (unlikely(!try_grab_page(page, flags))) {
573 		page = ERR_PTR(-ENOMEM);
574 		goto out;
575 	}
576 	/*
577 	 * We need to make the page accessible if and only if we are going
578 	 * to access its content (the FOLL_PIN case).  Please see
579 	 * Documentation/core-api/pin_user_pages.rst for details.
580 	 */
581 	if (flags & FOLL_PIN) {
582 		ret = arch_make_page_accessible(page);
583 		if (ret) {
584 			unpin_user_page(page);
585 			page = ERR_PTR(ret);
586 			goto out;
587 		}
588 	}
589 	if (flags & FOLL_TOUCH) {
590 		if ((flags & FOLL_WRITE) &&
591 		    !pte_dirty(pte) && !PageDirty(page))
592 			set_page_dirty(page);
593 		/*
594 		 * pte_mkyoung() would be more correct here, but atomic care
595 		 * is needed to avoid losing the dirty bit: it is easier to use
596 		 * mark_page_accessed().
597 		 */
598 		mark_page_accessed(page);
599 	}
600 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
601 		/* Do not mlock pte-mapped THP */
602 		if (PageTransCompound(page))
603 			goto out;
604 
605 		/*
606 		 * The preliminary mapping check is mainly to avoid the
607 		 * pointless overhead of lock_page on the ZERO_PAGE
608 		 * which might bounce very badly if there is contention.
609 		 *
610 		 * If the page is already locked, we don't need to
611 		 * handle it now - vmscan will handle it later if and
612 		 * when it attempts to reclaim the page.
613 		 */
614 		if (page->mapping && trylock_page(page)) {
615 			lru_add_drain();  /* push cached pages to LRU */
616 			/*
617 			 * Because we lock page here, and migration is
618 			 * blocked by the pte's page reference, and we
619 			 * know the page is still mapped, we don't even
620 			 * need to check for file-cache page truncation.
621 			 */
622 			mlock_vma_page(page);
623 			unlock_page(page);
624 		}
625 	}
626 out:
627 	pte_unmap_unlock(ptep, ptl);
628 	return page;
629 no_page:
630 	pte_unmap_unlock(ptep, ptl);
631 	if (!pte_none(pte))
632 		return NULL;
633 	return no_page_table(vma, flags);
634 }
635 
636 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 				    unsigned long address, pud_t *pudp,
638 				    unsigned int flags,
639 				    struct follow_page_context *ctx)
640 {
641 	pmd_t *pmd, pmdval;
642 	spinlock_t *ptl;
643 	struct page *page;
644 	struct mm_struct *mm = vma->vm_mm;
645 
646 	pmd = pmd_offset(pudp, address);
647 	/*
648 	 * The READ_ONCE() will stabilize the pmdval in a register or
649 	 * on the stack so that it will stop changing under the code.
650 	 */
651 	pmdval = READ_ONCE(*pmd);
652 	if (pmd_none(pmdval))
653 		return no_page_table(vma, flags);
654 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
655 		page = follow_huge_pmd(mm, address, pmd, flags);
656 		if (page)
657 			return page;
658 		return no_page_table(vma, flags);
659 	}
660 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
661 		page = follow_huge_pd(vma, address,
662 				      __hugepd(pmd_val(pmdval)), flags,
663 				      PMD_SHIFT);
664 		if (page)
665 			return page;
666 		return no_page_table(vma, flags);
667 	}
668 retry:
669 	if (!pmd_present(pmdval)) {
670 		/*
671 		 * Should never reach here, if thp migration is not supported;
672 		 * Otherwise, it must be a thp migration entry.
673 		 */
674 		VM_BUG_ON(!thp_migration_supported() ||
675 				  !is_pmd_migration_entry(pmdval));
676 
677 		if (likely(!(flags & FOLL_MIGRATION)))
678 			return no_page_table(vma, flags);
679 
680 		pmd_migration_entry_wait(mm, pmd);
681 		pmdval = READ_ONCE(*pmd);
682 		/*
683 		 * MADV_DONTNEED may convert the pmd to null because
684 		 * mmap_lock is held in read mode
685 		 */
686 		if (pmd_none(pmdval))
687 			return no_page_table(vma, flags);
688 		goto retry;
689 	}
690 	if (pmd_devmap(pmdval)) {
691 		ptl = pmd_lock(mm, pmd);
692 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
693 		spin_unlock(ptl);
694 		if (page)
695 			return page;
696 	}
697 	if (likely(!pmd_trans_huge(pmdval)))
698 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
699 
700 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
701 		return no_page_table(vma, flags);
702 
703 retry_locked:
704 	ptl = pmd_lock(mm, pmd);
705 	if (unlikely(pmd_none(*pmd))) {
706 		spin_unlock(ptl);
707 		return no_page_table(vma, flags);
708 	}
709 	if (unlikely(!pmd_present(*pmd))) {
710 		spin_unlock(ptl);
711 		if (likely(!(flags & FOLL_MIGRATION)))
712 			return no_page_table(vma, flags);
713 		pmd_migration_entry_wait(mm, pmd);
714 		goto retry_locked;
715 	}
716 	if (unlikely(!pmd_trans_huge(*pmd))) {
717 		spin_unlock(ptl);
718 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
719 	}
720 	if (flags & FOLL_SPLIT_PMD) {
721 		int ret;
722 		page = pmd_page(*pmd);
723 		if (is_huge_zero_page(page)) {
724 			spin_unlock(ptl);
725 			ret = 0;
726 			split_huge_pmd(vma, pmd, address);
727 			if (pmd_trans_unstable(pmd))
728 				ret = -EBUSY;
729 		} else {
730 			spin_unlock(ptl);
731 			split_huge_pmd(vma, pmd, address);
732 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
733 		}
734 
735 		return ret ? ERR_PTR(ret) :
736 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
737 	}
738 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
739 	spin_unlock(ptl);
740 	ctx->page_mask = HPAGE_PMD_NR - 1;
741 	return page;
742 }
743 
744 static struct page *follow_pud_mask(struct vm_area_struct *vma,
745 				    unsigned long address, p4d_t *p4dp,
746 				    unsigned int flags,
747 				    struct follow_page_context *ctx)
748 {
749 	pud_t *pud;
750 	spinlock_t *ptl;
751 	struct page *page;
752 	struct mm_struct *mm = vma->vm_mm;
753 
754 	pud = pud_offset(p4dp, address);
755 	if (pud_none(*pud))
756 		return no_page_table(vma, flags);
757 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
758 		page = follow_huge_pud(mm, address, pud, flags);
759 		if (page)
760 			return page;
761 		return no_page_table(vma, flags);
762 	}
763 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
764 		page = follow_huge_pd(vma, address,
765 				      __hugepd(pud_val(*pud)), flags,
766 				      PUD_SHIFT);
767 		if (page)
768 			return page;
769 		return no_page_table(vma, flags);
770 	}
771 	if (pud_devmap(*pud)) {
772 		ptl = pud_lock(mm, pud);
773 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
774 		spin_unlock(ptl);
775 		if (page)
776 			return page;
777 	}
778 	if (unlikely(pud_bad(*pud)))
779 		return no_page_table(vma, flags);
780 
781 	return follow_pmd_mask(vma, address, pud, flags, ctx);
782 }
783 
784 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
785 				    unsigned long address, pgd_t *pgdp,
786 				    unsigned int flags,
787 				    struct follow_page_context *ctx)
788 {
789 	p4d_t *p4d;
790 	struct page *page;
791 
792 	p4d = p4d_offset(pgdp, address);
793 	if (p4d_none(*p4d))
794 		return no_page_table(vma, flags);
795 	BUILD_BUG_ON(p4d_huge(*p4d));
796 	if (unlikely(p4d_bad(*p4d)))
797 		return no_page_table(vma, flags);
798 
799 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
800 		page = follow_huge_pd(vma, address,
801 				      __hugepd(p4d_val(*p4d)), flags,
802 				      P4D_SHIFT);
803 		if (page)
804 			return page;
805 		return no_page_table(vma, flags);
806 	}
807 	return follow_pud_mask(vma, address, p4d, flags, ctx);
808 }
809 
810 /**
811  * follow_page_mask - look up a page descriptor from a user-virtual address
812  * @vma: vm_area_struct mapping @address
813  * @address: virtual address to look up
814  * @flags: flags modifying lookup behaviour
815  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
816  *       pointer to output page_mask
817  *
818  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
819  *
820  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
821  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
822  *
823  * On output, the @ctx->page_mask is set according to the size of the page.
824  *
825  * Return: the mapped (struct page *), %NULL if no mapping exists, or
826  * an error pointer if there is a mapping to something not represented
827  * by a page descriptor (see also vm_normal_page()).
828  */
829 static struct page *follow_page_mask(struct vm_area_struct *vma,
830 			      unsigned long address, unsigned int flags,
831 			      struct follow_page_context *ctx)
832 {
833 	pgd_t *pgd;
834 	struct page *page;
835 	struct mm_struct *mm = vma->vm_mm;
836 
837 	ctx->page_mask = 0;
838 
839 	/* make this handle hugepd */
840 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
841 	if (!IS_ERR(page)) {
842 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
843 		return page;
844 	}
845 
846 	pgd = pgd_offset(mm, address);
847 
848 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
849 		return no_page_table(vma, flags);
850 
851 	if (pgd_huge(*pgd)) {
852 		page = follow_huge_pgd(mm, address, pgd, flags);
853 		if (page)
854 			return page;
855 		return no_page_table(vma, flags);
856 	}
857 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
858 		page = follow_huge_pd(vma, address,
859 				      __hugepd(pgd_val(*pgd)), flags,
860 				      PGDIR_SHIFT);
861 		if (page)
862 			return page;
863 		return no_page_table(vma, flags);
864 	}
865 
866 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
867 }
868 
869 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
870 			 unsigned int foll_flags)
871 {
872 	struct follow_page_context ctx = { NULL };
873 	struct page *page;
874 
875 	if (vma_is_secretmem(vma))
876 		return NULL;
877 
878 	page = follow_page_mask(vma, address, foll_flags, &ctx);
879 	if (ctx.pgmap)
880 		put_dev_pagemap(ctx.pgmap);
881 	return page;
882 }
883 
884 static int get_gate_page(struct mm_struct *mm, unsigned long address,
885 		unsigned int gup_flags, struct vm_area_struct **vma,
886 		struct page **page)
887 {
888 	pgd_t *pgd;
889 	p4d_t *p4d;
890 	pud_t *pud;
891 	pmd_t *pmd;
892 	pte_t *pte;
893 	int ret = -EFAULT;
894 
895 	/* user gate pages are read-only */
896 	if (gup_flags & FOLL_WRITE)
897 		return -EFAULT;
898 	if (address > TASK_SIZE)
899 		pgd = pgd_offset_k(address);
900 	else
901 		pgd = pgd_offset_gate(mm, address);
902 	if (pgd_none(*pgd))
903 		return -EFAULT;
904 	p4d = p4d_offset(pgd, address);
905 	if (p4d_none(*p4d))
906 		return -EFAULT;
907 	pud = pud_offset(p4d, address);
908 	if (pud_none(*pud))
909 		return -EFAULT;
910 	pmd = pmd_offset(pud, address);
911 	if (!pmd_present(*pmd))
912 		return -EFAULT;
913 	VM_BUG_ON(pmd_trans_huge(*pmd));
914 	pte = pte_offset_map(pmd, address);
915 	if (pte_none(*pte))
916 		goto unmap;
917 	*vma = get_gate_vma(mm);
918 	if (!page)
919 		goto out;
920 	*page = vm_normal_page(*vma, address, *pte);
921 	if (!*page) {
922 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
923 			goto unmap;
924 		*page = pte_page(*pte);
925 	}
926 	if (unlikely(!try_grab_page(*page, gup_flags))) {
927 		ret = -ENOMEM;
928 		goto unmap;
929 	}
930 out:
931 	ret = 0;
932 unmap:
933 	pte_unmap(pte);
934 	return ret;
935 }
936 
937 /*
938  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
939  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
940  * is, *@locked will be set to 0 and -EBUSY returned.
941  */
942 static int faultin_page(struct vm_area_struct *vma,
943 		unsigned long address, unsigned int *flags, int *locked)
944 {
945 	unsigned int fault_flags = 0;
946 	vm_fault_t ret;
947 
948 	/* mlock all present pages, but do not fault in new pages */
949 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
950 		return -ENOENT;
951 	if (*flags & FOLL_NOFAULT)
952 		return -EFAULT;
953 	if (*flags & FOLL_WRITE)
954 		fault_flags |= FAULT_FLAG_WRITE;
955 	if (*flags & FOLL_REMOTE)
956 		fault_flags |= FAULT_FLAG_REMOTE;
957 	if (locked)
958 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
959 	if (*flags & FOLL_NOWAIT)
960 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
961 	if (*flags & FOLL_TRIED) {
962 		/*
963 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
964 		 * can co-exist
965 		 */
966 		fault_flags |= FAULT_FLAG_TRIED;
967 	}
968 
969 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
970 	if (ret & VM_FAULT_ERROR) {
971 		int err = vm_fault_to_errno(ret, *flags);
972 
973 		if (err)
974 			return err;
975 		BUG();
976 	}
977 
978 	if (ret & VM_FAULT_RETRY) {
979 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
980 			*locked = 0;
981 		return -EBUSY;
982 	}
983 
984 	/*
985 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
986 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
987 	 * can thus safely do subsequent page lookups as if they were reads.
988 	 * But only do so when looping for pte_write is futile: in some cases
989 	 * userspace may also be wanting to write to the gotten user page,
990 	 * which a read fault here might prevent (a readonly page might get
991 	 * reCOWed by userspace write).
992 	 */
993 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
994 		*flags |= FOLL_COW;
995 	return 0;
996 }
997 
998 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
999 {
1000 	vm_flags_t vm_flags = vma->vm_flags;
1001 	int write = (gup_flags & FOLL_WRITE);
1002 	int foreign = (gup_flags & FOLL_REMOTE);
1003 
1004 	if (vm_flags & (VM_IO | VM_PFNMAP))
1005 		return -EFAULT;
1006 
1007 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1008 		return -EFAULT;
1009 
1010 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1011 		return -EOPNOTSUPP;
1012 
1013 	if (vma_is_secretmem(vma))
1014 		return -EFAULT;
1015 
1016 	if (write) {
1017 		if (!(vm_flags & VM_WRITE)) {
1018 			if (!(gup_flags & FOLL_FORCE))
1019 				return -EFAULT;
1020 			/*
1021 			 * We used to let the write,force case do COW in a
1022 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1023 			 * set a breakpoint in a read-only mapping of an
1024 			 * executable, without corrupting the file (yet only
1025 			 * when that file had been opened for writing!).
1026 			 * Anon pages in shared mappings are surprising: now
1027 			 * just reject it.
1028 			 */
1029 			if (!is_cow_mapping(vm_flags))
1030 				return -EFAULT;
1031 		}
1032 	} else if (!(vm_flags & VM_READ)) {
1033 		if (!(gup_flags & FOLL_FORCE))
1034 			return -EFAULT;
1035 		/*
1036 		 * Is there actually any vma we can reach here which does not
1037 		 * have VM_MAYREAD set?
1038 		 */
1039 		if (!(vm_flags & VM_MAYREAD))
1040 			return -EFAULT;
1041 	}
1042 	/*
1043 	 * gups are always data accesses, not instruction
1044 	 * fetches, so execute=false here
1045 	 */
1046 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1047 		return -EFAULT;
1048 	return 0;
1049 }
1050 
1051 /**
1052  * __get_user_pages() - pin user pages in memory
1053  * @mm:		mm_struct of target mm
1054  * @start:	starting user address
1055  * @nr_pages:	number of pages from start to pin
1056  * @gup_flags:	flags modifying pin behaviour
1057  * @pages:	array that receives pointers to the pages pinned.
1058  *		Should be at least nr_pages long. Or NULL, if caller
1059  *		only intends to ensure the pages are faulted in.
1060  * @vmas:	array of pointers to vmas corresponding to each page.
1061  *		Or NULL if the caller does not require them.
1062  * @locked:     whether we're still with the mmap_lock held
1063  *
1064  * Returns either number of pages pinned (which may be less than the
1065  * number requested), or an error. Details about the return value:
1066  *
1067  * -- If nr_pages is 0, returns 0.
1068  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1069  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1070  *    pages pinned. Again, this may be less than nr_pages.
1071  * -- 0 return value is possible when the fault would need to be retried.
1072  *
1073  * The caller is responsible for releasing returned @pages, via put_page().
1074  *
1075  * @vmas are valid only as long as mmap_lock is held.
1076  *
1077  * Must be called with mmap_lock held.  It may be released.  See below.
1078  *
1079  * __get_user_pages walks a process's page tables and takes a reference to
1080  * each struct page that each user address corresponds to at a given
1081  * instant. That is, it takes the page that would be accessed if a user
1082  * thread accesses the given user virtual address at that instant.
1083  *
1084  * This does not guarantee that the page exists in the user mappings when
1085  * __get_user_pages returns, and there may even be a completely different
1086  * page there in some cases (eg. if mmapped pagecache has been invalidated
1087  * and subsequently re faulted). However it does guarantee that the page
1088  * won't be freed completely. And mostly callers simply care that the page
1089  * contains data that was valid *at some point in time*. Typically, an IO
1090  * or similar operation cannot guarantee anything stronger anyway because
1091  * locks can't be held over the syscall boundary.
1092  *
1093  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1094  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1095  * appropriate) must be called after the page is finished with, and
1096  * before put_page is called.
1097  *
1098  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1099  * released by an up_read().  That can happen if @gup_flags does not
1100  * have FOLL_NOWAIT.
1101  *
1102  * A caller using such a combination of @locked and @gup_flags
1103  * must therefore hold the mmap_lock for reading only, and recognize
1104  * when it's been released.  Otherwise, it must be held for either
1105  * reading or writing and will not be released.
1106  *
1107  * In most cases, get_user_pages or get_user_pages_fast should be used
1108  * instead of __get_user_pages. __get_user_pages should be used only if
1109  * you need some special @gup_flags.
1110  */
1111 static long __get_user_pages(struct mm_struct *mm,
1112 		unsigned long start, unsigned long nr_pages,
1113 		unsigned int gup_flags, struct page **pages,
1114 		struct vm_area_struct **vmas, int *locked)
1115 {
1116 	long ret = 0, i = 0;
1117 	struct vm_area_struct *vma = NULL;
1118 	struct follow_page_context ctx = { NULL };
1119 
1120 	if (!nr_pages)
1121 		return 0;
1122 
1123 	start = untagged_addr(start);
1124 
1125 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1126 
1127 	/*
1128 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1129 	 * fault information is unrelated to the reference behaviour of a task
1130 	 * using the address space
1131 	 */
1132 	if (!(gup_flags & FOLL_FORCE))
1133 		gup_flags |= FOLL_NUMA;
1134 
1135 	do {
1136 		struct page *page;
1137 		unsigned int foll_flags = gup_flags;
1138 		unsigned int page_increm;
1139 
1140 		/* first iteration or cross vma bound */
1141 		if (!vma || start >= vma->vm_end) {
1142 			vma = find_extend_vma(mm, start);
1143 			if (!vma && in_gate_area(mm, start)) {
1144 				ret = get_gate_page(mm, start & PAGE_MASK,
1145 						gup_flags, &vma,
1146 						pages ? &pages[i] : NULL);
1147 				if (ret)
1148 					goto out;
1149 				ctx.page_mask = 0;
1150 				goto next_page;
1151 			}
1152 
1153 			if (!vma) {
1154 				ret = -EFAULT;
1155 				goto out;
1156 			}
1157 			ret = check_vma_flags(vma, gup_flags);
1158 			if (ret)
1159 				goto out;
1160 
1161 			if (is_vm_hugetlb_page(vma)) {
1162 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1163 						&start, &nr_pages, i,
1164 						gup_flags, locked);
1165 				if (locked && *locked == 0) {
1166 					/*
1167 					 * We've got a VM_FAULT_RETRY
1168 					 * and we've lost mmap_lock.
1169 					 * We must stop here.
1170 					 */
1171 					BUG_ON(gup_flags & FOLL_NOWAIT);
1172 					goto out;
1173 				}
1174 				continue;
1175 			}
1176 		}
1177 retry:
1178 		/*
1179 		 * If we have a pending SIGKILL, don't keep faulting pages and
1180 		 * potentially allocating memory.
1181 		 */
1182 		if (fatal_signal_pending(current)) {
1183 			ret = -EINTR;
1184 			goto out;
1185 		}
1186 		cond_resched();
1187 
1188 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1189 		if (!page) {
1190 			ret = faultin_page(vma, start, &foll_flags, locked);
1191 			switch (ret) {
1192 			case 0:
1193 				goto retry;
1194 			case -EBUSY:
1195 				ret = 0;
1196 				fallthrough;
1197 			case -EFAULT:
1198 			case -ENOMEM:
1199 			case -EHWPOISON:
1200 				goto out;
1201 			case -ENOENT:
1202 				goto next_page;
1203 			}
1204 			BUG();
1205 		} else if (PTR_ERR(page) == -EEXIST) {
1206 			/*
1207 			 * Proper page table entry exists, but no corresponding
1208 			 * struct page.
1209 			 */
1210 			goto next_page;
1211 		} else if (IS_ERR(page)) {
1212 			ret = PTR_ERR(page);
1213 			goto out;
1214 		}
1215 		if (pages) {
1216 			pages[i] = page;
1217 			flush_anon_page(vma, page, start);
1218 			flush_dcache_page(page);
1219 			ctx.page_mask = 0;
1220 		}
1221 next_page:
1222 		if (vmas) {
1223 			vmas[i] = vma;
1224 			ctx.page_mask = 0;
1225 		}
1226 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1227 		if (page_increm > nr_pages)
1228 			page_increm = nr_pages;
1229 		i += page_increm;
1230 		start += page_increm * PAGE_SIZE;
1231 		nr_pages -= page_increm;
1232 	} while (nr_pages);
1233 out:
1234 	if (ctx.pgmap)
1235 		put_dev_pagemap(ctx.pgmap);
1236 	return i ? i : ret;
1237 }
1238 
1239 static bool vma_permits_fault(struct vm_area_struct *vma,
1240 			      unsigned int fault_flags)
1241 {
1242 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1243 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1244 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1245 
1246 	if (!(vm_flags & vma->vm_flags))
1247 		return false;
1248 
1249 	/*
1250 	 * The architecture might have a hardware protection
1251 	 * mechanism other than read/write that can deny access.
1252 	 *
1253 	 * gup always represents data access, not instruction
1254 	 * fetches, so execute=false here:
1255 	 */
1256 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1257 		return false;
1258 
1259 	return true;
1260 }
1261 
1262 /**
1263  * fixup_user_fault() - manually resolve a user page fault
1264  * @mm:		mm_struct of target mm
1265  * @address:	user address
1266  * @fault_flags:flags to pass down to handle_mm_fault()
1267  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1268  *		does not allow retry. If NULL, the caller must guarantee
1269  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1270  *
1271  * This is meant to be called in the specific scenario where for locking reasons
1272  * we try to access user memory in atomic context (within a pagefault_disable()
1273  * section), this returns -EFAULT, and we want to resolve the user fault before
1274  * trying again.
1275  *
1276  * Typically this is meant to be used by the futex code.
1277  *
1278  * The main difference with get_user_pages() is that this function will
1279  * unconditionally call handle_mm_fault() which will in turn perform all the
1280  * necessary SW fixup of the dirty and young bits in the PTE, while
1281  * get_user_pages() only guarantees to update these in the struct page.
1282  *
1283  * This is important for some architectures where those bits also gate the
1284  * access permission to the page because they are maintained in software.  On
1285  * such architectures, gup() will not be enough to make a subsequent access
1286  * succeed.
1287  *
1288  * This function will not return with an unlocked mmap_lock. So it has not the
1289  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1290  */
1291 int fixup_user_fault(struct mm_struct *mm,
1292 		     unsigned long address, unsigned int fault_flags,
1293 		     bool *unlocked)
1294 {
1295 	struct vm_area_struct *vma;
1296 	vm_fault_t ret;
1297 
1298 	address = untagged_addr(address);
1299 
1300 	if (unlocked)
1301 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1302 
1303 retry:
1304 	vma = find_extend_vma(mm, address);
1305 	if (!vma || address < vma->vm_start)
1306 		return -EFAULT;
1307 
1308 	if (!vma_permits_fault(vma, fault_flags))
1309 		return -EFAULT;
1310 
1311 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1312 	    fatal_signal_pending(current))
1313 		return -EINTR;
1314 
1315 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1316 	if (ret & VM_FAULT_ERROR) {
1317 		int err = vm_fault_to_errno(ret, 0);
1318 
1319 		if (err)
1320 			return err;
1321 		BUG();
1322 	}
1323 
1324 	if (ret & VM_FAULT_RETRY) {
1325 		mmap_read_lock(mm);
1326 		*unlocked = true;
1327 		fault_flags |= FAULT_FLAG_TRIED;
1328 		goto retry;
1329 	}
1330 
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(fixup_user_fault);
1334 
1335 /*
1336  * Please note that this function, unlike __get_user_pages will not
1337  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1338  */
1339 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1340 						unsigned long start,
1341 						unsigned long nr_pages,
1342 						struct page **pages,
1343 						struct vm_area_struct **vmas,
1344 						int *locked,
1345 						unsigned int flags)
1346 {
1347 	long ret, pages_done;
1348 	bool lock_dropped;
1349 
1350 	if (locked) {
1351 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1352 		BUG_ON(vmas);
1353 		/* check caller initialized locked */
1354 		BUG_ON(*locked != 1);
1355 	}
1356 
1357 	if (flags & FOLL_PIN)
1358 		mm_set_has_pinned_flag(&mm->flags);
1359 
1360 	/*
1361 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1362 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1363 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1364 	 * for FOLL_GET, not for the newer FOLL_PIN.
1365 	 *
1366 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1367 	 * that here, as any failures will be obvious enough.
1368 	 */
1369 	if (pages && !(flags & FOLL_PIN))
1370 		flags |= FOLL_GET;
1371 
1372 	pages_done = 0;
1373 	lock_dropped = false;
1374 	for (;;) {
1375 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1376 				       vmas, locked);
1377 		if (!locked)
1378 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1379 			return ret;
1380 
1381 		/* VM_FAULT_RETRY cannot return errors */
1382 		if (!*locked) {
1383 			BUG_ON(ret < 0);
1384 			BUG_ON(ret >= nr_pages);
1385 		}
1386 
1387 		if (ret > 0) {
1388 			nr_pages -= ret;
1389 			pages_done += ret;
1390 			if (!nr_pages)
1391 				break;
1392 		}
1393 		if (*locked) {
1394 			/*
1395 			 * VM_FAULT_RETRY didn't trigger or it was a
1396 			 * FOLL_NOWAIT.
1397 			 */
1398 			if (!pages_done)
1399 				pages_done = ret;
1400 			break;
1401 		}
1402 		/*
1403 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1404 		 * For the prefault case (!pages) we only update counts.
1405 		 */
1406 		if (likely(pages))
1407 			pages += ret;
1408 		start += ret << PAGE_SHIFT;
1409 		lock_dropped = true;
1410 
1411 retry:
1412 		/*
1413 		 * Repeat on the address that fired VM_FAULT_RETRY
1414 		 * with both FAULT_FLAG_ALLOW_RETRY and
1415 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1416 		 * by fatal signals, so we need to check it before we
1417 		 * start trying again otherwise it can loop forever.
1418 		 */
1419 
1420 		if (fatal_signal_pending(current)) {
1421 			if (!pages_done)
1422 				pages_done = -EINTR;
1423 			break;
1424 		}
1425 
1426 		ret = mmap_read_lock_killable(mm);
1427 		if (ret) {
1428 			BUG_ON(ret > 0);
1429 			if (!pages_done)
1430 				pages_done = ret;
1431 			break;
1432 		}
1433 
1434 		*locked = 1;
1435 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1436 				       pages, NULL, locked);
1437 		if (!*locked) {
1438 			/* Continue to retry until we succeeded */
1439 			BUG_ON(ret != 0);
1440 			goto retry;
1441 		}
1442 		if (ret != 1) {
1443 			BUG_ON(ret > 1);
1444 			if (!pages_done)
1445 				pages_done = ret;
1446 			break;
1447 		}
1448 		nr_pages--;
1449 		pages_done++;
1450 		if (!nr_pages)
1451 			break;
1452 		if (likely(pages))
1453 			pages++;
1454 		start += PAGE_SIZE;
1455 	}
1456 	if (lock_dropped && *locked) {
1457 		/*
1458 		 * We must let the caller know we temporarily dropped the lock
1459 		 * and so the critical section protected by it was lost.
1460 		 */
1461 		mmap_read_unlock(mm);
1462 		*locked = 0;
1463 	}
1464 	return pages_done;
1465 }
1466 
1467 /**
1468  * populate_vma_page_range() -  populate a range of pages in the vma.
1469  * @vma:   target vma
1470  * @start: start address
1471  * @end:   end address
1472  * @locked: whether the mmap_lock is still held
1473  *
1474  * This takes care of mlocking the pages too if VM_LOCKED is set.
1475  *
1476  * Return either number of pages pinned in the vma, or a negative error
1477  * code on error.
1478  *
1479  * vma->vm_mm->mmap_lock must be held.
1480  *
1481  * If @locked is NULL, it may be held for read or write and will
1482  * be unperturbed.
1483  *
1484  * If @locked is non-NULL, it must held for read only and may be
1485  * released.  If it's released, *@locked will be set to 0.
1486  */
1487 long populate_vma_page_range(struct vm_area_struct *vma,
1488 		unsigned long start, unsigned long end, int *locked)
1489 {
1490 	struct mm_struct *mm = vma->vm_mm;
1491 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1492 	int gup_flags;
1493 
1494 	VM_BUG_ON(!PAGE_ALIGNED(start));
1495 	VM_BUG_ON(!PAGE_ALIGNED(end));
1496 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1497 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1498 	mmap_assert_locked(mm);
1499 
1500 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1501 	if (vma->vm_flags & VM_LOCKONFAULT)
1502 		gup_flags &= ~FOLL_POPULATE;
1503 	/*
1504 	 * We want to touch writable mappings with a write fault in order
1505 	 * to break COW, except for shared mappings because these don't COW
1506 	 * and we would not want to dirty them for nothing.
1507 	 */
1508 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1509 		gup_flags |= FOLL_WRITE;
1510 
1511 	/*
1512 	 * We want mlock to succeed for regions that have any permissions
1513 	 * other than PROT_NONE.
1514 	 */
1515 	if (vma_is_accessible(vma))
1516 		gup_flags |= FOLL_FORCE;
1517 
1518 	/*
1519 	 * We made sure addr is within a VMA, so the following will
1520 	 * not result in a stack expansion that recurses back here.
1521 	 */
1522 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1523 				NULL, NULL, locked);
1524 }
1525 
1526 /*
1527  * faultin_vma_page_range() - populate (prefault) page tables inside the
1528  *			      given VMA range readable/writable
1529  *
1530  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1531  *
1532  * @vma: target vma
1533  * @start: start address
1534  * @end: end address
1535  * @write: whether to prefault readable or writable
1536  * @locked: whether the mmap_lock is still held
1537  *
1538  * Returns either number of processed pages in the vma, or a negative error
1539  * code on error (see __get_user_pages()).
1540  *
1541  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1542  * covered by the VMA.
1543  *
1544  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1545  *
1546  * If @locked is non-NULL, it must held for read only and may be released.  If
1547  * it's released, *@locked will be set to 0.
1548  */
1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1550 			    unsigned long end, bool write, int *locked)
1551 {
1552 	struct mm_struct *mm = vma->vm_mm;
1553 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1554 	int gup_flags;
1555 
1556 	VM_BUG_ON(!PAGE_ALIGNED(start));
1557 	VM_BUG_ON(!PAGE_ALIGNED(end));
1558 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1559 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1560 	mmap_assert_locked(mm);
1561 
1562 	/*
1563 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1564 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1565 	 *	       difference with !FOLL_FORCE, because the page is writable
1566 	 *	       in the page table.
1567 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1568 	 *		  a poisoned page.
1569 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1570 	 * !FOLL_FORCE: Require proper access permissions.
1571 	 */
1572 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1573 	if (write)
1574 		gup_flags |= FOLL_WRITE;
1575 
1576 	/*
1577 	 * We want to report -EINVAL instead of -EFAULT for any permission
1578 	 * problems or incompatible mappings.
1579 	 */
1580 	if (check_vma_flags(vma, gup_flags))
1581 		return -EINVAL;
1582 
1583 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1584 				NULL, NULL, locked);
1585 }
1586 
1587 /*
1588  * __mm_populate - populate and/or mlock pages within a range of address space.
1589  *
1590  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591  * flags. VMAs must be already marked with the desired vm_flags, and
1592  * mmap_lock must not be held.
1593  */
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1595 {
1596 	struct mm_struct *mm = current->mm;
1597 	unsigned long end, nstart, nend;
1598 	struct vm_area_struct *vma = NULL;
1599 	int locked = 0;
1600 	long ret = 0;
1601 
1602 	end = start + len;
1603 
1604 	for (nstart = start; nstart < end; nstart = nend) {
1605 		/*
1606 		 * We want to fault in pages for [nstart; end) address range.
1607 		 * Find first corresponding VMA.
1608 		 */
1609 		if (!locked) {
1610 			locked = 1;
1611 			mmap_read_lock(mm);
1612 			vma = find_vma(mm, nstart);
1613 		} else if (nstart >= vma->vm_end)
1614 			vma = vma->vm_next;
1615 		if (!vma || vma->vm_start >= end)
1616 			break;
1617 		/*
1618 		 * Set [nstart; nend) to intersection of desired address
1619 		 * range with the first VMA. Also, skip undesirable VMA types.
1620 		 */
1621 		nend = min(end, vma->vm_end);
1622 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1623 			continue;
1624 		if (nstart < vma->vm_start)
1625 			nstart = vma->vm_start;
1626 		/*
1627 		 * Now fault in a range of pages. populate_vma_page_range()
1628 		 * double checks the vma flags, so that it won't mlock pages
1629 		 * if the vma was already munlocked.
1630 		 */
1631 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1632 		if (ret < 0) {
1633 			if (ignore_errors) {
1634 				ret = 0;
1635 				continue;	/* continue at next VMA */
1636 			}
1637 			break;
1638 		}
1639 		nend = nstart + ret * PAGE_SIZE;
1640 		ret = 0;
1641 	}
1642 	if (locked)
1643 		mmap_read_unlock(mm);
1644 	return ret;	/* 0 or negative error code */
1645 }
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 		unsigned long nr_pages, struct page **pages,
1649 		struct vm_area_struct **vmas, int *locked,
1650 		unsigned int foll_flags)
1651 {
1652 	struct vm_area_struct *vma;
1653 	unsigned long vm_flags;
1654 	long i;
1655 
1656 	/* calculate required read or write permissions.
1657 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1658 	 */
1659 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1660 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1663 
1664 	for (i = 0; i < nr_pages; i++) {
1665 		vma = find_vma(mm, start);
1666 		if (!vma)
1667 			goto finish_or_fault;
1668 
1669 		/* protect what we can, including chardevs */
1670 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 		    !(vm_flags & vma->vm_flags))
1672 			goto finish_or_fault;
1673 
1674 		if (pages) {
1675 			pages[i] = virt_to_page(start);
1676 			if (pages[i])
1677 				get_page(pages[i]);
1678 		}
1679 		if (vmas)
1680 			vmas[i] = vma;
1681 		start = (start + PAGE_SIZE) & PAGE_MASK;
1682 	}
1683 
1684 	return i;
1685 
1686 finish_or_fault:
1687 	return i ? : -EFAULT;
1688 }
1689 #endif /* !CONFIG_MMU */
1690 
1691 /**
1692  * fault_in_writeable - fault in userspace address range for writing
1693  * @uaddr: start of address range
1694  * @size: size of address range
1695  *
1696  * Returns the number of bytes not faulted in (like copy_to_user() and
1697  * copy_from_user()).
1698  */
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1700 {
1701 	char __user *start = uaddr, *end;
1702 
1703 	if (unlikely(size == 0))
1704 		return 0;
1705 	if (!user_write_access_begin(uaddr, size))
1706 		return size;
1707 	if (!PAGE_ALIGNED(uaddr)) {
1708 		unsafe_put_user(0, uaddr, out);
1709 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1710 	}
1711 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 	if (unlikely(end < start))
1713 		end = NULL;
1714 	while (uaddr != end) {
1715 		unsafe_put_user(0, uaddr, out);
1716 		uaddr += PAGE_SIZE;
1717 	}
1718 
1719 out:
1720 	user_write_access_end();
1721 	if (size > uaddr - start)
1722 		return size - (uaddr - start);
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL(fault_in_writeable);
1726 
1727 /*
1728  * fault_in_safe_writeable - fault in an address range for writing
1729  * @uaddr: start of address range
1730  * @size: length of address range
1731  *
1732  * Faults in an address range for writing.  This is primarily useful when we
1733  * already know that some or all of the pages in the address range aren't in
1734  * memory.
1735  *
1736  * Unlike fault_in_writeable(), this function is non-destructive.
1737  *
1738  * Note that we don't pin or otherwise hold the pages referenced that we fault
1739  * in.  There's no guarantee that they'll stay in memory for any duration of
1740  * time.
1741  *
1742  * Returns the number of bytes not faulted in, like copy_to_user() and
1743  * copy_from_user().
1744  */
1745 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1746 {
1747 	unsigned long start = (unsigned long)uaddr, end;
1748 	struct mm_struct *mm = current->mm;
1749 	bool unlocked = false;
1750 
1751 	if (unlikely(size == 0))
1752 		return 0;
1753 	end = PAGE_ALIGN(start + size);
1754 	if (end < start)
1755 		end = 0;
1756 
1757 	mmap_read_lock(mm);
1758 	do {
1759 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1760 			break;
1761 		start = (start + PAGE_SIZE) & PAGE_MASK;
1762 	} while (start != end);
1763 	mmap_read_unlock(mm);
1764 
1765 	if (size > (unsigned long)uaddr - start)
1766 		return size - ((unsigned long)uaddr - start);
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(fault_in_safe_writeable);
1770 
1771 /**
1772  * fault_in_readable - fault in userspace address range for reading
1773  * @uaddr: start of user address range
1774  * @size: size of user address range
1775  *
1776  * Returns the number of bytes not faulted in (like copy_to_user() and
1777  * copy_from_user()).
1778  */
1779 size_t fault_in_readable(const char __user *uaddr, size_t size)
1780 {
1781 	const char __user *start = uaddr, *end;
1782 	volatile char c;
1783 
1784 	if (unlikely(size == 0))
1785 		return 0;
1786 	if (!user_read_access_begin(uaddr, size))
1787 		return size;
1788 	if (!PAGE_ALIGNED(uaddr)) {
1789 		unsafe_get_user(c, uaddr, out);
1790 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1791 	}
1792 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1793 	if (unlikely(end < start))
1794 		end = NULL;
1795 	while (uaddr != end) {
1796 		unsafe_get_user(c, uaddr, out);
1797 		uaddr += PAGE_SIZE;
1798 	}
1799 
1800 out:
1801 	user_read_access_end();
1802 	(void)c;
1803 	if (size > uaddr - start)
1804 		return size - (uaddr - start);
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(fault_in_readable);
1808 
1809 /**
1810  * get_dump_page() - pin user page in memory while writing it to core dump
1811  * @addr: user address
1812  *
1813  * Returns struct page pointer of user page pinned for dump,
1814  * to be freed afterwards by put_page().
1815  *
1816  * Returns NULL on any kind of failure - a hole must then be inserted into
1817  * the corefile, to preserve alignment with its headers; and also returns
1818  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1819  * allowing a hole to be left in the corefile to save disk space.
1820  *
1821  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1822  */
1823 #ifdef CONFIG_ELF_CORE
1824 struct page *get_dump_page(unsigned long addr)
1825 {
1826 	struct mm_struct *mm = current->mm;
1827 	struct page *page;
1828 	int locked = 1;
1829 	int ret;
1830 
1831 	if (mmap_read_lock_killable(mm))
1832 		return NULL;
1833 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1834 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1835 	if (locked)
1836 		mmap_read_unlock(mm);
1837 	return (ret == 1) ? page : NULL;
1838 }
1839 #endif /* CONFIG_ELF_CORE */
1840 
1841 #ifdef CONFIG_MIGRATION
1842 /*
1843  * Check whether all pages are pinnable, if so return number of pages.  If some
1844  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1845  * pages were migrated, or if some pages were not successfully isolated.
1846  * Return negative error if migration fails.
1847  */
1848 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1849 					    struct page **pages,
1850 					    unsigned int gup_flags)
1851 {
1852 	unsigned long i;
1853 	unsigned long isolation_error_count = 0;
1854 	bool drain_allow = true;
1855 	LIST_HEAD(movable_page_list);
1856 	long ret = 0;
1857 	struct page *prev_head = NULL;
1858 	struct page *head;
1859 	struct migration_target_control mtc = {
1860 		.nid = NUMA_NO_NODE,
1861 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1862 	};
1863 
1864 	for (i = 0; i < nr_pages; i++) {
1865 		head = compound_head(pages[i]);
1866 		if (head == prev_head)
1867 			continue;
1868 		prev_head = head;
1869 		/*
1870 		 * If we get a movable page, since we are going to be pinning
1871 		 * these entries, try to move them out if possible.
1872 		 */
1873 		if (!is_pinnable_page(head)) {
1874 			if (PageHuge(head)) {
1875 				if (!isolate_huge_page(head, &movable_page_list))
1876 					isolation_error_count++;
1877 			} else {
1878 				if (!PageLRU(head) && drain_allow) {
1879 					lru_add_drain_all();
1880 					drain_allow = false;
1881 				}
1882 
1883 				if (isolate_lru_page(head)) {
1884 					isolation_error_count++;
1885 					continue;
1886 				}
1887 				list_add_tail(&head->lru, &movable_page_list);
1888 				mod_node_page_state(page_pgdat(head),
1889 						    NR_ISOLATED_ANON +
1890 						    page_is_file_lru(head),
1891 						    thp_nr_pages(head));
1892 			}
1893 		}
1894 	}
1895 
1896 	/*
1897 	 * If list is empty, and no isolation errors, means that all pages are
1898 	 * in the correct zone.
1899 	 */
1900 	if (list_empty(&movable_page_list) && !isolation_error_count)
1901 		return nr_pages;
1902 
1903 	if (gup_flags & FOLL_PIN) {
1904 		unpin_user_pages(pages, nr_pages);
1905 	} else {
1906 		for (i = 0; i < nr_pages; i++)
1907 			put_page(pages[i]);
1908 	}
1909 	if (!list_empty(&movable_page_list)) {
1910 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1911 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1912 				    MR_LONGTERM_PIN, NULL);
1913 		if (ret && !list_empty(&movable_page_list))
1914 			putback_movable_pages(&movable_page_list);
1915 	}
1916 
1917 	return ret > 0 ? -ENOMEM : ret;
1918 }
1919 #else
1920 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1921 					    struct page **pages,
1922 					    unsigned int gup_flags)
1923 {
1924 	return nr_pages;
1925 }
1926 #endif /* CONFIG_MIGRATION */
1927 
1928 /*
1929  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1930  * allows us to process the FOLL_LONGTERM flag.
1931  */
1932 static long __gup_longterm_locked(struct mm_struct *mm,
1933 				  unsigned long start,
1934 				  unsigned long nr_pages,
1935 				  struct page **pages,
1936 				  struct vm_area_struct **vmas,
1937 				  unsigned int gup_flags)
1938 {
1939 	unsigned int flags;
1940 	long rc;
1941 
1942 	if (!(gup_flags & FOLL_LONGTERM))
1943 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1944 					       NULL, gup_flags);
1945 	flags = memalloc_pin_save();
1946 	do {
1947 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1948 					     NULL, gup_flags);
1949 		if (rc <= 0)
1950 			break;
1951 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1952 	} while (!rc);
1953 	memalloc_pin_restore(flags);
1954 
1955 	return rc;
1956 }
1957 
1958 static bool is_valid_gup_flags(unsigned int gup_flags)
1959 {
1960 	/*
1961 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1962 	 * never directly by the caller, so enforce that with an assertion:
1963 	 */
1964 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1965 		return false;
1966 	/*
1967 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1968 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1969 	 * FOLL_PIN.
1970 	 */
1971 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1972 		return false;
1973 
1974 	return true;
1975 }
1976 
1977 #ifdef CONFIG_MMU
1978 static long __get_user_pages_remote(struct mm_struct *mm,
1979 				    unsigned long start, unsigned long nr_pages,
1980 				    unsigned int gup_flags, struct page **pages,
1981 				    struct vm_area_struct **vmas, int *locked)
1982 {
1983 	/*
1984 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1985 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1986 	 * vmas. However, this only comes up if locked is set, and there are
1987 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1988 	 * allow what we can.
1989 	 */
1990 	if (gup_flags & FOLL_LONGTERM) {
1991 		if (WARN_ON_ONCE(locked))
1992 			return -EINVAL;
1993 		/*
1994 		 * This will check the vmas (even if our vmas arg is NULL)
1995 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1996 		 */
1997 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1998 					     vmas, gup_flags | FOLL_TOUCH |
1999 					     FOLL_REMOTE);
2000 	}
2001 
2002 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2003 				       locked,
2004 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2005 }
2006 
2007 /**
2008  * get_user_pages_remote() - pin user pages in memory
2009  * @mm:		mm_struct of target mm
2010  * @start:	starting user address
2011  * @nr_pages:	number of pages from start to pin
2012  * @gup_flags:	flags modifying lookup behaviour
2013  * @pages:	array that receives pointers to the pages pinned.
2014  *		Should be at least nr_pages long. Or NULL, if caller
2015  *		only intends to ensure the pages are faulted in.
2016  * @vmas:	array of pointers to vmas corresponding to each page.
2017  *		Or NULL if the caller does not require them.
2018  * @locked:	pointer to lock flag indicating whether lock is held and
2019  *		subsequently whether VM_FAULT_RETRY functionality can be
2020  *		utilised. Lock must initially be held.
2021  *
2022  * Returns either number of pages pinned (which may be less than the
2023  * number requested), or an error. Details about the return value:
2024  *
2025  * -- If nr_pages is 0, returns 0.
2026  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2027  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2028  *    pages pinned. Again, this may be less than nr_pages.
2029  *
2030  * The caller is responsible for releasing returned @pages, via put_page().
2031  *
2032  * @vmas are valid only as long as mmap_lock is held.
2033  *
2034  * Must be called with mmap_lock held for read or write.
2035  *
2036  * get_user_pages_remote walks a process's page tables and takes a reference
2037  * to each struct page that each user address corresponds to at a given
2038  * instant. That is, it takes the page that would be accessed if a user
2039  * thread accesses the given user virtual address at that instant.
2040  *
2041  * This does not guarantee that the page exists in the user mappings when
2042  * get_user_pages_remote returns, and there may even be a completely different
2043  * page there in some cases (eg. if mmapped pagecache has been invalidated
2044  * and subsequently re faulted). However it does guarantee that the page
2045  * won't be freed completely. And mostly callers simply care that the page
2046  * contains data that was valid *at some point in time*. Typically, an IO
2047  * or similar operation cannot guarantee anything stronger anyway because
2048  * locks can't be held over the syscall boundary.
2049  *
2050  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2051  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2052  * be called after the page is finished with, and before put_page is called.
2053  *
2054  * get_user_pages_remote is typically used for fewer-copy IO operations,
2055  * to get a handle on the memory by some means other than accesses
2056  * via the user virtual addresses. The pages may be submitted for
2057  * DMA to devices or accessed via their kernel linear mapping (via the
2058  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2059  *
2060  * See also get_user_pages_fast, for performance critical applications.
2061  *
2062  * get_user_pages_remote should be phased out in favor of
2063  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2064  * should use get_user_pages_remote because it cannot pass
2065  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2066  */
2067 long get_user_pages_remote(struct mm_struct *mm,
2068 		unsigned long start, unsigned long nr_pages,
2069 		unsigned int gup_flags, struct page **pages,
2070 		struct vm_area_struct **vmas, int *locked)
2071 {
2072 	if (!is_valid_gup_flags(gup_flags))
2073 		return -EINVAL;
2074 
2075 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2076 				       pages, vmas, locked);
2077 }
2078 EXPORT_SYMBOL(get_user_pages_remote);
2079 
2080 #else /* CONFIG_MMU */
2081 long get_user_pages_remote(struct mm_struct *mm,
2082 			   unsigned long start, unsigned long nr_pages,
2083 			   unsigned int gup_flags, struct page **pages,
2084 			   struct vm_area_struct **vmas, int *locked)
2085 {
2086 	return 0;
2087 }
2088 
2089 static long __get_user_pages_remote(struct mm_struct *mm,
2090 				    unsigned long start, unsigned long nr_pages,
2091 				    unsigned int gup_flags, struct page **pages,
2092 				    struct vm_area_struct **vmas, int *locked)
2093 {
2094 	return 0;
2095 }
2096 #endif /* !CONFIG_MMU */
2097 
2098 /**
2099  * get_user_pages() - pin user pages in memory
2100  * @start:      starting user address
2101  * @nr_pages:   number of pages from start to pin
2102  * @gup_flags:  flags modifying lookup behaviour
2103  * @pages:      array that receives pointers to the pages pinned.
2104  *              Should be at least nr_pages long. Or NULL, if caller
2105  *              only intends to ensure the pages are faulted in.
2106  * @vmas:       array of pointers to vmas corresponding to each page.
2107  *              Or NULL if the caller does not require them.
2108  *
2109  * This is the same as get_user_pages_remote(), just with a less-flexible
2110  * calling convention where we assume that the mm being operated on belongs to
2111  * the current task, and doesn't allow passing of a locked parameter.  We also
2112  * obviously don't pass FOLL_REMOTE in here.
2113  */
2114 long get_user_pages(unsigned long start, unsigned long nr_pages,
2115 		unsigned int gup_flags, struct page **pages,
2116 		struct vm_area_struct **vmas)
2117 {
2118 	if (!is_valid_gup_flags(gup_flags))
2119 		return -EINVAL;
2120 
2121 	return __gup_longterm_locked(current->mm, start, nr_pages,
2122 				     pages, vmas, gup_flags | FOLL_TOUCH);
2123 }
2124 EXPORT_SYMBOL(get_user_pages);
2125 
2126 /**
2127  * get_user_pages_locked() - variant of get_user_pages()
2128  *
2129  * @start:      starting user address
2130  * @nr_pages:   number of pages from start to pin
2131  * @gup_flags:  flags modifying lookup behaviour
2132  * @pages:      array that receives pointers to the pages pinned.
2133  *              Should be at least nr_pages long. Or NULL, if caller
2134  *              only intends to ensure the pages are faulted in.
2135  * @locked:     pointer to lock flag indicating whether lock is held and
2136  *              subsequently whether VM_FAULT_RETRY functionality can be
2137  *              utilised. Lock must initially be held.
2138  *
2139  * It is suitable to replace the form:
2140  *
2141  *      mmap_read_lock(mm);
2142  *      do_something()
2143  *      get_user_pages(mm, ..., pages, NULL);
2144  *      mmap_read_unlock(mm);
2145  *
2146  *  to:
2147  *
2148  *      int locked = 1;
2149  *      mmap_read_lock(mm);
2150  *      do_something()
2151  *      get_user_pages_locked(mm, ..., pages, &locked);
2152  *      if (locked)
2153  *          mmap_read_unlock(mm);
2154  *
2155  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2156  * paths better by using either get_user_pages_locked() or
2157  * get_user_pages_unlocked().
2158  *
2159  */
2160 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2161 			   unsigned int gup_flags, struct page **pages,
2162 			   int *locked)
2163 {
2164 	/*
2165 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2166 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2167 	 * vmas.  As there are no users of this flag in this call we simply
2168 	 * disallow this option for now.
2169 	 */
2170 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2171 		return -EINVAL;
2172 	/*
2173 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2174 	 * never directly by the caller, so enforce that:
2175 	 */
2176 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2177 		return -EINVAL;
2178 
2179 	return __get_user_pages_locked(current->mm, start, nr_pages,
2180 				       pages, NULL, locked,
2181 				       gup_flags | FOLL_TOUCH);
2182 }
2183 EXPORT_SYMBOL(get_user_pages_locked);
2184 
2185 /*
2186  * get_user_pages_unlocked() is suitable to replace the form:
2187  *
2188  *      mmap_read_lock(mm);
2189  *      get_user_pages(mm, ..., pages, NULL);
2190  *      mmap_read_unlock(mm);
2191  *
2192  *  with:
2193  *
2194  *      get_user_pages_unlocked(mm, ..., pages);
2195  *
2196  * It is functionally equivalent to get_user_pages_fast so
2197  * get_user_pages_fast should be used instead if specific gup_flags
2198  * (e.g. FOLL_FORCE) are not required.
2199  */
2200 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2201 			     struct page **pages, unsigned int gup_flags)
2202 {
2203 	struct mm_struct *mm = current->mm;
2204 	int locked = 1;
2205 	long ret;
2206 
2207 	/*
2208 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2209 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2210 	 * vmas.  As there are no users of this flag in this call we simply
2211 	 * disallow this option for now.
2212 	 */
2213 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2214 		return -EINVAL;
2215 
2216 	mmap_read_lock(mm);
2217 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2218 				      &locked, gup_flags | FOLL_TOUCH);
2219 	if (locked)
2220 		mmap_read_unlock(mm);
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL(get_user_pages_unlocked);
2224 
2225 /*
2226  * Fast GUP
2227  *
2228  * get_user_pages_fast attempts to pin user pages by walking the page
2229  * tables directly and avoids taking locks. Thus the walker needs to be
2230  * protected from page table pages being freed from under it, and should
2231  * block any THP splits.
2232  *
2233  * One way to achieve this is to have the walker disable interrupts, and
2234  * rely on IPIs from the TLB flushing code blocking before the page table
2235  * pages are freed. This is unsuitable for architectures that do not need
2236  * to broadcast an IPI when invalidating TLBs.
2237  *
2238  * Another way to achieve this is to batch up page table containing pages
2239  * belonging to more than one mm_user, then rcu_sched a callback to free those
2240  * pages. Disabling interrupts will allow the fast_gup walker to both block
2241  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2242  * (which is a relatively rare event). The code below adopts this strategy.
2243  *
2244  * Before activating this code, please be aware that the following assumptions
2245  * are currently made:
2246  *
2247  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2248  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2249  *
2250  *  *) ptes can be read atomically by the architecture.
2251  *
2252  *  *) access_ok is sufficient to validate userspace address ranges.
2253  *
2254  * The last two assumptions can be relaxed by the addition of helper functions.
2255  *
2256  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2257  */
2258 #ifdef CONFIG_HAVE_FAST_GUP
2259 
2260 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2261 					    unsigned int flags,
2262 					    struct page **pages)
2263 {
2264 	while ((*nr) - nr_start) {
2265 		struct page *page = pages[--(*nr)];
2266 
2267 		ClearPageReferenced(page);
2268 		if (flags & FOLL_PIN)
2269 			unpin_user_page(page);
2270 		else
2271 			put_page(page);
2272 	}
2273 }
2274 
2275 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2276 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2277 			 unsigned int flags, struct page **pages, int *nr)
2278 {
2279 	struct dev_pagemap *pgmap = NULL;
2280 	int nr_start = *nr, ret = 0;
2281 	pte_t *ptep, *ptem;
2282 
2283 	ptem = ptep = pte_offset_map(&pmd, addr);
2284 	do {
2285 		pte_t pte = ptep_get_lockless(ptep);
2286 		struct page *head, *page;
2287 
2288 		/*
2289 		 * Similar to the PMD case below, NUMA hinting must take slow
2290 		 * path using the pte_protnone check.
2291 		 */
2292 		if (pte_protnone(pte))
2293 			goto pte_unmap;
2294 
2295 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2296 			goto pte_unmap;
2297 
2298 		if (pte_devmap(pte)) {
2299 			if (unlikely(flags & FOLL_LONGTERM))
2300 				goto pte_unmap;
2301 
2302 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2303 			if (unlikely(!pgmap)) {
2304 				undo_dev_pagemap(nr, nr_start, flags, pages);
2305 				goto pte_unmap;
2306 			}
2307 		} else if (pte_special(pte))
2308 			goto pte_unmap;
2309 
2310 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2311 		page = pte_page(pte);
2312 
2313 		head = try_grab_compound_head(page, 1, flags);
2314 		if (!head)
2315 			goto pte_unmap;
2316 
2317 		if (unlikely(page_is_secretmem(page))) {
2318 			put_compound_head(head, 1, flags);
2319 			goto pte_unmap;
2320 		}
2321 
2322 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2323 			put_compound_head(head, 1, flags);
2324 			goto pte_unmap;
2325 		}
2326 
2327 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2328 
2329 		/*
2330 		 * We need to make the page accessible if and only if we are
2331 		 * going to access its content (the FOLL_PIN case).  Please
2332 		 * see Documentation/core-api/pin_user_pages.rst for
2333 		 * details.
2334 		 */
2335 		if (flags & FOLL_PIN) {
2336 			ret = arch_make_page_accessible(page);
2337 			if (ret) {
2338 				unpin_user_page(page);
2339 				goto pte_unmap;
2340 			}
2341 		}
2342 		SetPageReferenced(page);
2343 		pages[*nr] = page;
2344 		(*nr)++;
2345 
2346 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2347 
2348 	ret = 1;
2349 
2350 pte_unmap:
2351 	if (pgmap)
2352 		put_dev_pagemap(pgmap);
2353 	pte_unmap(ptem);
2354 	return ret;
2355 }
2356 #else
2357 
2358 /*
2359  * If we can't determine whether or not a pte is special, then fail immediately
2360  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2361  * to be special.
2362  *
2363  * For a futex to be placed on a THP tail page, get_futex_key requires a
2364  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2365  * useful to have gup_huge_pmd even if we can't operate on ptes.
2366  */
2367 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2368 			 unsigned int flags, struct page **pages, int *nr)
2369 {
2370 	return 0;
2371 }
2372 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2373 
2374 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2375 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2376 			     unsigned long end, unsigned int flags,
2377 			     struct page **pages, int *nr)
2378 {
2379 	int nr_start = *nr;
2380 	struct dev_pagemap *pgmap = NULL;
2381 
2382 	do {
2383 		struct page *page = pfn_to_page(pfn);
2384 
2385 		pgmap = get_dev_pagemap(pfn, pgmap);
2386 		if (unlikely(!pgmap)) {
2387 			undo_dev_pagemap(nr, nr_start, flags, pages);
2388 			break;
2389 		}
2390 		SetPageReferenced(page);
2391 		pages[*nr] = page;
2392 		if (unlikely(!try_grab_page(page, flags))) {
2393 			undo_dev_pagemap(nr, nr_start, flags, pages);
2394 			break;
2395 		}
2396 		(*nr)++;
2397 		pfn++;
2398 	} while (addr += PAGE_SIZE, addr != end);
2399 
2400 	put_dev_pagemap(pgmap);
2401 	return addr == end;
2402 }
2403 
2404 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2405 				 unsigned long end, unsigned int flags,
2406 				 struct page **pages, int *nr)
2407 {
2408 	unsigned long fault_pfn;
2409 	int nr_start = *nr;
2410 
2411 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2413 		return 0;
2414 
2415 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416 		undo_dev_pagemap(nr, nr_start, flags, pages);
2417 		return 0;
2418 	}
2419 	return 1;
2420 }
2421 
2422 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2423 				 unsigned long end, unsigned int flags,
2424 				 struct page **pages, int *nr)
2425 {
2426 	unsigned long fault_pfn;
2427 	int nr_start = *nr;
2428 
2429 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2430 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2431 		return 0;
2432 
2433 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2434 		undo_dev_pagemap(nr, nr_start, flags, pages);
2435 		return 0;
2436 	}
2437 	return 1;
2438 }
2439 #else
2440 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2441 				 unsigned long end, unsigned int flags,
2442 				 struct page **pages, int *nr)
2443 {
2444 	BUILD_BUG();
2445 	return 0;
2446 }
2447 
2448 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2449 				 unsigned long end, unsigned int flags,
2450 				 struct page **pages, int *nr)
2451 {
2452 	BUILD_BUG();
2453 	return 0;
2454 }
2455 #endif
2456 
2457 static int record_subpages(struct page *page, unsigned long addr,
2458 			   unsigned long end, struct page **pages)
2459 {
2460 	int nr;
2461 
2462 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2463 		pages[nr++] = page++;
2464 
2465 	return nr;
2466 }
2467 
2468 #ifdef CONFIG_ARCH_HAS_HUGEPD
2469 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2470 				      unsigned long sz)
2471 {
2472 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2473 	return (__boundary - 1 < end - 1) ? __boundary : end;
2474 }
2475 
2476 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2477 		       unsigned long end, unsigned int flags,
2478 		       struct page **pages, int *nr)
2479 {
2480 	unsigned long pte_end;
2481 	struct page *head, *page;
2482 	pte_t pte;
2483 	int refs;
2484 
2485 	pte_end = (addr + sz) & ~(sz-1);
2486 	if (pte_end < end)
2487 		end = pte_end;
2488 
2489 	pte = huge_ptep_get(ptep);
2490 
2491 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2492 		return 0;
2493 
2494 	/* hugepages are never "special" */
2495 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2496 
2497 	head = pte_page(pte);
2498 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2499 	refs = record_subpages(page, addr, end, pages + *nr);
2500 
2501 	head = try_grab_compound_head(head, refs, flags);
2502 	if (!head)
2503 		return 0;
2504 
2505 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2506 		put_compound_head(head, refs, flags);
2507 		return 0;
2508 	}
2509 
2510 	*nr += refs;
2511 	SetPageReferenced(head);
2512 	return 1;
2513 }
2514 
2515 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2516 		unsigned int pdshift, unsigned long end, unsigned int flags,
2517 		struct page **pages, int *nr)
2518 {
2519 	pte_t *ptep;
2520 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2521 	unsigned long next;
2522 
2523 	ptep = hugepte_offset(hugepd, addr, pdshift);
2524 	do {
2525 		next = hugepte_addr_end(addr, end, sz);
2526 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2527 			return 0;
2528 	} while (ptep++, addr = next, addr != end);
2529 
2530 	return 1;
2531 }
2532 #else
2533 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2534 		unsigned int pdshift, unsigned long end, unsigned int flags,
2535 		struct page **pages, int *nr)
2536 {
2537 	return 0;
2538 }
2539 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2540 
2541 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2542 			unsigned long end, unsigned int flags,
2543 			struct page **pages, int *nr)
2544 {
2545 	struct page *head, *page;
2546 	int refs;
2547 
2548 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2549 		return 0;
2550 
2551 	if (pmd_devmap(orig)) {
2552 		if (unlikely(flags & FOLL_LONGTERM))
2553 			return 0;
2554 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2555 					     pages, nr);
2556 	}
2557 
2558 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2559 	refs = record_subpages(page, addr, end, pages + *nr);
2560 
2561 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2562 	if (!head)
2563 		return 0;
2564 
2565 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2566 		put_compound_head(head, refs, flags);
2567 		return 0;
2568 	}
2569 
2570 	*nr += refs;
2571 	SetPageReferenced(head);
2572 	return 1;
2573 }
2574 
2575 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2576 			unsigned long end, unsigned int flags,
2577 			struct page **pages, int *nr)
2578 {
2579 	struct page *head, *page;
2580 	int refs;
2581 
2582 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2583 		return 0;
2584 
2585 	if (pud_devmap(orig)) {
2586 		if (unlikely(flags & FOLL_LONGTERM))
2587 			return 0;
2588 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2589 					     pages, nr);
2590 	}
2591 
2592 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2593 	refs = record_subpages(page, addr, end, pages + *nr);
2594 
2595 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2596 	if (!head)
2597 		return 0;
2598 
2599 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2600 		put_compound_head(head, refs, flags);
2601 		return 0;
2602 	}
2603 
2604 	*nr += refs;
2605 	SetPageReferenced(head);
2606 	return 1;
2607 }
2608 
2609 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2610 			unsigned long end, unsigned int flags,
2611 			struct page **pages, int *nr)
2612 {
2613 	int refs;
2614 	struct page *head, *page;
2615 
2616 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2617 		return 0;
2618 
2619 	BUILD_BUG_ON(pgd_devmap(orig));
2620 
2621 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2622 	refs = record_subpages(page, addr, end, pages + *nr);
2623 
2624 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2625 	if (!head)
2626 		return 0;
2627 
2628 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2629 		put_compound_head(head, refs, flags);
2630 		return 0;
2631 	}
2632 
2633 	*nr += refs;
2634 	SetPageReferenced(head);
2635 	return 1;
2636 }
2637 
2638 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2639 		unsigned int flags, struct page **pages, int *nr)
2640 {
2641 	unsigned long next;
2642 	pmd_t *pmdp;
2643 
2644 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2645 	do {
2646 		pmd_t pmd = READ_ONCE(*pmdp);
2647 
2648 		next = pmd_addr_end(addr, end);
2649 		if (!pmd_present(pmd))
2650 			return 0;
2651 
2652 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2653 			     pmd_devmap(pmd))) {
2654 			/*
2655 			 * NUMA hinting faults need to be handled in the GUP
2656 			 * slowpath for accounting purposes and so that they
2657 			 * can be serialised against THP migration.
2658 			 */
2659 			if (pmd_protnone(pmd))
2660 				return 0;
2661 
2662 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2663 				pages, nr))
2664 				return 0;
2665 
2666 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2667 			/*
2668 			 * architecture have different format for hugetlbfs
2669 			 * pmd format and THP pmd format
2670 			 */
2671 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2672 					 PMD_SHIFT, next, flags, pages, nr))
2673 				return 0;
2674 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2675 			return 0;
2676 	} while (pmdp++, addr = next, addr != end);
2677 
2678 	return 1;
2679 }
2680 
2681 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2682 			 unsigned int flags, struct page **pages, int *nr)
2683 {
2684 	unsigned long next;
2685 	pud_t *pudp;
2686 
2687 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2688 	do {
2689 		pud_t pud = READ_ONCE(*pudp);
2690 
2691 		next = pud_addr_end(addr, end);
2692 		if (unlikely(!pud_present(pud)))
2693 			return 0;
2694 		if (unlikely(pud_huge(pud))) {
2695 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2696 					  pages, nr))
2697 				return 0;
2698 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2699 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2700 					 PUD_SHIFT, next, flags, pages, nr))
2701 				return 0;
2702 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2703 			return 0;
2704 	} while (pudp++, addr = next, addr != end);
2705 
2706 	return 1;
2707 }
2708 
2709 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2710 			 unsigned int flags, struct page **pages, int *nr)
2711 {
2712 	unsigned long next;
2713 	p4d_t *p4dp;
2714 
2715 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2716 	do {
2717 		p4d_t p4d = READ_ONCE(*p4dp);
2718 
2719 		next = p4d_addr_end(addr, end);
2720 		if (p4d_none(p4d))
2721 			return 0;
2722 		BUILD_BUG_ON(p4d_huge(p4d));
2723 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2724 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2725 					 P4D_SHIFT, next, flags, pages, nr))
2726 				return 0;
2727 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2728 			return 0;
2729 	} while (p4dp++, addr = next, addr != end);
2730 
2731 	return 1;
2732 }
2733 
2734 static void gup_pgd_range(unsigned long addr, unsigned long end,
2735 		unsigned int flags, struct page **pages, int *nr)
2736 {
2737 	unsigned long next;
2738 	pgd_t *pgdp;
2739 
2740 	pgdp = pgd_offset(current->mm, addr);
2741 	do {
2742 		pgd_t pgd = READ_ONCE(*pgdp);
2743 
2744 		next = pgd_addr_end(addr, end);
2745 		if (pgd_none(pgd))
2746 			return;
2747 		if (unlikely(pgd_huge(pgd))) {
2748 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2749 					  pages, nr))
2750 				return;
2751 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2752 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2753 					 PGDIR_SHIFT, next, flags, pages, nr))
2754 				return;
2755 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2756 			return;
2757 	} while (pgdp++, addr = next, addr != end);
2758 }
2759 #else
2760 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2761 		unsigned int flags, struct page **pages, int *nr)
2762 {
2763 }
2764 #endif /* CONFIG_HAVE_FAST_GUP */
2765 
2766 #ifndef gup_fast_permitted
2767 /*
2768  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2769  * we need to fall back to the slow version:
2770  */
2771 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2772 {
2773 	return true;
2774 }
2775 #endif
2776 
2777 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2778 				   unsigned int gup_flags, struct page **pages)
2779 {
2780 	int ret;
2781 
2782 	/*
2783 	 * FIXME: FOLL_LONGTERM does not work with
2784 	 * get_user_pages_unlocked() (see comments in that function)
2785 	 */
2786 	if (gup_flags & FOLL_LONGTERM) {
2787 		mmap_read_lock(current->mm);
2788 		ret = __gup_longterm_locked(current->mm,
2789 					    start, nr_pages,
2790 					    pages, NULL, gup_flags);
2791 		mmap_read_unlock(current->mm);
2792 	} else {
2793 		ret = get_user_pages_unlocked(start, nr_pages,
2794 					      pages, gup_flags);
2795 	}
2796 
2797 	return ret;
2798 }
2799 
2800 static unsigned long lockless_pages_from_mm(unsigned long start,
2801 					    unsigned long end,
2802 					    unsigned int gup_flags,
2803 					    struct page **pages)
2804 {
2805 	unsigned long flags;
2806 	int nr_pinned = 0;
2807 	unsigned seq;
2808 
2809 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2810 	    !gup_fast_permitted(start, end))
2811 		return 0;
2812 
2813 	if (gup_flags & FOLL_PIN) {
2814 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2815 		if (seq & 1)
2816 			return 0;
2817 	}
2818 
2819 	/*
2820 	 * Disable interrupts. The nested form is used, in order to allow full,
2821 	 * general purpose use of this routine.
2822 	 *
2823 	 * With interrupts disabled, we block page table pages from being freed
2824 	 * from under us. See struct mmu_table_batch comments in
2825 	 * include/asm-generic/tlb.h for more details.
2826 	 *
2827 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2828 	 * that come from THPs splitting.
2829 	 */
2830 	local_irq_save(flags);
2831 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2832 	local_irq_restore(flags);
2833 
2834 	/*
2835 	 * When pinning pages for DMA there could be a concurrent write protect
2836 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2837 	 */
2838 	if (gup_flags & FOLL_PIN) {
2839 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2840 			unpin_user_pages(pages, nr_pinned);
2841 			return 0;
2842 		}
2843 	}
2844 	return nr_pinned;
2845 }
2846 
2847 static int internal_get_user_pages_fast(unsigned long start,
2848 					unsigned long nr_pages,
2849 					unsigned int gup_flags,
2850 					struct page **pages)
2851 {
2852 	unsigned long len, end;
2853 	unsigned long nr_pinned;
2854 	int ret;
2855 
2856 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2857 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2858 				       FOLL_FAST_ONLY | FOLL_NOFAULT)))
2859 		return -EINVAL;
2860 
2861 	if (gup_flags & FOLL_PIN)
2862 		mm_set_has_pinned_flag(&current->mm->flags);
2863 
2864 	if (!(gup_flags & FOLL_FAST_ONLY))
2865 		might_lock_read(&current->mm->mmap_lock);
2866 
2867 	start = untagged_addr(start) & PAGE_MASK;
2868 	len = nr_pages << PAGE_SHIFT;
2869 	if (check_add_overflow(start, len, &end))
2870 		return 0;
2871 	if (unlikely(!access_ok((void __user *)start, len)))
2872 		return -EFAULT;
2873 
2874 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2875 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2876 		return nr_pinned;
2877 
2878 	/* Slow path: try to get the remaining pages with get_user_pages */
2879 	start += nr_pinned << PAGE_SHIFT;
2880 	pages += nr_pinned;
2881 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2882 				      pages);
2883 	if (ret < 0) {
2884 		/*
2885 		 * The caller has to unpin the pages we already pinned so
2886 		 * returning -errno is not an option
2887 		 */
2888 		if (nr_pinned)
2889 			return nr_pinned;
2890 		return ret;
2891 	}
2892 	return ret + nr_pinned;
2893 }
2894 
2895 /**
2896  * get_user_pages_fast_only() - pin user pages in memory
2897  * @start:      starting user address
2898  * @nr_pages:   number of pages from start to pin
2899  * @gup_flags:  flags modifying pin behaviour
2900  * @pages:      array that receives pointers to the pages pinned.
2901  *              Should be at least nr_pages long.
2902  *
2903  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2904  * the regular GUP.
2905  * Note a difference with get_user_pages_fast: this always returns the
2906  * number of pages pinned, 0 if no pages were pinned.
2907  *
2908  * If the architecture does not support this function, simply return with no
2909  * pages pinned.
2910  *
2911  * Careful, careful! COW breaking can go either way, so a non-write
2912  * access can get ambiguous page results. If you call this function without
2913  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2914  */
2915 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2916 			     unsigned int gup_flags, struct page **pages)
2917 {
2918 	int nr_pinned;
2919 	/*
2920 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2921 	 * because gup fast is always a "pin with a +1 page refcount" request.
2922 	 *
2923 	 * FOLL_FAST_ONLY is required in order to match the API description of
2924 	 * this routine: no fall back to regular ("slow") GUP.
2925 	 */
2926 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2927 
2928 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2929 						 pages);
2930 
2931 	/*
2932 	 * As specified in the API description above, this routine is not
2933 	 * allowed to return negative values. However, the common core
2934 	 * routine internal_get_user_pages_fast() *can* return -errno.
2935 	 * Therefore, correct for that here:
2936 	 */
2937 	if (nr_pinned < 0)
2938 		nr_pinned = 0;
2939 
2940 	return nr_pinned;
2941 }
2942 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2943 
2944 /**
2945  * get_user_pages_fast() - pin user pages in memory
2946  * @start:      starting user address
2947  * @nr_pages:   number of pages from start to pin
2948  * @gup_flags:  flags modifying pin behaviour
2949  * @pages:      array that receives pointers to the pages pinned.
2950  *              Should be at least nr_pages long.
2951  *
2952  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2953  * If not successful, it will fall back to taking the lock and
2954  * calling get_user_pages().
2955  *
2956  * Returns number of pages pinned. This may be fewer than the number requested.
2957  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2958  * -errno.
2959  */
2960 int get_user_pages_fast(unsigned long start, int nr_pages,
2961 			unsigned int gup_flags, struct page **pages)
2962 {
2963 	if (!is_valid_gup_flags(gup_flags))
2964 		return -EINVAL;
2965 
2966 	/*
2967 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2968 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2969 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2970 	 * request.
2971 	 */
2972 	gup_flags |= FOLL_GET;
2973 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2974 }
2975 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2976 
2977 /**
2978  * pin_user_pages_fast() - pin user pages in memory without taking locks
2979  *
2980  * @start:      starting user address
2981  * @nr_pages:   number of pages from start to pin
2982  * @gup_flags:  flags modifying pin behaviour
2983  * @pages:      array that receives pointers to the pages pinned.
2984  *              Should be at least nr_pages long.
2985  *
2986  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2987  * get_user_pages_fast() for documentation on the function arguments, because
2988  * the arguments here are identical.
2989  *
2990  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2991  * see Documentation/core-api/pin_user_pages.rst for further details.
2992  */
2993 int pin_user_pages_fast(unsigned long start, int nr_pages,
2994 			unsigned int gup_flags, struct page **pages)
2995 {
2996 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2997 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2998 		return -EINVAL;
2999 
3000 	gup_flags |= FOLL_PIN;
3001 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3002 }
3003 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3004 
3005 /*
3006  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3007  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3008  *
3009  * The API rules are the same, too: no negative values may be returned.
3010  */
3011 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3012 			     unsigned int gup_flags, struct page **pages)
3013 {
3014 	int nr_pinned;
3015 
3016 	/*
3017 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3018 	 * rules require returning 0, rather than -errno:
3019 	 */
3020 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3021 		return 0;
3022 	/*
3023 	 * FOLL_FAST_ONLY is required in order to match the API description of
3024 	 * this routine: no fall back to regular ("slow") GUP.
3025 	 */
3026 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3027 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3028 						 pages);
3029 	/*
3030 	 * This routine is not allowed to return negative values. However,
3031 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3032 	 * correct for that here:
3033 	 */
3034 	if (nr_pinned < 0)
3035 		nr_pinned = 0;
3036 
3037 	return nr_pinned;
3038 }
3039 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3040 
3041 /**
3042  * pin_user_pages_remote() - pin pages of a remote process
3043  *
3044  * @mm:		mm_struct of target mm
3045  * @start:	starting user address
3046  * @nr_pages:	number of pages from start to pin
3047  * @gup_flags:	flags modifying lookup behaviour
3048  * @pages:	array that receives pointers to the pages pinned.
3049  *		Should be at least nr_pages long. Or NULL, if caller
3050  *		only intends to ensure the pages are faulted in.
3051  * @vmas:	array of pointers to vmas corresponding to each page.
3052  *		Or NULL if the caller does not require them.
3053  * @locked:	pointer to lock flag indicating whether lock is held and
3054  *		subsequently whether VM_FAULT_RETRY functionality can be
3055  *		utilised. Lock must initially be held.
3056  *
3057  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3058  * get_user_pages_remote() for documentation on the function arguments, because
3059  * the arguments here are identical.
3060  *
3061  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3062  * see Documentation/core-api/pin_user_pages.rst for details.
3063  */
3064 long pin_user_pages_remote(struct mm_struct *mm,
3065 			   unsigned long start, unsigned long nr_pages,
3066 			   unsigned int gup_flags, struct page **pages,
3067 			   struct vm_area_struct **vmas, int *locked)
3068 {
3069 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3070 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3071 		return -EINVAL;
3072 
3073 	gup_flags |= FOLL_PIN;
3074 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3075 				       pages, vmas, locked);
3076 }
3077 EXPORT_SYMBOL(pin_user_pages_remote);
3078 
3079 /**
3080  * pin_user_pages() - pin user pages in memory for use by other devices
3081  *
3082  * @start:	starting user address
3083  * @nr_pages:	number of pages from start to pin
3084  * @gup_flags:	flags modifying lookup behaviour
3085  * @pages:	array that receives pointers to the pages pinned.
3086  *		Should be at least nr_pages long. Or NULL, if caller
3087  *		only intends to ensure the pages are faulted in.
3088  * @vmas:	array of pointers to vmas corresponding to each page.
3089  *		Or NULL if the caller does not require them.
3090  *
3091  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3092  * FOLL_PIN is set.
3093  *
3094  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3095  * see Documentation/core-api/pin_user_pages.rst for details.
3096  */
3097 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3098 		    unsigned int gup_flags, struct page **pages,
3099 		    struct vm_area_struct **vmas)
3100 {
3101 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3102 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3103 		return -EINVAL;
3104 
3105 	gup_flags |= FOLL_PIN;
3106 	return __gup_longterm_locked(current->mm, start, nr_pages,
3107 				     pages, vmas, gup_flags);
3108 }
3109 EXPORT_SYMBOL(pin_user_pages);
3110 
3111 /*
3112  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3113  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3114  * FOLL_PIN and rejects FOLL_GET.
3115  */
3116 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3117 			     struct page **pages, unsigned int gup_flags)
3118 {
3119 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3120 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3121 		return -EINVAL;
3122 
3123 	gup_flags |= FOLL_PIN;
3124 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3125 }
3126 EXPORT_SYMBOL(pin_user_pages_unlocked);
3127 
3128 /*
3129  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3130  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3131  * FOLL_GET.
3132  */
3133 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3134 			   unsigned int gup_flags, struct page **pages,
3135 			   int *locked)
3136 {
3137 	/*
3138 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3139 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3140 	 * vmas.  As there are no users of this flag in this call we simply
3141 	 * disallow this option for now.
3142 	 */
3143 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3144 		return -EINVAL;
3145 
3146 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3147 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3148 		return -EINVAL;
3149 
3150 	gup_flags |= FOLL_PIN;
3151 	return __get_user_pages_locked(current->mm, start, nr_pages,
3152 				       pages, NULL, locked,
3153 				       gup_flags | FOLL_TOUCH);
3154 }
3155 EXPORT_SYMBOL(pin_user_pages_locked);
3156