1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 /* 33 * Return the folio with ref appropriately incremented, 34 * or NULL if that failed. 35 */ 36 static inline struct folio *try_get_folio(struct page *page, int refs) 37 { 38 struct folio *folio; 39 40 retry: 41 folio = page_folio(page); 42 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 43 return NULL; 44 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 45 return NULL; 46 47 /* 48 * At this point we have a stable reference to the folio; but it 49 * could be that between calling page_folio() and the refcount 50 * increment, the folio was split, in which case we'd end up 51 * holding a reference on a folio that has nothing to do with the page 52 * we were given anymore. 53 * So now that the folio is stable, recheck that the page still 54 * belongs to this folio. 55 */ 56 if (unlikely(page_folio(page) != folio)) { 57 folio_put_refs(folio, refs); 58 goto retry; 59 } 60 61 return folio; 62 } 63 64 /** 65 * try_grab_folio() - Attempt to get or pin a folio. 66 * @page: pointer to page to be grabbed 67 * @refs: the value to (effectively) add to the folio's refcount 68 * @flags: gup flags: these are the FOLL_* flag values. 69 * 70 * "grab" names in this file mean, "look at flags to decide whether to use 71 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 72 * 73 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 74 * same time. (That's true throughout the get_user_pages*() and 75 * pin_user_pages*() APIs.) Cases: 76 * 77 * FOLL_GET: folio's refcount will be incremented by @refs. 78 * 79 * FOLL_PIN on large folios: folio's refcount will be incremented by 80 * @refs, and its compound_pincount will be incremented by @refs. 81 * 82 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 83 * @refs * GUP_PIN_COUNTING_BIAS. 84 * 85 * Return: The folio containing @page (with refcount appropriately 86 * incremented) for success, or NULL upon failure. If neither FOLL_GET 87 * nor FOLL_PIN was set, that's considered failure, and furthermore, 88 * a likely bug in the caller, so a warning is also emitted. 89 */ 90 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 91 { 92 if (flags & FOLL_GET) 93 return try_get_folio(page, refs); 94 else if (flags & FOLL_PIN) { 95 struct folio *folio; 96 97 /* 98 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 99 * right zone, so fail and let the caller fall back to the slow 100 * path. 101 */ 102 if (unlikely((flags & FOLL_LONGTERM) && 103 !is_pinnable_page(page))) 104 return NULL; 105 106 /* 107 * CAUTION: Don't use compound_head() on the page before this 108 * point, the result won't be stable. 109 */ 110 folio = try_get_folio(page, refs); 111 if (!folio) 112 return NULL; 113 114 /* 115 * When pinning a large folio, use an exact count to track it. 116 * 117 * However, be sure to *also* increment the normal folio 118 * refcount field at least once, so that the folio really 119 * is pinned. That's why the refcount from the earlier 120 * try_get_folio() is left intact. 121 */ 122 if (folio_test_large(folio)) 123 atomic_add(refs, folio_pincount_ptr(folio)); 124 else 125 folio_ref_add(folio, 126 refs * (GUP_PIN_COUNTING_BIAS - 1)); 127 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 128 129 return folio; 130 } 131 132 WARN_ON_ONCE(1); 133 return NULL; 134 } 135 136 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 137 { 138 if (flags & FOLL_PIN) { 139 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 140 if (folio_test_large(folio)) 141 atomic_sub(refs, folio_pincount_ptr(folio)); 142 else 143 refs *= GUP_PIN_COUNTING_BIAS; 144 } 145 146 folio_put_refs(folio, refs); 147 } 148 149 /** 150 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 151 * @page: pointer to page to be grabbed 152 * @flags: gup flags: these are the FOLL_* flag values. 153 * 154 * This might not do anything at all, depending on the flags argument. 155 * 156 * "grab" names in this file mean, "look at flags to decide whether to use 157 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 158 * 159 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 160 * time. Cases: please see the try_grab_folio() documentation, with 161 * "refs=1". 162 * 163 * Return: true for success, or if no action was required (if neither FOLL_PIN 164 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 165 * FOLL_PIN was set, but the page could not be grabbed. 166 */ 167 bool __must_check try_grab_page(struct page *page, unsigned int flags) 168 { 169 struct folio *folio = page_folio(page); 170 171 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 172 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 173 return false; 174 175 if (flags & FOLL_GET) 176 folio_ref_inc(folio); 177 else if (flags & FOLL_PIN) { 178 /* 179 * Similar to try_grab_folio(): be sure to *also* 180 * increment the normal page refcount field at least once, 181 * so that the page really is pinned. 182 */ 183 if (folio_test_large(folio)) { 184 folio_ref_add(folio, 1); 185 atomic_add(1, folio_pincount_ptr(folio)); 186 } else { 187 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 188 } 189 190 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 191 } 192 193 return true; 194 } 195 196 /** 197 * unpin_user_page() - release a dma-pinned page 198 * @page: pointer to page to be released 199 * 200 * Pages that were pinned via pin_user_pages*() must be released via either 201 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 202 * that such pages can be separately tracked and uniquely handled. In 203 * particular, interactions with RDMA and filesystems need special handling. 204 */ 205 void unpin_user_page(struct page *page) 206 { 207 gup_put_folio(page_folio(page), 1, FOLL_PIN); 208 } 209 EXPORT_SYMBOL(unpin_user_page); 210 211 static inline struct folio *gup_folio_range_next(struct page *start, 212 unsigned long npages, unsigned long i, unsigned int *ntails) 213 { 214 struct page *next = nth_page(start, i); 215 struct folio *folio = page_folio(next); 216 unsigned int nr = 1; 217 218 if (folio_test_large(folio)) 219 nr = min_t(unsigned int, npages - i, 220 folio_nr_pages(folio) - folio_page_idx(folio, next)); 221 222 *ntails = nr; 223 return folio; 224 } 225 226 static inline struct folio *gup_folio_next(struct page **list, 227 unsigned long npages, unsigned long i, unsigned int *ntails) 228 { 229 struct folio *folio = page_folio(list[i]); 230 unsigned int nr; 231 232 for (nr = i + 1; nr < npages; nr++) { 233 if (page_folio(list[nr]) != folio) 234 break; 235 } 236 237 *ntails = nr - i; 238 return folio; 239 } 240 241 /** 242 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 243 * @pages: array of pages to be maybe marked dirty, and definitely released. 244 * @npages: number of pages in the @pages array. 245 * @make_dirty: whether to mark the pages dirty 246 * 247 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 248 * variants called on that page. 249 * 250 * For each page in the @pages array, make that page (or its head page, if a 251 * compound page) dirty, if @make_dirty is true, and if the page was previously 252 * listed as clean. In any case, releases all pages using unpin_user_page(), 253 * possibly via unpin_user_pages(), for the non-dirty case. 254 * 255 * Please see the unpin_user_page() documentation for details. 256 * 257 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 258 * required, then the caller should a) verify that this is really correct, 259 * because _lock() is usually required, and b) hand code it: 260 * set_page_dirty_lock(), unpin_user_page(). 261 * 262 */ 263 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 264 bool make_dirty) 265 { 266 unsigned long i; 267 struct folio *folio; 268 unsigned int nr; 269 270 if (!make_dirty) { 271 unpin_user_pages(pages, npages); 272 return; 273 } 274 275 for (i = 0; i < npages; i += nr) { 276 folio = gup_folio_next(pages, npages, i, &nr); 277 /* 278 * Checking PageDirty at this point may race with 279 * clear_page_dirty_for_io(), but that's OK. Two key 280 * cases: 281 * 282 * 1) This code sees the page as already dirty, so it 283 * skips the call to set_page_dirty(). That could happen 284 * because clear_page_dirty_for_io() called 285 * page_mkclean(), followed by set_page_dirty(). 286 * However, now the page is going to get written back, 287 * which meets the original intention of setting it 288 * dirty, so all is well: clear_page_dirty_for_io() goes 289 * on to call TestClearPageDirty(), and write the page 290 * back. 291 * 292 * 2) This code sees the page as clean, so it calls 293 * set_page_dirty(). The page stays dirty, despite being 294 * written back, so it gets written back again in the 295 * next writeback cycle. This is harmless. 296 */ 297 if (!folio_test_dirty(folio)) { 298 folio_lock(folio); 299 folio_mark_dirty(folio); 300 folio_unlock(folio); 301 } 302 gup_put_folio(folio, nr, FOLL_PIN); 303 } 304 } 305 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 306 307 /** 308 * unpin_user_page_range_dirty_lock() - release and optionally dirty 309 * gup-pinned page range 310 * 311 * @page: the starting page of a range maybe marked dirty, and definitely released. 312 * @npages: number of consecutive pages to release. 313 * @make_dirty: whether to mark the pages dirty 314 * 315 * "gup-pinned page range" refers to a range of pages that has had one of the 316 * pin_user_pages() variants called on that page. 317 * 318 * For the page ranges defined by [page .. page+npages], make that range (or 319 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 320 * page range was previously listed as clean. 321 * 322 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 323 * required, then the caller should a) verify that this is really correct, 324 * because _lock() is usually required, and b) hand code it: 325 * set_page_dirty_lock(), unpin_user_page(). 326 * 327 */ 328 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 329 bool make_dirty) 330 { 331 unsigned long i; 332 struct folio *folio; 333 unsigned int nr; 334 335 for (i = 0; i < npages; i += nr) { 336 folio = gup_folio_range_next(page, npages, i, &nr); 337 if (make_dirty && !folio_test_dirty(folio)) { 338 folio_lock(folio); 339 folio_mark_dirty(folio); 340 folio_unlock(folio); 341 } 342 gup_put_folio(folio, nr, FOLL_PIN); 343 } 344 } 345 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 346 347 /** 348 * unpin_user_pages() - release an array of gup-pinned pages. 349 * @pages: array of pages to be marked dirty and released. 350 * @npages: number of pages in the @pages array. 351 * 352 * For each page in the @pages array, release the page using unpin_user_page(). 353 * 354 * Please see the unpin_user_page() documentation for details. 355 */ 356 void unpin_user_pages(struct page **pages, unsigned long npages) 357 { 358 unsigned long i; 359 struct folio *folio; 360 unsigned int nr; 361 362 /* 363 * If this WARN_ON() fires, then the system *might* be leaking pages (by 364 * leaving them pinned), but probably not. More likely, gup/pup returned 365 * a hard -ERRNO error to the caller, who erroneously passed it here. 366 */ 367 if (WARN_ON(IS_ERR_VALUE(npages))) 368 return; 369 370 for (i = 0; i < npages; i += nr) { 371 folio = gup_folio_next(pages, npages, i, &nr); 372 gup_put_folio(folio, nr, FOLL_PIN); 373 } 374 } 375 EXPORT_SYMBOL(unpin_user_pages); 376 377 /* 378 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 379 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 380 * cache bouncing on large SMP machines for concurrent pinned gups. 381 */ 382 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 383 { 384 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 385 set_bit(MMF_HAS_PINNED, mm_flags); 386 } 387 388 #ifdef CONFIG_MMU 389 static struct page *no_page_table(struct vm_area_struct *vma, 390 unsigned int flags) 391 { 392 /* 393 * When core dumping an enormous anonymous area that nobody 394 * has touched so far, we don't want to allocate unnecessary pages or 395 * page tables. Return error instead of NULL to skip handle_mm_fault, 396 * then get_dump_page() will return NULL to leave a hole in the dump. 397 * But we can only make this optimization where a hole would surely 398 * be zero-filled if handle_mm_fault() actually did handle it. 399 */ 400 if ((flags & FOLL_DUMP) && 401 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 402 return ERR_PTR(-EFAULT); 403 return NULL; 404 } 405 406 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 407 pte_t *pte, unsigned int flags) 408 { 409 if (flags & FOLL_TOUCH) { 410 pte_t entry = *pte; 411 412 if (flags & FOLL_WRITE) 413 entry = pte_mkdirty(entry); 414 entry = pte_mkyoung(entry); 415 416 if (!pte_same(*pte, entry)) { 417 set_pte_at(vma->vm_mm, address, pte, entry); 418 update_mmu_cache(vma, address, pte); 419 } 420 } 421 422 /* Proper page table entry exists, but no corresponding struct page */ 423 return -EEXIST; 424 } 425 426 /* 427 * FOLL_FORCE can write to even unwritable pte's, but only 428 * after we've gone through a COW cycle and they are dirty. 429 */ 430 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 431 { 432 return pte_write(pte) || 433 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 434 } 435 436 static struct page *follow_page_pte(struct vm_area_struct *vma, 437 unsigned long address, pmd_t *pmd, unsigned int flags, 438 struct dev_pagemap **pgmap) 439 { 440 struct mm_struct *mm = vma->vm_mm; 441 struct page *page; 442 spinlock_t *ptl; 443 pte_t *ptep, pte; 444 int ret; 445 446 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 447 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 448 (FOLL_PIN | FOLL_GET))) 449 return ERR_PTR(-EINVAL); 450 retry: 451 if (unlikely(pmd_bad(*pmd))) 452 return no_page_table(vma, flags); 453 454 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 455 pte = *ptep; 456 if (!pte_present(pte)) { 457 swp_entry_t entry; 458 /* 459 * KSM's break_ksm() relies upon recognizing a ksm page 460 * even while it is being migrated, so for that case we 461 * need migration_entry_wait(). 462 */ 463 if (likely(!(flags & FOLL_MIGRATION))) 464 goto no_page; 465 if (pte_none(pte)) 466 goto no_page; 467 entry = pte_to_swp_entry(pte); 468 if (!is_migration_entry(entry)) 469 goto no_page; 470 pte_unmap_unlock(ptep, ptl); 471 migration_entry_wait(mm, pmd, address); 472 goto retry; 473 } 474 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 475 goto no_page; 476 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 477 pte_unmap_unlock(ptep, ptl); 478 return NULL; 479 } 480 481 page = vm_normal_page(vma, address, pte); 482 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 483 /* 484 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 485 * case since they are only valid while holding the pgmap 486 * reference. 487 */ 488 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 489 if (*pgmap) 490 page = pte_page(pte); 491 else 492 goto no_page; 493 } else if (unlikely(!page)) { 494 if (flags & FOLL_DUMP) { 495 /* Avoid special (like zero) pages in core dumps */ 496 page = ERR_PTR(-EFAULT); 497 goto out; 498 } 499 500 if (is_zero_pfn(pte_pfn(pte))) { 501 page = pte_page(pte); 502 } else { 503 ret = follow_pfn_pte(vma, address, ptep, flags); 504 page = ERR_PTR(ret); 505 goto out; 506 } 507 } 508 509 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 510 if (unlikely(!try_grab_page(page, flags))) { 511 page = ERR_PTR(-ENOMEM); 512 goto out; 513 } 514 /* 515 * We need to make the page accessible if and only if we are going 516 * to access its content (the FOLL_PIN case). Please see 517 * Documentation/core-api/pin_user_pages.rst for details. 518 */ 519 if (flags & FOLL_PIN) { 520 ret = arch_make_page_accessible(page); 521 if (ret) { 522 unpin_user_page(page); 523 page = ERR_PTR(ret); 524 goto out; 525 } 526 } 527 if (flags & FOLL_TOUCH) { 528 if ((flags & FOLL_WRITE) && 529 !pte_dirty(pte) && !PageDirty(page)) 530 set_page_dirty(page); 531 /* 532 * pte_mkyoung() would be more correct here, but atomic care 533 * is needed to avoid losing the dirty bit: it is easier to use 534 * mark_page_accessed(). 535 */ 536 mark_page_accessed(page); 537 } 538 out: 539 pte_unmap_unlock(ptep, ptl); 540 return page; 541 no_page: 542 pte_unmap_unlock(ptep, ptl); 543 if (!pte_none(pte)) 544 return NULL; 545 return no_page_table(vma, flags); 546 } 547 548 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 549 unsigned long address, pud_t *pudp, 550 unsigned int flags, 551 struct follow_page_context *ctx) 552 { 553 pmd_t *pmd, pmdval; 554 spinlock_t *ptl; 555 struct page *page; 556 struct mm_struct *mm = vma->vm_mm; 557 558 pmd = pmd_offset(pudp, address); 559 /* 560 * The READ_ONCE() will stabilize the pmdval in a register or 561 * on the stack so that it will stop changing under the code. 562 */ 563 pmdval = READ_ONCE(*pmd); 564 if (pmd_none(pmdval)) 565 return no_page_table(vma, flags); 566 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 567 page = follow_huge_pmd(mm, address, pmd, flags); 568 if (page) 569 return page; 570 return no_page_table(vma, flags); 571 } 572 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 573 page = follow_huge_pd(vma, address, 574 __hugepd(pmd_val(pmdval)), flags, 575 PMD_SHIFT); 576 if (page) 577 return page; 578 return no_page_table(vma, flags); 579 } 580 retry: 581 if (!pmd_present(pmdval)) { 582 /* 583 * Should never reach here, if thp migration is not supported; 584 * Otherwise, it must be a thp migration entry. 585 */ 586 VM_BUG_ON(!thp_migration_supported() || 587 !is_pmd_migration_entry(pmdval)); 588 589 if (likely(!(flags & FOLL_MIGRATION))) 590 return no_page_table(vma, flags); 591 592 pmd_migration_entry_wait(mm, pmd); 593 pmdval = READ_ONCE(*pmd); 594 /* 595 * MADV_DONTNEED may convert the pmd to null because 596 * mmap_lock is held in read mode 597 */ 598 if (pmd_none(pmdval)) 599 return no_page_table(vma, flags); 600 goto retry; 601 } 602 if (pmd_devmap(pmdval)) { 603 ptl = pmd_lock(mm, pmd); 604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 605 spin_unlock(ptl); 606 if (page) 607 return page; 608 } 609 if (likely(!pmd_trans_huge(pmdval))) 610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 611 612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 613 return no_page_table(vma, flags); 614 615 retry_locked: 616 ptl = pmd_lock(mm, pmd); 617 if (unlikely(pmd_none(*pmd))) { 618 spin_unlock(ptl); 619 return no_page_table(vma, flags); 620 } 621 if (unlikely(!pmd_present(*pmd))) { 622 spin_unlock(ptl); 623 if (likely(!(flags & FOLL_MIGRATION))) 624 return no_page_table(vma, flags); 625 pmd_migration_entry_wait(mm, pmd); 626 goto retry_locked; 627 } 628 if (unlikely(!pmd_trans_huge(*pmd))) { 629 spin_unlock(ptl); 630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 631 } 632 if (flags & FOLL_SPLIT_PMD) { 633 int ret; 634 page = pmd_page(*pmd); 635 if (is_huge_zero_page(page)) { 636 spin_unlock(ptl); 637 ret = 0; 638 split_huge_pmd(vma, pmd, address); 639 if (pmd_trans_unstable(pmd)) 640 ret = -EBUSY; 641 } else { 642 spin_unlock(ptl); 643 split_huge_pmd(vma, pmd, address); 644 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 645 } 646 647 return ret ? ERR_PTR(ret) : 648 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 649 } 650 page = follow_trans_huge_pmd(vma, address, pmd, flags); 651 spin_unlock(ptl); 652 ctx->page_mask = HPAGE_PMD_NR - 1; 653 return page; 654 } 655 656 static struct page *follow_pud_mask(struct vm_area_struct *vma, 657 unsigned long address, p4d_t *p4dp, 658 unsigned int flags, 659 struct follow_page_context *ctx) 660 { 661 pud_t *pud; 662 spinlock_t *ptl; 663 struct page *page; 664 struct mm_struct *mm = vma->vm_mm; 665 666 pud = pud_offset(p4dp, address); 667 if (pud_none(*pud)) 668 return no_page_table(vma, flags); 669 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 670 page = follow_huge_pud(mm, address, pud, flags); 671 if (page) 672 return page; 673 return no_page_table(vma, flags); 674 } 675 if (is_hugepd(__hugepd(pud_val(*pud)))) { 676 page = follow_huge_pd(vma, address, 677 __hugepd(pud_val(*pud)), flags, 678 PUD_SHIFT); 679 if (page) 680 return page; 681 return no_page_table(vma, flags); 682 } 683 if (pud_devmap(*pud)) { 684 ptl = pud_lock(mm, pud); 685 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 686 spin_unlock(ptl); 687 if (page) 688 return page; 689 } 690 if (unlikely(pud_bad(*pud))) 691 return no_page_table(vma, flags); 692 693 return follow_pmd_mask(vma, address, pud, flags, ctx); 694 } 695 696 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 697 unsigned long address, pgd_t *pgdp, 698 unsigned int flags, 699 struct follow_page_context *ctx) 700 { 701 p4d_t *p4d; 702 struct page *page; 703 704 p4d = p4d_offset(pgdp, address); 705 if (p4d_none(*p4d)) 706 return no_page_table(vma, flags); 707 BUILD_BUG_ON(p4d_huge(*p4d)); 708 if (unlikely(p4d_bad(*p4d))) 709 return no_page_table(vma, flags); 710 711 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 712 page = follow_huge_pd(vma, address, 713 __hugepd(p4d_val(*p4d)), flags, 714 P4D_SHIFT); 715 if (page) 716 return page; 717 return no_page_table(vma, flags); 718 } 719 return follow_pud_mask(vma, address, p4d, flags, ctx); 720 } 721 722 /** 723 * follow_page_mask - look up a page descriptor from a user-virtual address 724 * @vma: vm_area_struct mapping @address 725 * @address: virtual address to look up 726 * @flags: flags modifying lookup behaviour 727 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 728 * pointer to output page_mask 729 * 730 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 731 * 732 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 733 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 734 * 735 * On output, the @ctx->page_mask is set according to the size of the page. 736 * 737 * Return: the mapped (struct page *), %NULL if no mapping exists, or 738 * an error pointer if there is a mapping to something not represented 739 * by a page descriptor (see also vm_normal_page()). 740 */ 741 static struct page *follow_page_mask(struct vm_area_struct *vma, 742 unsigned long address, unsigned int flags, 743 struct follow_page_context *ctx) 744 { 745 pgd_t *pgd; 746 struct page *page; 747 struct mm_struct *mm = vma->vm_mm; 748 749 ctx->page_mask = 0; 750 751 /* make this handle hugepd */ 752 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 753 if (!IS_ERR(page)) { 754 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 755 return page; 756 } 757 758 pgd = pgd_offset(mm, address); 759 760 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 761 return no_page_table(vma, flags); 762 763 if (pgd_huge(*pgd)) { 764 page = follow_huge_pgd(mm, address, pgd, flags); 765 if (page) 766 return page; 767 return no_page_table(vma, flags); 768 } 769 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 770 page = follow_huge_pd(vma, address, 771 __hugepd(pgd_val(*pgd)), flags, 772 PGDIR_SHIFT); 773 if (page) 774 return page; 775 return no_page_table(vma, flags); 776 } 777 778 return follow_p4d_mask(vma, address, pgd, flags, ctx); 779 } 780 781 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 782 unsigned int foll_flags) 783 { 784 struct follow_page_context ctx = { NULL }; 785 struct page *page; 786 787 if (vma_is_secretmem(vma)) 788 return NULL; 789 790 page = follow_page_mask(vma, address, foll_flags, &ctx); 791 if (ctx.pgmap) 792 put_dev_pagemap(ctx.pgmap); 793 return page; 794 } 795 796 static int get_gate_page(struct mm_struct *mm, unsigned long address, 797 unsigned int gup_flags, struct vm_area_struct **vma, 798 struct page **page) 799 { 800 pgd_t *pgd; 801 p4d_t *p4d; 802 pud_t *pud; 803 pmd_t *pmd; 804 pte_t *pte; 805 int ret = -EFAULT; 806 807 /* user gate pages are read-only */ 808 if (gup_flags & FOLL_WRITE) 809 return -EFAULT; 810 if (address > TASK_SIZE) 811 pgd = pgd_offset_k(address); 812 else 813 pgd = pgd_offset_gate(mm, address); 814 if (pgd_none(*pgd)) 815 return -EFAULT; 816 p4d = p4d_offset(pgd, address); 817 if (p4d_none(*p4d)) 818 return -EFAULT; 819 pud = pud_offset(p4d, address); 820 if (pud_none(*pud)) 821 return -EFAULT; 822 pmd = pmd_offset(pud, address); 823 if (!pmd_present(*pmd)) 824 return -EFAULT; 825 VM_BUG_ON(pmd_trans_huge(*pmd)); 826 pte = pte_offset_map(pmd, address); 827 if (pte_none(*pte)) 828 goto unmap; 829 *vma = get_gate_vma(mm); 830 if (!page) 831 goto out; 832 *page = vm_normal_page(*vma, address, *pte); 833 if (!*page) { 834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 835 goto unmap; 836 *page = pte_page(*pte); 837 } 838 if (unlikely(!try_grab_page(*page, gup_flags))) { 839 ret = -ENOMEM; 840 goto unmap; 841 } 842 out: 843 ret = 0; 844 unmap: 845 pte_unmap(pte); 846 return ret; 847 } 848 849 /* 850 * mmap_lock must be held on entry. If @locked != NULL and *@flags 851 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 852 * is, *@locked will be set to 0 and -EBUSY returned. 853 */ 854 static int faultin_page(struct vm_area_struct *vma, 855 unsigned long address, unsigned int *flags, int *locked) 856 { 857 unsigned int fault_flags = 0; 858 vm_fault_t ret; 859 860 if (*flags & FOLL_NOFAULT) 861 return -EFAULT; 862 if (*flags & FOLL_WRITE) 863 fault_flags |= FAULT_FLAG_WRITE; 864 if (*flags & FOLL_REMOTE) 865 fault_flags |= FAULT_FLAG_REMOTE; 866 if (locked) 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 868 if (*flags & FOLL_NOWAIT) 869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 870 if (*flags & FOLL_TRIED) { 871 /* 872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 873 * can co-exist 874 */ 875 fault_flags |= FAULT_FLAG_TRIED; 876 } 877 878 ret = handle_mm_fault(vma, address, fault_flags, NULL); 879 if (ret & VM_FAULT_ERROR) { 880 int err = vm_fault_to_errno(ret, *flags); 881 882 if (err) 883 return err; 884 BUG(); 885 } 886 887 if (ret & VM_FAULT_RETRY) { 888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 889 *locked = 0; 890 return -EBUSY; 891 } 892 893 /* 894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 895 * necessary, even if maybe_mkwrite decided not to set pte_write. We 896 * can thus safely do subsequent page lookups as if they were reads. 897 * But only do so when looping for pte_write is futile: in some cases 898 * userspace may also be wanting to write to the gotten user page, 899 * which a read fault here might prevent (a readonly page might get 900 * reCOWed by userspace write). 901 */ 902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 903 *flags |= FOLL_COW; 904 return 0; 905 } 906 907 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 908 { 909 vm_flags_t vm_flags = vma->vm_flags; 910 int write = (gup_flags & FOLL_WRITE); 911 int foreign = (gup_flags & FOLL_REMOTE); 912 913 if (vm_flags & (VM_IO | VM_PFNMAP)) 914 return -EFAULT; 915 916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 917 return -EFAULT; 918 919 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 920 return -EOPNOTSUPP; 921 922 if (vma_is_secretmem(vma)) 923 return -EFAULT; 924 925 if (write) { 926 if (!(vm_flags & VM_WRITE)) { 927 if (!(gup_flags & FOLL_FORCE)) 928 return -EFAULT; 929 /* 930 * We used to let the write,force case do COW in a 931 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 932 * set a breakpoint in a read-only mapping of an 933 * executable, without corrupting the file (yet only 934 * when that file had been opened for writing!). 935 * Anon pages in shared mappings are surprising: now 936 * just reject it. 937 */ 938 if (!is_cow_mapping(vm_flags)) 939 return -EFAULT; 940 } 941 } else if (!(vm_flags & VM_READ)) { 942 if (!(gup_flags & FOLL_FORCE)) 943 return -EFAULT; 944 /* 945 * Is there actually any vma we can reach here which does not 946 * have VM_MAYREAD set? 947 */ 948 if (!(vm_flags & VM_MAYREAD)) 949 return -EFAULT; 950 } 951 /* 952 * gups are always data accesses, not instruction 953 * fetches, so execute=false here 954 */ 955 if (!arch_vma_access_permitted(vma, write, false, foreign)) 956 return -EFAULT; 957 return 0; 958 } 959 960 /** 961 * __get_user_pages() - pin user pages in memory 962 * @mm: mm_struct of target mm 963 * @start: starting user address 964 * @nr_pages: number of pages from start to pin 965 * @gup_flags: flags modifying pin behaviour 966 * @pages: array that receives pointers to the pages pinned. 967 * Should be at least nr_pages long. Or NULL, if caller 968 * only intends to ensure the pages are faulted in. 969 * @vmas: array of pointers to vmas corresponding to each page. 970 * Or NULL if the caller does not require them. 971 * @locked: whether we're still with the mmap_lock held 972 * 973 * Returns either number of pages pinned (which may be less than the 974 * number requested), or an error. Details about the return value: 975 * 976 * -- If nr_pages is 0, returns 0. 977 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 978 * -- If nr_pages is >0, and some pages were pinned, returns the number of 979 * pages pinned. Again, this may be less than nr_pages. 980 * -- 0 return value is possible when the fault would need to be retried. 981 * 982 * The caller is responsible for releasing returned @pages, via put_page(). 983 * 984 * @vmas are valid only as long as mmap_lock is held. 985 * 986 * Must be called with mmap_lock held. It may be released. See below. 987 * 988 * __get_user_pages walks a process's page tables and takes a reference to 989 * each struct page that each user address corresponds to at a given 990 * instant. That is, it takes the page that would be accessed if a user 991 * thread accesses the given user virtual address at that instant. 992 * 993 * This does not guarantee that the page exists in the user mappings when 994 * __get_user_pages returns, and there may even be a completely different 995 * page there in some cases (eg. if mmapped pagecache has been invalidated 996 * and subsequently re faulted). However it does guarantee that the page 997 * won't be freed completely. And mostly callers simply care that the page 998 * contains data that was valid *at some point in time*. Typically, an IO 999 * or similar operation cannot guarantee anything stronger anyway because 1000 * locks can't be held over the syscall boundary. 1001 * 1002 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1003 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1004 * appropriate) must be called after the page is finished with, and 1005 * before put_page is called. 1006 * 1007 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1008 * released by an up_read(). That can happen if @gup_flags does not 1009 * have FOLL_NOWAIT. 1010 * 1011 * A caller using such a combination of @locked and @gup_flags 1012 * must therefore hold the mmap_lock for reading only, and recognize 1013 * when it's been released. Otherwise, it must be held for either 1014 * reading or writing and will not be released. 1015 * 1016 * In most cases, get_user_pages or get_user_pages_fast should be used 1017 * instead of __get_user_pages. __get_user_pages should be used only if 1018 * you need some special @gup_flags. 1019 */ 1020 static long __get_user_pages(struct mm_struct *mm, 1021 unsigned long start, unsigned long nr_pages, 1022 unsigned int gup_flags, struct page **pages, 1023 struct vm_area_struct **vmas, int *locked) 1024 { 1025 long ret = 0, i = 0; 1026 struct vm_area_struct *vma = NULL; 1027 struct follow_page_context ctx = { NULL }; 1028 1029 if (!nr_pages) 1030 return 0; 1031 1032 start = untagged_addr(start); 1033 1034 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1035 1036 /* 1037 * If FOLL_FORCE is set then do not force a full fault as the hinting 1038 * fault information is unrelated to the reference behaviour of a task 1039 * using the address space 1040 */ 1041 if (!(gup_flags & FOLL_FORCE)) 1042 gup_flags |= FOLL_NUMA; 1043 1044 do { 1045 struct page *page; 1046 unsigned int foll_flags = gup_flags; 1047 unsigned int page_increm; 1048 1049 /* first iteration or cross vma bound */ 1050 if (!vma || start >= vma->vm_end) { 1051 vma = find_extend_vma(mm, start); 1052 if (!vma && in_gate_area(mm, start)) { 1053 ret = get_gate_page(mm, start & PAGE_MASK, 1054 gup_flags, &vma, 1055 pages ? &pages[i] : NULL); 1056 if (ret) 1057 goto out; 1058 ctx.page_mask = 0; 1059 goto next_page; 1060 } 1061 1062 if (!vma) { 1063 ret = -EFAULT; 1064 goto out; 1065 } 1066 ret = check_vma_flags(vma, gup_flags); 1067 if (ret) 1068 goto out; 1069 1070 if (is_vm_hugetlb_page(vma)) { 1071 i = follow_hugetlb_page(mm, vma, pages, vmas, 1072 &start, &nr_pages, i, 1073 gup_flags, locked); 1074 if (locked && *locked == 0) { 1075 /* 1076 * We've got a VM_FAULT_RETRY 1077 * and we've lost mmap_lock. 1078 * We must stop here. 1079 */ 1080 BUG_ON(gup_flags & FOLL_NOWAIT); 1081 goto out; 1082 } 1083 continue; 1084 } 1085 } 1086 retry: 1087 /* 1088 * If we have a pending SIGKILL, don't keep faulting pages and 1089 * potentially allocating memory. 1090 */ 1091 if (fatal_signal_pending(current)) { 1092 ret = -EINTR; 1093 goto out; 1094 } 1095 cond_resched(); 1096 1097 page = follow_page_mask(vma, start, foll_flags, &ctx); 1098 if (!page) { 1099 ret = faultin_page(vma, start, &foll_flags, locked); 1100 switch (ret) { 1101 case 0: 1102 goto retry; 1103 case -EBUSY: 1104 ret = 0; 1105 fallthrough; 1106 case -EFAULT: 1107 case -ENOMEM: 1108 case -EHWPOISON: 1109 goto out; 1110 } 1111 BUG(); 1112 } else if (PTR_ERR(page) == -EEXIST) { 1113 /* 1114 * Proper page table entry exists, but no corresponding 1115 * struct page. If the caller expects **pages to be 1116 * filled in, bail out now, because that can't be done 1117 * for this page. 1118 */ 1119 if (pages) { 1120 ret = PTR_ERR(page); 1121 goto out; 1122 } 1123 1124 goto next_page; 1125 } else if (IS_ERR(page)) { 1126 ret = PTR_ERR(page); 1127 goto out; 1128 } 1129 if (pages) { 1130 pages[i] = page; 1131 flush_anon_page(vma, page, start); 1132 flush_dcache_page(page); 1133 ctx.page_mask = 0; 1134 } 1135 next_page: 1136 if (vmas) { 1137 vmas[i] = vma; 1138 ctx.page_mask = 0; 1139 } 1140 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1141 if (page_increm > nr_pages) 1142 page_increm = nr_pages; 1143 i += page_increm; 1144 start += page_increm * PAGE_SIZE; 1145 nr_pages -= page_increm; 1146 } while (nr_pages); 1147 out: 1148 if (ctx.pgmap) 1149 put_dev_pagemap(ctx.pgmap); 1150 return i ? i : ret; 1151 } 1152 1153 static bool vma_permits_fault(struct vm_area_struct *vma, 1154 unsigned int fault_flags) 1155 { 1156 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1157 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1158 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1159 1160 if (!(vm_flags & vma->vm_flags)) 1161 return false; 1162 1163 /* 1164 * The architecture might have a hardware protection 1165 * mechanism other than read/write that can deny access. 1166 * 1167 * gup always represents data access, not instruction 1168 * fetches, so execute=false here: 1169 */ 1170 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /** 1177 * fixup_user_fault() - manually resolve a user page fault 1178 * @mm: mm_struct of target mm 1179 * @address: user address 1180 * @fault_flags:flags to pass down to handle_mm_fault() 1181 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1182 * does not allow retry. If NULL, the caller must guarantee 1183 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1184 * 1185 * This is meant to be called in the specific scenario where for locking reasons 1186 * we try to access user memory in atomic context (within a pagefault_disable() 1187 * section), this returns -EFAULT, and we want to resolve the user fault before 1188 * trying again. 1189 * 1190 * Typically this is meant to be used by the futex code. 1191 * 1192 * The main difference with get_user_pages() is that this function will 1193 * unconditionally call handle_mm_fault() which will in turn perform all the 1194 * necessary SW fixup of the dirty and young bits in the PTE, while 1195 * get_user_pages() only guarantees to update these in the struct page. 1196 * 1197 * This is important for some architectures where those bits also gate the 1198 * access permission to the page because they are maintained in software. On 1199 * such architectures, gup() will not be enough to make a subsequent access 1200 * succeed. 1201 * 1202 * This function will not return with an unlocked mmap_lock. So it has not the 1203 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1204 */ 1205 int fixup_user_fault(struct mm_struct *mm, 1206 unsigned long address, unsigned int fault_flags, 1207 bool *unlocked) 1208 { 1209 struct vm_area_struct *vma; 1210 vm_fault_t ret; 1211 1212 address = untagged_addr(address); 1213 1214 if (unlocked) 1215 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1216 1217 retry: 1218 vma = find_extend_vma(mm, address); 1219 if (!vma || address < vma->vm_start) 1220 return -EFAULT; 1221 1222 if (!vma_permits_fault(vma, fault_flags)) 1223 return -EFAULT; 1224 1225 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1226 fatal_signal_pending(current)) 1227 return -EINTR; 1228 1229 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1230 if (ret & VM_FAULT_ERROR) { 1231 int err = vm_fault_to_errno(ret, 0); 1232 1233 if (err) 1234 return err; 1235 BUG(); 1236 } 1237 1238 if (ret & VM_FAULT_RETRY) { 1239 mmap_read_lock(mm); 1240 *unlocked = true; 1241 fault_flags |= FAULT_FLAG_TRIED; 1242 goto retry; 1243 } 1244 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(fixup_user_fault); 1248 1249 /* 1250 * Please note that this function, unlike __get_user_pages will not 1251 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1252 */ 1253 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1254 unsigned long start, 1255 unsigned long nr_pages, 1256 struct page **pages, 1257 struct vm_area_struct **vmas, 1258 int *locked, 1259 unsigned int flags) 1260 { 1261 long ret, pages_done; 1262 bool lock_dropped; 1263 1264 if (locked) { 1265 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1266 BUG_ON(vmas); 1267 /* check caller initialized locked */ 1268 BUG_ON(*locked != 1); 1269 } 1270 1271 if (flags & FOLL_PIN) 1272 mm_set_has_pinned_flag(&mm->flags); 1273 1274 /* 1275 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1276 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1277 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1278 * for FOLL_GET, not for the newer FOLL_PIN. 1279 * 1280 * FOLL_PIN always expects pages to be non-null, but no need to assert 1281 * that here, as any failures will be obvious enough. 1282 */ 1283 if (pages && !(flags & FOLL_PIN)) 1284 flags |= FOLL_GET; 1285 1286 pages_done = 0; 1287 lock_dropped = false; 1288 for (;;) { 1289 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1290 vmas, locked); 1291 if (!locked) 1292 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1293 return ret; 1294 1295 /* VM_FAULT_RETRY cannot return errors */ 1296 if (!*locked) { 1297 BUG_ON(ret < 0); 1298 BUG_ON(ret >= nr_pages); 1299 } 1300 1301 if (ret > 0) { 1302 nr_pages -= ret; 1303 pages_done += ret; 1304 if (!nr_pages) 1305 break; 1306 } 1307 if (*locked) { 1308 /* 1309 * VM_FAULT_RETRY didn't trigger or it was a 1310 * FOLL_NOWAIT. 1311 */ 1312 if (!pages_done) 1313 pages_done = ret; 1314 break; 1315 } 1316 /* 1317 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1318 * For the prefault case (!pages) we only update counts. 1319 */ 1320 if (likely(pages)) 1321 pages += ret; 1322 start += ret << PAGE_SHIFT; 1323 lock_dropped = true; 1324 1325 retry: 1326 /* 1327 * Repeat on the address that fired VM_FAULT_RETRY 1328 * with both FAULT_FLAG_ALLOW_RETRY and 1329 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1330 * by fatal signals, so we need to check it before we 1331 * start trying again otherwise it can loop forever. 1332 */ 1333 1334 if (fatal_signal_pending(current)) { 1335 if (!pages_done) 1336 pages_done = -EINTR; 1337 break; 1338 } 1339 1340 ret = mmap_read_lock_killable(mm); 1341 if (ret) { 1342 BUG_ON(ret > 0); 1343 if (!pages_done) 1344 pages_done = ret; 1345 break; 1346 } 1347 1348 *locked = 1; 1349 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1350 pages, NULL, locked); 1351 if (!*locked) { 1352 /* Continue to retry until we succeeded */ 1353 BUG_ON(ret != 0); 1354 goto retry; 1355 } 1356 if (ret != 1) { 1357 BUG_ON(ret > 1); 1358 if (!pages_done) 1359 pages_done = ret; 1360 break; 1361 } 1362 nr_pages--; 1363 pages_done++; 1364 if (!nr_pages) 1365 break; 1366 if (likely(pages)) 1367 pages++; 1368 start += PAGE_SIZE; 1369 } 1370 if (lock_dropped && *locked) { 1371 /* 1372 * We must let the caller know we temporarily dropped the lock 1373 * and so the critical section protected by it was lost. 1374 */ 1375 mmap_read_unlock(mm); 1376 *locked = 0; 1377 } 1378 return pages_done; 1379 } 1380 1381 /** 1382 * populate_vma_page_range() - populate a range of pages in the vma. 1383 * @vma: target vma 1384 * @start: start address 1385 * @end: end address 1386 * @locked: whether the mmap_lock is still held 1387 * 1388 * This takes care of mlocking the pages too if VM_LOCKED is set. 1389 * 1390 * Return either number of pages pinned in the vma, or a negative error 1391 * code on error. 1392 * 1393 * vma->vm_mm->mmap_lock must be held. 1394 * 1395 * If @locked is NULL, it may be held for read or write and will 1396 * be unperturbed. 1397 * 1398 * If @locked is non-NULL, it must held for read only and may be 1399 * released. If it's released, *@locked will be set to 0. 1400 */ 1401 long populate_vma_page_range(struct vm_area_struct *vma, 1402 unsigned long start, unsigned long end, int *locked) 1403 { 1404 struct mm_struct *mm = vma->vm_mm; 1405 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1406 int gup_flags; 1407 long ret; 1408 1409 VM_BUG_ON(!PAGE_ALIGNED(start)); 1410 VM_BUG_ON(!PAGE_ALIGNED(end)); 1411 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1412 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1413 mmap_assert_locked(mm); 1414 1415 /* 1416 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1417 * faultin_page() to break COW, so it has no work to do here. 1418 */ 1419 if (vma->vm_flags & VM_LOCKONFAULT) 1420 return nr_pages; 1421 1422 gup_flags = FOLL_TOUCH; 1423 /* 1424 * We want to touch writable mappings with a write fault in order 1425 * to break COW, except for shared mappings because these don't COW 1426 * and we would not want to dirty them for nothing. 1427 */ 1428 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1429 gup_flags |= FOLL_WRITE; 1430 1431 /* 1432 * We want mlock to succeed for regions that have any permissions 1433 * other than PROT_NONE. 1434 */ 1435 if (vma_is_accessible(vma)) 1436 gup_flags |= FOLL_FORCE; 1437 1438 /* 1439 * We made sure addr is within a VMA, so the following will 1440 * not result in a stack expansion that recurses back here. 1441 */ 1442 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1443 NULL, NULL, locked); 1444 lru_add_drain(); 1445 return ret; 1446 } 1447 1448 /* 1449 * faultin_vma_page_range() - populate (prefault) page tables inside the 1450 * given VMA range readable/writable 1451 * 1452 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1453 * 1454 * @vma: target vma 1455 * @start: start address 1456 * @end: end address 1457 * @write: whether to prefault readable or writable 1458 * @locked: whether the mmap_lock is still held 1459 * 1460 * Returns either number of processed pages in the vma, or a negative error 1461 * code on error (see __get_user_pages()). 1462 * 1463 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1464 * covered by the VMA. 1465 * 1466 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1467 * 1468 * If @locked is non-NULL, it must held for read only and may be released. If 1469 * it's released, *@locked will be set to 0. 1470 */ 1471 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1472 unsigned long end, bool write, int *locked) 1473 { 1474 struct mm_struct *mm = vma->vm_mm; 1475 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1476 int gup_flags; 1477 long ret; 1478 1479 VM_BUG_ON(!PAGE_ALIGNED(start)); 1480 VM_BUG_ON(!PAGE_ALIGNED(end)); 1481 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1482 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1483 mmap_assert_locked(mm); 1484 1485 /* 1486 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1487 * the page dirty with FOLL_WRITE -- which doesn't make a 1488 * difference with !FOLL_FORCE, because the page is writable 1489 * in the page table. 1490 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1491 * a poisoned page. 1492 * !FOLL_FORCE: Require proper access permissions. 1493 */ 1494 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1495 if (write) 1496 gup_flags |= FOLL_WRITE; 1497 1498 /* 1499 * We want to report -EINVAL instead of -EFAULT for any permission 1500 * problems or incompatible mappings. 1501 */ 1502 if (check_vma_flags(vma, gup_flags)) 1503 return -EINVAL; 1504 1505 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1506 NULL, NULL, locked); 1507 lru_add_drain(); 1508 return ret; 1509 } 1510 1511 /* 1512 * __mm_populate - populate and/or mlock pages within a range of address space. 1513 * 1514 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1515 * flags. VMAs must be already marked with the desired vm_flags, and 1516 * mmap_lock must not be held. 1517 */ 1518 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1519 { 1520 struct mm_struct *mm = current->mm; 1521 unsigned long end, nstart, nend; 1522 struct vm_area_struct *vma = NULL; 1523 int locked = 0; 1524 long ret = 0; 1525 1526 end = start + len; 1527 1528 for (nstart = start; nstart < end; nstart = nend) { 1529 /* 1530 * We want to fault in pages for [nstart; end) address range. 1531 * Find first corresponding VMA. 1532 */ 1533 if (!locked) { 1534 locked = 1; 1535 mmap_read_lock(mm); 1536 vma = find_vma(mm, nstart); 1537 } else if (nstart >= vma->vm_end) 1538 vma = vma->vm_next; 1539 if (!vma || vma->vm_start >= end) 1540 break; 1541 /* 1542 * Set [nstart; nend) to intersection of desired address 1543 * range with the first VMA. Also, skip undesirable VMA types. 1544 */ 1545 nend = min(end, vma->vm_end); 1546 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1547 continue; 1548 if (nstart < vma->vm_start) 1549 nstart = vma->vm_start; 1550 /* 1551 * Now fault in a range of pages. populate_vma_page_range() 1552 * double checks the vma flags, so that it won't mlock pages 1553 * if the vma was already munlocked. 1554 */ 1555 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1556 if (ret < 0) { 1557 if (ignore_errors) { 1558 ret = 0; 1559 continue; /* continue at next VMA */ 1560 } 1561 break; 1562 } 1563 nend = nstart + ret * PAGE_SIZE; 1564 ret = 0; 1565 } 1566 if (locked) 1567 mmap_read_unlock(mm); 1568 return ret; /* 0 or negative error code */ 1569 } 1570 #else /* CONFIG_MMU */ 1571 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1572 unsigned long nr_pages, struct page **pages, 1573 struct vm_area_struct **vmas, int *locked, 1574 unsigned int foll_flags) 1575 { 1576 struct vm_area_struct *vma; 1577 unsigned long vm_flags; 1578 long i; 1579 1580 /* calculate required read or write permissions. 1581 * If FOLL_FORCE is set, we only require the "MAY" flags. 1582 */ 1583 vm_flags = (foll_flags & FOLL_WRITE) ? 1584 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1585 vm_flags &= (foll_flags & FOLL_FORCE) ? 1586 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1587 1588 for (i = 0; i < nr_pages; i++) { 1589 vma = find_vma(mm, start); 1590 if (!vma) 1591 goto finish_or_fault; 1592 1593 /* protect what we can, including chardevs */ 1594 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1595 !(vm_flags & vma->vm_flags)) 1596 goto finish_or_fault; 1597 1598 if (pages) { 1599 pages[i] = virt_to_page(start); 1600 if (pages[i]) 1601 get_page(pages[i]); 1602 } 1603 if (vmas) 1604 vmas[i] = vma; 1605 start = (start + PAGE_SIZE) & PAGE_MASK; 1606 } 1607 1608 return i; 1609 1610 finish_or_fault: 1611 return i ? : -EFAULT; 1612 } 1613 #endif /* !CONFIG_MMU */ 1614 1615 /** 1616 * fault_in_writeable - fault in userspace address range for writing 1617 * @uaddr: start of address range 1618 * @size: size of address range 1619 * 1620 * Returns the number of bytes not faulted in (like copy_to_user() and 1621 * copy_from_user()). 1622 */ 1623 size_t fault_in_writeable(char __user *uaddr, size_t size) 1624 { 1625 char __user *start = uaddr, *end; 1626 1627 if (unlikely(size == 0)) 1628 return 0; 1629 if (!user_write_access_begin(uaddr, size)) 1630 return size; 1631 if (!PAGE_ALIGNED(uaddr)) { 1632 unsafe_put_user(0, uaddr, out); 1633 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1634 } 1635 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1636 if (unlikely(end < start)) 1637 end = NULL; 1638 while (uaddr != end) { 1639 unsafe_put_user(0, uaddr, out); 1640 uaddr += PAGE_SIZE; 1641 } 1642 1643 out: 1644 user_write_access_end(); 1645 if (size > uaddr - start) 1646 return size - (uaddr - start); 1647 return 0; 1648 } 1649 EXPORT_SYMBOL(fault_in_writeable); 1650 1651 /* 1652 * fault_in_safe_writeable - fault in an address range for writing 1653 * @uaddr: start of address range 1654 * @size: length of address range 1655 * 1656 * Faults in an address range for writing. This is primarily useful when we 1657 * already know that some or all of the pages in the address range aren't in 1658 * memory. 1659 * 1660 * Unlike fault_in_writeable(), this function is non-destructive. 1661 * 1662 * Note that we don't pin or otherwise hold the pages referenced that we fault 1663 * in. There's no guarantee that they'll stay in memory for any duration of 1664 * time. 1665 * 1666 * Returns the number of bytes not faulted in, like copy_to_user() and 1667 * copy_from_user(). 1668 */ 1669 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1670 { 1671 unsigned long start = (unsigned long)uaddr, end; 1672 struct mm_struct *mm = current->mm; 1673 bool unlocked = false; 1674 1675 if (unlikely(size == 0)) 1676 return 0; 1677 end = PAGE_ALIGN(start + size); 1678 if (end < start) 1679 end = 0; 1680 1681 mmap_read_lock(mm); 1682 do { 1683 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1684 break; 1685 start = (start + PAGE_SIZE) & PAGE_MASK; 1686 } while (start != end); 1687 mmap_read_unlock(mm); 1688 1689 if (size > (unsigned long)uaddr - start) 1690 return size - ((unsigned long)uaddr - start); 1691 return 0; 1692 } 1693 EXPORT_SYMBOL(fault_in_safe_writeable); 1694 1695 /** 1696 * fault_in_readable - fault in userspace address range for reading 1697 * @uaddr: start of user address range 1698 * @size: size of user address range 1699 * 1700 * Returns the number of bytes not faulted in (like copy_to_user() and 1701 * copy_from_user()). 1702 */ 1703 size_t fault_in_readable(const char __user *uaddr, size_t size) 1704 { 1705 const char __user *start = uaddr, *end; 1706 volatile char c; 1707 1708 if (unlikely(size == 0)) 1709 return 0; 1710 if (!user_read_access_begin(uaddr, size)) 1711 return size; 1712 if (!PAGE_ALIGNED(uaddr)) { 1713 unsafe_get_user(c, uaddr, out); 1714 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1715 } 1716 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1717 if (unlikely(end < start)) 1718 end = NULL; 1719 while (uaddr != end) { 1720 unsafe_get_user(c, uaddr, out); 1721 uaddr += PAGE_SIZE; 1722 } 1723 1724 out: 1725 user_read_access_end(); 1726 (void)c; 1727 if (size > uaddr - start) 1728 return size - (uaddr - start); 1729 return 0; 1730 } 1731 EXPORT_SYMBOL(fault_in_readable); 1732 1733 /** 1734 * get_dump_page() - pin user page in memory while writing it to core dump 1735 * @addr: user address 1736 * 1737 * Returns struct page pointer of user page pinned for dump, 1738 * to be freed afterwards by put_page(). 1739 * 1740 * Returns NULL on any kind of failure - a hole must then be inserted into 1741 * the corefile, to preserve alignment with its headers; and also returns 1742 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1743 * allowing a hole to be left in the corefile to save disk space. 1744 * 1745 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1746 */ 1747 #ifdef CONFIG_ELF_CORE 1748 struct page *get_dump_page(unsigned long addr) 1749 { 1750 struct mm_struct *mm = current->mm; 1751 struct page *page; 1752 int locked = 1; 1753 int ret; 1754 1755 if (mmap_read_lock_killable(mm)) 1756 return NULL; 1757 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1758 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1759 if (locked) 1760 mmap_read_unlock(mm); 1761 return (ret == 1) ? page : NULL; 1762 } 1763 #endif /* CONFIG_ELF_CORE */ 1764 1765 #ifdef CONFIG_MIGRATION 1766 /* 1767 * Check whether all pages are pinnable, if so return number of pages. If some 1768 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1769 * pages were migrated, or if some pages were not successfully isolated. 1770 * Return negative error if migration fails. 1771 */ 1772 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1773 struct page **pages, 1774 unsigned int gup_flags) 1775 { 1776 unsigned long isolation_error_count = 0, i; 1777 struct folio *prev_folio = NULL; 1778 LIST_HEAD(movable_page_list); 1779 bool drain_allow = true; 1780 int ret = 0; 1781 1782 for (i = 0; i < nr_pages; i++) { 1783 struct folio *folio = page_folio(pages[i]); 1784 1785 if (folio == prev_folio) 1786 continue; 1787 prev_folio = folio; 1788 1789 if (folio_is_pinnable(folio)) 1790 continue; 1791 1792 /* 1793 * Try to move out any movable page before pinning the range. 1794 */ 1795 if (folio_test_hugetlb(folio)) { 1796 if (!isolate_huge_page(&folio->page, 1797 &movable_page_list)) 1798 isolation_error_count++; 1799 continue; 1800 } 1801 1802 if (!folio_test_lru(folio) && drain_allow) { 1803 lru_add_drain_all(); 1804 drain_allow = false; 1805 } 1806 1807 if (folio_isolate_lru(folio)) { 1808 isolation_error_count++; 1809 continue; 1810 } 1811 list_add_tail(&folio->lru, &movable_page_list); 1812 node_stat_mod_folio(folio, 1813 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1814 folio_nr_pages(folio)); 1815 } 1816 1817 if (!list_empty(&movable_page_list) || isolation_error_count) 1818 goto unpin_pages; 1819 1820 /* 1821 * If list is empty, and no isolation errors, means that all pages are 1822 * in the correct zone. 1823 */ 1824 return nr_pages; 1825 1826 unpin_pages: 1827 if (gup_flags & FOLL_PIN) { 1828 unpin_user_pages(pages, nr_pages); 1829 } else { 1830 for (i = 0; i < nr_pages; i++) 1831 put_page(pages[i]); 1832 } 1833 1834 if (!list_empty(&movable_page_list)) { 1835 struct migration_target_control mtc = { 1836 .nid = NUMA_NO_NODE, 1837 .gfp_mask = GFP_USER | __GFP_NOWARN, 1838 }; 1839 1840 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1841 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1842 MR_LONGTERM_PIN, NULL); 1843 if (ret > 0) /* number of pages not migrated */ 1844 ret = -ENOMEM; 1845 } 1846 1847 if (ret && !list_empty(&movable_page_list)) 1848 putback_movable_pages(&movable_page_list); 1849 return ret; 1850 } 1851 #else 1852 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1853 struct page **pages, 1854 unsigned int gup_flags) 1855 { 1856 return nr_pages; 1857 } 1858 #endif /* CONFIG_MIGRATION */ 1859 1860 /* 1861 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1862 * allows us to process the FOLL_LONGTERM flag. 1863 */ 1864 static long __gup_longterm_locked(struct mm_struct *mm, 1865 unsigned long start, 1866 unsigned long nr_pages, 1867 struct page **pages, 1868 struct vm_area_struct **vmas, 1869 unsigned int gup_flags) 1870 { 1871 unsigned int flags; 1872 long rc; 1873 1874 if (!(gup_flags & FOLL_LONGTERM)) 1875 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1876 NULL, gup_flags); 1877 flags = memalloc_pin_save(); 1878 do { 1879 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1880 NULL, gup_flags); 1881 if (rc <= 0) 1882 break; 1883 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1884 } while (!rc); 1885 memalloc_pin_restore(flags); 1886 1887 return rc; 1888 } 1889 1890 static bool is_valid_gup_flags(unsigned int gup_flags) 1891 { 1892 /* 1893 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1894 * never directly by the caller, so enforce that with an assertion: 1895 */ 1896 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1897 return false; 1898 /* 1899 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1900 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1901 * FOLL_PIN. 1902 */ 1903 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1904 return false; 1905 1906 return true; 1907 } 1908 1909 #ifdef CONFIG_MMU 1910 static long __get_user_pages_remote(struct mm_struct *mm, 1911 unsigned long start, unsigned long nr_pages, 1912 unsigned int gup_flags, struct page **pages, 1913 struct vm_area_struct **vmas, int *locked) 1914 { 1915 /* 1916 * Parts of FOLL_LONGTERM behavior are incompatible with 1917 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1918 * vmas. However, this only comes up if locked is set, and there are 1919 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1920 * allow what we can. 1921 */ 1922 if (gup_flags & FOLL_LONGTERM) { 1923 if (WARN_ON_ONCE(locked)) 1924 return -EINVAL; 1925 /* 1926 * This will check the vmas (even if our vmas arg is NULL) 1927 * and return -ENOTSUPP if DAX isn't allowed in this case: 1928 */ 1929 return __gup_longterm_locked(mm, start, nr_pages, pages, 1930 vmas, gup_flags | FOLL_TOUCH | 1931 FOLL_REMOTE); 1932 } 1933 1934 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1935 locked, 1936 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1937 } 1938 1939 /** 1940 * get_user_pages_remote() - pin user pages in memory 1941 * @mm: mm_struct of target mm 1942 * @start: starting user address 1943 * @nr_pages: number of pages from start to pin 1944 * @gup_flags: flags modifying lookup behaviour 1945 * @pages: array that receives pointers to the pages pinned. 1946 * Should be at least nr_pages long. Or NULL, if caller 1947 * only intends to ensure the pages are faulted in. 1948 * @vmas: array of pointers to vmas corresponding to each page. 1949 * Or NULL if the caller does not require them. 1950 * @locked: pointer to lock flag indicating whether lock is held and 1951 * subsequently whether VM_FAULT_RETRY functionality can be 1952 * utilised. Lock must initially be held. 1953 * 1954 * Returns either number of pages pinned (which may be less than the 1955 * number requested), or an error. Details about the return value: 1956 * 1957 * -- If nr_pages is 0, returns 0. 1958 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1959 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1960 * pages pinned. Again, this may be less than nr_pages. 1961 * 1962 * The caller is responsible for releasing returned @pages, via put_page(). 1963 * 1964 * @vmas are valid only as long as mmap_lock is held. 1965 * 1966 * Must be called with mmap_lock held for read or write. 1967 * 1968 * get_user_pages_remote walks a process's page tables and takes a reference 1969 * to each struct page that each user address corresponds to at a given 1970 * instant. That is, it takes the page that would be accessed if a user 1971 * thread accesses the given user virtual address at that instant. 1972 * 1973 * This does not guarantee that the page exists in the user mappings when 1974 * get_user_pages_remote returns, and there may even be a completely different 1975 * page there in some cases (eg. if mmapped pagecache has been invalidated 1976 * and subsequently re faulted). However it does guarantee that the page 1977 * won't be freed completely. And mostly callers simply care that the page 1978 * contains data that was valid *at some point in time*. Typically, an IO 1979 * or similar operation cannot guarantee anything stronger anyway because 1980 * locks can't be held over the syscall boundary. 1981 * 1982 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1983 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1984 * be called after the page is finished with, and before put_page is called. 1985 * 1986 * get_user_pages_remote is typically used for fewer-copy IO operations, 1987 * to get a handle on the memory by some means other than accesses 1988 * via the user virtual addresses. The pages may be submitted for 1989 * DMA to devices or accessed via their kernel linear mapping (via the 1990 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1991 * 1992 * See also get_user_pages_fast, for performance critical applications. 1993 * 1994 * get_user_pages_remote should be phased out in favor of 1995 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1996 * should use get_user_pages_remote because it cannot pass 1997 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1998 */ 1999 long get_user_pages_remote(struct mm_struct *mm, 2000 unsigned long start, unsigned long nr_pages, 2001 unsigned int gup_flags, struct page **pages, 2002 struct vm_area_struct **vmas, int *locked) 2003 { 2004 if (!is_valid_gup_flags(gup_flags)) 2005 return -EINVAL; 2006 2007 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2008 pages, vmas, locked); 2009 } 2010 EXPORT_SYMBOL(get_user_pages_remote); 2011 2012 #else /* CONFIG_MMU */ 2013 long get_user_pages_remote(struct mm_struct *mm, 2014 unsigned long start, unsigned long nr_pages, 2015 unsigned int gup_flags, struct page **pages, 2016 struct vm_area_struct **vmas, int *locked) 2017 { 2018 return 0; 2019 } 2020 2021 static long __get_user_pages_remote(struct mm_struct *mm, 2022 unsigned long start, unsigned long nr_pages, 2023 unsigned int gup_flags, struct page **pages, 2024 struct vm_area_struct **vmas, int *locked) 2025 { 2026 return 0; 2027 } 2028 #endif /* !CONFIG_MMU */ 2029 2030 /** 2031 * get_user_pages() - pin user pages in memory 2032 * @start: starting user address 2033 * @nr_pages: number of pages from start to pin 2034 * @gup_flags: flags modifying lookup behaviour 2035 * @pages: array that receives pointers to the pages pinned. 2036 * Should be at least nr_pages long. Or NULL, if caller 2037 * only intends to ensure the pages are faulted in. 2038 * @vmas: array of pointers to vmas corresponding to each page. 2039 * Or NULL if the caller does not require them. 2040 * 2041 * This is the same as get_user_pages_remote(), just with a less-flexible 2042 * calling convention where we assume that the mm being operated on belongs to 2043 * the current task, and doesn't allow passing of a locked parameter. We also 2044 * obviously don't pass FOLL_REMOTE in here. 2045 */ 2046 long get_user_pages(unsigned long start, unsigned long nr_pages, 2047 unsigned int gup_flags, struct page **pages, 2048 struct vm_area_struct **vmas) 2049 { 2050 if (!is_valid_gup_flags(gup_flags)) 2051 return -EINVAL; 2052 2053 return __gup_longterm_locked(current->mm, start, nr_pages, 2054 pages, vmas, gup_flags | FOLL_TOUCH); 2055 } 2056 EXPORT_SYMBOL(get_user_pages); 2057 2058 /* 2059 * get_user_pages_unlocked() is suitable to replace the form: 2060 * 2061 * mmap_read_lock(mm); 2062 * get_user_pages(mm, ..., pages, NULL); 2063 * mmap_read_unlock(mm); 2064 * 2065 * with: 2066 * 2067 * get_user_pages_unlocked(mm, ..., pages); 2068 * 2069 * It is functionally equivalent to get_user_pages_fast so 2070 * get_user_pages_fast should be used instead if specific gup_flags 2071 * (e.g. FOLL_FORCE) are not required. 2072 */ 2073 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2074 struct page **pages, unsigned int gup_flags) 2075 { 2076 struct mm_struct *mm = current->mm; 2077 int locked = 1; 2078 long ret; 2079 2080 /* 2081 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2082 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2083 * vmas. As there are no users of this flag in this call we simply 2084 * disallow this option for now. 2085 */ 2086 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2087 return -EINVAL; 2088 2089 mmap_read_lock(mm); 2090 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2091 &locked, gup_flags | FOLL_TOUCH); 2092 if (locked) 2093 mmap_read_unlock(mm); 2094 return ret; 2095 } 2096 EXPORT_SYMBOL(get_user_pages_unlocked); 2097 2098 /* 2099 * Fast GUP 2100 * 2101 * get_user_pages_fast attempts to pin user pages by walking the page 2102 * tables directly and avoids taking locks. Thus the walker needs to be 2103 * protected from page table pages being freed from under it, and should 2104 * block any THP splits. 2105 * 2106 * One way to achieve this is to have the walker disable interrupts, and 2107 * rely on IPIs from the TLB flushing code blocking before the page table 2108 * pages are freed. This is unsuitable for architectures that do not need 2109 * to broadcast an IPI when invalidating TLBs. 2110 * 2111 * Another way to achieve this is to batch up page table containing pages 2112 * belonging to more than one mm_user, then rcu_sched a callback to free those 2113 * pages. Disabling interrupts will allow the fast_gup walker to both block 2114 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2115 * (which is a relatively rare event). The code below adopts this strategy. 2116 * 2117 * Before activating this code, please be aware that the following assumptions 2118 * are currently made: 2119 * 2120 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2121 * free pages containing page tables or TLB flushing requires IPI broadcast. 2122 * 2123 * *) ptes can be read atomically by the architecture. 2124 * 2125 * *) access_ok is sufficient to validate userspace address ranges. 2126 * 2127 * The last two assumptions can be relaxed by the addition of helper functions. 2128 * 2129 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2130 */ 2131 #ifdef CONFIG_HAVE_FAST_GUP 2132 2133 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2134 unsigned int flags, 2135 struct page **pages) 2136 { 2137 while ((*nr) - nr_start) { 2138 struct page *page = pages[--(*nr)]; 2139 2140 ClearPageReferenced(page); 2141 if (flags & FOLL_PIN) 2142 unpin_user_page(page); 2143 else 2144 put_page(page); 2145 } 2146 } 2147 2148 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2149 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2150 unsigned int flags, struct page **pages, int *nr) 2151 { 2152 struct dev_pagemap *pgmap = NULL; 2153 int nr_start = *nr, ret = 0; 2154 pte_t *ptep, *ptem; 2155 2156 ptem = ptep = pte_offset_map(&pmd, addr); 2157 do { 2158 pte_t pte = ptep_get_lockless(ptep); 2159 struct page *page; 2160 struct folio *folio; 2161 2162 /* 2163 * Similar to the PMD case below, NUMA hinting must take slow 2164 * path using the pte_protnone check. 2165 */ 2166 if (pte_protnone(pte)) 2167 goto pte_unmap; 2168 2169 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2170 goto pte_unmap; 2171 2172 if (pte_devmap(pte)) { 2173 if (unlikely(flags & FOLL_LONGTERM)) 2174 goto pte_unmap; 2175 2176 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2177 if (unlikely(!pgmap)) { 2178 undo_dev_pagemap(nr, nr_start, flags, pages); 2179 goto pte_unmap; 2180 } 2181 } else if (pte_special(pte)) 2182 goto pte_unmap; 2183 2184 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2185 page = pte_page(pte); 2186 2187 folio = try_grab_folio(page, 1, flags); 2188 if (!folio) 2189 goto pte_unmap; 2190 2191 if (unlikely(page_is_secretmem(page))) { 2192 gup_put_folio(folio, 1, flags); 2193 goto pte_unmap; 2194 } 2195 2196 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2197 gup_put_folio(folio, 1, flags); 2198 goto pte_unmap; 2199 } 2200 2201 /* 2202 * We need to make the page accessible if and only if we are 2203 * going to access its content (the FOLL_PIN case). Please 2204 * see Documentation/core-api/pin_user_pages.rst for 2205 * details. 2206 */ 2207 if (flags & FOLL_PIN) { 2208 ret = arch_make_page_accessible(page); 2209 if (ret) { 2210 gup_put_folio(folio, 1, flags); 2211 goto pte_unmap; 2212 } 2213 } 2214 folio_set_referenced(folio); 2215 pages[*nr] = page; 2216 (*nr)++; 2217 } while (ptep++, addr += PAGE_SIZE, addr != end); 2218 2219 ret = 1; 2220 2221 pte_unmap: 2222 if (pgmap) 2223 put_dev_pagemap(pgmap); 2224 pte_unmap(ptem); 2225 return ret; 2226 } 2227 #else 2228 2229 /* 2230 * If we can't determine whether or not a pte is special, then fail immediately 2231 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2232 * to be special. 2233 * 2234 * For a futex to be placed on a THP tail page, get_futex_key requires a 2235 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2236 * useful to have gup_huge_pmd even if we can't operate on ptes. 2237 */ 2238 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2239 unsigned int flags, struct page **pages, int *nr) 2240 { 2241 return 0; 2242 } 2243 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2244 2245 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2246 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2247 unsigned long end, unsigned int flags, 2248 struct page **pages, int *nr) 2249 { 2250 int nr_start = *nr; 2251 struct dev_pagemap *pgmap = NULL; 2252 2253 do { 2254 struct page *page = pfn_to_page(pfn); 2255 2256 pgmap = get_dev_pagemap(pfn, pgmap); 2257 if (unlikely(!pgmap)) { 2258 undo_dev_pagemap(nr, nr_start, flags, pages); 2259 break; 2260 } 2261 SetPageReferenced(page); 2262 pages[*nr] = page; 2263 if (unlikely(!try_grab_page(page, flags))) { 2264 undo_dev_pagemap(nr, nr_start, flags, pages); 2265 break; 2266 } 2267 (*nr)++; 2268 pfn++; 2269 } while (addr += PAGE_SIZE, addr != end); 2270 2271 put_dev_pagemap(pgmap); 2272 return addr == end; 2273 } 2274 2275 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2276 unsigned long end, unsigned int flags, 2277 struct page **pages, int *nr) 2278 { 2279 unsigned long fault_pfn; 2280 int nr_start = *nr; 2281 2282 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2283 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2284 return 0; 2285 2286 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2287 undo_dev_pagemap(nr, nr_start, flags, pages); 2288 return 0; 2289 } 2290 return 1; 2291 } 2292 2293 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2294 unsigned long end, unsigned int flags, 2295 struct page **pages, int *nr) 2296 { 2297 unsigned long fault_pfn; 2298 int nr_start = *nr; 2299 2300 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2301 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2302 return 0; 2303 2304 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2305 undo_dev_pagemap(nr, nr_start, flags, pages); 2306 return 0; 2307 } 2308 return 1; 2309 } 2310 #else 2311 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2312 unsigned long end, unsigned int flags, 2313 struct page **pages, int *nr) 2314 { 2315 BUILD_BUG(); 2316 return 0; 2317 } 2318 2319 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2320 unsigned long end, unsigned int flags, 2321 struct page **pages, int *nr) 2322 { 2323 BUILD_BUG(); 2324 return 0; 2325 } 2326 #endif 2327 2328 static int record_subpages(struct page *page, unsigned long addr, 2329 unsigned long end, struct page **pages) 2330 { 2331 int nr; 2332 2333 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2334 pages[nr] = nth_page(page, nr); 2335 2336 return nr; 2337 } 2338 2339 #ifdef CONFIG_ARCH_HAS_HUGEPD 2340 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2341 unsigned long sz) 2342 { 2343 unsigned long __boundary = (addr + sz) & ~(sz-1); 2344 return (__boundary - 1 < end - 1) ? __boundary : end; 2345 } 2346 2347 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2348 unsigned long end, unsigned int flags, 2349 struct page **pages, int *nr) 2350 { 2351 unsigned long pte_end; 2352 struct page *page; 2353 struct folio *folio; 2354 pte_t pte; 2355 int refs; 2356 2357 pte_end = (addr + sz) & ~(sz-1); 2358 if (pte_end < end) 2359 end = pte_end; 2360 2361 pte = huge_ptep_get(ptep); 2362 2363 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2364 return 0; 2365 2366 /* hugepages are never "special" */ 2367 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2368 2369 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2370 refs = record_subpages(page, addr, end, pages + *nr); 2371 2372 folio = try_grab_folio(page, refs, flags); 2373 if (!folio) 2374 return 0; 2375 2376 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2377 gup_put_folio(folio, refs, flags); 2378 return 0; 2379 } 2380 2381 *nr += refs; 2382 folio_set_referenced(folio); 2383 return 1; 2384 } 2385 2386 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2387 unsigned int pdshift, unsigned long end, unsigned int flags, 2388 struct page **pages, int *nr) 2389 { 2390 pte_t *ptep; 2391 unsigned long sz = 1UL << hugepd_shift(hugepd); 2392 unsigned long next; 2393 2394 ptep = hugepte_offset(hugepd, addr, pdshift); 2395 do { 2396 next = hugepte_addr_end(addr, end, sz); 2397 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2398 return 0; 2399 } while (ptep++, addr = next, addr != end); 2400 2401 return 1; 2402 } 2403 #else 2404 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2405 unsigned int pdshift, unsigned long end, unsigned int flags, 2406 struct page **pages, int *nr) 2407 { 2408 return 0; 2409 } 2410 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2411 2412 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2413 unsigned long end, unsigned int flags, 2414 struct page **pages, int *nr) 2415 { 2416 struct page *page; 2417 struct folio *folio; 2418 int refs; 2419 2420 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2421 return 0; 2422 2423 if (pmd_devmap(orig)) { 2424 if (unlikely(flags & FOLL_LONGTERM)) 2425 return 0; 2426 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2427 pages, nr); 2428 } 2429 2430 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2431 refs = record_subpages(page, addr, end, pages + *nr); 2432 2433 folio = try_grab_folio(page, refs, flags); 2434 if (!folio) 2435 return 0; 2436 2437 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2438 gup_put_folio(folio, refs, flags); 2439 return 0; 2440 } 2441 2442 *nr += refs; 2443 folio_set_referenced(folio); 2444 return 1; 2445 } 2446 2447 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2448 unsigned long end, unsigned int flags, 2449 struct page **pages, int *nr) 2450 { 2451 struct page *page; 2452 struct folio *folio; 2453 int refs; 2454 2455 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2456 return 0; 2457 2458 if (pud_devmap(orig)) { 2459 if (unlikely(flags & FOLL_LONGTERM)) 2460 return 0; 2461 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2462 pages, nr); 2463 } 2464 2465 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2466 refs = record_subpages(page, addr, end, pages + *nr); 2467 2468 folio = try_grab_folio(page, refs, flags); 2469 if (!folio) 2470 return 0; 2471 2472 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2473 gup_put_folio(folio, refs, flags); 2474 return 0; 2475 } 2476 2477 *nr += refs; 2478 folio_set_referenced(folio); 2479 return 1; 2480 } 2481 2482 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2483 unsigned long end, unsigned int flags, 2484 struct page **pages, int *nr) 2485 { 2486 int refs; 2487 struct page *page; 2488 struct folio *folio; 2489 2490 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2491 return 0; 2492 2493 BUILD_BUG_ON(pgd_devmap(orig)); 2494 2495 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2496 refs = record_subpages(page, addr, end, pages + *nr); 2497 2498 folio = try_grab_folio(page, refs, flags); 2499 if (!folio) 2500 return 0; 2501 2502 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2503 gup_put_folio(folio, refs, flags); 2504 return 0; 2505 } 2506 2507 *nr += refs; 2508 folio_set_referenced(folio); 2509 return 1; 2510 } 2511 2512 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2513 unsigned int flags, struct page **pages, int *nr) 2514 { 2515 unsigned long next; 2516 pmd_t *pmdp; 2517 2518 pmdp = pmd_offset_lockless(pudp, pud, addr); 2519 do { 2520 pmd_t pmd = READ_ONCE(*pmdp); 2521 2522 next = pmd_addr_end(addr, end); 2523 if (!pmd_present(pmd)) 2524 return 0; 2525 2526 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2527 pmd_devmap(pmd))) { 2528 /* 2529 * NUMA hinting faults need to be handled in the GUP 2530 * slowpath for accounting purposes and so that they 2531 * can be serialised against THP migration. 2532 */ 2533 if (pmd_protnone(pmd)) 2534 return 0; 2535 2536 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2537 pages, nr)) 2538 return 0; 2539 2540 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2541 /* 2542 * architecture have different format for hugetlbfs 2543 * pmd format and THP pmd format 2544 */ 2545 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2546 PMD_SHIFT, next, flags, pages, nr)) 2547 return 0; 2548 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2549 return 0; 2550 } while (pmdp++, addr = next, addr != end); 2551 2552 return 1; 2553 } 2554 2555 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2556 unsigned int flags, struct page **pages, int *nr) 2557 { 2558 unsigned long next; 2559 pud_t *pudp; 2560 2561 pudp = pud_offset_lockless(p4dp, p4d, addr); 2562 do { 2563 pud_t pud = READ_ONCE(*pudp); 2564 2565 next = pud_addr_end(addr, end); 2566 if (unlikely(!pud_present(pud))) 2567 return 0; 2568 if (unlikely(pud_huge(pud))) { 2569 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2570 pages, nr)) 2571 return 0; 2572 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2573 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2574 PUD_SHIFT, next, flags, pages, nr)) 2575 return 0; 2576 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2577 return 0; 2578 } while (pudp++, addr = next, addr != end); 2579 2580 return 1; 2581 } 2582 2583 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2584 unsigned int flags, struct page **pages, int *nr) 2585 { 2586 unsigned long next; 2587 p4d_t *p4dp; 2588 2589 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2590 do { 2591 p4d_t p4d = READ_ONCE(*p4dp); 2592 2593 next = p4d_addr_end(addr, end); 2594 if (p4d_none(p4d)) 2595 return 0; 2596 BUILD_BUG_ON(p4d_huge(p4d)); 2597 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2598 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2599 P4D_SHIFT, next, flags, pages, nr)) 2600 return 0; 2601 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2602 return 0; 2603 } while (p4dp++, addr = next, addr != end); 2604 2605 return 1; 2606 } 2607 2608 static void gup_pgd_range(unsigned long addr, unsigned long end, 2609 unsigned int flags, struct page **pages, int *nr) 2610 { 2611 unsigned long next; 2612 pgd_t *pgdp; 2613 2614 pgdp = pgd_offset(current->mm, addr); 2615 do { 2616 pgd_t pgd = READ_ONCE(*pgdp); 2617 2618 next = pgd_addr_end(addr, end); 2619 if (pgd_none(pgd)) 2620 return; 2621 if (unlikely(pgd_huge(pgd))) { 2622 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2623 pages, nr)) 2624 return; 2625 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2626 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2627 PGDIR_SHIFT, next, flags, pages, nr)) 2628 return; 2629 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2630 return; 2631 } while (pgdp++, addr = next, addr != end); 2632 } 2633 #else 2634 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2635 unsigned int flags, struct page **pages, int *nr) 2636 { 2637 } 2638 #endif /* CONFIG_HAVE_FAST_GUP */ 2639 2640 #ifndef gup_fast_permitted 2641 /* 2642 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2643 * we need to fall back to the slow version: 2644 */ 2645 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2646 { 2647 return true; 2648 } 2649 #endif 2650 2651 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2652 unsigned int gup_flags, struct page **pages) 2653 { 2654 int ret; 2655 2656 /* 2657 * FIXME: FOLL_LONGTERM does not work with 2658 * get_user_pages_unlocked() (see comments in that function) 2659 */ 2660 if (gup_flags & FOLL_LONGTERM) { 2661 mmap_read_lock(current->mm); 2662 ret = __gup_longterm_locked(current->mm, 2663 start, nr_pages, 2664 pages, NULL, gup_flags); 2665 mmap_read_unlock(current->mm); 2666 } else { 2667 ret = get_user_pages_unlocked(start, nr_pages, 2668 pages, gup_flags); 2669 } 2670 2671 return ret; 2672 } 2673 2674 static unsigned long lockless_pages_from_mm(unsigned long start, 2675 unsigned long end, 2676 unsigned int gup_flags, 2677 struct page **pages) 2678 { 2679 unsigned long flags; 2680 int nr_pinned = 0; 2681 unsigned seq; 2682 2683 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2684 !gup_fast_permitted(start, end)) 2685 return 0; 2686 2687 if (gup_flags & FOLL_PIN) { 2688 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2689 if (seq & 1) 2690 return 0; 2691 } 2692 2693 /* 2694 * Disable interrupts. The nested form is used, in order to allow full, 2695 * general purpose use of this routine. 2696 * 2697 * With interrupts disabled, we block page table pages from being freed 2698 * from under us. See struct mmu_table_batch comments in 2699 * include/asm-generic/tlb.h for more details. 2700 * 2701 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2702 * that come from THPs splitting. 2703 */ 2704 local_irq_save(flags); 2705 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2706 local_irq_restore(flags); 2707 2708 /* 2709 * When pinning pages for DMA there could be a concurrent write protect 2710 * from fork() via copy_page_range(), in this case always fail fast GUP. 2711 */ 2712 if (gup_flags & FOLL_PIN) { 2713 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2714 unpin_user_pages(pages, nr_pinned); 2715 return 0; 2716 } 2717 } 2718 return nr_pinned; 2719 } 2720 2721 static int internal_get_user_pages_fast(unsigned long start, 2722 unsigned long nr_pages, 2723 unsigned int gup_flags, 2724 struct page **pages) 2725 { 2726 unsigned long len, end; 2727 unsigned long nr_pinned; 2728 int ret; 2729 2730 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2731 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2732 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2733 return -EINVAL; 2734 2735 if (gup_flags & FOLL_PIN) 2736 mm_set_has_pinned_flag(¤t->mm->flags); 2737 2738 if (!(gup_flags & FOLL_FAST_ONLY)) 2739 might_lock_read(¤t->mm->mmap_lock); 2740 2741 start = untagged_addr(start) & PAGE_MASK; 2742 len = nr_pages << PAGE_SHIFT; 2743 if (check_add_overflow(start, len, &end)) 2744 return 0; 2745 if (unlikely(!access_ok((void __user *)start, len))) 2746 return -EFAULT; 2747 2748 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2749 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2750 return nr_pinned; 2751 2752 /* Slow path: try to get the remaining pages with get_user_pages */ 2753 start += nr_pinned << PAGE_SHIFT; 2754 pages += nr_pinned; 2755 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2756 pages); 2757 if (ret < 0) { 2758 /* 2759 * The caller has to unpin the pages we already pinned so 2760 * returning -errno is not an option 2761 */ 2762 if (nr_pinned) 2763 return nr_pinned; 2764 return ret; 2765 } 2766 return ret + nr_pinned; 2767 } 2768 2769 /** 2770 * get_user_pages_fast_only() - pin user pages in memory 2771 * @start: starting user address 2772 * @nr_pages: number of pages from start to pin 2773 * @gup_flags: flags modifying pin behaviour 2774 * @pages: array that receives pointers to the pages pinned. 2775 * Should be at least nr_pages long. 2776 * 2777 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2778 * the regular GUP. 2779 * Note a difference with get_user_pages_fast: this always returns the 2780 * number of pages pinned, 0 if no pages were pinned. 2781 * 2782 * If the architecture does not support this function, simply return with no 2783 * pages pinned. 2784 * 2785 * Careful, careful! COW breaking can go either way, so a non-write 2786 * access can get ambiguous page results. If you call this function without 2787 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2788 */ 2789 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2790 unsigned int gup_flags, struct page **pages) 2791 { 2792 int nr_pinned; 2793 /* 2794 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2795 * because gup fast is always a "pin with a +1 page refcount" request. 2796 * 2797 * FOLL_FAST_ONLY is required in order to match the API description of 2798 * this routine: no fall back to regular ("slow") GUP. 2799 */ 2800 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2801 2802 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2803 pages); 2804 2805 /* 2806 * As specified in the API description above, this routine is not 2807 * allowed to return negative values. However, the common core 2808 * routine internal_get_user_pages_fast() *can* return -errno. 2809 * Therefore, correct for that here: 2810 */ 2811 if (nr_pinned < 0) 2812 nr_pinned = 0; 2813 2814 return nr_pinned; 2815 } 2816 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2817 2818 /** 2819 * get_user_pages_fast() - pin user pages in memory 2820 * @start: starting user address 2821 * @nr_pages: number of pages from start to pin 2822 * @gup_flags: flags modifying pin behaviour 2823 * @pages: array that receives pointers to the pages pinned. 2824 * Should be at least nr_pages long. 2825 * 2826 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2827 * If not successful, it will fall back to taking the lock and 2828 * calling get_user_pages(). 2829 * 2830 * Returns number of pages pinned. This may be fewer than the number requested. 2831 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2832 * -errno. 2833 */ 2834 int get_user_pages_fast(unsigned long start, int nr_pages, 2835 unsigned int gup_flags, struct page **pages) 2836 { 2837 if (!is_valid_gup_flags(gup_flags)) 2838 return -EINVAL; 2839 2840 /* 2841 * The caller may or may not have explicitly set FOLL_GET; either way is 2842 * OK. However, internally (within mm/gup.c), gup fast variants must set 2843 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2844 * request. 2845 */ 2846 gup_flags |= FOLL_GET; 2847 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2848 } 2849 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2850 2851 /** 2852 * pin_user_pages_fast() - pin user pages in memory without taking locks 2853 * 2854 * @start: starting user address 2855 * @nr_pages: number of pages from start to pin 2856 * @gup_flags: flags modifying pin behaviour 2857 * @pages: array that receives pointers to the pages pinned. 2858 * Should be at least nr_pages long. 2859 * 2860 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2861 * get_user_pages_fast() for documentation on the function arguments, because 2862 * the arguments here are identical. 2863 * 2864 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2865 * see Documentation/core-api/pin_user_pages.rst for further details. 2866 */ 2867 int pin_user_pages_fast(unsigned long start, int nr_pages, 2868 unsigned int gup_flags, struct page **pages) 2869 { 2870 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2871 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2872 return -EINVAL; 2873 2874 gup_flags |= FOLL_PIN; 2875 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2876 } 2877 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2878 2879 /* 2880 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2881 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2882 * 2883 * The API rules are the same, too: no negative values may be returned. 2884 */ 2885 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2886 unsigned int gup_flags, struct page **pages) 2887 { 2888 int nr_pinned; 2889 2890 /* 2891 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2892 * rules require returning 0, rather than -errno: 2893 */ 2894 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2895 return 0; 2896 /* 2897 * FOLL_FAST_ONLY is required in order to match the API description of 2898 * this routine: no fall back to regular ("slow") GUP. 2899 */ 2900 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2901 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2902 pages); 2903 /* 2904 * This routine is not allowed to return negative values. However, 2905 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2906 * correct for that here: 2907 */ 2908 if (nr_pinned < 0) 2909 nr_pinned = 0; 2910 2911 return nr_pinned; 2912 } 2913 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2914 2915 /** 2916 * pin_user_pages_remote() - pin pages of a remote process 2917 * 2918 * @mm: mm_struct of target mm 2919 * @start: starting user address 2920 * @nr_pages: number of pages from start to pin 2921 * @gup_flags: flags modifying lookup behaviour 2922 * @pages: array that receives pointers to the pages pinned. 2923 * Should be at least nr_pages long. Or NULL, if caller 2924 * only intends to ensure the pages are faulted in. 2925 * @vmas: array of pointers to vmas corresponding to each page. 2926 * Or NULL if the caller does not require them. 2927 * @locked: pointer to lock flag indicating whether lock is held and 2928 * subsequently whether VM_FAULT_RETRY functionality can be 2929 * utilised. Lock must initially be held. 2930 * 2931 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2932 * get_user_pages_remote() for documentation on the function arguments, because 2933 * the arguments here are identical. 2934 * 2935 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2936 * see Documentation/core-api/pin_user_pages.rst for details. 2937 */ 2938 long pin_user_pages_remote(struct mm_struct *mm, 2939 unsigned long start, unsigned long nr_pages, 2940 unsigned int gup_flags, struct page **pages, 2941 struct vm_area_struct **vmas, int *locked) 2942 { 2943 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2944 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2945 return -EINVAL; 2946 2947 gup_flags |= FOLL_PIN; 2948 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2949 pages, vmas, locked); 2950 } 2951 EXPORT_SYMBOL(pin_user_pages_remote); 2952 2953 /** 2954 * pin_user_pages() - pin user pages in memory for use by other devices 2955 * 2956 * @start: starting user address 2957 * @nr_pages: number of pages from start to pin 2958 * @gup_flags: flags modifying lookup behaviour 2959 * @pages: array that receives pointers to the pages pinned. 2960 * Should be at least nr_pages long. Or NULL, if caller 2961 * only intends to ensure the pages are faulted in. 2962 * @vmas: array of pointers to vmas corresponding to each page. 2963 * Or NULL if the caller does not require them. 2964 * 2965 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2966 * FOLL_PIN is set. 2967 * 2968 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2969 * see Documentation/core-api/pin_user_pages.rst for details. 2970 */ 2971 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2972 unsigned int gup_flags, struct page **pages, 2973 struct vm_area_struct **vmas) 2974 { 2975 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2976 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2977 return -EINVAL; 2978 2979 gup_flags |= FOLL_PIN; 2980 return __gup_longterm_locked(current->mm, start, nr_pages, 2981 pages, vmas, gup_flags); 2982 } 2983 EXPORT_SYMBOL(pin_user_pages); 2984 2985 /* 2986 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2987 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2988 * FOLL_PIN and rejects FOLL_GET. 2989 */ 2990 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2991 struct page **pages, unsigned int gup_flags) 2992 { 2993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2994 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2995 return -EINVAL; 2996 2997 gup_flags |= FOLL_PIN; 2998 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2999 } 3000 EXPORT_SYMBOL(pin_user_pages_unlocked); 3001