xref: /openbmc/linux/mm/gup.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /*
49  * Return the compound head page with ref appropriately incremented,
50  * or NULL if that failed.
51  */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 	struct page *head = compound_head(page);
55 
56 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 		return NULL;
58 	if (unlikely(!page_cache_add_speculative(head, refs)))
59 		return NULL;
60 	return head;
61 }
62 
63 /*
64  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65  * flags-dependent amount.
66  *
67  * "grab" names in this file mean, "look at flags to decide whether to use
68  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69  *
70  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71  * same time. (That's true throughout the get_user_pages*() and
72  * pin_user_pages*() APIs.) Cases:
73  *
74  *    FOLL_GET: page's refcount will be incremented by 1.
75  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76  *
77  * Return: head page (with refcount appropriately incremented) for success, or
78  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79  * considered failure, and furthermore, a likely bug in the caller, so a warning
80  * is also emitted.
81  */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 							  int refs,
84 							  unsigned int flags)
85 {
86 	if (flags & FOLL_GET)
87 		return try_get_compound_head(page, refs);
88 	else if (flags & FOLL_PIN) {
89 		int orig_refs = refs;
90 
91 		/*
92 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 		 * path, so fail and let the caller fall back to the slow path.
94 		 */
95 		if (unlikely(flags & FOLL_LONGTERM) &&
96 				is_migrate_cma_page(page))
97 			return NULL;
98 
99 		/*
100 		 * When pinning a compound page of order > 1 (which is what
101 		 * hpage_pincount_available() checks for), use an exact count to
102 		 * track it, via hpage_pincount_add/_sub().
103 		 *
104 		 * However, be sure to *also* increment the normal page refcount
105 		 * field at least once, so that the page really is pinned.
106 		 */
107 		if (!hpage_pincount_available(page))
108 			refs *= GUP_PIN_COUNTING_BIAS;
109 
110 		page = try_get_compound_head(page, refs);
111 		if (!page)
112 			return NULL;
113 
114 		if (hpage_pincount_available(page))
115 			hpage_pincount_add(page, refs);
116 
117 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 				    orig_refs);
119 
120 		return page;
121 	}
122 
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 /**
128  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129  *
130  * This might not do anything at all, depending on the flags argument.
131  *
132  * "grab" names in this file mean, "look at flags to decide whether to use
133  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134  *
135  * @page:    pointer to page to be grabbed
136  * @flags:   gup flags: these are the FOLL_* flag values.
137  *
138  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139  * time. Cases:
140  *
141  *    FOLL_GET: page's refcount will be incremented by 1.
142  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143  *
144  * Return: true for success, or if no action was required (if neither FOLL_PIN
145  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146  * FOLL_PIN was set, but the page could not be grabbed.
147  */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 
152 	if (flags & FOLL_GET)
153 		return try_get_page(page);
154 	else if (flags & FOLL_PIN) {
155 		int refs = 1;
156 
157 		page = compound_head(page);
158 
159 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 			return false;
161 
162 		if (hpage_pincount_available(page))
163 			hpage_pincount_add(page, 1);
164 		else
165 			refs = GUP_PIN_COUNTING_BIAS;
166 
167 		/*
168 		 * Similar to try_grab_compound_head(): even if using the
169 		 * hpage_pincount_add/_sub() routines, be sure to
170 		 * *also* increment the normal page refcount field at least
171 		 * once, so that the page really is pinned.
172 		 */
173 		page_ref_add(page, refs);
174 
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 	}
177 
178 	return true;
179 }
180 
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 	int count, refs = 1;
185 
186 	if (!page_is_devmap_managed(page))
187 		return false;
188 
189 	if (hpage_pincount_available(page))
190 		hpage_pincount_sub(page, 1);
191 	else
192 		refs = GUP_PIN_COUNTING_BIAS;
193 
194 	count = page_ref_sub_return(page, refs);
195 
196 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 	/*
198 	 * devmap page refcounts are 1-based, rather than 0-based: if
199 	 * refcount is 1, then the page is free and the refcount is
200 	 * stable because nobody holds a reference on the page.
201 	 */
202 	if (count == 1)
203 		free_devmap_managed_page(page);
204 	else if (!count)
205 		__put_page(page);
206 
207 	return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 	return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215 
216 /**
217  * unpin_user_page() - release a dma-pinned page
218  * @page:            pointer to page to be released
219  *
220  * Pages that were pinned via pin_user_pages*() must be released via either
221  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222  * that such pages can be separately tracked and uniquely handled. In
223  * particular, interactions with RDMA and filesystems need special handling.
224  */
225 void unpin_user_page(struct page *page)
226 {
227 	int refs = 1;
228 
229 	page = compound_head(page);
230 
231 	/*
232 	 * For devmap managed pages we need to catch refcount transition from
233 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 	 * page is free and we need to inform the device driver through
235 	 * callback. See include/linux/memremap.h and HMM for details.
236 	 */
237 	if (__unpin_devmap_managed_user_page(page))
238 		return;
239 
240 	if (hpage_pincount_available(page))
241 		hpage_pincount_sub(page, 1);
242 	else
243 		refs = GUP_PIN_COUNTING_BIAS;
244 
245 	if (page_ref_sub_and_test(page, refs))
246 		__put_page(page);
247 
248 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251 
252 /**
253  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254  * @pages:  array of pages to be maybe marked dirty, and definitely released.
255  * @npages: number of pages in the @pages array.
256  * @make_dirty: whether to mark the pages dirty
257  *
258  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259  * variants called on that page.
260  *
261  * For each page in the @pages array, make that page (or its head page, if a
262  * compound page) dirty, if @make_dirty is true, and if the page was previously
263  * listed as clean. In any case, releases all pages using unpin_user_page(),
264  * possibly via unpin_user_pages(), for the non-dirty case.
265  *
266  * Please see the unpin_user_page() documentation for details.
267  *
268  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269  * required, then the caller should a) verify that this is really correct,
270  * because _lock() is usually required, and b) hand code it:
271  * set_page_dirty_lock(), unpin_user_page().
272  *
273  */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 				 bool make_dirty)
276 {
277 	unsigned long index;
278 
279 	/*
280 	 * TODO: this can be optimized for huge pages: if a series of pages is
281 	 * physically contiguous and part of the same compound page, then a
282 	 * single operation to the head page should suffice.
283 	 */
284 
285 	if (!make_dirty) {
286 		unpin_user_pages(pages, npages);
287 		return;
288 	}
289 
290 	for (index = 0; index < npages; index++) {
291 		struct page *page = compound_head(pages[index]);
292 		/*
293 		 * Checking PageDirty at this point may race with
294 		 * clear_page_dirty_for_io(), but that's OK. Two key
295 		 * cases:
296 		 *
297 		 * 1) This code sees the page as already dirty, so it
298 		 * skips the call to set_page_dirty(). That could happen
299 		 * because clear_page_dirty_for_io() called
300 		 * page_mkclean(), followed by set_page_dirty().
301 		 * However, now the page is going to get written back,
302 		 * which meets the original intention of setting it
303 		 * dirty, so all is well: clear_page_dirty_for_io() goes
304 		 * on to call TestClearPageDirty(), and write the page
305 		 * back.
306 		 *
307 		 * 2) This code sees the page as clean, so it calls
308 		 * set_page_dirty(). The page stays dirty, despite being
309 		 * written back, so it gets written back again in the
310 		 * next writeback cycle. This is harmless.
311 		 */
312 		if (!PageDirty(page))
313 			set_page_dirty_lock(page);
314 		unpin_user_page(page);
315 	}
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 
319 /**
320  * unpin_user_pages() - release an array of gup-pinned pages.
321  * @pages:  array of pages to be marked dirty and released.
322  * @npages: number of pages in the @pages array.
323  *
324  * For each page in the @pages array, release the page using unpin_user_page().
325  *
326  * Please see the unpin_user_page() documentation for details.
327  */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 	unsigned long index;
331 
332 	/*
333 	 * TODO: this can be optimized for huge pages: if a series of pages is
334 	 * physically contiguous and part of the same compound page, then a
335 	 * single operation to the head page should suffice.
336 	 */
337 	for (index = 0; index < npages; index++)
338 		unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341 
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 		unsigned int flags)
345 {
346 	/*
347 	 * When core dumping an enormous anonymous area that nobody
348 	 * has touched so far, we don't want to allocate unnecessary pages or
349 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
350 	 * then get_dump_page() will return NULL to leave a hole in the dump.
351 	 * But we can only make this optimization where a hole would surely
352 	 * be zero-filled if handle_mm_fault() actually did handle it.
353 	 */
354 	if ((flags & FOLL_DUMP) &&
355 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 		return ERR_PTR(-EFAULT);
357 	return NULL;
358 }
359 
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 		pte_t *pte, unsigned int flags)
362 {
363 	/* No page to get reference */
364 	if (flags & FOLL_GET)
365 		return -EFAULT;
366 
367 	if (flags & FOLL_TOUCH) {
368 		pte_t entry = *pte;
369 
370 		if (flags & FOLL_WRITE)
371 			entry = pte_mkdirty(entry);
372 		entry = pte_mkyoung(entry);
373 
374 		if (!pte_same(*pte, entry)) {
375 			set_pte_at(vma->vm_mm, address, pte, entry);
376 			update_mmu_cache(vma, address, pte);
377 		}
378 	}
379 
380 	/* Proper page table entry exists, but no corresponding struct page */
381 	return -EEXIST;
382 }
383 
384 /*
385  * FOLL_FORCE can write to even unwritable pte's, but only
386  * after we've gone through a COW cycle and they are dirty.
387  */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 	return pte_write(pte) ||
391 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
392 }
393 
394 static struct page *follow_page_pte(struct vm_area_struct *vma,
395 		unsigned long address, pmd_t *pmd, unsigned int flags,
396 		struct dev_pagemap **pgmap)
397 {
398 	struct mm_struct *mm = vma->vm_mm;
399 	struct page *page;
400 	spinlock_t *ptl;
401 	pte_t *ptep, pte;
402 	int ret;
403 
404 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
405 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
406 			 (FOLL_PIN | FOLL_GET)))
407 		return ERR_PTR(-EINVAL);
408 retry:
409 	if (unlikely(pmd_bad(*pmd)))
410 		return no_page_table(vma, flags);
411 
412 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
413 	pte = *ptep;
414 	if (!pte_present(pte)) {
415 		swp_entry_t entry;
416 		/*
417 		 * KSM's break_ksm() relies upon recognizing a ksm page
418 		 * even while it is being migrated, so for that case we
419 		 * need migration_entry_wait().
420 		 */
421 		if (likely(!(flags & FOLL_MIGRATION)))
422 			goto no_page;
423 		if (pte_none(pte))
424 			goto no_page;
425 		entry = pte_to_swp_entry(pte);
426 		if (!is_migration_entry(entry))
427 			goto no_page;
428 		pte_unmap_unlock(ptep, ptl);
429 		migration_entry_wait(mm, pmd, address);
430 		goto retry;
431 	}
432 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
433 		goto no_page;
434 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
435 		pte_unmap_unlock(ptep, ptl);
436 		return NULL;
437 	}
438 
439 	page = vm_normal_page(vma, address, pte);
440 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
441 		/*
442 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
443 		 * case since they are only valid while holding the pgmap
444 		 * reference.
445 		 */
446 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
447 		if (*pgmap)
448 			page = pte_page(pte);
449 		else
450 			goto no_page;
451 	} else if (unlikely(!page)) {
452 		if (flags & FOLL_DUMP) {
453 			/* Avoid special (like zero) pages in core dumps */
454 			page = ERR_PTR(-EFAULT);
455 			goto out;
456 		}
457 
458 		if (is_zero_pfn(pte_pfn(pte))) {
459 			page = pte_page(pte);
460 		} else {
461 			ret = follow_pfn_pte(vma, address, ptep, flags);
462 			page = ERR_PTR(ret);
463 			goto out;
464 		}
465 	}
466 
467 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
468 		get_page(page);
469 		pte_unmap_unlock(ptep, ptl);
470 		lock_page(page);
471 		ret = split_huge_page(page);
472 		unlock_page(page);
473 		put_page(page);
474 		if (ret)
475 			return ERR_PTR(ret);
476 		goto retry;
477 	}
478 
479 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
480 	if (unlikely(!try_grab_page(page, flags))) {
481 		page = ERR_PTR(-ENOMEM);
482 		goto out;
483 	}
484 	/*
485 	 * We need to make the page accessible if and only if we are going
486 	 * to access its content (the FOLL_PIN case).  Please see
487 	 * Documentation/core-api/pin_user_pages.rst for details.
488 	 */
489 	if (flags & FOLL_PIN) {
490 		ret = arch_make_page_accessible(page);
491 		if (ret) {
492 			unpin_user_page(page);
493 			page = ERR_PTR(ret);
494 			goto out;
495 		}
496 	}
497 	if (flags & FOLL_TOUCH) {
498 		if ((flags & FOLL_WRITE) &&
499 		    !pte_dirty(pte) && !PageDirty(page))
500 			set_page_dirty(page);
501 		/*
502 		 * pte_mkyoung() would be more correct here, but atomic care
503 		 * is needed to avoid losing the dirty bit: it is easier to use
504 		 * mark_page_accessed().
505 		 */
506 		mark_page_accessed(page);
507 	}
508 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
509 		/* Do not mlock pte-mapped THP */
510 		if (PageTransCompound(page))
511 			goto out;
512 
513 		/*
514 		 * The preliminary mapping check is mainly to avoid the
515 		 * pointless overhead of lock_page on the ZERO_PAGE
516 		 * which might bounce very badly if there is contention.
517 		 *
518 		 * If the page is already locked, we don't need to
519 		 * handle it now - vmscan will handle it later if and
520 		 * when it attempts to reclaim the page.
521 		 */
522 		if (page->mapping && trylock_page(page)) {
523 			lru_add_drain();  /* push cached pages to LRU */
524 			/*
525 			 * Because we lock page here, and migration is
526 			 * blocked by the pte's page reference, and we
527 			 * know the page is still mapped, we don't even
528 			 * need to check for file-cache page truncation.
529 			 */
530 			mlock_vma_page(page);
531 			unlock_page(page);
532 		}
533 	}
534 out:
535 	pte_unmap_unlock(ptep, ptl);
536 	return page;
537 no_page:
538 	pte_unmap_unlock(ptep, ptl);
539 	if (!pte_none(pte))
540 		return NULL;
541 	return no_page_table(vma, flags);
542 }
543 
544 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
545 				    unsigned long address, pud_t *pudp,
546 				    unsigned int flags,
547 				    struct follow_page_context *ctx)
548 {
549 	pmd_t *pmd, pmdval;
550 	spinlock_t *ptl;
551 	struct page *page;
552 	struct mm_struct *mm = vma->vm_mm;
553 
554 	pmd = pmd_offset(pudp, address);
555 	/*
556 	 * The READ_ONCE() will stabilize the pmdval in a register or
557 	 * on the stack so that it will stop changing under the code.
558 	 */
559 	pmdval = READ_ONCE(*pmd);
560 	if (pmd_none(pmdval))
561 		return no_page_table(vma, flags);
562 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
563 		page = follow_huge_pmd(mm, address, pmd, flags);
564 		if (page)
565 			return page;
566 		return no_page_table(vma, flags);
567 	}
568 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
569 		page = follow_huge_pd(vma, address,
570 				      __hugepd(pmd_val(pmdval)), flags,
571 				      PMD_SHIFT);
572 		if (page)
573 			return page;
574 		return no_page_table(vma, flags);
575 	}
576 retry:
577 	if (!pmd_present(pmdval)) {
578 		if (likely(!(flags & FOLL_MIGRATION)))
579 			return no_page_table(vma, flags);
580 		VM_BUG_ON(thp_migration_supported() &&
581 				  !is_pmd_migration_entry(pmdval));
582 		if (is_pmd_migration_entry(pmdval))
583 			pmd_migration_entry_wait(mm, pmd);
584 		pmdval = READ_ONCE(*pmd);
585 		/*
586 		 * MADV_DONTNEED may convert the pmd to null because
587 		 * mmap_sem is held in read mode
588 		 */
589 		if (pmd_none(pmdval))
590 			return no_page_table(vma, flags);
591 		goto retry;
592 	}
593 	if (pmd_devmap(pmdval)) {
594 		ptl = pmd_lock(mm, pmd);
595 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
596 		spin_unlock(ptl);
597 		if (page)
598 			return page;
599 	}
600 	if (likely(!pmd_trans_huge(pmdval)))
601 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
602 
603 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
604 		return no_page_table(vma, flags);
605 
606 retry_locked:
607 	ptl = pmd_lock(mm, pmd);
608 	if (unlikely(pmd_none(*pmd))) {
609 		spin_unlock(ptl);
610 		return no_page_table(vma, flags);
611 	}
612 	if (unlikely(!pmd_present(*pmd))) {
613 		spin_unlock(ptl);
614 		if (likely(!(flags & FOLL_MIGRATION)))
615 			return no_page_table(vma, flags);
616 		pmd_migration_entry_wait(mm, pmd);
617 		goto retry_locked;
618 	}
619 	if (unlikely(!pmd_trans_huge(*pmd))) {
620 		spin_unlock(ptl);
621 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
622 	}
623 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
624 		int ret;
625 		page = pmd_page(*pmd);
626 		if (is_huge_zero_page(page)) {
627 			spin_unlock(ptl);
628 			ret = 0;
629 			split_huge_pmd(vma, pmd, address);
630 			if (pmd_trans_unstable(pmd))
631 				ret = -EBUSY;
632 		} else if (flags & FOLL_SPLIT) {
633 			if (unlikely(!try_get_page(page))) {
634 				spin_unlock(ptl);
635 				return ERR_PTR(-ENOMEM);
636 			}
637 			spin_unlock(ptl);
638 			lock_page(page);
639 			ret = split_huge_page(page);
640 			unlock_page(page);
641 			put_page(page);
642 			if (pmd_none(*pmd))
643 				return no_page_table(vma, flags);
644 		} else {  /* flags & FOLL_SPLIT_PMD */
645 			spin_unlock(ptl);
646 			split_huge_pmd(vma, pmd, address);
647 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
648 		}
649 
650 		return ret ? ERR_PTR(ret) :
651 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
652 	}
653 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
654 	spin_unlock(ptl);
655 	ctx->page_mask = HPAGE_PMD_NR - 1;
656 	return page;
657 }
658 
659 static struct page *follow_pud_mask(struct vm_area_struct *vma,
660 				    unsigned long address, p4d_t *p4dp,
661 				    unsigned int flags,
662 				    struct follow_page_context *ctx)
663 {
664 	pud_t *pud;
665 	spinlock_t *ptl;
666 	struct page *page;
667 	struct mm_struct *mm = vma->vm_mm;
668 
669 	pud = pud_offset(p4dp, address);
670 	if (pud_none(*pud))
671 		return no_page_table(vma, flags);
672 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
673 		page = follow_huge_pud(mm, address, pud, flags);
674 		if (page)
675 			return page;
676 		return no_page_table(vma, flags);
677 	}
678 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
679 		page = follow_huge_pd(vma, address,
680 				      __hugepd(pud_val(*pud)), flags,
681 				      PUD_SHIFT);
682 		if (page)
683 			return page;
684 		return no_page_table(vma, flags);
685 	}
686 	if (pud_devmap(*pud)) {
687 		ptl = pud_lock(mm, pud);
688 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
689 		spin_unlock(ptl);
690 		if (page)
691 			return page;
692 	}
693 	if (unlikely(pud_bad(*pud)))
694 		return no_page_table(vma, flags);
695 
696 	return follow_pmd_mask(vma, address, pud, flags, ctx);
697 }
698 
699 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
700 				    unsigned long address, pgd_t *pgdp,
701 				    unsigned int flags,
702 				    struct follow_page_context *ctx)
703 {
704 	p4d_t *p4d;
705 	struct page *page;
706 
707 	p4d = p4d_offset(pgdp, address);
708 	if (p4d_none(*p4d))
709 		return no_page_table(vma, flags);
710 	BUILD_BUG_ON(p4d_huge(*p4d));
711 	if (unlikely(p4d_bad(*p4d)))
712 		return no_page_table(vma, flags);
713 
714 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
715 		page = follow_huge_pd(vma, address,
716 				      __hugepd(p4d_val(*p4d)), flags,
717 				      P4D_SHIFT);
718 		if (page)
719 			return page;
720 		return no_page_table(vma, flags);
721 	}
722 	return follow_pud_mask(vma, address, p4d, flags, ctx);
723 }
724 
725 /**
726  * follow_page_mask - look up a page descriptor from a user-virtual address
727  * @vma: vm_area_struct mapping @address
728  * @address: virtual address to look up
729  * @flags: flags modifying lookup behaviour
730  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
731  *       pointer to output page_mask
732  *
733  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
734  *
735  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
736  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
737  *
738  * On output, the @ctx->page_mask is set according to the size of the page.
739  *
740  * Return: the mapped (struct page *), %NULL if no mapping exists, or
741  * an error pointer if there is a mapping to something not represented
742  * by a page descriptor (see also vm_normal_page()).
743  */
744 static struct page *follow_page_mask(struct vm_area_struct *vma,
745 			      unsigned long address, unsigned int flags,
746 			      struct follow_page_context *ctx)
747 {
748 	pgd_t *pgd;
749 	struct page *page;
750 	struct mm_struct *mm = vma->vm_mm;
751 
752 	ctx->page_mask = 0;
753 
754 	/* make this handle hugepd */
755 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
756 	if (!IS_ERR(page)) {
757 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
758 		return page;
759 	}
760 
761 	pgd = pgd_offset(mm, address);
762 
763 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
764 		return no_page_table(vma, flags);
765 
766 	if (pgd_huge(*pgd)) {
767 		page = follow_huge_pgd(mm, address, pgd, flags);
768 		if (page)
769 			return page;
770 		return no_page_table(vma, flags);
771 	}
772 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
773 		page = follow_huge_pd(vma, address,
774 				      __hugepd(pgd_val(*pgd)), flags,
775 				      PGDIR_SHIFT);
776 		if (page)
777 			return page;
778 		return no_page_table(vma, flags);
779 	}
780 
781 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
782 }
783 
784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
785 			 unsigned int foll_flags)
786 {
787 	struct follow_page_context ctx = { NULL };
788 	struct page *page;
789 
790 	page = follow_page_mask(vma, address, foll_flags, &ctx);
791 	if (ctx.pgmap)
792 		put_dev_pagemap(ctx.pgmap);
793 	return page;
794 }
795 
796 static int get_gate_page(struct mm_struct *mm, unsigned long address,
797 		unsigned int gup_flags, struct vm_area_struct **vma,
798 		struct page **page)
799 {
800 	pgd_t *pgd;
801 	p4d_t *p4d;
802 	pud_t *pud;
803 	pmd_t *pmd;
804 	pte_t *pte;
805 	int ret = -EFAULT;
806 
807 	/* user gate pages are read-only */
808 	if (gup_flags & FOLL_WRITE)
809 		return -EFAULT;
810 	if (address > TASK_SIZE)
811 		pgd = pgd_offset_k(address);
812 	else
813 		pgd = pgd_offset_gate(mm, address);
814 	if (pgd_none(*pgd))
815 		return -EFAULT;
816 	p4d = p4d_offset(pgd, address);
817 	if (p4d_none(*p4d))
818 		return -EFAULT;
819 	pud = pud_offset(p4d, address);
820 	if (pud_none(*pud))
821 		return -EFAULT;
822 	pmd = pmd_offset(pud, address);
823 	if (!pmd_present(*pmd))
824 		return -EFAULT;
825 	VM_BUG_ON(pmd_trans_huge(*pmd));
826 	pte = pte_offset_map(pmd, address);
827 	if (pte_none(*pte))
828 		goto unmap;
829 	*vma = get_gate_vma(mm);
830 	if (!page)
831 		goto out;
832 	*page = vm_normal_page(*vma, address, *pte);
833 	if (!*page) {
834 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
835 			goto unmap;
836 		*page = pte_page(*pte);
837 	}
838 	if (unlikely(!try_get_page(*page))) {
839 		ret = -ENOMEM;
840 		goto unmap;
841 	}
842 out:
843 	ret = 0;
844 unmap:
845 	pte_unmap(pte);
846 	return ret;
847 }
848 
849 /*
850  * mmap_sem must be held on entry.  If @locked != NULL and *@flags
851  * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
852  * is, *@locked will be set to 0 and -EBUSY returned.
853  */
854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
855 		unsigned long address, unsigned int *flags, int *locked)
856 {
857 	unsigned int fault_flags = 0;
858 	vm_fault_t ret;
859 
860 	/* mlock all present pages, but do not fault in new pages */
861 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
862 		return -ENOENT;
863 	if (*flags & FOLL_WRITE)
864 		fault_flags |= FAULT_FLAG_WRITE;
865 	if (*flags & FOLL_REMOTE)
866 		fault_flags |= FAULT_FLAG_REMOTE;
867 	if (locked)
868 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
869 	if (*flags & FOLL_NOWAIT)
870 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
871 	if (*flags & FOLL_TRIED) {
872 		/*
873 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
874 		 * can co-exist
875 		 */
876 		fault_flags |= FAULT_FLAG_TRIED;
877 	}
878 
879 	ret = handle_mm_fault(vma, address, fault_flags);
880 	if (ret & VM_FAULT_ERROR) {
881 		int err = vm_fault_to_errno(ret, *flags);
882 
883 		if (err)
884 			return err;
885 		BUG();
886 	}
887 
888 	if (tsk) {
889 		if (ret & VM_FAULT_MAJOR)
890 			tsk->maj_flt++;
891 		else
892 			tsk->min_flt++;
893 	}
894 
895 	if (ret & VM_FAULT_RETRY) {
896 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
897 			*locked = 0;
898 		return -EBUSY;
899 	}
900 
901 	/*
902 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
903 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
904 	 * can thus safely do subsequent page lookups as if they were reads.
905 	 * But only do so when looping for pte_write is futile: in some cases
906 	 * userspace may also be wanting to write to the gotten user page,
907 	 * which a read fault here might prevent (a readonly page might get
908 	 * reCOWed by userspace write).
909 	 */
910 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
911 		*flags |= FOLL_COW;
912 	return 0;
913 }
914 
915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
916 {
917 	vm_flags_t vm_flags = vma->vm_flags;
918 	int write = (gup_flags & FOLL_WRITE);
919 	int foreign = (gup_flags & FOLL_REMOTE);
920 
921 	if (vm_flags & (VM_IO | VM_PFNMAP))
922 		return -EFAULT;
923 
924 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
925 		return -EFAULT;
926 
927 	if (write) {
928 		if (!(vm_flags & VM_WRITE)) {
929 			if (!(gup_flags & FOLL_FORCE))
930 				return -EFAULT;
931 			/*
932 			 * We used to let the write,force case do COW in a
933 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
934 			 * set a breakpoint in a read-only mapping of an
935 			 * executable, without corrupting the file (yet only
936 			 * when that file had been opened for writing!).
937 			 * Anon pages in shared mappings are surprising: now
938 			 * just reject it.
939 			 */
940 			if (!is_cow_mapping(vm_flags))
941 				return -EFAULT;
942 		}
943 	} else if (!(vm_flags & VM_READ)) {
944 		if (!(gup_flags & FOLL_FORCE))
945 			return -EFAULT;
946 		/*
947 		 * Is there actually any vma we can reach here which does not
948 		 * have VM_MAYREAD set?
949 		 */
950 		if (!(vm_flags & VM_MAYREAD))
951 			return -EFAULT;
952 	}
953 	/*
954 	 * gups are always data accesses, not instruction
955 	 * fetches, so execute=false here
956 	 */
957 	if (!arch_vma_access_permitted(vma, write, false, foreign))
958 		return -EFAULT;
959 	return 0;
960 }
961 
962 /**
963  * __get_user_pages() - pin user pages in memory
964  * @tsk:	task_struct of target task
965  * @mm:		mm_struct of target mm
966  * @start:	starting user address
967  * @nr_pages:	number of pages from start to pin
968  * @gup_flags:	flags modifying pin behaviour
969  * @pages:	array that receives pointers to the pages pinned.
970  *		Should be at least nr_pages long. Or NULL, if caller
971  *		only intends to ensure the pages are faulted in.
972  * @vmas:	array of pointers to vmas corresponding to each page.
973  *		Or NULL if the caller does not require them.
974  * @locked:     whether we're still with the mmap_sem held
975  *
976  * Returns either number of pages pinned (which may be less than the
977  * number requested), or an error. Details about the return value:
978  *
979  * -- If nr_pages is 0, returns 0.
980  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981  * -- If nr_pages is >0, and some pages were pinned, returns the number of
982  *    pages pinned. Again, this may be less than nr_pages.
983  *
984  * The caller is responsible for releasing returned @pages, via put_page().
985  *
986  * @vmas are valid only as long as mmap_sem is held.
987  *
988  * Must be called with mmap_sem held.  It may be released.  See below.
989  *
990  * __get_user_pages walks a process's page tables and takes a reference to
991  * each struct page that each user address corresponds to at a given
992  * instant. That is, it takes the page that would be accessed if a user
993  * thread accesses the given user virtual address at that instant.
994  *
995  * This does not guarantee that the page exists in the user mappings when
996  * __get_user_pages returns, and there may even be a completely different
997  * page there in some cases (eg. if mmapped pagecache has been invalidated
998  * and subsequently re faulted). However it does guarantee that the page
999  * won't be freed completely. And mostly callers simply care that the page
1000  * contains data that was valid *at some point in time*. Typically, an IO
1001  * or similar operation cannot guarantee anything stronger anyway because
1002  * locks can't be held over the syscall boundary.
1003  *
1004  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1005  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1006  * appropriate) must be called after the page is finished with, and
1007  * before put_page is called.
1008  *
1009  * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1010  * released by an up_read().  That can happen if @gup_flags does not
1011  * have FOLL_NOWAIT.
1012  *
1013  * A caller using such a combination of @locked and @gup_flags
1014  * must therefore hold the mmap_sem for reading only, and recognize
1015  * when it's been released.  Otherwise, it must be held for either
1016  * reading or writing and will not be released.
1017  *
1018  * In most cases, get_user_pages or get_user_pages_fast should be used
1019  * instead of __get_user_pages. __get_user_pages should be used only if
1020  * you need some special @gup_flags.
1021  */
1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1023 		unsigned long start, unsigned long nr_pages,
1024 		unsigned int gup_flags, struct page **pages,
1025 		struct vm_area_struct **vmas, int *locked)
1026 {
1027 	long ret = 0, i = 0;
1028 	struct vm_area_struct *vma = NULL;
1029 	struct follow_page_context ctx = { NULL };
1030 
1031 	if (!nr_pages)
1032 		return 0;
1033 
1034 	start = untagged_addr(start);
1035 
1036 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1037 
1038 	/*
1039 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1040 	 * fault information is unrelated to the reference behaviour of a task
1041 	 * using the address space
1042 	 */
1043 	if (!(gup_flags & FOLL_FORCE))
1044 		gup_flags |= FOLL_NUMA;
1045 
1046 	do {
1047 		struct page *page;
1048 		unsigned int foll_flags = gup_flags;
1049 		unsigned int page_increm;
1050 
1051 		/* first iteration or cross vma bound */
1052 		if (!vma || start >= vma->vm_end) {
1053 			vma = find_extend_vma(mm, start);
1054 			if (!vma && in_gate_area(mm, start)) {
1055 				ret = get_gate_page(mm, start & PAGE_MASK,
1056 						gup_flags, &vma,
1057 						pages ? &pages[i] : NULL);
1058 				if (ret)
1059 					goto out;
1060 				ctx.page_mask = 0;
1061 				goto next_page;
1062 			}
1063 
1064 			if (!vma || check_vma_flags(vma, gup_flags)) {
1065 				ret = -EFAULT;
1066 				goto out;
1067 			}
1068 			if (is_vm_hugetlb_page(vma)) {
1069 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1070 						&start, &nr_pages, i,
1071 						gup_flags, locked);
1072 				if (locked && *locked == 0) {
1073 					/*
1074 					 * We've got a VM_FAULT_RETRY
1075 					 * and we've lost mmap_sem.
1076 					 * We must stop here.
1077 					 */
1078 					BUG_ON(gup_flags & FOLL_NOWAIT);
1079 					BUG_ON(ret != 0);
1080 					goto out;
1081 				}
1082 				continue;
1083 			}
1084 		}
1085 retry:
1086 		/*
1087 		 * If we have a pending SIGKILL, don't keep faulting pages and
1088 		 * potentially allocating memory.
1089 		 */
1090 		if (fatal_signal_pending(current)) {
1091 			ret = -EINTR;
1092 			goto out;
1093 		}
1094 		cond_resched();
1095 
1096 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1097 		if (!page) {
1098 			ret = faultin_page(tsk, vma, start, &foll_flags,
1099 					   locked);
1100 			switch (ret) {
1101 			case 0:
1102 				goto retry;
1103 			case -EBUSY:
1104 				ret = 0;
1105 				fallthrough;
1106 			case -EFAULT:
1107 			case -ENOMEM:
1108 			case -EHWPOISON:
1109 				goto out;
1110 			case -ENOENT:
1111 				goto next_page;
1112 			}
1113 			BUG();
1114 		} else if (PTR_ERR(page) == -EEXIST) {
1115 			/*
1116 			 * Proper page table entry exists, but no corresponding
1117 			 * struct page.
1118 			 */
1119 			goto next_page;
1120 		} else if (IS_ERR(page)) {
1121 			ret = PTR_ERR(page);
1122 			goto out;
1123 		}
1124 		if (pages) {
1125 			pages[i] = page;
1126 			flush_anon_page(vma, page, start);
1127 			flush_dcache_page(page);
1128 			ctx.page_mask = 0;
1129 		}
1130 next_page:
1131 		if (vmas) {
1132 			vmas[i] = vma;
1133 			ctx.page_mask = 0;
1134 		}
1135 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1136 		if (page_increm > nr_pages)
1137 			page_increm = nr_pages;
1138 		i += page_increm;
1139 		start += page_increm * PAGE_SIZE;
1140 		nr_pages -= page_increm;
1141 	} while (nr_pages);
1142 out:
1143 	if (ctx.pgmap)
1144 		put_dev_pagemap(ctx.pgmap);
1145 	return i ? i : ret;
1146 }
1147 
1148 static bool vma_permits_fault(struct vm_area_struct *vma,
1149 			      unsigned int fault_flags)
1150 {
1151 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1152 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1153 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1154 
1155 	if (!(vm_flags & vma->vm_flags))
1156 		return false;
1157 
1158 	/*
1159 	 * The architecture might have a hardware protection
1160 	 * mechanism other than read/write that can deny access.
1161 	 *
1162 	 * gup always represents data access, not instruction
1163 	 * fetches, so execute=false here:
1164 	 */
1165 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1166 		return false;
1167 
1168 	return true;
1169 }
1170 
1171 /**
1172  * fixup_user_fault() - manually resolve a user page fault
1173  * @tsk:	the task_struct to use for page fault accounting, or
1174  *		NULL if faults are not to be recorded.
1175  * @mm:		mm_struct of target mm
1176  * @address:	user address
1177  * @fault_flags:flags to pass down to handle_mm_fault()
1178  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1179  *		does not allow retry. If NULL, the caller must guarantee
1180  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1181  *
1182  * This is meant to be called in the specific scenario where for locking reasons
1183  * we try to access user memory in atomic context (within a pagefault_disable()
1184  * section), this returns -EFAULT, and we want to resolve the user fault before
1185  * trying again.
1186  *
1187  * Typically this is meant to be used by the futex code.
1188  *
1189  * The main difference with get_user_pages() is that this function will
1190  * unconditionally call handle_mm_fault() which will in turn perform all the
1191  * necessary SW fixup of the dirty and young bits in the PTE, while
1192  * get_user_pages() only guarantees to update these in the struct page.
1193  *
1194  * This is important for some architectures where those bits also gate the
1195  * access permission to the page because they are maintained in software.  On
1196  * such architectures, gup() will not be enough to make a subsequent access
1197  * succeed.
1198  *
1199  * This function will not return with an unlocked mmap_sem. So it has not the
1200  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1201  */
1202 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1203 		     unsigned long address, unsigned int fault_flags,
1204 		     bool *unlocked)
1205 {
1206 	struct vm_area_struct *vma;
1207 	vm_fault_t ret, major = 0;
1208 
1209 	address = untagged_addr(address);
1210 
1211 	if (unlocked)
1212 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1213 
1214 retry:
1215 	vma = find_extend_vma(mm, address);
1216 	if (!vma || address < vma->vm_start)
1217 		return -EFAULT;
1218 
1219 	if (!vma_permits_fault(vma, fault_flags))
1220 		return -EFAULT;
1221 
1222 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1223 	    fatal_signal_pending(current))
1224 		return -EINTR;
1225 
1226 	ret = handle_mm_fault(vma, address, fault_flags);
1227 	major |= ret & VM_FAULT_MAJOR;
1228 	if (ret & VM_FAULT_ERROR) {
1229 		int err = vm_fault_to_errno(ret, 0);
1230 
1231 		if (err)
1232 			return err;
1233 		BUG();
1234 	}
1235 
1236 	if (ret & VM_FAULT_RETRY) {
1237 		down_read(&mm->mmap_sem);
1238 		*unlocked = true;
1239 		fault_flags |= FAULT_FLAG_TRIED;
1240 		goto retry;
1241 	}
1242 
1243 	if (tsk) {
1244 		if (major)
1245 			tsk->maj_flt++;
1246 		else
1247 			tsk->min_flt++;
1248 	}
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL_GPL(fixup_user_fault);
1252 
1253 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1254 						struct mm_struct *mm,
1255 						unsigned long start,
1256 						unsigned long nr_pages,
1257 						struct page **pages,
1258 						struct vm_area_struct **vmas,
1259 						int *locked,
1260 						unsigned int flags)
1261 {
1262 	long ret, pages_done;
1263 	bool lock_dropped;
1264 
1265 	if (locked) {
1266 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1267 		BUG_ON(vmas);
1268 		/* check caller initialized locked */
1269 		BUG_ON(*locked != 1);
1270 	}
1271 
1272 	/*
1273 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1274 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1275 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1276 	 * for FOLL_GET, not for the newer FOLL_PIN.
1277 	 *
1278 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1279 	 * that here, as any failures will be obvious enough.
1280 	 */
1281 	if (pages && !(flags & FOLL_PIN))
1282 		flags |= FOLL_GET;
1283 
1284 	pages_done = 0;
1285 	lock_dropped = false;
1286 	for (;;) {
1287 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1288 				       vmas, locked);
1289 		if (!locked)
1290 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1291 			return ret;
1292 
1293 		/* VM_FAULT_RETRY cannot return errors */
1294 		if (!*locked) {
1295 			BUG_ON(ret < 0);
1296 			BUG_ON(ret >= nr_pages);
1297 		}
1298 
1299 		if (ret > 0) {
1300 			nr_pages -= ret;
1301 			pages_done += ret;
1302 			if (!nr_pages)
1303 				break;
1304 		}
1305 		if (*locked) {
1306 			/*
1307 			 * VM_FAULT_RETRY didn't trigger or it was a
1308 			 * FOLL_NOWAIT.
1309 			 */
1310 			if (!pages_done)
1311 				pages_done = ret;
1312 			break;
1313 		}
1314 		/*
1315 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1316 		 * For the prefault case (!pages) we only update counts.
1317 		 */
1318 		if (likely(pages))
1319 			pages += ret;
1320 		start += ret << PAGE_SHIFT;
1321 		lock_dropped = true;
1322 
1323 retry:
1324 		/*
1325 		 * Repeat on the address that fired VM_FAULT_RETRY
1326 		 * with both FAULT_FLAG_ALLOW_RETRY and
1327 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1328 		 * by fatal signals, so we need to check it before we
1329 		 * start trying again otherwise it can loop forever.
1330 		 */
1331 
1332 		if (fatal_signal_pending(current)) {
1333 			if (!pages_done)
1334 				pages_done = -EINTR;
1335 			break;
1336 		}
1337 
1338 		ret = down_read_killable(&mm->mmap_sem);
1339 		if (ret) {
1340 			BUG_ON(ret > 0);
1341 			if (!pages_done)
1342 				pages_done = ret;
1343 			break;
1344 		}
1345 
1346 		*locked = 1;
1347 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1348 				       pages, NULL, locked);
1349 		if (!*locked) {
1350 			/* Continue to retry until we succeeded */
1351 			BUG_ON(ret != 0);
1352 			goto retry;
1353 		}
1354 		if (ret != 1) {
1355 			BUG_ON(ret > 1);
1356 			if (!pages_done)
1357 				pages_done = ret;
1358 			break;
1359 		}
1360 		nr_pages--;
1361 		pages_done++;
1362 		if (!nr_pages)
1363 			break;
1364 		if (likely(pages))
1365 			pages++;
1366 		start += PAGE_SIZE;
1367 	}
1368 	if (lock_dropped && *locked) {
1369 		/*
1370 		 * We must let the caller know we temporarily dropped the lock
1371 		 * and so the critical section protected by it was lost.
1372 		 */
1373 		up_read(&mm->mmap_sem);
1374 		*locked = 0;
1375 	}
1376 	return pages_done;
1377 }
1378 
1379 /**
1380  * populate_vma_page_range() -  populate a range of pages in the vma.
1381  * @vma:   target vma
1382  * @start: start address
1383  * @end:   end address
1384  * @locked: whether the mmap_sem is still held
1385  *
1386  * This takes care of mlocking the pages too if VM_LOCKED is set.
1387  *
1388  * return 0 on success, negative error code on error.
1389  *
1390  * vma->vm_mm->mmap_sem must be held.
1391  *
1392  * If @locked is NULL, it may be held for read or write and will
1393  * be unperturbed.
1394  *
1395  * If @locked is non-NULL, it must held for read only and may be
1396  * released.  If it's released, *@locked will be set to 0.
1397  */
1398 long populate_vma_page_range(struct vm_area_struct *vma,
1399 		unsigned long start, unsigned long end, int *locked)
1400 {
1401 	struct mm_struct *mm = vma->vm_mm;
1402 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1403 	int gup_flags;
1404 
1405 	VM_BUG_ON(start & ~PAGE_MASK);
1406 	VM_BUG_ON(end   & ~PAGE_MASK);
1407 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1408 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1409 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1410 
1411 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1412 	if (vma->vm_flags & VM_LOCKONFAULT)
1413 		gup_flags &= ~FOLL_POPULATE;
1414 	/*
1415 	 * We want to touch writable mappings with a write fault in order
1416 	 * to break COW, except for shared mappings because these don't COW
1417 	 * and we would not want to dirty them for nothing.
1418 	 */
1419 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1420 		gup_flags |= FOLL_WRITE;
1421 
1422 	/*
1423 	 * We want mlock to succeed for regions that have any permissions
1424 	 * other than PROT_NONE.
1425 	 */
1426 	if (vma_is_accessible(vma))
1427 		gup_flags |= FOLL_FORCE;
1428 
1429 	/*
1430 	 * We made sure addr is within a VMA, so the following will
1431 	 * not result in a stack expansion that recurses back here.
1432 	 */
1433 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1434 				NULL, NULL, locked);
1435 }
1436 
1437 /*
1438  * __mm_populate - populate and/or mlock pages within a range of address space.
1439  *
1440  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1441  * flags. VMAs must be already marked with the desired vm_flags, and
1442  * mmap_sem must not be held.
1443  */
1444 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1445 {
1446 	struct mm_struct *mm = current->mm;
1447 	unsigned long end, nstart, nend;
1448 	struct vm_area_struct *vma = NULL;
1449 	int locked = 0;
1450 	long ret = 0;
1451 
1452 	end = start + len;
1453 
1454 	for (nstart = start; nstart < end; nstart = nend) {
1455 		/*
1456 		 * We want to fault in pages for [nstart; end) address range.
1457 		 * Find first corresponding VMA.
1458 		 */
1459 		if (!locked) {
1460 			locked = 1;
1461 			down_read(&mm->mmap_sem);
1462 			vma = find_vma(mm, nstart);
1463 		} else if (nstart >= vma->vm_end)
1464 			vma = vma->vm_next;
1465 		if (!vma || vma->vm_start >= end)
1466 			break;
1467 		/*
1468 		 * Set [nstart; nend) to intersection of desired address
1469 		 * range with the first VMA. Also, skip undesirable VMA types.
1470 		 */
1471 		nend = min(end, vma->vm_end);
1472 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1473 			continue;
1474 		if (nstart < vma->vm_start)
1475 			nstart = vma->vm_start;
1476 		/*
1477 		 * Now fault in a range of pages. populate_vma_page_range()
1478 		 * double checks the vma flags, so that it won't mlock pages
1479 		 * if the vma was already munlocked.
1480 		 */
1481 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1482 		if (ret < 0) {
1483 			if (ignore_errors) {
1484 				ret = 0;
1485 				continue;	/* continue at next VMA */
1486 			}
1487 			break;
1488 		}
1489 		nend = nstart + ret * PAGE_SIZE;
1490 		ret = 0;
1491 	}
1492 	if (locked)
1493 		up_read(&mm->mmap_sem);
1494 	return ret;	/* 0 or negative error code */
1495 }
1496 
1497 /**
1498  * get_dump_page() - pin user page in memory while writing it to core dump
1499  * @addr: user address
1500  *
1501  * Returns struct page pointer of user page pinned for dump,
1502  * to be freed afterwards by put_page().
1503  *
1504  * Returns NULL on any kind of failure - a hole must then be inserted into
1505  * the corefile, to preserve alignment with its headers; and also returns
1506  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1507  * allowing a hole to be left in the corefile to save diskspace.
1508  *
1509  * Called without mmap_sem, but after all other threads have been killed.
1510  */
1511 #ifdef CONFIG_ELF_CORE
1512 struct page *get_dump_page(unsigned long addr)
1513 {
1514 	struct vm_area_struct *vma;
1515 	struct page *page;
1516 
1517 	if (__get_user_pages(current, current->mm, addr, 1,
1518 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1519 			     NULL) < 1)
1520 		return NULL;
1521 	flush_cache_page(vma, addr, page_to_pfn(page));
1522 	return page;
1523 }
1524 #endif /* CONFIG_ELF_CORE */
1525 #else /* CONFIG_MMU */
1526 static long __get_user_pages_locked(struct task_struct *tsk,
1527 		struct mm_struct *mm, unsigned long start,
1528 		unsigned long nr_pages, struct page **pages,
1529 		struct vm_area_struct **vmas, int *locked,
1530 		unsigned int foll_flags)
1531 {
1532 	struct vm_area_struct *vma;
1533 	unsigned long vm_flags;
1534 	int i;
1535 
1536 	/* calculate required read or write permissions.
1537 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1538 	 */
1539 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1540 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1541 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1542 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1543 
1544 	for (i = 0; i < nr_pages; i++) {
1545 		vma = find_vma(mm, start);
1546 		if (!vma)
1547 			goto finish_or_fault;
1548 
1549 		/* protect what we can, including chardevs */
1550 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1551 		    !(vm_flags & vma->vm_flags))
1552 			goto finish_or_fault;
1553 
1554 		if (pages) {
1555 			pages[i] = virt_to_page(start);
1556 			if (pages[i])
1557 				get_page(pages[i]);
1558 		}
1559 		if (vmas)
1560 			vmas[i] = vma;
1561 		start = (start + PAGE_SIZE) & PAGE_MASK;
1562 	}
1563 
1564 	return i;
1565 
1566 finish_or_fault:
1567 	return i ? : -EFAULT;
1568 }
1569 #endif /* !CONFIG_MMU */
1570 
1571 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1572 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1573 {
1574 	long i;
1575 	struct vm_area_struct *vma_prev = NULL;
1576 
1577 	for (i = 0; i < nr_pages; i++) {
1578 		struct vm_area_struct *vma = vmas[i];
1579 
1580 		if (vma == vma_prev)
1581 			continue;
1582 
1583 		vma_prev = vma;
1584 
1585 		if (vma_is_fsdax(vma))
1586 			return true;
1587 	}
1588 	return false;
1589 }
1590 
1591 #ifdef CONFIG_CMA
1592 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1593 {
1594 	/*
1595 	 * We want to make sure we allocate the new page from the same node
1596 	 * as the source page.
1597 	 */
1598 	int nid = page_to_nid(page);
1599 	/*
1600 	 * Trying to allocate a page for migration. Ignore allocation
1601 	 * failure warnings. We don't force __GFP_THISNODE here because
1602 	 * this node here is the node where we have CMA reservation and
1603 	 * in some case these nodes will have really less non movable
1604 	 * allocation memory.
1605 	 */
1606 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1607 
1608 	if (PageHighMem(page))
1609 		gfp_mask |= __GFP_HIGHMEM;
1610 
1611 #ifdef CONFIG_HUGETLB_PAGE
1612 	if (PageHuge(page)) {
1613 		struct hstate *h = page_hstate(page);
1614 		/*
1615 		 * We don't want to dequeue from the pool because pool pages will
1616 		 * mostly be from the CMA region.
1617 		 */
1618 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1619 	}
1620 #endif
1621 	if (PageTransHuge(page)) {
1622 		struct page *thp;
1623 		/*
1624 		 * ignore allocation failure warnings
1625 		 */
1626 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1627 
1628 		/*
1629 		 * Remove the movable mask so that we don't allocate from
1630 		 * CMA area again.
1631 		 */
1632 		thp_gfpmask &= ~__GFP_MOVABLE;
1633 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1634 		if (!thp)
1635 			return NULL;
1636 		prep_transhuge_page(thp);
1637 		return thp;
1638 	}
1639 
1640 	return __alloc_pages_node(nid, gfp_mask, 0);
1641 }
1642 
1643 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1644 					struct mm_struct *mm,
1645 					unsigned long start,
1646 					unsigned long nr_pages,
1647 					struct page **pages,
1648 					struct vm_area_struct **vmas,
1649 					unsigned int gup_flags)
1650 {
1651 	unsigned long i;
1652 	unsigned long step;
1653 	bool drain_allow = true;
1654 	bool migrate_allow = true;
1655 	LIST_HEAD(cma_page_list);
1656 	long ret = nr_pages;
1657 
1658 check_again:
1659 	for (i = 0; i < nr_pages;) {
1660 
1661 		struct page *head = compound_head(pages[i]);
1662 
1663 		/*
1664 		 * gup may start from a tail page. Advance step by the left
1665 		 * part.
1666 		 */
1667 		step = compound_nr(head) - (pages[i] - head);
1668 		/*
1669 		 * If we get a page from the CMA zone, since we are going to
1670 		 * be pinning these entries, we might as well move them out
1671 		 * of the CMA zone if possible.
1672 		 */
1673 		if (is_migrate_cma_page(head)) {
1674 			if (PageHuge(head))
1675 				isolate_huge_page(head, &cma_page_list);
1676 			else {
1677 				if (!PageLRU(head) && drain_allow) {
1678 					lru_add_drain_all();
1679 					drain_allow = false;
1680 				}
1681 
1682 				if (!isolate_lru_page(head)) {
1683 					list_add_tail(&head->lru, &cma_page_list);
1684 					mod_node_page_state(page_pgdat(head),
1685 							    NR_ISOLATED_ANON +
1686 							    page_is_file_lru(head),
1687 							    hpage_nr_pages(head));
1688 				}
1689 			}
1690 		}
1691 
1692 		i += step;
1693 	}
1694 
1695 	if (!list_empty(&cma_page_list)) {
1696 		/*
1697 		 * drop the above get_user_pages reference.
1698 		 */
1699 		for (i = 0; i < nr_pages; i++)
1700 			put_page(pages[i]);
1701 
1702 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1703 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1704 			/*
1705 			 * some of the pages failed migration. Do get_user_pages
1706 			 * without migration.
1707 			 */
1708 			migrate_allow = false;
1709 
1710 			if (!list_empty(&cma_page_list))
1711 				putback_movable_pages(&cma_page_list);
1712 		}
1713 		/*
1714 		 * We did migrate all the pages, Try to get the page references
1715 		 * again migrating any new CMA pages which we failed to isolate
1716 		 * earlier.
1717 		 */
1718 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1719 						   pages, vmas, NULL,
1720 						   gup_flags);
1721 
1722 		if ((ret > 0) && migrate_allow) {
1723 			nr_pages = ret;
1724 			drain_allow = true;
1725 			goto check_again;
1726 		}
1727 	}
1728 
1729 	return ret;
1730 }
1731 #else
1732 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1733 					struct mm_struct *mm,
1734 					unsigned long start,
1735 					unsigned long nr_pages,
1736 					struct page **pages,
1737 					struct vm_area_struct **vmas,
1738 					unsigned int gup_flags)
1739 {
1740 	return nr_pages;
1741 }
1742 #endif /* CONFIG_CMA */
1743 
1744 /*
1745  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1746  * allows us to process the FOLL_LONGTERM flag.
1747  */
1748 static long __gup_longterm_locked(struct task_struct *tsk,
1749 				  struct mm_struct *mm,
1750 				  unsigned long start,
1751 				  unsigned long nr_pages,
1752 				  struct page **pages,
1753 				  struct vm_area_struct **vmas,
1754 				  unsigned int gup_flags)
1755 {
1756 	struct vm_area_struct **vmas_tmp = vmas;
1757 	unsigned long flags = 0;
1758 	long rc, i;
1759 
1760 	if (gup_flags & FOLL_LONGTERM) {
1761 		if (!pages)
1762 			return -EINVAL;
1763 
1764 		if (!vmas_tmp) {
1765 			vmas_tmp = kcalloc(nr_pages,
1766 					   sizeof(struct vm_area_struct *),
1767 					   GFP_KERNEL);
1768 			if (!vmas_tmp)
1769 				return -ENOMEM;
1770 		}
1771 		flags = memalloc_nocma_save();
1772 	}
1773 
1774 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1775 				     vmas_tmp, NULL, gup_flags);
1776 
1777 	if (gup_flags & FOLL_LONGTERM) {
1778 		memalloc_nocma_restore(flags);
1779 		if (rc < 0)
1780 			goto out;
1781 
1782 		if (check_dax_vmas(vmas_tmp, rc)) {
1783 			for (i = 0; i < rc; i++)
1784 				put_page(pages[i]);
1785 			rc = -EOPNOTSUPP;
1786 			goto out;
1787 		}
1788 
1789 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1790 						 vmas_tmp, gup_flags);
1791 	}
1792 
1793 out:
1794 	if (vmas_tmp != vmas)
1795 		kfree(vmas_tmp);
1796 	return rc;
1797 }
1798 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1799 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1800 						  struct mm_struct *mm,
1801 						  unsigned long start,
1802 						  unsigned long nr_pages,
1803 						  struct page **pages,
1804 						  struct vm_area_struct **vmas,
1805 						  unsigned int flags)
1806 {
1807 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1808 				       NULL, flags);
1809 }
1810 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1811 
1812 #ifdef CONFIG_MMU
1813 static long __get_user_pages_remote(struct task_struct *tsk,
1814 				    struct mm_struct *mm,
1815 				    unsigned long start, unsigned long nr_pages,
1816 				    unsigned int gup_flags, struct page **pages,
1817 				    struct vm_area_struct **vmas, int *locked)
1818 {
1819 	/*
1820 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1821 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1822 	 * vmas. However, this only comes up if locked is set, and there are
1823 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1824 	 * allow what we can.
1825 	 */
1826 	if (gup_flags & FOLL_LONGTERM) {
1827 		if (WARN_ON_ONCE(locked))
1828 			return -EINVAL;
1829 		/*
1830 		 * This will check the vmas (even if our vmas arg is NULL)
1831 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1832 		 */
1833 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1834 					     vmas, gup_flags | FOLL_TOUCH |
1835 					     FOLL_REMOTE);
1836 	}
1837 
1838 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1839 				       locked,
1840 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1841 }
1842 
1843 /**
1844  * get_user_pages_remote() - pin user pages in memory
1845  * @tsk:	the task_struct to use for page fault accounting, or
1846  *		NULL if faults are not to be recorded.
1847  * @mm:		mm_struct of target mm
1848  * @start:	starting user address
1849  * @nr_pages:	number of pages from start to pin
1850  * @gup_flags:	flags modifying lookup behaviour
1851  * @pages:	array that receives pointers to the pages pinned.
1852  *		Should be at least nr_pages long. Or NULL, if caller
1853  *		only intends to ensure the pages are faulted in.
1854  * @vmas:	array of pointers to vmas corresponding to each page.
1855  *		Or NULL if the caller does not require them.
1856  * @locked:	pointer to lock flag indicating whether lock is held and
1857  *		subsequently whether VM_FAULT_RETRY functionality can be
1858  *		utilised. Lock must initially be held.
1859  *
1860  * Returns either number of pages pinned (which may be less than the
1861  * number requested), or an error. Details about the return value:
1862  *
1863  * -- If nr_pages is 0, returns 0.
1864  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1865  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1866  *    pages pinned. Again, this may be less than nr_pages.
1867  *
1868  * The caller is responsible for releasing returned @pages, via put_page().
1869  *
1870  * @vmas are valid only as long as mmap_sem is held.
1871  *
1872  * Must be called with mmap_sem held for read or write.
1873  *
1874  * get_user_pages_remote walks a process's page tables and takes a reference
1875  * to each struct page that each user address corresponds to at a given
1876  * instant. That is, it takes the page that would be accessed if a user
1877  * thread accesses the given user virtual address at that instant.
1878  *
1879  * This does not guarantee that the page exists in the user mappings when
1880  * get_user_pages_remote returns, and there may even be a completely different
1881  * page there in some cases (eg. if mmapped pagecache has been invalidated
1882  * and subsequently re faulted). However it does guarantee that the page
1883  * won't be freed completely. And mostly callers simply care that the page
1884  * contains data that was valid *at some point in time*. Typically, an IO
1885  * or similar operation cannot guarantee anything stronger anyway because
1886  * locks can't be held over the syscall boundary.
1887  *
1888  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1889  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1890  * be called after the page is finished with, and before put_page is called.
1891  *
1892  * get_user_pages_remote is typically used for fewer-copy IO operations,
1893  * to get a handle on the memory by some means other than accesses
1894  * via the user virtual addresses. The pages may be submitted for
1895  * DMA to devices or accessed via their kernel linear mapping (via the
1896  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1897  *
1898  * See also get_user_pages_fast, for performance critical applications.
1899  *
1900  * get_user_pages_remote should be phased out in favor of
1901  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1902  * should use get_user_pages_remote because it cannot pass
1903  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1904  */
1905 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1906 		unsigned long start, unsigned long nr_pages,
1907 		unsigned int gup_flags, struct page **pages,
1908 		struct vm_area_struct **vmas, int *locked)
1909 {
1910 	/*
1911 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1912 	 * never directly by the caller, so enforce that with an assertion:
1913 	 */
1914 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1915 		return -EINVAL;
1916 
1917 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1918 				       pages, vmas, locked);
1919 }
1920 EXPORT_SYMBOL(get_user_pages_remote);
1921 
1922 #else /* CONFIG_MMU */
1923 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1924 			   unsigned long start, unsigned long nr_pages,
1925 			   unsigned int gup_flags, struct page **pages,
1926 			   struct vm_area_struct **vmas, int *locked)
1927 {
1928 	return 0;
1929 }
1930 
1931 static long __get_user_pages_remote(struct task_struct *tsk,
1932 				    struct mm_struct *mm,
1933 				    unsigned long start, unsigned long nr_pages,
1934 				    unsigned int gup_flags, struct page **pages,
1935 				    struct vm_area_struct **vmas, int *locked)
1936 {
1937 	return 0;
1938 }
1939 #endif /* !CONFIG_MMU */
1940 
1941 /**
1942  * get_user_pages() - pin user pages in memory
1943  * @start:      starting user address
1944  * @nr_pages:   number of pages from start to pin
1945  * @gup_flags:  flags modifying lookup behaviour
1946  * @pages:      array that receives pointers to the pages pinned.
1947  *              Should be at least nr_pages long. Or NULL, if caller
1948  *              only intends to ensure the pages are faulted in.
1949  * @vmas:       array of pointers to vmas corresponding to each page.
1950  *              Or NULL if the caller does not require them.
1951  *
1952  * This is the same as get_user_pages_remote(), just with a
1953  * less-flexible calling convention where we assume that the task
1954  * and mm being operated on are the current task's and don't allow
1955  * passing of a locked parameter.  We also obviously don't pass
1956  * FOLL_REMOTE in here.
1957  */
1958 long get_user_pages(unsigned long start, unsigned long nr_pages,
1959 		unsigned int gup_flags, struct page **pages,
1960 		struct vm_area_struct **vmas)
1961 {
1962 	/*
1963 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1964 	 * never directly by the caller, so enforce that with an assertion:
1965 	 */
1966 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1967 		return -EINVAL;
1968 
1969 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1970 				     pages, vmas, gup_flags | FOLL_TOUCH);
1971 }
1972 EXPORT_SYMBOL(get_user_pages);
1973 
1974 /**
1975  * get_user_pages_locked() is suitable to replace the form:
1976  *
1977  *      down_read(&mm->mmap_sem);
1978  *      do_something()
1979  *      get_user_pages(tsk, mm, ..., pages, NULL);
1980  *      up_read(&mm->mmap_sem);
1981  *
1982  *  to:
1983  *
1984  *      int locked = 1;
1985  *      down_read(&mm->mmap_sem);
1986  *      do_something()
1987  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1988  *      if (locked)
1989  *          up_read(&mm->mmap_sem);
1990  *
1991  * @start:      starting user address
1992  * @nr_pages:   number of pages from start to pin
1993  * @gup_flags:  flags modifying lookup behaviour
1994  * @pages:      array that receives pointers to the pages pinned.
1995  *              Should be at least nr_pages long. Or NULL, if caller
1996  *              only intends to ensure the pages are faulted in.
1997  * @locked:     pointer to lock flag indicating whether lock is held and
1998  *              subsequently whether VM_FAULT_RETRY functionality can be
1999  *              utilised. Lock must initially be held.
2000  *
2001  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2002  * paths better by using either get_user_pages_locked() or
2003  * get_user_pages_unlocked().
2004  *
2005  */
2006 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2007 			   unsigned int gup_flags, struct page **pages,
2008 			   int *locked)
2009 {
2010 	/*
2011 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2012 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2013 	 * vmas.  As there are no users of this flag in this call we simply
2014 	 * disallow this option for now.
2015 	 */
2016 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2017 		return -EINVAL;
2018 
2019 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
2020 				       pages, NULL, locked,
2021 				       gup_flags | FOLL_TOUCH);
2022 }
2023 EXPORT_SYMBOL(get_user_pages_locked);
2024 
2025 /*
2026  * get_user_pages_unlocked() is suitable to replace the form:
2027  *
2028  *      down_read(&mm->mmap_sem);
2029  *      get_user_pages(tsk, mm, ..., pages, NULL);
2030  *      up_read(&mm->mmap_sem);
2031  *
2032  *  with:
2033  *
2034  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2035  *
2036  * It is functionally equivalent to get_user_pages_fast so
2037  * get_user_pages_fast should be used instead if specific gup_flags
2038  * (e.g. FOLL_FORCE) are not required.
2039  */
2040 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2041 			     struct page **pages, unsigned int gup_flags)
2042 {
2043 	struct mm_struct *mm = current->mm;
2044 	int locked = 1;
2045 	long ret;
2046 
2047 	/*
2048 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2049 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2050 	 * vmas.  As there are no users of this flag in this call we simply
2051 	 * disallow this option for now.
2052 	 */
2053 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2054 		return -EINVAL;
2055 
2056 	down_read(&mm->mmap_sem);
2057 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2058 				      &locked, gup_flags | FOLL_TOUCH);
2059 	if (locked)
2060 		up_read(&mm->mmap_sem);
2061 	return ret;
2062 }
2063 EXPORT_SYMBOL(get_user_pages_unlocked);
2064 
2065 /*
2066  * Fast GUP
2067  *
2068  * get_user_pages_fast attempts to pin user pages by walking the page
2069  * tables directly and avoids taking locks. Thus the walker needs to be
2070  * protected from page table pages being freed from under it, and should
2071  * block any THP splits.
2072  *
2073  * One way to achieve this is to have the walker disable interrupts, and
2074  * rely on IPIs from the TLB flushing code blocking before the page table
2075  * pages are freed. This is unsuitable for architectures that do not need
2076  * to broadcast an IPI when invalidating TLBs.
2077  *
2078  * Another way to achieve this is to batch up page table containing pages
2079  * belonging to more than one mm_user, then rcu_sched a callback to free those
2080  * pages. Disabling interrupts will allow the fast_gup walker to both block
2081  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2082  * (which is a relatively rare event). The code below adopts this strategy.
2083  *
2084  * Before activating this code, please be aware that the following assumptions
2085  * are currently made:
2086  *
2087  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2088  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2089  *
2090  *  *) ptes can be read atomically by the architecture.
2091  *
2092  *  *) access_ok is sufficient to validate userspace address ranges.
2093  *
2094  * The last two assumptions can be relaxed by the addition of helper functions.
2095  *
2096  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2097  */
2098 #ifdef CONFIG_HAVE_FAST_GUP
2099 
2100 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2101 {
2102 	if (flags & FOLL_PIN) {
2103 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2104 				    refs);
2105 
2106 		if (hpage_pincount_available(page))
2107 			hpage_pincount_sub(page, refs);
2108 		else
2109 			refs *= GUP_PIN_COUNTING_BIAS;
2110 	}
2111 
2112 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2113 	/*
2114 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2115 	 * ref needs a put_page().
2116 	 */
2117 	if (refs > 1)
2118 		page_ref_sub(page, refs - 1);
2119 	put_page(page);
2120 }
2121 
2122 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2123 
2124 /*
2125  * WARNING: only to be used in the get_user_pages_fast() implementation.
2126  *
2127  * With get_user_pages_fast(), we walk down the pagetables without taking any
2128  * locks.  For this we would like to load the pointers atomically, but sometimes
2129  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2130  * we do have is the guarantee that a PTE will only either go from not present
2131  * to present, or present to not present or both -- it will not switch to a
2132  * completely different present page without a TLB flush in between; something
2133  * that we are blocking by holding interrupts off.
2134  *
2135  * Setting ptes from not present to present goes:
2136  *
2137  *   ptep->pte_high = h;
2138  *   smp_wmb();
2139  *   ptep->pte_low = l;
2140  *
2141  * And present to not present goes:
2142  *
2143  *   ptep->pte_low = 0;
2144  *   smp_wmb();
2145  *   ptep->pte_high = 0;
2146  *
2147  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2148  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2149  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2150  * picked up a changed pte high. We might have gotten rubbish values from
2151  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2152  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2153  * operates on present ptes we're safe.
2154  */
2155 static inline pte_t gup_get_pte(pte_t *ptep)
2156 {
2157 	pte_t pte;
2158 
2159 	do {
2160 		pte.pte_low = ptep->pte_low;
2161 		smp_rmb();
2162 		pte.pte_high = ptep->pte_high;
2163 		smp_rmb();
2164 	} while (unlikely(pte.pte_low != ptep->pte_low));
2165 
2166 	return pte;
2167 }
2168 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2169 /*
2170  * We require that the PTE can be read atomically.
2171  */
2172 static inline pte_t gup_get_pte(pte_t *ptep)
2173 {
2174 	return READ_ONCE(*ptep);
2175 }
2176 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2177 
2178 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2179 					    unsigned int flags,
2180 					    struct page **pages)
2181 {
2182 	while ((*nr) - nr_start) {
2183 		struct page *page = pages[--(*nr)];
2184 
2185 		ClearPageReferenced(page);
2186 		if (flags & FOLL_PIN)
2187 			unpin_user_page(page);
2188 		else
2189 			put_page(page);
2190 	}
2191 }
2192 
2193 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2194 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2195 			 unsigned int flags, struct page **pages, int *nr)
2196 {
2197 	struct dev_pagemap *pgmap = NULL;
2198 	int nr_start = *nr, ret = 0;
2199 	pte_t *ptep, *ptem;
2200 
2201 	ptem = ptep = pte_offset_map(&pmd, addr);
2202 	do {
2203 		pte_t pte = gup_get_pte(ptep);
2204 		struct page *head, *page;
2205 
2206 		/*
2207 		 * Similar to the PMD case below, NUMA hinting must take slow
2208 		 * path using the pte_protnone check.
2209 		 */
2210 		if (pte_protnone(pte))
2211 			goto pte_unmap;
2212 
2213 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2214 			goto pte_unmap;
2215 
2216 		if (pte_devmap(pte)) {
2217 			if (unlikely(flags & FOLL_LONGTERM))
2218 				goto pte_unmap;
2219 
2220 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2221 			if (unlikely(!pgmap)) {
2222 				undo_dev_pagemap(nr, nr_start, flags, pages);
2223 				goto pte_unmap;
2224 			}
2225 		} else if (pte_special(pte))
2226 			goto pte_unmap;
2227 
2228 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2229 		page = pte_page(pte);
2230 
2231 		head = try_grab_compound_head(page, 1, flags);
2232 		if (!head)
2233 			goto pte_unmap;
2234 
2235 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2236 			put_compound_head(head, 1, flags);
2237 			goto pte_unmap;
2238 		}
2239 
2240 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2241 
2242 		/*
2243 		 * We need to make the page accessible if and only if we are
2244 		 * going to access its content (the FOLL_PIN case).  Please
2245 		 * see Documentation/core-api/pin_user_pages.rst for
2246 		 * details.
2247 		 */
2248 		if (flags & FOLL_PIN) {
2249 			ret = arch_make_page_accessible(page);
2250 			if (ret) {
2251 				unpin_user_page(page);
2252 				goto pte_unmap;
2253 			}
2254 		}
2255 		SetPageReferenced(page);
2256 		pages[*nr] = page;
2257 		(*nr)++;
2258 
2259 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2260 
2261 	ret = 1;
2262 
2263 pte_unmap:
2264 	if (pgmap)
2265 		put_dev_pagemap(pgmap);
2266 	pte_unmap(ptem);
2267 	return ret;
2268 }
2269 #else
2270 
2271 /*
2272  * If we can't determine whether or not a pte is special, then fail immediately
2273  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2274  * to be special.
2275  *
2276  * For a futex to be placed on a THP tail page, get_futex_key requires a
2277  * __get_user_pages_fast implementation that can pin pages. Thus it's still
2278  * useful to have gup_huge_pmd even if we can't operate on ptes.
2279  */
2280 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2281 			 unsigned int flags, struct page **pages, int *nr)
2282 {
2283 	return 0;
2284 }
2285 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2286 
2287 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2288 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2289 			     unsigned long end, unsigned int flags,
2290 			     struct page **pages, int *nr)
2291 {
2292 	int nr_start = *nr;
2293 	struct dev_pagemap *pgmap = NULL;
2294 
2295 	do {
2296 		struct page *page = pfn_to_page(pfn);
2297 
2298 		pgmap = get_dev_pagemap(pfn, pgmap);
2299 		if (unlikely(!pgmap)) {
2300 			undo_dev_pagemap(nr, nr_start, flags, pages);
2301 			return 0;
2302 		}
2303 		SetPageReferenced(page);
2304 		pages[*nr] = page;
2305 		if (unlikely(!try_grab_page(page, flags))) {
2306 			undo_dev_pagemap(nr, nr_start, flags, pages);
2307 			return 0;
2308 		}
2309 		(*nr)++;
2310 		pfn++;
2311 	} while (addr += PAGE_SIZE, addr != end);
2312 
2313 	if (pgmap)
2314 		put_dev_pagemap(pgmap);
2315 	return 1;
2316 }
2317 
2318 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2319 				 unsigned long end, unsigned int flags,
2320 				 struct page **pages, int *nr)
2321 {
2322 	unsigned long fault_pfn;
2323 	int nr_start = *nr;
2324 
2325 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2326 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2327 		return 0;
2328 
2329 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2330 		undo_dev_pagemap(nr, nr_start, flags, pages);
2331 		return 0;
2332 	}
2333 	return 1;
2334 }
2335 
2336 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2337 				 unsigned long end, unsigned int flags,
2338 				 struct page **pages, int *nr)
2339 {
2340 	unsigned long fault_pfn;
2341 	int nr_start = *nr;
2342 
2343 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2344 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2345 		return 0;
2346 
2347 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2348 		undo_dev_pagemap(nr, nr_start, flags, pages);
2349 		return 0;
2350 	}
2351 	return 1;
2352 }
2353 #else
2354 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2355 				 unsigned long end, unsigned int flags,
2356 				 struct page **pages, int *nr)
2357 {
2358 	BUILD_BUG();
2359 	return 0;
2360 }
2361 
2362 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2363 				 unsigned long end, unsigned int flags,
2364 				 struct page **pages, int *nr)
2365 {
2366 	BUILD_BUG();
2367 	return 0;
2368 }
2369 #endif
2370 
2371 static int record_subpages(struct page *page, unsigned long addr,
2372 			   unsigned long end, struct page **pages)
2373 {
2374 	int nr;
2375 
2376 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2377 		pages[nr++] = page++;
2378 
2379 	return nr;
2380 }
2381 
2382 #ifdef CONFIG_ARCH_HAS_HUGEPD
2383 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2384 				      unsigned long sz)
2385 {
2386 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2387 	return (__boundary - 1 < end - 1) ? __boundary : end;
2388 }
2389 
2390 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2391 		       unsigned long end, unsigned int flags,
2392 		       struct page **pages, int *nr)
2393 {
2394 	unsigned long pte_end;
2395 	struct page *head, *page;
2396 	pte_t pte;
2397 	int refs;
2398 
2399 	pte_end = (addr + sz) & ~(sz-1);
2400 	if (pte_end < end)
2401 		end = pte_end;
2402 
2403 	pte = READ_ONCE(*ptep);
2404 
2405 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2406 		return 0;
2407 
2408 	/* hugepages are never "special" */
2409 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2410 
2411 	head = pte_page(pte);
2412 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2413 	refs = record_subpages(page, addr, end, pages + *nr);
2414 
2415 	head = try_grab_compound_head(head, refs, flags);
2416 	if (!head)
2417 		return 0;
2418 
2419 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2420 		put_compound_head(head, refs, flags);
2421 		return 0;
2422 	}
2423 
2424 	*nr += refs;
2425 	SetPageReferenced(head);
2426 	return 1;
2427 }
2428 
2429 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2430 		unsigned int pdshift, unsigned long end, unsigned int flags,
2431 		struct page **pages, int *nr)
2432 {
2433 	pte_t *ptep;
2434 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2435 	unsigned long next;
2436 
2437 	ptep = hugepte_offset(hugepd, addr, pdshift);
2438 	do {
2439 		next = hugepte_addr_end(addr, end, sz);
2440 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2441 			return 0;
2442 	} while (ptep++, addr = next, addr != end);
2443 
2444 	return 1;
2445 }
2446 #else
2447 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2448 		unsigned int pdshift, unsigned long end, unsigned int flags,
2449 		struct page **pages, int *nr)
2450 {
2451 	return 0;
2452 }
2453 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2454 
2455 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2456 			unsigned long end, unsigned int flags,
2457 			struct page **pages, int *nr)
2458 {
2459 	struct page *head, *page;
2460 	int refs;
2461 
2462 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2463 		return 0;
2464 
2465 	if (pmd_devmap(orig)) {
2466 		if (unlikely(flags & FOLL_LONGTERM))
2467 			return 0;
2468 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2469 					     pages, nr);
2470 	}
2471 
2472 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2473 	refs = record_subpages(page, addr, end, pages + *nr);
2474 
2475 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2476 	if (!head)
2477 		return 0;
2478 
2479 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2480 		put_compound_head(head, refs, flags);
2481 		return 0;
2482 	}
2483 
2484 	*nr += refs;
2485 	SetPageReferenced(head);
2486 	return 1;
2487 }
2488 
2489 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2490 			unsigned long end, unsigned int flags,
2491 			struct page **pages, int *nr)
2492 {
2493 	struct page *head, *page;
2494 	int refs;
2495 
2496 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2497 		return 0;
2498 
2499 	if (pud_devmap(orig)) {
2500 		if (unlikely(flags & FOLL_LONGTERM))
2501 			return 0;
2502 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2503 					     pages, nr);
2504 	}
2505 
2506 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2507 	refs = record_subpages(page, addr, end, pages + *nr);
2508 
2509 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2510 	if (!head)
2511 		return 0;
2512 
2513 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2514 		put_compound_head(head, refs, flags);
2515 		return 0;
2516 	}
2517 
2518 	*nr += refs;
2519 	SetPageReferenced(head);
2520 	return 1;
2521 }
2522 
2523 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2524 			unsigned long end, unsigned int flags,
2525 			struct page **pages, int *nr)
2526 {
2527 	int refs;
2528 	struct page *head, *page;
2529 
2530 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2531 		return 0;
2532 
2533 	BUILD_BUG_ON(pgd_devmap(orig));
2534 
2535 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2536 	refs = record_subpages(page, addr, end, pages + *nr);
2537 
2538 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2539 	if (!head)
2540 		return 0;
2541 
2542 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2543 		put_compound_head(head, refs, flags);
2544 		return 0;
2545 	}
2546 
2547 	*nr += refs;
2548 	SetPageReferenced(head);
2549 	return 1;
2550 }
2551 
2552 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2553 		unsigned int flags, struct page **pages, int *nr)
2554 {
2555 	unsigned long next;
2556 	pmd_t *pmdp;
2557 
2558 	pmdp = pmd_offset(&pud, addr);
2559 	do {
2560 		pmd_t pmd = READ_ONCE(*pmdp);
2561 
2562 		next = pmd_addr_end(addr, end);
2563 		if (!pmd_present(pmd))
2564 			return 0;
2565 
2566 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2567 			     pmd_devmap(pmd))) {
2568 			/*
2569 			 * NUMA hinting faults need to be handled in the GUP
2570 			 * slowpath for accounting purposes and so that they
2571 			 * can be serialised against THP migration.
2572 			 */
2573 			if (pmd_protnone(pmd))
2574 				return 0;
2575 
2576 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2577 				pages, nr))
2578 				return 0;
2579 
2580 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2581 			/*
2582 			 * architecture have different format for hugetlbfs
2583 			 * pmd format and THP pmd format
2584 			 */
2585 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2586 					 PMD_SHIFT, next, flags, pages, nr))
2587 				return 0;
2588 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2589 			return 0;
2590 	} while (pmdp++, addr = next, addr != end);
2591 
2592 	return 1;
2593 }
2594 
2595 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2596 			 unsigned int flags, struct page **pages, int *nr)
2597 {
2598 	unsigned long next;
2599 	pud_t *pudp;
2600 
2601 	pudp = pud_offset(&p4d, addr);
2602 	do {
2603 		pud_t pud = READ_ONCE(*pudp);
2604 
2605 		next = pud_addr_end(addr, end);
2606 		if (unlikely(!pud_present(pud)))
2607 			return 0;
2608 		if (unlikely(pud_huge(pud))) {
2609 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2610 					  pages, nr))
2611 				return 0;
2612 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2613 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2614 					 PUD_SHIFT, next, flags, pages, nr))
2615 				return 0;
2616 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2617 			return 0;
2618 	} while (pudp++, addr = next, addr != end);
2619 
2620 	return 1;
2621 }
2622 
2623 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2624 			 unsigned int flags, struct page **pages, int *nr)
2625 {
2626 	unsigned long next;
2627 	p4d_t *p4dp;
2628 
2629 	p4dp = p4d_offset(&pgd, addr);
2630 	do {
2631 		p4d_t p4d = READ_ONCE(*p4dp);
2632 
2633 		next = p4d_addr_end(addr, end);
2634 		if (p4d_none(p4d))
2635 			return 0;
2636 		BUILD_BUG_ON(p4d_huge(p4d));
2637 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2638 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2639 					 P4D_SHIFT, next, flags, pages, nr))
2640 				return 0;
2641 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2642 			return 0;
2643 	} while (p4dp++, addr = next, addr != end);
2644 
2645 	return 1;
2646 }
2647 
2648 static void gup_pgd_range(unsigned long addr, unsigned long end,
2649 		unsigned int flags, struct page **pages, int *nr)
2650 {
2651 	unsigned long next;
2652 	pgd_t *pgdp;
2653 
2654 	pgdp = pgd_offset(current->mm, addr);
2655 	do {
2656 		pgd_t pgd = READ_ONCE(*pgdp);
2657 
2658 		next = pgd_addr_end(addr, end);
2659 		if (pgd_none(pgd))
2660 			return;
2661 		if (unlikely(pgd_huge(pgd))) {
2662 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2663 					  pages, nr))
2664 				return;
2665 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2666 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2667 					 PGDIR_SHIFT, next, flags, pages, nr))
2668 				return;
2669 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2670 			return;
2671 	} while (pgdp++, addr = next, addr != end);
2672 }
2673 #else
2674 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2675 		unsigned int flags, struct page **pages, int *nr)
2676 {
2677 }
2678 #endif /* CONFIG_HAVE_FAST_GUP */
2679 
2680 #ifndef gup_fast_permitted
2681 /*
2682  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2683  * we need to fall back to the slow version:
2684  */
2685 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2686 {
2687 	return true;
2688 }
2689 #endif
2690 
2691 /*
2692  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2693  * the regular GUP.
2694  * Note a difference with get_user_pages_fast: this always returns the
2695  * number of pages pinned, 0 if no pages were pinned.
2696  *
2697  * If the architecture does not support this function, simply return with no
2698  * pages pinned.
2699  */
2700 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2701 			  struct page **pages)
2702 {
2703 	unsigned long len, end;
2704 	unsigned long flags;
2705 	int nr_pinned = 0;
2706 	/*
2707 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2708 	 * because gup fast is always a "pin with a +1 page refcount" request.
2709 	 */
2710 	unsigned int gup_flags = FOLL_GET;
2711 
2712 	if (write)
2713 		gup_flags |= FOLL_WRITE;
2714 
2715 	start = untagged_addr(start) & PAGE_MASK;
2716 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2717 	end = start + len;
2718 
2719 	if (end <= start)
2720 		return 0;
2721 	if (unlikely(!access_ok((void __user *)start, len)))
2722 		return 0;
2723 
2724 	/*
2725 	 * Disable interrupts.  We use the nested form as we can already have
2726 	 * interrupts disabled by get_futex_key.
2727 	 *
2728 	 * With interrupts disabled, we block page table pages from being
2729 	 * freed from under us. See struct mmu_table_batch comments in
2730 	 * include/asm-generic/tlb.h for more details.
2731 	 *
2732 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2733 	 * block IPIs that come from THPs splitting.
2734 	 */
2735 
2736 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2737 	    gup_fast_permitted(start, end)) {
2738 		local_irq_save(flags);
2739 		gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2740 		local_irq_restore(flags);
2741 	}
2742 
2743 	return nr_pinned;
2744 }
2745 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2746 
2747 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2748 				   unsigned int gup_flags, struct page **pages)
2749 {
2750 	int ret;
2751 
2752 	/*
2753 	 * FIXME: FOLL_LONGTERM does not work with
2754 	 * get_user_pages_unlocked() (see comments in that function)
2755 	 */
2756 	if (gup_flags & FOLL_LONGTERM) {
2757 		down_read(&current->mm->mmap_sem);
2758 		ret = __gup_longterm_locked(current, current->mm,
2759 					    start, nr_pages,
2760 					    pages, NULL, gup_flags);
2761 		up_read(&current->mm->mmap_sem);
2762 	} else {
2763 		ret = get_user_pages_unlocked(start, nr_pages,
2764 					      pages, gup_flags);
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2771 					unsigned int gup_flags,
2772 					struct page **pages)
2773 {
2774 	unsigned long addr, len, end;
2775 	int nr_pinned = 0, ret = 0;
2776 
2777 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2778 				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2779 		return -EINVAL;
2780 
2781 	start = untagged_addr(start) & PAGE_MASK;
2782 	addr = start;
2783 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2784 	end = start + len;
2785 
2786 	if (end <= start)
2787 		return 0;
2788 	if (unlikely(!access_ok((void __user *)start, len)))
2789 		return -EFAULT;
2790 
2791 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2792 	    gup_fast_permitted(start, end)) {
2793 		local_irq_disable();
2794 		gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
2795 		local_irq_enable();
2796 		ret = nr_pinned;
2797 	}
2798 
2799 	if (nr_pinned < nr_pages) {
2800 		/* Try to get the remaining pages with get_user_pages */
2801 		start += nr_pinned << PAGE_SHIFT;
2802 		pages += nr_pinned;
2803 
2804 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2805 					      gup_flags, pages);
2806 
2807 		/* Have to be a bit careful with return values */
2808 		if (nr_pinned > 0) {
2809 			if (ret < 0)
2810 				ret = nr_pinned;
2811 			else
2812 				ret += nr_pinned;
2813 		}
2814 	}
2815 
2816 	return ret;
2817 }
2818 
2819 /**
2820  * get_user_pages_fast() - pin user pages in memory
2821  * @start:      starting user address
2822  * @nr_pages:   number of pages from start to pin
2823  * @gup_flags:  flags modifying pin behaviour
2824  * @pages:      array that receives pointers to the pages pinned.
2825  *              Should be at least nr_pages long.
2826  *
2827  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2828  * If not successful, it will fall back to taking the lock and
2829  * calling get_user_pages().
2830  *
2831  * Returns number of pages pinned. This may be fewer than the number requested.
2832  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2833  * -errno.
2834  */
2835 int get_user_pages_fast(unsigned long start, int nr_pages,
2836 			unsigned int gup_flags, struct page **pages)
2837 {
2838 	/*
2839 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2840 	 * never directly by the caller, so enforce that:
2841 	 */
2842 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2843 		return -EINVAL;
2844 
2845 	/*
2846 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2847 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2848 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2849 	 * request.
2850 	 */
2851 	gup_flags |= FOLL_GET;
2852 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2853 }
2854 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2855 
2856 /**
2857  * pin_user_pages_fast() - pin user pages in memory without taking locks
2858  *
2859  * @start:      starting user address
2860  * @nr_pages:   number of pages from start to pin
2861  * @gup_flags:  flags modifying pin behaviour
2862  * @pages:      array that receives pointers to the pages pinned.
2863  *              Should be at least nr_pages long.
2864  *
2865  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2866  * get_user_pages_fast() for documentation on the function arguments, because
2867  * the arguments here are identical.
2868  *
2869  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2870  * see Documentation/vm/pin_user_pages.rst for further details.
2871  *
2872  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2873  * is NOT intended for Case 2 (RDMA: long-term pins).
2874  */
2875 int pin_user_pages_fast(unsigned long start, int nr_pages,
2876 			unsigned int gup_flags, struct page **pages)
2877 {
2878 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2879 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2880 		return -EINVAL;
2881 
2882 	gup_flags |= FOLL_PIN;
2883 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2884 }
2885 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2886 
2887 /**
2888  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2889  *
2890  * @tsk:	the task_struct to use for page fault accounting, or
2891  *		NULL if faults are not to be recorded.
2892  * @mm:		mm_struct of target mm
2893  * @start:	starting user address
2894  * @nr_pages:	number of pages from start to pin
2895  * @gup_flags:	flags modifying lookup behaviour
2896  * @pages:	array that receives pointers to the pages pinned.
2897  *		Should be at least nr_pages long. Or NULL, if caller
2898  *		only intends to ensure the pages are faulted in.
2899  * @vmas:	array of pointers to vmas corresponding to each page.
2900  *		Or NULL if the caller does not require them.
2901  * @locked:	pointer to lock flag indicating whether lock is held and
2902  *		subsequently whether VM_FAULT_RETRY functionality can be
2903  *		utilised. Lock must initially be held.
2904  *
2905  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2906  * get_user_pages_remote() for documentation on the function arguments, because
2907  * the arguments here are identical.
2908  *
2909  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2910  * see Documentation/vm/pin_user_pages.rst for details.
2911  *
2912  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2913  * is NOT intended for Case 2 (RDMA: long-term pins).
2914  */
2915 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2916 			   unsigned long start, unsigned long nr_pages,
2917 			   unsigned int gup_flags, struct page **pages,
2918 			   struct vm_area_struct **vmas, int *locked)
2919 {
2920 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2921 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2922 		return -EINVAL;
2923 
2924 	gup_flags |= FOLL_PIN;
2925 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2926 				       pages, vmas, locked);
2927 }
2928 EXPORT_SYMBOL(pin_user_pages_remote);
2929 
2930 /**
2931  * pin_user_pages() - pin user pages in memory for use by other devices
2932  *
2933  * @start:	starting user address
2934  * @nr_pages:	number of pages from start to pin
2935  * @gup_flags:	flags modifying lookup behaviour
2936  * @pages:	array that receives pointers to the pages pinned.
2937  *		Should be at least nr_pages long. Or NULL, if caller
2938  *		only intends to ensure the pages are faulted in.
2939  * @vmas:	array of pointers to vmas corresponding to each page.
2940  *		Or NULL if the caller does not require them.
2941  *
2942  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2943  * FOLL_PIN is set.
2944  *
2945  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2946  * see Documentation/vm/pin_user_pages.rst for details.
2947  *
2948  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2949  * is NOT intended for Case 2 (RDMA: long-term pins).
2950  */
2951 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2952 		    unsigned int gup_flags, struct page **pages,
2953 		    struct vm_area_struct **vmas)
2954 {
2955 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2956 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2957 		return -EINVAL;
2958 
2959 	gup_flags |= FOLL_PIN;
2960 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
2961 				     pages, vmas, gup_flags);
2962 }
2963 EXPORT_SYMBOL(pin_user_pages);
2964 
2965 /*
2966  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2967  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2968  * FOLL_PIN and rejects FOLL_GET.
2969  */
2970 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2971 			     struct page **pages, unsigned int gup_flags)
2972 {
2973 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2974 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2975 		return -EINVAL;
2976 
2977 	gup_flags |= FOLL_PIN;
2978 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2979 }
2980 EXPORT_SYMBOL(pin_user_pages_unlocked);
2981