1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* 49 * Return the compound head page with ref appropriately incremented, 50 * or NULL if that failed. 51 */ 52 static inline struct page *try_get_compound_head(struct page *page, int refs) 53 { 54 struct page *head = compound_head(page); 55 56 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 57 return NULL; 58 if (unlikely(!page_cache_add_speculative(head, refs))) 59 return NULL; 60 return head; 61 } 62 63 /* 64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 65 * flags-dependent amount. 66 * 67 * "grab" names in this file mean, "look at flags to decide whether to use 68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 69 * 70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 71 * same time. (That's true throughout the get_user_pages*() and 72 * pin_user_pages*() APIs.) Cases: 73 * 74 * FOLL_GET: page's refcount will be incremented by 1. 75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 76 * 77 * Return: head page (with refcount appropriately incremented) for success, or 78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 79 * considered failure, and furthermore, a likely bug in the caller, so a warning 80 * is also emitted. 81 */ 82 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 83 int refs, 84 unsigned int flags) 85 { 86 if (flags & FOLL_GET) 87 return try_get_compound_head(page, refs); 88 else if (flags & FOLL_PIN) { 89 int orig_refs = refs; 90 91 /* 92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 93 * path, so fail and let the caller fall back to the slow path. 94 */ 95 if (unlikely(flags & FOLL_LONGTERM) && 96 is_migrate_cma_page(page)) 97 return NULL; 98 99 /* 100 * When pinning a compound page of order > 1 (which is what 101 * hpage_pincount_available() checks for), use an exact count to 102 * track it, via hpage_pincount_add/_sub(). 103 * 104 * However, be sure to *also* increment the normal page refcount 105 * field at least once, so that the page really is pinned. 106 */ 107 if (!hpage_pincount_available(page)) 108 refs *= GUP_PIN_COUNTING_BIAS; 109 110 page = try_get_compound_head(page, refs); 111 if (!page) 112 return NULL; 113 114 if (hpage_pincount_available(page)) 115 hpage_pincount_add(page, refs); 116 117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 118 orig_refs); 119 120 return page; 121 } 122 123 WARN_ON_ONCE(1); 124 return NULL; 125 } 126 127 /** 128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 129 * 130 * This might not do anything at all, depending on the flags argument. 131 * 132 * "grab" names in this file mean, "look at flags to decide whether to use 133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 134 * 135 * @page: pointer to page to be grabbed 136 * @flags: gup flags: these are the FOLL_* flag values. 137 * 138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 139 * time. Cases: 140 * 141 * FOLL_GET: page's refcount will be incremented by 1. 142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 143 * 144 * Return: true for success, or if no action was required (if neither FOLL_PIN 145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 146 * FOLL_PIN was set, but the page could not be grabbed. 147 */ 148 bool __must_check try_grab_page(struct page *page, unsigned int flags) 149 { 150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 151 152 if (flags & FOLL_GET) 153 return try_get_page(page); 154 else if (flags & FOLL_PIN) { 155 int refs = 1; 156 157 page = compound_head(page); 158 159 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 160 return false; 161 162 if (hpage_pincount_available(page)) 163 hpage_pincount_add(page, 1); 164 else 165 refs = GUP_PIN_COUNTING_BIAS; 166 167 /* 168 * Similar to try_grab_compound_head(): even if using the 169 * hpage_pincount_add/_sub() routines, be sure to 170 * *also* increment the normal page refcount field at least 171 * once, so that the page really is pinned. 172 */ 173 page_ref_add(page, refs); 174 175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 176 } 177 178 return true; 179 } 180 181 #ifdef CONFIG_DEV_PAGEMAP_OPS 182 static bool __unpin_devmap_managed_user_page(struct page *page) 183 { 184 int count, refs = 1; 185 186 if (!page_is_devmap_managed(page)) 187 return false; 188 189 if (hpage_pincount_available(page)) 190 hpage_pincount_sub(page, 1); 191 else 192 refs = GUP_PIN_COUNTING_BIAS; 193 194 count = page_ref_sub_return(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 197 /* 198 * devmap page refcounts are 1-based, rather than 0-based: if 199 * refcount is 1, then the page is free and the refcount is 200 * stable because nobody holds a reference on the page. 201 */ 202 if (count == 1) 203 free_devmap_managed_page(page); 204 else if (!count) 205 __put_page(page); 206 207 return true; 208 } 209 #else 210 static bool __unpin_devmap_managed_user_page(struct page *page) 211 { 212 return false; 213 } 214 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 215 216 /** 217 * unpin_user_page() - release a dma-pinned page 218 * @page: pointer to page to be released 219 * 220 * Pages that were pinned via pin_user_pages*() must be released via either 221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 222 * that such pages can be separately tracked and uniquely handled. In 223 * particular, interactions with RDMA and filesystems need special handling. 224 */ 225 void unpin_user_page(struct page *page) 226 { 227 int refs = 1; 228 229 page = compound_head(page); 230 231 /* 232 * For devmap managed pages we need to catch refcount transition from 233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 234 * page is free and we need to inform the device driver through 235 * callback. See include/linux/memremap.h and HMM for details. 236 */ 237 if (__unpin_devmap_managed_user_page(page)) 238 return; 239 240 if (hpage_pincount_available(page)) 241 hpage_pincount_sub(page, 1); 242 else 243 refs = GUP_PIN_COUNTING_BIAS; 244 245 if (page_ref_sub_and_test(page, refs)) 246 __put_page(page); 247 248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 249 } 250 EXPORT_SYMBOL(unpin_user_page); 251 252 /** 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 254 * @pages: array of pages to be maybe marked dirty, and definitely released. 255 * @npages: number of pages in the @pages array. 256 * @make_dirty: whether to mark the pages dirty 257 * 258 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 259 * variants called on that page. 260 * 261 * For each page in the @pages array, make that page (or its head page, if a 262 * compound page) dirty, if @make_dirty is true, and if the page was previously 263 * listed as clean. In any case, releases all pages using unpin_user_page(), 264 * possibly via unpin_user_pages(), for the non-dirty case. 265 * 266 * Please see the unpin_user_page() documentation for details. 267 * 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 269 * required, then the caller should a) verify that this is really correct, 270 * because _lock() is usually required, and b) hand code it: 271 * set_page_dirty_lock(), unpin_user_page(). 272 * 273 */ 274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 275 bool make_dirty) 276 { 277 unsigned long index; 278 279 /* 280 * TODO: this can be optimized for huge pages: if a series of pages is 281 * physically contiguous and part of the same compound page, then a 282 * single operation to the head page should suffice. 283 */ 284 285 if (!make_dirty) { 286 unpin_user_pages(pages, npages); 287 return; 288 } 289 290 for (index = 0; index < npages; index++) { 291 struct page *page = compound_head(pages[index]); 292 /* 293 * Checking PageDirty at this point may race with 294 * clear_page_dirty_for_io(), but that's OK. Two key 295 * cases: 296 * 297 * 1) This code sees the page as already dirty, so it 298 * skips the call to set_page_dirty(). That could happen 299 * because clear_page_dirty_for_io() called 300 * page_mkclean(), followed by set_page_dirty(). 301 * However, now the page is going to get written back, 302 * which meets the original intention of setting it 303 * dirty, so all is well: clear_page_dirty_for_io() goes 304 * on to call TestClearPageDirty(), and write the page 305 * back. 306 * 307 * 2) This code sees the page as clean, so it calls 308 * set_page_dirty(). The page stays dirty, despite being 309 * written back, so it gets written back again in the 310 * next writeback cycle. This is harmless. 311 */ 312 if (!PageDirty(page)) 313 set_page_dirty_lock(page); 314 unpin_user_page(page); 315 } 316 } 317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 318 319 /** 320 * unpin_user_pages() - release an array of gup-pinned pages. 321 * @pages: array of pages to be marked dirty and released. 322 * @npages: number of pages in the @pages array. 323 * 324 * For each page in the @pages array, release the page using unpin_user_page(). 325 * 326 * Please see the unpin_user_page() documentation for details. 327 */ 328 void unpin_user_pages(struct page **pages, unsigned long npages) 329 { 330 unsigned long index; 331 332 /* 333 * TODO: this can be optimized for huge pages: if a series of pages is 334 * physically contiguous and part of the same compound page, then a 335 * single operation to the head page should suffice. 336 */ 337 for (index = 0; index < npages; index++) 338 unpin_user_page(pages[index]); 339 } 340 EXPORT_SYMBOL(unpin_user_pages); 341 342 #ifdef CONFIG_MMU 343 static struct page *no_page_table(struct vm_area_struct *vma, 344 unsigned int flags) 345 { 346 /* 347 * When core dumping an enormous anonymous area that nobody 348 * has touched so far, we don't want to allocate unnecessary pages or 349 * page tables. Return error instead of NULL to skip handle_mm_fault, 350 * then get_dump_page() will return NULL to leave a hole in the dump. 351 * But we can only make this optimization where a hole would surely 352 * be zero-filled if handle_mm_fault() actually did handle it. 353 */ 354 if ((flags & FOLL_DUMP) && 355 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 356 return ERR_PTR(-EFAULT); 357 return NULL; 358 } 359 360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 361 pte_t *pte, unsigned int flags) 362 { 363 /* No page to get reference */ 364 if (flags & FOLL_GET) 365 return -EFAULT; 366 367 if (flags & FOLL_TOUCH) { 368 pte_t entry = *pte; 369 370 if (flags & FOLL_WRITE) 371 entry = pte_mkdirty(entry); 372 entry = pte_mkyoung(entry); 373 374 if (!pte_same(*pte, entry)) { 375 set_pte_at(vma->vm_mm, address, pte, entry); 376 update_mmu_cache(vma, address, pte); 377 } 378 } 379 380 /* Proper page table entry exists, but no corresponding struct page */ 381 return -EEXIST; 382 } 383 384 /* 385 * FOLL_FORCE can write to even unwritable pte's, but only 386 * after we've gone through a COW cycle and they are dirty. 387 */ 388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 389 { 390 return pte_write(pte) || 391 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 392 } 393 394 static struct page *follow_page_pte(struct vm_area_struct *vma, 395 unsigned long address, pmd_t *pmd, unsigned int flags, 396 struct dev_pagemap **pgmap) 397 { 398 struct mm_struct *mm = vma->vm_mm; 399 struct page *page; 400 spinlock_t *ptl; 401 pte_t *ptep, pte; 402 int ret; 403 404 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 405 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 406 (FOLL_PIN | FOLL_GET))) 407 return ERR_PTR(-EINVAL); 408 retry: 409 if (unlikely(pmd_bad(*pmd))) 410 return no_page_table(vma, flags); 411 412 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 413 pte = *ptep; 414 if (!pte_present(pte)) { 415 swp_entry_t entry; 416 /* 417 * KSM's break_ksm() relies upon recognizing a ksm page 418 * even while it is being migrated, so for that case we 419 * need migration_entry_wait(). 420 */ 421 if (likely(!(flags & FOLL_MIGRATION))) 422 goto no_page; 423 if (pte_none(pte)) 424 goto no_page; 425 entry = pte_to_swp_entry(pte); 426 if (!is_migration_entry(entry)) 427 goto no_page; 428 pte_unmap_unlock(ptep, ptl); 429 migration_entry_wait(mm, pmd, address); 430 goto retry; 431 } 432 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 433 goto no_page; 434 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 435 pte_unmap_unlock(ptep, ptl); 436 return NULL; 437 } 438 439 page = vm_normal_page(vma, address, pte); 440 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 441 /* 442 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 443 * case since they are only valid while holding the pgmap 444 * reference. 445 */ 446 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 447 if (*pgmap) 448 page = pte_page(pte); 449 else 450 goto no_page; 451 } else if (unlikely(!page)) { 452 if (flags & FOLL_DUMP) { 453 /* Avoid special (like zero) pages in core dumps */ 454 page = ERR_PTR(-EFAULT); 455 goto out; 456 } 457 458 if (is_zero_pfn(pte_pfn(pte))) { 459 page = pte_page(pte); 460 } else { 461 ret = follow_pfn_pte(vma, address, ptep, flags); 462 page = ERR_PTR(ret); 463 goto out; 464 } 465 } 466 467 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 468 get_page(page); 469 pte_unmap_unlock(ptep, ptl); 470 lock_page(page); 471 ret = split_huge_page(page); 472 unlock_page(page); 473 put_page(page); 474 if (ret) 475 return ERR_PTR(ret); 476 goto retry; 477 } 478 479 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 480 if (unlikely(!try_grab_page(page, flags))) { 481 page = ERR_PTR(-ENOMEM); 482 goto out; 483 } 484 /* 485 * We need to make the page accessible if and only if we are going 486 * to access its content (the FOLL_PIN case). Please see 487 * Documentation/core-api/pin_user_pages.rst for details. 488 */ 489 if (flags & FOLL_PIN) { 490 ret = arch_make_page_accessible(page); 491 if (ret) { 492 unpin_user_page(page); 493 page = ERR_PTR(ret); 494 goto out; 495 } 496 } 497 if (flags & FOLL_TOUCH) { 498 if ((flags & FOLL_WRITE) && 499 !pte_dirty(pte) && !PageDirty(page)) 500 set_page_dirty(page); 501 /* 502 * pte_mkyoung() would be more correct here, but atomic care 503 * is needed to avoid losing the dirty bit: it is easier to use 504 * mark_page_accessed(). 505 */ 506 mark_page_accessed(page); 507 } 508 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 509 /* Do not mlock pte-mapped THP */ 510 if (PageTransCompound(page)) 511 goto out; 512 513 /* 514 * The preliminary mapping check is mainly to avoid the 515 * pointless overhead of lock_page on the ZERO_PAGE 516 * which might bounce very badly if there is contention. 517 * 518 * If the page is already locked, we don't need to 519 * handle it now - vmscan will handle it later if and 520 * when it attempts to reclaim the page. 521 */ 522 if (page->mapping && trylock_page(page)) { 523 lru_add_drain(); /* push cached pages to LRU */ 524 /* 525 * Because we lock page here, and migration is 526 * blocked by the pte's page reference, and we 527 * know the page is still mapped, we don't even 528 * need to check for file-cache page truncation. 529 */ 530 mlock_vma_page(page); 531 unlock_page(page); 532 } 533 } 534 out: 535 pte_unmap_unlock(ptep, ptl); 536 return page; 537 no_page: 538 pte_unmap_unlock(ptep, ptl); 539 if (!pte_none(pte)) 540 return NULL; 541 return no_page_table(vma, flags); 542 } 543 544 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 545 unsigned long address, pud_t *pudp, 546 unsigned int flags, 547 struct follow_page_context *ctx) 548 { 549 pmd_t *pmd, pmdval; 550 spinlock_t *ptl; 551 struct page *page; 552 struct mm_struct *mm = vma->vm_mm; 553 554 pmd = pmd_offset(pudp, address); 555 /* 556 * The READ_ONCE() will stabilize the pmdval in a register or 557 * on the stack so that it will stop changing under the code. 558 */ 559 pmdval = READ_ONCE(*pmd); 560 if (pmd_none(pmdval)) 561 return no_page_table(vma, flags); 562 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 563 page = follow_huge_pmd(mm, address, pmd, flags); 564 if (page) 565 return page; 566 return no_page_table(vma, flags); 567 } 568 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 569 page = follow_huge_pd(vma, address, 570 __hugepd(pmd_val(pmdval)), flags, 571 PMD_SHIFT); 572 if (page) 573 return page; 574 return no_page_table(vma, flags); 575 } 576 retry: 577 if (!pmd_present(pmdval)) { 578 if (likely(!(flags & FOLL_MIGRATION))) 579 return no_page_table(vma, flags); 580 VM_BUG_ON(thp_migration_supported() && 581 !is_pmd_migration_entry(pmdval)); 582 if (is_pmd_migration_entry(pmdval)) 583 pmd_migration_entry_wait(mm, pmd); 584 pmdval = READ_ONCE(*pmd); 585 /* 586 * MADV_DONTNEED may convert the pmd to null because 587 * mmap_sem is held in read mode 588 */ 589 if (pmd_none(pmdval)) 590 return no_page_table(vma, flags); 591 goto retry; 592 } 593 if (pmd_devmap(pmdval)) { 594 ptl = pmd_lock(mm, pmd); 595 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 596 spin_unlock(ptl); 597 if (page) 598 return page; 599 } 600 if (likely(!pmd_trans_huge(pmdval))) 601 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 602 603 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 604 return no_page_table(vma, flags); 605 606 retry_locked: 607 ptl = pmd_lock(mm, pmd); 608 if (unlikely(pmd_none(*pmd))) { 609 spin_unlock(ptl); 610 return no_page_table(vma, flags); 611 } 612 if (unlikely(!pmd_present(*pmd))) { 613 spin_unlock(ptl); 614 if (likely(!(flags & FOLL_MIGRATION))) 615 return no_page_table(vma, flags); 616 pmd_migration_entry_wait(mm, pmd); 617 goto retry_locked; 618 } 619 if (unlikely(!pmd_trans_huge(*pmd))) { 620 spin_unlock(ptl); 621 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 622 } 623 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 624 int ret; 625 page = pmd_page(*pmd); 626 if (is_huge_zero_page(page)) { 627 spin_unlock(ptl); 628 ret = 0; 629 split_huge_pmd(vma, pmd, address); 630 if (pmd_trans_unstable(pmd)) 631 ret = -EBUSY; 632 } else if (flags & FOLL_SPLIT) { 633 if (unlikely(!try_get_page(page))) { 634 spin_unlock(ptl); 635 return ERR_PTR(-ENOMEM); 636 } 637 spin_unlock(ptl); 638 lock_page(page); 639 ret = split_huge_page(page); 640 unlock_page(page); 641 put_page(page); 642 if (pmd_none(*pmd)) 643 return no_page_table(vma, flags); 644 } else { /* flags & FOLL_SPLIT_PMD */ 645 spin_unlock(ptl); 646 split_huge_pmd(vma, pmd, address); 647 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 648 } 649 650 return ret ? ERR_PTR(ret) : 651 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 652 } 653 page = follow_trans_huge_pmd(vma, address, pmd, flags); 654 spin_unlock(ptl); 655 ctx->page_mask = HPAGE_PMD_NR - 1; 656 return page; 657 } 658 659 static struct page *follow_pud_mask(struct vm_area_struct *vma, 660 unsigned long address, p4d_t *p4dp, 661 unsigned int flags, 662 struct follow_page_context *ctx) 663 { 664 pud_t *pud; 665 spinlock_t *ptl; 666 struct page *page; 667 struct mm_struct *mm = vma->vm_mm; 668 669 pud = pud_offset(p4dp, address); 670 if (pud_none(*pud)) 671 return no_page_table(vma, flags); 672 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 673 page = follow_huge_pud(mm, address, pud, flags); 674 if (page) 675 return page; 676 return no_page_table(vma, flags); 677 } 678 if (is_hugepd(__hugepd(pud_val(*pud)))) { 679 page = follow_huge_pd(vma, address, 680 __hugepd(pud_val(*pud)), flags, 681 PUD_SHIFT); 682 if (page) 683 return page; 684 return no_page_table(vma, flags); 685 } 686 if (pud_devmap(*pud)) { 687 ptl = pud_lock(mm, pud); 688 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 689 spin_unlock(ptl); 690 if (page) 691 return page; 692 } 693 if (unlikely(pud_bad(*pud))) 694 return no_page_table(vma, flags); 695 696 return follow_pmd_mask(vma, address, pud, flags, ctx); 697 } 698 699 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 700 unsigned long address, pgd_t *pgdp, 701 unsigned int flags, 702 struct follow_page_context *ctx) 703 { 704 p4d_t *p4d; 705 struct page *page; 706 707 p4d = p4d_offset(pgdp, address); 708 if (p4d_none(*p4d)) 709 return no_page_table(vma, flags); 710 BUILD_BUG_ON(p4d_huge(*p4d)); 711 if (unlikely(p4d_bad(*p4d))) 712 return no_page_table(vma, flags); 713 714 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 715 page = follow_huge_pd(vma, address, 716 __hugepd(p4d_val(*p4d)), flags, 717 P4D_SHIFT); 718 if (page) 719 return page; 720 return no_page_table(vma, flags); 721 } 722 return follow_pud_mask(vma, address, p4d, flags, ctx); 723 } 724 725 /** 726 * follow_page_mask - look up a page descriptor from a user-virtual address 727 * @vma: vm_area_struct mapping @address 728 * @address: virtual address to look up 729 * @flags: flags modifying lookup behaviour 730 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 731 * pointer to output page_mask 732 * 733 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 734 * 735 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 736 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 737 * 738 * On output, the @ctx->page_mask is set according to the size of the page. 739 * 740 * Return: the mapped (struct page *), %NULL if no mapping exists, or 741 * an error pointer if there is a mapping to something not represented 742 * by a page descriptor (see also vm_normal_page()). 743 */ 744 static struct page *follow_page_mask(struct vm_area_struct *vma, 745 unsigned long address, unsigned int flags, 746 struct follow_page_context *ctx) 747 { 748 pgd_t *pgd; 749 struct page *page; 750 struct mm_struct *mm = vma->vm_mm; 751 752 ctx->page_mask = 0; 753 754 /* make this handle hugepd */ 755 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 756 if (!IS_ERR(page)) { 757 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 758 return page; 759 } 760 761 pgd = pgd_offset(mm, address); 762 763 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 764 return no_page_table(vma, flags); 765 766 if (pgd_huge(*pgd)) { 767 page = follow_huge_pgd(mm, address, pgd, flags); 768 if (page) 769 return page; 770 return no_page_table(vma, flags); 771 } 772 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 773 page = follow_huge_pd(vma, address, 774 __hugepd(pgd_val(*pgd)), flags, 775 PGDIR_SHIFT); 776 if (page) 777 return page; 778 return no_page_table(vma, flags); 779 } 780 781 return follow_p4d_mask(vma, address, pgd, flags, ctx); 782 } 783 784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 785 unsigned int foll_flags) 786 { 787 struct follow_page_context ctx = { NULL }; 788 struct page *page; 789 790 page = follow_page_mask(vma, address, foll_flags, &ctx); 791 if (ctx.pgmap) 792 put_dev_pagemap(ctx.pgmap); 793 return page; 794 } 795 796 static int get_gate_page(struct mm_struct *mm, unsigned long address, 797 unsigned int gup_flags, struct vm_area_struct **vma, 798 struct page **page) 799 { 800 pgd_t *pgd; 801 p4d_t *p4d; 802 pud_t *pud; 803 pmd_t *pmd; 804 pte_t *pte; 805 int ret = -EFAULT; 806 807 /* user gate pages are read-only */ 808 if (gup_flags & FOLL_WRITE) 809 return -EFAULT; 810 if (address > TASK_SIZE) 811 pgd = pgd_offset_k(address); 812 else 813 pgd = pgd_offset_gate(mm, address); 814 if (pgd_none(*pgd)) 815 return -EFAULT; 816 p4d = p4d_offset(pgd, address); 817 if (p4d_none(*p4d)) 818 return -EFAULT; 819 pud = pud_offset(p4d, address); 820 if (pud_none(*pud)) 821 return -EFAULT; 822 pmd = pmd_offset(pud, address); 823 if (!pmd_present(*pmd)) 824 return -EFAULT; 825 VM_BUG_ON(pmd_trans_huge(*pmd)); 826 pte = pte_offset_map(pmd, address); 827 if (pte_none(*pte)) 828 goto unmap; 829 *vma = get_gate_vma(mm); 830 if (!page) 831 goto out; 832 *page = vm_normal_page(*vma, address, *pte); 833 if (!*page) { 834 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 835 goto unmap; 836 *page = pte_page(*pte); 837 } 838 if (unlikely(!try_get_page(*page))) { 839 ret = -ENOMEM; 840 goto unmap; 841 } 842 out: 843 ret = 0; 844 unmap: 845 pte_unmap(pte); 846 return ret; 847 } 848 849 /* 850 * mmap_sem must be held on entry. If @locked != NULL and *@flags 851 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it 852 * is, *@locked will be set to 0 and -EBUSY returned. 853 */ 854 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 855 unsigned long address, unsigned int *flags, int *locked) 856 { 857 unsigned int fault_flags = 0; 858 vm_fault_t ret; 859 860 /* mlock all present pages, but do not fault in new pages */ 861 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 862 return -ENOENT; 863 if (*flags & FOLL_WRITE) 864 fault_flags |= FAULT_FLAG_WRITE; 865 if (*flags & FOLL_REMOTE) 866 fault_flags |= FAULT_FLAG_REMOTE; 867 if (locked) 868 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 869 if (*flags & FOLL_NOWAIT) 870 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 871 if (*flags & FOLL_TRIED) { 872 /* 873 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 874 * can co-exist 875 */ 876 fault_flags |= FAULT_FLAG_TRIED; 877 } 878 879 ret = handle_mm_fault(vma, address, fault_flags); 880 if (ret & VM_FAULT_ERROR) { 881 int err = vm_fault_to_errno(ret, *flags); 882 883 if (err) 884 return err; 885 BUG(); 886 } 887 888 if (tsk) { 889 if (ret & VM_FAULT_MAJOR) 890 tsk->maj_flt++; 891 else 892 tsk->min_flt++; 893 } 894 895 if (ret & VM_FAULT_RETRY) { 896 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 897 *locked = 0; 898 return -EBUSY; 899 } 900 901 /* 902 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 903 * necessary, even if maybe_mkwrite decided not to set pte_write. We 904 * can thus safely do subsequent page lookups as if they were reads. 905 * But only do so when looping for pte_write is futile: in some cases 906 * userspace may also be wanting to write to the gotten user page, 907 * which a read fault here might prevent (a readonly page might get 908 * reCOWed by userspace write). 909 */ 910 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 911 *flags |= FOLL_COW; 912 return 0; 913 } 914 915 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 916 { 917 vm_flags_t vm_flags = vma->vm_flags; 918 int write = (gup_flags & FOLL_WRITE); 919 int foreign = (gup_flags & FOLL_REMOTE); 920 921 if (vm_flags & (VM_IO | VM_PFNMAP)) 922 return -EFAULT; 923 924 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 925 return -EFAULT; 926 927 if (write) { 928 if (!(vm_flags & VM_WRITE)) { 929 if (!(gup_flags & FOLL_FORCE)) 930 return -EFAULT; 931 /* 932 * We used to let the write,force case do COW in a 933 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 934 * set a breakpoint in a read-only mapping of an 935 * executable, without corrupting the file (yet only 936 * when that file had been opened for writing!). 937 * Anon pages in shared mappings are surprising: now 938 * just reject it. 939 */ 940 if (!is_cow_mapping(vm_flags)) 941 return -EFAULT; 942 } 943 } else if (!(vm_flags & VM_READ)) { 944 if (!(gup_flags & FOLL_FORCE)) 945 return -EFAULT; 946 /* 947 * Is there actually any vma we can reach here which does not 948 * have VM_MAYREAD set? 949 */ 950 if (!(vm_flags & VM_MAYREAD)) 951 return -EFAULT; 952 } 953 /* 954 * gups are always data accesses, not instruction 955 * fetches, so execute=false here 956 */ 957 if (!arch_vma_access_permitted(vma, write, false, foreign)) 958 return -EFAULT; 959 return 0; 960 } 961 962 /** 963 * __get_user_pages() - pin user pages in memory 964 * @tsk: task_struct of target task 965 * @mm: mm_struct of target mm 966 * @start: starting user address 967 * @nr_pages: number of pages from start to pin 968 * @gup_flags: flags modifying pin behaviour 969 * @pages: array that receives pointers to the pages pinned. 970 * Should be at least nr_pages long. Or NULL, if caller 971 * only intends to ensure the pages are faulted in. 972 * @vmas: array of pointers to vmas corresponding to each page. 973 * Or NULL if the caller does not require them. 974 * @locked: whether we're still with the mmap_sem held 975 * 976 * Returns either number of pages pinned (which may be less than the 977 * number requested), or an error. Details about the return value: 978 * 979 * -- If nr_pages is 0, returns 0. 980 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 981 * -- If nr_pages is >0, and some pages were pinned, returns the number of 982 * pages pinned. Again, this may be less than nr_pages. 983 * 984 * The caller is responsible for releasing returned @pages, via put_page(). 985 * 986 * @vmas are valid only as long as mmap_sem is held. 987 * 988 * Must be called with mmap_sem held. It may be released. See below. 989 * 990 * __get_user_pages walks a process's page tables and takes a reference to 991 * each struct page that each user address corresponds to at a given 992 * instant. That is, it takes the page that would be accessed if a user 993 * thread accesses the given user virtual address at that instant. 994 * 995 * This does not guarantee that the page exists in the user mappings when 996 * __get_user_pages returns, and there may even be a completely different 997 * page there in some cases (eg. if mmapped pagecache has been invalidated 998 * and subsequently re faulted). However it does guarantee that the page 999 * won't be freed completely. And mostly callers simply care that the page 1000 * contains data that was valid *at some point in time*. Typically, an IO 1001 * or similar operation cannot guarantee anything stronger anyway because 1002 * locks can't be held over the syscall boundary. 1003 * 1004 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1005 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1006 * appropriate) must be called after the page is finished with, and 1007 * before put_page is called. 1008 * 1009 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is 1010 * released by an up_read(). That can happen if @gup_flags does not 1011 * have FOLL_NOWAIT. 1012 * 1013 * A caller using such a combination of @locked and @gup_flags 1014 * must therefore hold the mmap_sem for reading only, and recognize 1015 * when it's been released. Otherwise, it must be held for either 1016 * reading or writing and will not be released. 1017 * 1018 * In most cases, get_user_pages or get_user_pages_fast should be used 1019 * instead of __get_user_pages. __get_user_pages should be used only if 1020 * you need some special @gup_flags. 1021 */ 1022 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1023 unsigned long start, unsigned long nr_pages, 1024 unsigned int gup_flags, struct page **pages, 1025 struct vm_area_struct **vmas, int *locked) 1026 { 1027 long ret = 0, i = 0; 1028 struct vm_area_struct *vma = NULL; 1029 struct follow_page_context ctx = { NULL }; 1030 1031 if (!nr_pages) 1032 return 0; 1033 1034 start = untagged_addr(start); 1035 1036 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1037 1038 /* 1039 * If FOLL_FORCE is set then do not force a full fault as the hinting 1040 * fault information is unrelated to the reference behaviour of a task 1041 * using the address space 1042 */ 1043 if (!(gup_flags & FOLL_FORCE)) 1044 gup_flags |= FOLL_NUMA; 1045 1046 do { 1047 struct page *page; 1048 unsigned int foll_flags = gup_flags; 1049 unsigned int page_increm; 1050 1051 /* first iteration or cross vma bound */ 1052 if (!vma || start >= vma->vm_end) { 1053 vma = find_extend_vma(mm, start); 1054 if (!vma && in_gate_area(mm, start)) { 1055 ret = get_gate_page(mm, start & PAGE_MASK, 1056 gup_flags, &vma, 1057 pages ? &pages[i] : NULL); 1058 if (ret) 1059 goto out; 1060 ctx.page_mask = 0; 1061 goto next_page; 1062 } 1063 1064 if (!vma || check_vma_flags(vma, gup_flags)) { 1065 ret = -EFAULT; 1066 goto out; 1067 } 1068 if (is_vm_hugetlb_page(vma)) { 1069 i = follow_hugetlb_page(mm, vma, pages, vmas, 1070 &start, &nr_pages, i, 1071 gup_flags, locked); 1072 if (locked && *locked == 0) { 1073 /* 1074 * We've got a VM_FAULT_RETRY 1075 * and we've lost mmap_sem. 1076 * We must stop here. 1077 */ 1078 BUG_ON(gup_flags & FOLL_NOWAIT); 1079 BUG_ON(ret != 0); 1080 goto out; 1081 } 1082 continue; 1083 } 1084 } 1085 retry: 1086 /* 1087 * If we have a pending SIGKILL, don't keep faulting pages and 1088 * potentially allocating memory. 1089 */ 1090 if (fatal_signal_pending(current)) { 1091 ret = -EINTR; 1092 goto out; 1093 } 1094 cond_resched(); 1095 1096 page = follow_page_mask(vma, start, foll_flags, &ctx); 1097 if (!page) { 1098 ret = faultin_page(tsk, vma, start, &foll_flags, 1099 locked); 1100 switch (ret) { 1101 case 0: 1102 goto retry; 1103 case -EBUSY: 1104 ret = 0; 1105 fallthrough; 1106 case -EFAULT: 1107 case -ENOMEM: 1108 case -EHWPOISON: 1109 goto out; 1110 case -ENOENT: 1111 goto next_page; 1112 } 1113 BUG(); 1114 } else if (PTR_ERR(page) == -EEXIST) { 1115 /* 1116 * Proper page table entry exists, but no corresponding 1117 * struct page. 1118 */ 1119 goto next_page; 1120 } else if (IS_ERR(page)) { 1121 ret = PTR_ERR(page); 1122 goto out; 1123 } 1124 if (pages) { 1125 pages[i] = page; 1126 flush_anon_page(vma, page, start); 1127 flush_dcache_page(page); 1128 ctx.page_mask = 0; 1129 } 1130 next_page: 1131 if (vmas) { 1132 vmas[i] = vma; 1133 ctx.page_mask = 0; 1134 } 1135 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1136 if (page_increm > nr_pages) 1137 page_increm = nr_pages; 1138 i += page_increm; 1139 start += page_increm * PAGE_SIZE; 1140 nr_pages -= page_increm; 1141 } while (nr_pages); 1142 out: 1143 if (ctx.pgmap) 1144 put_dev_pagemap(ctx.pgmap); 1145 return i ? i : ret; 1146 } 1147 1148 static bool vma_permits_fault(struct vm_area_struct *vma, 1149 unsigned int fault_flags) 1150 { 1151 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1152 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1153 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1154 1155 if (!(vm_flags & vma->vm_flags)) 1156 return false; 1157 1158 /* 1159 * The architecture might have a hardware protection 1160 * mechanism other than read/write that can deny access. 1161 * 1162 * gup always represents data access, not instruction 1163 * fetches, so execute=false here: 1164 */ 1165 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1166 return false; 1167 1168 return true; 1169 } 1170 1171 /** 1172 * fixup_user_fault() - manually resolve a user page fault 1173 * @tsk: the task_struct to use for page fault accounting, or 1174 * NULL if faults are not to be recorded. 1175 * @mm: mm_struct of target mm 1176 * @address: user address 1177 * @fault_flags:flags to pass down to handle_mm_fault() 1178 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 1179 * does not allow retry. If NULL, the caller must guarantee 1180 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1181 * 1182 * This is meant to be called in the specific scenario where for locking reasons 1183 * we try to access user memory in atomic context (within a pagefault_disable() 1184 * section), this returns -EFAULT, and we want to resolve the user fault before 1185 * trying again. 1186 * 1187 * Typically this is meant to be used by the futex code. 1188 * 1189 * The main difference with get_user_pages() is that this function will 1190 * unconditionally call handle_mm_fault() which will in turn perform all the 1191 * necessary SW fixup of the dirty and young bits in the PTE, while 1192 * get_user_pages() only guarantees to update these in the struct page. 1193 * 1194 * This is important for some architectures where those bits also gate the 1195 * access permission to the page because they are maintained in software. On 1196 * such architectures, gup() will not be enough to make a subsequent access 1197 * succeed. 1198 * 1199 * This function will not return with an unlocked mmap_sem. So it has not the 1200 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 1201 */ 1202 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1203 unsigned long address, unsigned int fault_flags, 1204 bool *unlocked) 1205 { 1206 struct vm_area_struct *vma; 1207 vm_fault_t ret, major = 0; 1208 1209 address = untagged_addr(address); 1210 1211 if (unlocked) 1212 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1213 1214 retry: 1215 vma = find_extend_vma(mm, address); 1216 if (!vma || address < vma->vm_start) 1217 return -EFAULT; 1218 1219 if (!vma_permits_fault(vma, fault_flags)) 1220 return -EFAULT; 1221 1222 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1223 fatal_signal_pending(current)) 1224 return -EINTR; 1225 1226 ret = handle_mm_fault(vma, address, fault_flags); 1227 major |= ret & VM_FAULT_MAJOR; 1228 if (ret & VM_FAULT_ERROR) { 1229 int err = vm_fault_to_errno(ret, 0); 1230 1231 if (err) 1232 return err; 1233 BUG(); 1234 } 1235 1236 if (ret & VM_FAULT_RETRY) { 1237 down_read(&mm->mmap_sem); 1238 *unlocked = true; 1239 fault_flags |= FAULT_FLAG_TRIED; 1240 goto retry; 1241 } 1242 1243 if (tsk) { 1244 if (major) 1245 tsk->maj_flt++; 1246 else 1247 tsk->min_flt++; 1248 } 1249 return 0; 1250 } 1251 EXPORT_SYMBOL_GPL(fixup_user_fault); 1252 1253 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1254 struct mm_struct *mm, 1255 unsigned long start, 1256 unsigned long nr_pages, 1257 struct page **pages, 1258 struct vm_area_struct **vmas, 1259 int *locked, 1260 unsigned int flags) 1261 { 1262 long ret, pages_done; 1263 bool lock_dropped; 1264 1265 if (locked) { 1266 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1267 BUG_ON(vmas); 1268 /* check caller initialized locked */ 1269 BUG_ON(*locked != 1); 1270 } 1271 1272 /* 1273 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1274 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1275 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1276 * for FOLL_GET, not for the newer FOLL_PIN. 1277 * 1278 * FOLL_PIN always expects pages to be non-null, but no need to assert 1279 * that here, as any failures will be obvious enough. 1280 */ 1281 if (pages && !(flags & FOLL_PIN)) 1282 flags |= FOLL_GET; 1283 1284 pages_done = 0; 1285 lock_dropped = false; 1286 for (;;) { 1287 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1288 vmas, locked); 1289 if (!locked) 1290 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1291 return ret; 1292 1293 /* VM_FAULT_RETRY cannot return errors */ 1294 if (!*locked) { 1295 BUG_ON(ret < 0); 1296 BUG_ON(ret >= nr_pages); 1297 } 1298 1299 if (ret > 0) { 1300 nr_pages -= ret; 1301 pages_done += ret; 1302 if (!nr_pages) 1303 break; 1304 } 1305 if (*locked) { 1306 /* 1307 * VM_FAULT_RETRY didn't trigger or it was a 1308 * FOLL_NOWAIT. 1309 */ 1310 if (!pages_done) 1311 pages_done = ret; 1312 break; 1313 } 1314 /* 1315 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1316 * For the prefault case (!pages) we only update counts. 1317 */ 1318 if (likely(pages)) 1319 pages += ret; 1320 start += ret << PAGE_SHIFT; 1321 lock_dropped = true; 1322 1323 retry: 1324 /* 1325 * Repeat on the address that fired VM_FAULT_RETRY 1326 * with both FAULT_FLAG_ALLOW_RETRY and 1327 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1328 * by fatal signals, so we need to check it before we 1329 * start trying again otherwise it can loop forever. 1330 */ 1331 1332 if (fatal_signal_pending(current)) { 1333 if (!pages_done) 1334 pages_done = -EINTR; 1335 break; 1336 } 1337 1338 ret = down_read_killable(&mm->mmap_sem); 1339 if (ret) { 1340 BUG_ON(ret > 0); 1341 if (!pages_done) 1342 pages_done = ret; 1343 break; 1344 } 1345 1346 *locked = 1; 1347 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1348 pages, NULL, locked); 1349 if (!*locked) { 1350 /* Continue to retry until we succeeded */ 1351 BUG_ON(ret != 0); 1352 goto retry; 1353 } 1354 if (ret != 1) { 1355 BUG_ON(ret > 1); 1356 if (!pages_done) 1357 pages_done = ret; 1358 break; 1359 } 1360 nr_pages--; 1361 pages_done++; 1362 if (!nr_pages) 1363 break; 1364 if (likely(pages)) 1365 pages++; 1366 start += PAGE_SIZE; 1367 } 1368 if (lock_dropped && *locked) { 1369 /* 1370 * We must let the caller know we temporarily dropped the lock 1371 * and so the critical section protected by it was lost. 1372 */ 1373 up_read(&mm->mmap_sem); 1374 *locked = 0; 1375 } 1376 return pages_done; 1377 } 1378 1379 /** 1380 * populate_vma_page_range() - populate a range of pages in the vma. 1381 * @vma: target vma 1382 * @start: start address 1383 * @end: end address 1384 * @locked: whether the mmap_sem is still held 1385 * 1386 * This takes care of mlocking the pages too if VM_LOCKED is set. 1387 * 1388 * return 0 on success, negative error code on error. 1389 * 1390 * vma->vm_mm->mmap_sem must be held. 1391 * 1392 * If @locked is NULL, it may be held for read or write and will 1393 * be unperturbed. 1394 * 1395 * If @locked is non-NULL, it must held for read only and may be 1396 * released. If it's released, *@locked will be set to 0. 1397 */ 1398 long populate_vma_page_range(struct vm_area_struct *vma, 1399 unsigned long start, unsigned long end, int *locked) 1400 { 1401 struct mm_struct *mm = vma->vm_mm; 1402 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1403 int gup_flags; 1404 1405 VM_BUG_ON(start & ~PAGE_MASK); 1406 VM_BUG_ON(end & ~PAGE_MASK); 1407 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1408 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1409 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1410 1411 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1412 if (vma->vm_flags & VM_LOCKONFAULT) 1413 gup_flags &= ~FOLL_POPULATE; 1414 /* 1415 * We want to touch writable mappings with a write fault in order 1416 * to break COW, except for shared mappings because these don't COW 1417 * and we would not want to dirty them for nothing. 1418 */ 1419 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1420 gup_flags |= FOLL_WRITE; 1421 1422 /* 1423 * We want mlock to succeed for regions that have any permissions 1424 * other than PROT_NONE. 1425 */ 1426 if (vma_is_accessible(vma)) 1427 gup_flags |= FOLL_FORCE; 1428 1429 /* 1430 * We made sure addr is within a VMA, so the following will 1431 * not result in a stack expansion that recurses back here. 1432 */ 1433 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1434 NULL, NULL, locked); 1435 } 1436 1437 /* 1438 * __mm_populate - populate and/or mlock pages within a range of address space. 1439 * 1440 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1441 * flags. VMAs must be already marked with the desired vm_flags, and 1442 * mmap_sem must not be held. 1443 */ 1444 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1445 { 1446 struct mm_struct *mm = current->mm; 1447 unsigned long end, nstart, nend; 1448 struct vm_area_struct *vma = NULL; 1449 int locked = 0; 1450 long ret = 0; 1451 1452 end = start + len; 1453 1454 for (nstart = start; nstart < end; nstart = nend) { 1455 /* 1456 * We want to fault in pages for [nstart; end) address range. 1457 * Find first corresponding VMA. 1458 */ 1459 if (!locked) { 1460 locked = 1; 1461 down_read(&mm->mmap_sem); 1462 vma = find_vma(mm, nstart); 1463 } else if (nstart >= vma->vm_end) 1464 vma = vma->vm_next; 1465 if (!vma || vma->vm_start >= end) 1466 break; 1467 /* 1468 * Set [nstart; nend) to intersection of desired address 1469 * range with the first VMA. Also, skip undesirable VMA types. 1470 */ 1471 nend = min(end, vma->vm_end); 1472 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1473 continue; 1474 if (nstart < vma->vm_start) 1475 nstart = vma->vm_start; 1476 /* 1477 * Now fault in a range of pages. populate_vma_page_range() 1478 * double checks the vma flags, so that it won't mlock pages 1479 * if the vma was already munlocked. 1480 */ 1481 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1482 if (ret < 0) { 1483 if (ignore_errors) { 1484 ret = 0; 1485 continue; /* continue at next VMA */ 1486 } 1487 break; 1488 } 1489 nend = nstart + ret * PAGE_SIZE; 1490 ret = 0; 1491 } 1492 if (locked) 1493 up_read(&mm->mmap_sem); 1494 return ret; /* 0 or negative error code */ 1495 } 1496 1497 /** 1498 * get_dump_page() - pin user page in memory while writing it to core dump 1499 * @addr: user address 1500 * 1501 * Returns struct page pointer of user page pinned for dump, 1502 * to be freed afterwards by put_page(). 1503 * 1504 * Returns NULL on any kind of failure - a hole must then be inserted into 1505 * the corefile, to preserve alignment with its headers; and also returns 1506 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1507 * allowing a hole to be left in the corefile to save diskspace. 1508 * 1509 * Called without mmap_sem, but after all other threads have been killed. 1510 */ 1511 #ifdef CONFIG_ELF_CORE 1512 struct page *get_dump_page(unsigned long addr) 1513 { 1514 struct vm_area_struct *vma; 1515 struct page *page; 1516 1517 if (__get_user_pages(current, current->mm, addr, 1, 1518 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1519 NULL) < 1) 1520 return NULL; 1521 flush_cache_page(vma, addr, page_to_pfn(page)); 1522 return page; 1523 } 1524 #endif /* CONFIG_ELF_CORE */ 1525 #else /* CONFIG_MMU */ 1526 static long __get_user_pages_locked(struct task_struct *tsk, 1527 struct mm_struct *mm, unsigned long start, 1528 unsigned long nr_pages, struct page **pages, 1529 struct vm_area_struct **vmas, int *locked, 1530 unsigned int foll_flags) 1531 { 1532 struct vm_area_struct *vma; 1533 unsigned long vm_flags; 1534 int i; 1535 1536 /* calculate required read or write permissions. 1537 * If FOLL_FORCE is set, we only require the "MAY" flags. 1538 */ 1539 vm_flags = (foll_flags & FOLL_WRITE) ? 1540 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1541 vm_flags &= (foll_flags & FOLL_FORCE) ? 1542 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1543 1544 for (i = 0; i < nr_pages; i++) { 1545 vma = find_vma(mm, start); 1546 if (!vma) 1547 goto finish_or_fault; 1548 1549 /* protect what we can, including chardevs */ 1550 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1551 !(vm_flags & vma->vm_flags)) 1552 goto finish_or_fault; 1553 1554 if (pages) { 1555 pages[i] = virt_to_page(start); 1556 if (pages[i]) 1557 get_page(pages[i]); 1558 } 1559 if (vmas) 1560 vmas[i] = vma; 1561 start = (start + PAGE_SIZE) & PAGE_MASK; 1562 } 1563 1564 return i; 1565 1566 finish_or_fault: 1567 return i ? : -EFAULT; 1568 } 1569 #endif /* !CONFIG_MMU */ 1570 1571 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1572 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1573 { 1574 long i; 1575 struct vm_area_struct *vma_prev = NULL; 1576 1577 for (i = 0; i < nr_pages; i++) { 1578 struct vm_area_struct *vma = vmas[i]; 1579 1580 if (vma == vma_prev) 1581 continue; 1582 1583 vma_prev = vma; 1584 1585 if (vma_is_fsdax(vma)) 1586 return true; 1587 } 1588 return false; 1589 } 1590 1591 #ifdef CONFIG_CMA 1592 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1593 { 1594 /* 1595 * We want to make sure we allocate the new page from the same node 1596 * as the source page. 1597 */ 1598 int nid = page_to_nid(page); 1599 /* 1600 * Trying to allocate a page for migration. Ignore allocation 1601 * failure warnings. We don't force __GFP_THISNODE here because 1602 * this node here is the node where we have CMA reservation and 1603 * in some case these nodes will have really less non movable 1604 * allocation memory. 1605 */ 1606 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1607 1608 if (PageHighMem(page)) 1609 gfp_mask |= __GFP_HIGHMEM; 1610 1611 #ifdef CONFIG_HUGETLB_PAGE 1612 if (PageHuge(page)) { 1613 struct hstate *h = page_hstate(page); 1614 /* 1615 * We don't want to dequeue from the pool because pool pages will 1616 * mostly be from the CMA region. 1617 */ 1618 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1619 } 1620 #endif 1621 if (PageTransHuge(page)) { 1622 struct page *thp; 1623 /* 1624 * ignore allocation failure warnings 1625 */ 1626 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1627 1628 /* 1629 * Remove the movable mask so that we don't allocate from 1630 * CMA area again. 1631 */ 1632 thp_gfpmask &= ~__GFP_MOVABLE; 1633 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1634 if (!thp) 1635 return NULL; 1636 prep_transhuge_page(thp); 1637 return thp; 1638 } 1639 1640 return __alloc_pages_node(nid, gfp_mask, 0); 1641 } 1642 1643 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1644 struct mm_struct *mm, 1645 unsigned long start, 1646 unsigned long nr_pages, 1647 struct page **pages, 1648 struct vm_area_struct **vmas, 1649 unsigned int gup_flags) 1650 { 1651 unsigned long i; 1652 unsigned long step; 1653 bool drain_allow = true; 1654 bool migrate_allow = true; 1655 LIST_HEAD(cma_page_list); 1656 long ret = nr_pages; 1657 1658 check_again: 1659 for (i = 0; i < nr_pages;) { 1660 1661 struct page *head = compound_head(pages[i]); 1662 1663 /* 1664 * gup may start from a tail page. Advance step by the left 1665 * part. 1666 */ 1667 step = compound_nr(head) - (pages[i] - head); 1668 /* 1669 * If we get a page from the CMA zone, since we are going to 1670 * be pinning these entries, we might as well move them out 1671 * of the CMA zone if possible. 1672 */ 1673 if (is_migrate_cma_page(head)) { 1674 if (PageHuge(head)) 1675 isolate_huge_page(head, &cma_page_list); 1676 else { 1677 if (!PageLRU(head) && drain_allow) { 1678 lru_add_drain_all(); 1679 drain_allow = false; 1680 } 1681 1682 if (!isolate_lru_page(head)) { 1683 list_add_tail(&head->lru, &cma_page_list); 1684 mod_node_page_state(page_pgdat(head), 1685 NR_ISOLATED_ANON + 1686 page_is_file_lru(head), 1687 hpage_nr_pages(head)); 1688 } 1689 } 1690 } 1691 1692 i += step; 1693 } 1694 1695 if (!list_empty(&cma_page_list)) { 1696 /* 1697 * drop the above get_user_pages reference. 1698 */ 1699 for (i = 0; i < nr_pages; i++) 1700 put_page(pages[i]); 1701 1702 if (migrate_pages(&cma_page_list, new_non_cma_page, 1703 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1704 /* 1705 * some of the pages failed migration. Do get_user_pages 1706 * without migration. 1707 */ 1708 migrate_allow = false; 1709 1710 if (!list_empty(&cma_page_list)) 1711 putback_movable_pages(&cma_page_list); 1712 } 1713 /* 1714 * We did migrate all the pages, Try to get the page references 1715 * again migrating any new CMA pages which we failed to isolate 1716 * earlier. 1717 */ 1718 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1719 pages, vmas, NULL, 1720 gup_flags); 1721 1722 if ((ret > 0) && migrate_allow) { 1723 nr_pages = ret; 1724 drain_allow = true; 1725 goto check_again; 1726 } 1727 } 1728 1729 return ret; 1730 } 1731 #else 1732 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1733 struct mm_struct *mm, 1734 unsigned long start, 1735 unsigned long nr_pages, 1736 struct page **pages, 1737 struct vm_area_struct **vmas, 1738 unsigned int gup_flags) 1739 { 1740 return nr_pages; 1741 } 1742 #endif /* CONFIG_CMA */ 1743 1744 /* 1745 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1746 * allows us to process the FOLL_LONGTERM flag. 1747 */ 1748 static long __gup_longterm_locked(struct task_struct *tsk, 1749 struct mm_struct *mm, 1750 unsigned long start, 1751 unsigned long nr_pages, 1752 struct page **pages, 1753 struct vm_area_struct **vmas, 1754 unsigned int gup_flags) 1755 { 1756 struct vm_area_struct **vmas_tmp = vmas; 1757 unsigned long flags = 0; 1758 long rc, i; 1759 1760 if (gup_flags & FOLL_LONGTERM) { 1761 if (!pages) 1762 return -EINVAL; 1763 1764 if (!vmas_tmp) { 1765 vmas_tmp = kcalloc(nr_pages, 1766 sizeof(struct vm_area_struct *), 1767 GFP_KERNEL); 1768 if (!vmas_tmp) 1769 return -ENOMEM; 1770 } 1771 flags = memalloc_nocma_save(); 1772 } 1773 1774 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1775 vmas_tmp, NULL, gup_flags); 1776 1777 if (gup_flags & FOLL_LONGTERM) { 1778 memalloc_nocma_restore(flags); 1779 if (rc < 0) 1780 goto out; 1781 1782 if (check_dax_vmas(vmas_tmp, rc)) { 1783 for (i = 0; i < rc; i++) 1784 put_page(pages[i]); 1785 rc = -EOPNOTSUPP; 1786 goto out; 1787 } 1788 1789 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1790 vmas_tmp, gup_flags); 1791 } 1792 1793 out: 1794 if (vmas_tmp != vmas) 1795 kfree(vmas_tmp); 1796 return rc; 1797 } 1798 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1799 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1800 struct mm_struct *mm, 1801 unsigned long start, 1802 unsigned long nr_pages, 1803 struct page **pages, 1804 struct vm_area_struct **vmas, 1805 unsigned int flags) 1806 { 1807 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1808 NULL, flags); 1809 } 1810 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1811 1812 #ifdef CONFIG_MMU 1813 static long __get_user_pages_remote(struct task_struct *tsk, 1814 struct mm_struct *mm, 1815 unsigned long start, unsigned long nr_pages, 1816 unsigned int gup_flags, struct page **pages, 1817 struct vm_area_struct **vmas, int *locked) 1818 { 1819 /* 1820 * Parts of FOLL_LONGTERM behavior are incompatible with 1821 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1822 * vmas. However, this only comes up if locked is set, and there are 1823 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1824 * allow what we can. 1825 */ 1826 if (gup_flags & FOLL_LONGTERM) { 1827 if (WARN_ON_ONCE(locked)) 1828 return -EINVAL; 1829 /* 1830 * This will check the vmas (even if our vmas arg is NULL) 1831 * and return -ENOTSUPP if DAX isn't allowed in this case: 1832 */ 1833 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1834 vmas, gup_flags | FOLL_TOUCH | 1835 FOLL_REMOTE); 1836 } 1837 1838 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1839 locked, 1840 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1841 } 1842 1843 /** 1844 * get_user_pages_remote() - pin user pages in memory 1845 * @tsk: the task_struct to use for page fault accounting, or 1846 * NULL if faults are not to be recorded. 1847 * @mm: mm_struct of target mm 1848 * @start: starting user address 1849 * @nr_pages: number of pages from start to pin 1850 * @gup_flags: flags modifying lookup behaviour 1851 * @pages: array that receives pointers to the pages pinned. 1852 * Should be at least nr_pages long. Or NULL, if caller 1853 * only intends to ensure the pages are faulted in. 1854 * @vmas: array of pointers to vmas corresponding to each page. 1855 * Or NULL if the caller does not require them. 1856 * @locked: pointer to lock flag indicating whether lock is held and 1857 * subsequently whether VM_FAULT_RETRY functionality can be 1858 * utilised. Lock must initially be held. 1859 * 1860 * Returns either number of pages pinned (which may be less than the 1861 * number requested), or an error. Details about the return value: 1862 * 1863 * -- If nr_pages is 0, returns 0. 1864 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1865 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1866 * pages pinned. Again, this may be less than nr_pages. 1867 * 1868 * The caller is responsible for releasing returned @pages, via put_page(). 1869 * 1870 * @vmas are valid only as long as mmap_sem is held. 1871 * 1872 * Must be called with mmap_sem held for read or write. 1873 * 1874 * get_user_pages_remote walks a process's page tables and takes a reference 1875 * to each struct page that each user address corresponds to at a given 1876 * instant. That is, it takes the page that would be accessed if a user 1877 * thread accesses the given user virtual address at that instant. 1878 * 1879 * This does not guarantee that the page exists in the user mappings when 1880 * get_user_pages_remote returns, and there may even be a completely different 1881 * page there in some cases (eg. if mmapped pagecache has been invalidated 1882 * and subsequently re faulted). However it does guarantee that the page 1883 * won't be freed completely. And mostly callers simply care that the page 1884 * contains data that was valid *at some point in time*. Typically, an IO 1885 * or similar operation cannot guarantee anything stronger anyway because 1886 * locks can't be held over the syscall boundary. 1887 * 1888 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1889 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1890 * be called after the page is finished with, and before put_page is called. 1891 * 1892 * get_user_pages_remote is typically used for fewer-copy IO operations, 1893 * to get a handle on the memory by some means other than accesses 1894 * via the user virtual addresses. The pages may be submitted for 1895 * DMA to devices or accessed via their kernel linear mapping (via the 1896 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1897 * 1898 * See also get_user_pages_fast, for performance critical applications. 1899 * 1900 * get_user_pages_remote should be phased out in favor of 1901 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1902 * should use get_user_pages_remote because it cannot pass 1903 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1904 */ 1905 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1906 unsigned long start, unsigned long nr_pages, 1907 unsigned int gup_flags, struct page **pages, 1908 struct vm_area_struct **vmas, int *locked) 1909 { 1910 /* 1911 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1912 * never directly by the caller, so enforce that with an assertion: 1913 */ 1914 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1915 return -EINVAL; 1916 1917 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1918 pages, vmas, locked); 1919 } 1920 EXPORT_SYMBOL(get_user_pages_remote); 1921 1922 #else /* CONFIG_MMU */ 1923 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1924 unsigned long start, unsigned long nr_pages, 1925 unsigned int gup_flags, struct page **pages, 1926 struct vm_area_struct **vmas, int *locked) 1927 { 1928 return 0; 1929 } 1930 1931 static long __get_user_pages_remote(struct task_struct *tsk, 1932 struct mm_struct *mm, 1933 unsigned long start, unsigned long nr_pages, 1934 unsigned int gup_flags, struct page **pages, 1935 struct vm_area_struct **vmas, int *locked) 1936 { 1937 return 0; 1938 } 1939 #endif /* !CONFIG_MMU */ 1940 1941 /** 1942 * get_user_pages() - pin user pages in memory 1943 * @start: starting user address 1944 * @nr_pages: number of pages from start to pin 1945 * @gup_flags: flags modifying lookup behaviour 1946 * @pages: array that receives pointers to the pages pinned. 1947 * Should be at least nr_pages long. Or NULL, if caller 1948 * only intends to ensure the pages are faulted in. 1949 * @vmas: array of pointers to vmas corresponding to each page. 1950 * Or NULL if the caller does not require them. 1951 * 1952 * This is the same as get_user_pages_remote(), just with a 1953 * less-flexible calling convention where we assume that the task 1954 * and mm being operated on are the current task's and don't allow 1955 * passing of a locked parameter. We also obviously don't pass 1956 * FOLL_REMOTE in here. 1957 */ 1958 long get_user_pages(unsigned long start, unsigned long nr_pages, 1959 unsigned int gup_flags, struct page **pages, 1960 struct vm_area_struct **vmas) 1961 { 1962 /* 1963 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1964 * never directly by the caller, so enforce that with an assertion: 1965 */ 1966 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1967 return -EINVAL; 1968 1969 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1970 pages, vmas, gup_flags | FOLL_TOUCH); 1971 } 1972 EXPORT_SYMBOL(get_user_pages); 1973 1974 /** 1975 * get_user_pages_locked() is suitable to replace the form: 1976 * 1977 * down_read(&mm->mmap_sem); 1978 * do_something() 1979 * get_user_pages(tsk, mm, ..., pages, NULL); 1980 * up_read(&mm->mmap_sem); 1981 * 1982 * to: 1983 * 1984 * int locked = 1; 1985 * down_read(&mm->mmap_sem); 1986 * do_something() 1987 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1988 * if (locked) 1989 * up_read(&mm->mmap_sem); 1990 * 1991 * @start: starting user address 1992 * @nr_pages: number of pages from start to pin 1993 * @gup_flags: flags modifying lookup behaviour 1994 * @pages: array that receives pointers to the pages pinned. 1995 * Should be at least nr_pages long. Or NULL, if caller 1996 * only intends to ensure the pages are faulted in. 1997 * @locked: pointer to lock flag indicating whether lock is held and 1998 * subsequently whether VM_FAULT_RETRY functionality can be 1999 * utilised. Lock must initially be held. 2000 * 2001 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2002 * paths better by using either get_user_pages_locked() or 2003 * get_user_pages_unlocked(). 2004 * 2005 */ 2006 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2007 unsigned int gup_flags, struct page **pages, 2008 int *locked) 2009 { 2010 /* 2011 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2012 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2013 * vmas. As there are no users of this flag in this call we simply 2014 * disallow this option for now. 2015 */ 2016 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2017 return -EINVAL; 2018 2019 return __get_user_pages_locked(current, current->mm, start, nr_pages, 2020 pages, NULL, locked, 2021 gup_flags | FOLL_TOUCH); 2022 } 2023 EXPORT_SYMBOL(get_user_pages_locked); 2024 2025 /* 2026 * get_user_pages_unlocked() is suitable to replace the form: 2027 * 2028 * down_read(&mm->mmap_sem); 2029 * get_user_pages(tsk, mm, ..., pages, NULL); 2030 * up_read(&mm->mmap_sem); 2031 * 2032 * with: 2033 * 2034 * get_user_pages_unlocked(tsk, mm, ..., pages); 2035 * 2036 * It is functionally equivalent to get_user_pages_fast so 2037 * get_user_pages_fast should be used instead if specific gup_flags 2038 * (e.g. FOLL_FORCE) are not required. 2039 */ 2040 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2041 struct page **pages, unsigned int gup_flags) 2042 { 2043 struct mm_struct *mm = current->mm; 2044 int locked = 1; 2045 long ret; 2046 2047 /* 2048 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2049 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2050 * vmas. As there are no users of this flag in this call we simply 2051 * disallow this option for now. 2052 */ 2053 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2054 return -EINVAL; 2055 2056 down_read(&mm->mmap_sem); 2057 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2058 &locked, gup_flags | FOLL_TOUCH); 2059 if (locked) 2060 up_read(&mm->mmap_sem); 2061 return ret; 2062 } 2063 EXPORT_SYMBOL(get_user_pages_unlocked); 2064 2065 /* 2066 * Fast GUP 2067 * 2068 * get_user_pages_fast attempts to pin user pages by walking the page 2069 * tables directly and avoids taking locks. Thus the walker needs to be 2070 * protected from page table pages being freed from under it, and should 2071 * block any THP splits. 2072 * 2073 * One way to achieve this is to have the walker disable interrupts, and 2074 * rely on IPIs from the TLB flushing code blocking before the page table 2075 * pages are freed. This is unsuitable for architectures that do not need 2076 * to broadcast an IPI when invalidating TLBs. 2077 * 2078 * Another way to achieve this is to batch up page table containing pages 2079 * belonging to more than one mm_user, then rcu_sched a callback to free those 2080 * pages. Disabling interrupts will allow the fast_gup walker to both block 2081 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2082 * (which is a relatively rare event). The code below adopts this strategy. 2083 * 2084 * Before activating this code, please be aware that the following assumptions 2085 * are currently made: 2086 * 2087 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2088 * free pages containing page tables or TLB flushing requires IPI broadcast. 2089 * 2090 * *) ptes can be read atomically by the architecture. 2091 * 2092 * *) access_ok is sufficient to validate userspace address ranges. 2093 * 2094 * The last two assumptions can be relaxed by the addition of helper functions. 2095 * 2096 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2097 */ 2098 #ifdef CONFIG_HAVE_FAST_GUP 2099 2100 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2101 { 2102 if (flags & FOLL_PIN) { 2103 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2104 refs); 2105 2106 if (hpage_pincount_available(page)) 2107 hpage_pincount_sub(page, refs); 2108 else 2109 refs *= GUP_PIN_COUNTING_BIAS; 2110 } 2111 2112 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2113 /* 2114 * Calling put_page() for each ref is unnecessarily slow. Only the last 2115 * ref needs a put_page(). 2116 */ 2117 if (refs > 1) 2118 page_ref_sub(page, refs - 1); 2119 put_page(page); 2120 } 2121 2122 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2123 2124 /* 2125 * WARNING: only to be used in the get_user_pages_fast() implementation. 2126 * 2127 * With get_user_pages_fast(), we walk down the pagetables without taking any 2128 * locks. For this we would like to load the pointers atomically, but sometimes 2129 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2130 * we do have is the guarantee that a PTE will only either go from not present 2131 * to present, or present to not present or both -- it will not switch to a 2132 * completely different present page without a TLB flush in between; something 2133 * that we are blocking by holding interrupts off. 2134 * 2135 * Setting ptes from not present to present goes: 2136 * 2137 * ptep->pte_high = h; 2138 * smp_wmb(); 2139 * ptep->pte_low = l; 2140 * 2141 * And present to not present goes: 2142 * 2143 * ptep->pte_low = 0; 2144 * smp_wmb(); 2145 * ptep->pte_high = 0; 2146 * 2147 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2148 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2149 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2150 * picked up a changed pte high. We might have gotten rubbish values from 2151 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2152 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2153 * operates on present ptes we're safe. 2154 */ 2155 static inline pte_t gup_get_pte(pte_t *ptep) 2156 { 2157 pte_t pte; 2158 2159 do { 2160 pte.pte_low = ptep->pte_low; 2161 smp_rmb(); 2162 pte.pte_high = ptep->pte_high; 2163 smp_rmb(); 2164 } while (unlikely(pte.pte_low != ptep->pte_low)); 2165 2166 return pte; 2167 } 2168 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2169 /* 2170 * We require that the PTE can be read atomically. 2171 */ 2172 static inline pte_t gup_get_pte(pte_t *ptep) 2173 { 2174 return READ_ONCE(*ptep); 2175 } 2176 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2177 2178 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2179 unsigned int flags, 2180 struct page **pages) 2181 { 2182 while ((*nr) - nr_start) { 2183 struct page *page = pages[--(*nr)]; 2184 2185 ClearPageReferenced(page); 2186 if (flags & FOLL_PIN) 2187 unpin_user_page(page); 2188 else 2189 put_page(page); 2190 } 2191 } 2192 2193 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2194 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2195 unsigned int flags, struct page **pages, int *nr) 2196 { 2197 struct dev_pagemap *pgmap = NULL; 2198 int nr_start = *nr, ret = 0; 2199 pte_t *ptep, *ptem; 2200 2201 ptem = ptep = pte_offset_map(&pmd, addr); 2202 do { 2203 pte_t pte = gup_get_pte(ptep); 2204 struct page *head, *page; 2205 2206 /* 2207 * Similar to the PMD case below, NUMA hinting must take slow 2208 * path using the pte_protnone check. 2209 */ 2210 if (pte_protnone(pte)) 2211 goto pte_unmap; 2212 2213 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2214 goto pte_unmap; 2215 2216 if (pte_devmap(pte)) { 2217 if (unlikely(flags & FOLL_LONGTERM)) 2218 goto pte_unmap; 2219 2220 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2221 if (unlikely(!pgmap)) { 2222 undo_dev_pagemap(nr, nr_start, flags, pages); 2223 goto pte_unmap; 2224 } 2225 } else if (pte_special(pte)) 2226 goto pte_unmap; 2227 2228 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2229 page = pte_page(pte); 2230 2231 head = try_grab_compound_head(page, 1, flags); 2232 if (!head) 2233 goto pte_unmap; 2234 2235 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2236 put_compound_head(head, 1, flags); 2237 goto pte_unmap; 2238 } 2239 2240 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2241 2242 /* 2243 * We need to make the page accessible if and only if we are 2244 * going to access its content (the FOLL_PIN case). Please 2245 * see Documentation/core-api/pin_user_pages.rst for 2246 * details. 2247 */ 2248 if (flags & FOLL_PIN) { 2249 ret = arch_make_page_accessible(page); 2250 if (ret) { 2251 unpin_user_page(page); 2252 goto pte_unmap; 2253 } 2254 } 2255 SetPageReferenced(page); 2256 pages[*nr] = page; 2257 (*nr)++; 2258 2259 } while (ptep++, addr += PAGE_SIZE, addr != end); 2260 2261 ret = 1; 2262 2263 pte_unmap: 2264 if (pgmap) 2265 put_dev_pagemap(pgmap); 2266 pte_unmap(ptem); 2267 return ret; 2268 } 2269 #else 2270 2271 /* 2272 * If we can't determine whether or not a pte is special, then fail immediately 2273 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2274 * to be special. 2275 * 2276 * For a futex to be placed on a THP tail page, get_futex_key requires a 2277 * __get_user_pages_fast implementation that can pin pages. Thus it's still 2278 * useful to have gup_huge_pmd even if we can't operate on ptes. 2279 */ 2280 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2281 unsigned int flags, struct page **pages, int *nr) 2282 { 2283 return 0; 2284 } 2285 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2286 2287 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2288 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2289 unsigned long end, unsigned int flags, 2290 struct page **pages, int *nr) 2291 { 2292 int nr_start = *nr; 2293 struct dev_pagemap *pgmap = NULL; 2294 2295 do { 2296 struct page *page = pfn_to_page(pfn); 2297 2298 pgmap = get_dev_pagemap(pfn, pgmap); 2299 if (unlikely(!pgmap)) { 2300 undo_dev_pagemap(nr, nr_start, flags, pages); 2301 return 0; 2302 } 2303 SetPageReferenced(page); 2304 pages[*nr] = page; 2305 if (unlikely(!try_grab_page(page, flags))) { 2306 undo_dev_pagemap(nr, nr_start, flags, pages); 2307 return 0; 2308 } 2309 (*nr)++; 2310 pfn++; 2311 } while (addr += PAGE_SIZE, addr != end); 2312 2313 if (pgmap) 2314 put_dev_pagemap(pgmap); 2315 return 1; 2316 } 2317 2318 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2319 unsigned long end, unsigned int flags, 2320 struct page **pages, int *nr) 2321 { 2322 unsigned long fault_pfn; 2323 int nr_start = *nr; 2324 2325 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2326 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2327 return 0; 2328 2329 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2330 undo_dev_pagemap(nr, nr_start, flags, pages); 2331 return 0; 2332 } 2333 return 1; 2334 } 2335 2336 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2337 unsigned long end, unsigned int flags, 2338 struct page **pages, int *nr) 2339 { 2340 unsigned long fault_pfn; 2341 int nr_start = *nr; 2342 2343 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2344 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2345 return 0; 2346 2347 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2348 undo_dev_pagemap(nr, nr_start, flags, pages); 2349 return 0; 2350 } 2351 return 1; 2352 } 2353 #else 2354 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2355 unsigned long end, unsigned int flags, 2356 struct page **pages, int *nr) 2357 { 2358 BUILD_BUG(); 2359 return 0; 2360 } 2361 2362 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2363 unsigned long end, unsigned int flags, 2364 struct page **pages, int *nr) 2365 { 2366 BUILD_BUG(); 2367 return 0; 2368 } 2369 #endif 2370 2371 static int record_subpages(struct page *page, unsigned long addr, 2372 unsigned long end, struct page **pages) 2373 { 2374 int nr; 2375 2376 for (nr = 0; addr != end; addr += PAGE_SIZE) 2377 pages[nr++] = page++; 2378 2379 return nr; 2380 } 2381 2382 #ifdef CONFIG_ARCH_HAS_HUGEPD 2383 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2384 unsigned long sz) 2385 { 2386 unsigned long __boundary = (addr + sz) & ~(sz-1); 2387 return (__boundary - 1 < end - 1) ? __boundary : end; 2388 } 2389 2390 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2391 unsigned long end, unsigned int flags, 2392 struct page **pages, int *nr) 2393 { 2394 unsigned long pte_end; 2395 struct page *head, *page; 2396 pte_t pte; 2397 int refs; 2398 2399 pte_end = (addr + sz) & ~(sz-1); 2400 if (pte_end < end) 2401 end = pte_end; 2402 2403 pte = READ_ONCE(*ptep); 2404 2405 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2406 return 0; 2407 2408 /* hugepages are never "special" */ 2409 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2410 2411 head = pte_page(pte); 2412 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2413 refs = record_subpages(page, addr, end, pages + *nr); 2414 2415 head = try_grab_compound_head(head, refs, flags); 2416 if (!head) 2417 return 0; 2418 2419 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2420 put_compound_head(head, refs, flags); 2421 return 0; 2422 } 2423 2424 *nr += refs; 2425 SetPageReferenced(head); 2426 return 1; 2427 } 2428 2429 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2430 unsigned int pdshift, unsigned long end, unsigned int flags, 2431 struct page **pages, int *nr) 2432 { 2433 pte_t *ptep; 2434 unsigned long sz = 1UL << hugepd_shift(hugepd); 2435 unsigned long next; 2436 2437 ptep = hugepte_offset(hugepd, addr, pdshift); 2438 do { 2439 next = hugepte_addr_end(addr, end, sz); 2440 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2441 return 0; 2442 } while (ptep++, addr = next, addr != end); 2443 2444 return 1; 2445 } 2446 #else 2447 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2448 unsigned int pdshift, unsigned long end, unsigned int flags, 2449 struct page **pages, int *nr) 2450 { 2451 return 0; 2452 } 2453 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2454 2455 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2456 unsigned long end, unsigned int flags, 2457 struct page **pages, int *nr) 2458 { 2459 struct page *head, *page; 2460 int refs; 2461 2462 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2463 return 0; 2464 2465 if (pmd_devmap(orig)) { 2466 if (unlikely(flags & FOLL_LONGTERM)) 2467 return 0; 2468 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2469 pages, nr); 2470 } 2471 2472 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2473 refs = record_subpages(page, addr, end, pages + *nr); 2474 2475 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2476 if (!head) 2477 return 0; 2478 2479 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2480 put_compound_head(head, refs, flags); 2481 return 0; 2482 } 2483 2484 *nr += refs; 2485 SetPageReferenced(head); 2486 return 1; 2487 } 2488 2489 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2490 unsigned long end, unsigned int flags, 2491 struct page **pages, int *nr) 2492 { 2493 struct page *head, *page; 2494 int refs; 2495 2496 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2497 return 0; 2498 2499 if (pud_devmap(orig)) { 2500 if (unlikely(flags & FOLL_LONGTERM)) 2501 return 0; 2502 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2503 pages, nr); 2504 } 2505 2506 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2507 refs = record_subpages(page, addr, end, pages + *nr); 2508 2509 head = try_grab_compound_head(pud_page(orig), refs, flags); 2510 if (!head) 2511 return 0; 2512 2513 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2514 put_compound_head(head, refs, flags); 2515 return 0; 2516 } 2517 2518 *nr += refs; 2519 SetPageReferenced(head); 2520 return 1; 2521 } 2522 2523 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2524 unsigned long end, unsigned int flags, 2525 struct page **pages, int *nr) 2526 { 2527 int refs; 2528 struct page *head, *page; 2529 2530 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2531 return 0; 2532 2533 BUILD_BUG_ON(pgd_devmap(orig)); 2534 2535 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2536 refs = record_subpages(page, addr, end, pages + *nr); 2537 2538 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2539 if (!head) 2540 return 0; 2541 2542 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2543 put_compound_head(head, refs, flags); 2544 return 0; 2545 } 2546 2547 *nr += refs; 2548 SetPageReferenced(head); 2549 return 1; 2550 } 2551 2552 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2553 unsigned int flags, struct page **pages, int *nr) 2554 { 2555 unsigned long next; 2556 pmd_t *pmdp; 2557 2558 pmdp = pmd_offset(&pud, addr); 2559 do { 2560 pmd_t pmd = READ_ONCE(*pmdp); 2561 2562 next = pmd_addr_end(addr, end); 2563 if (!pmd_present(pmd)) 2564 return 0; 2565 2566 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2567 pmd_devmap(pmd))) { 2568 /* 2569 * NUMA hinting faults need to be handled in the GUP 2570 * slowpath for accounting purposes and so that they 2571 * can be serialised against THP migration. 2572 */ 2573 if (pmd_protnone(pmd)) 2574 return 0; 2575 2576 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2577 pages, nr)) 2578 return 0; 2579 2580 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2581 /* 2582 * architecture have different format for hugetlbfs 2583 * pmd format and THP pmd format 2584 */ 2585 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2586 PMD_SHIFT, next, flags, pages, nr)) 2587 return 0; 2588 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2589 return 0; 2590 } while (pmdp++, addr = next, addr != end); 2591 2592 return 1; 2593 } 2594 2595 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2596 unsigned int flags, struct page **pages, int *nr) 2597 { 2598 unsigned long next; 2599 pud_t *pudp; 2600 2601 pudp = pud_offset(&p4d, addr); 2602 do { 2603 pud_t pud = READ_ONCE(*pudp); 2604 2605 next = pud_addr_end(addr, end); 2606 if (unlikely(!pud_present(pud))) 2607 return 0; 2608 if (unlikely(pud_huge(pud))) { 2609 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2610 pages, nr)) 2611 return 0; 2612 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2613 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2614 PUD_SHIFT, next, flags, pages, nr)) 2615 return 0; 2616 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2617 return 0; 2618 } while (pudp++, addr = next, addr != end); 2619 2620 return 1; 2621 } 2622 2623 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2624 unsigned int flags, struct page **pages, int *nr) 2625 { 2626 unsigned long next; 2627 p4d_t *p4dp; 2628 2629 p4dp = p4d_offset(&pgd, addr); 2630 do { 2631 p4d_t p4d = READ_ONCE(*p4dp); 2632 2633 next = p4d_addr_end(addr, end); 2634 if (p4d_none(p4d)) 2635 return 0; 2636 BUILD_BUG_ON(p4d_huge(p4d)); 2637 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2638 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2639 P4D_SHIFT, next, flags, pages, nr)) 2640 return 0; 2641 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2642 return 0; 2643 } while (p4dp++, addr = next, addr != end); 2644 2645 return 1; 2646 } 2647 2648 static void gup_pgd_range(unsigned long addr, unsigned long end, 2649 unsigned int flags, struct page **pages, int *nr) 2650 { 2651 unsigned long next; 2652 pgd_t *pgdp; 2653 2654 pgdp = pgd_offset(current->mm, addr); 2655 do { 2656 pgd_t pgd = READ_ONCE(*pgdp); 2657 2658 next = pgd_addr_end(addr, end); 2659 if (pgd_none(pgd)) 2660 return; 2661 if (unlikely(pgd_huge(pgd))) { 2662 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2663 pages, nr)) 2664 return; 2665 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2666 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2667 PGDIR_SHIFT, next, flags, pages, nr)) 2668 return; 2669 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2670 return; 2671 } while (pgdp++, addr = next, addr != end); 2672 } 2673 #else 2674 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2675 unsigned int flags, struct page **pages, int *nr) 2676 { 2677 } 2678 #endif /* CONFIG_HAVE_FAST_GUP */ 2679 2680 #ifndef gup_fast_permitted 2681 /* 2682 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2683 * we need to fall back to the slow version: 2684 */ 2685 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2686 { 2687 return true; 2688 } 2689 #endif 2690 2691 /* 2692 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2693 * the regular GUP. 2694 * Note a difference with get_user_pages_fast: this always returns the 2695 * number of pages pinned, 0 if no pages were pinned. 2696 * 2697 * If the architecture does not support this function, simply return with no 2698 * pages pinned. 2699 */ 2700 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2701 struct page **pages) 2702 { 2703 unsigned long len, end; 2704 unsigned long flags; 2705 int nr_pinned = 0; 2706 /* 2707 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2708 * because gup fast is always a "pin with a +1 page refcount" request. 2709 */ 2710 unsigned int gup_flags = FOLL_GET; 2711 2712 if (write) 2713 gup_flags |= FOLL_WRITE; 2714 2715 start = untagged_addr(start) & PAGE_MASK; 2716 len = (unsigned long) nr_pages << PAGE_SHIFT; 2717 end = start + len; 2718 2719 if (end <= start) 2720 return 0; 2721 if (unlikely(!access_ok((void __user *)start, len))) 2722 return 0; 2723 2724 /* 2725 * Disable interrupts. We use the nested form as we can already have 2726 * interrupts disabled by get_futex_key. 2727 * 2728 * With interrupts disabled, we block page table pages from being 2729 * freed from under us. See struct mmu_table_batch comments in 2730 * include/asm-generic/tlb.h for more details. 2731 * 2732 * We do not adopt an rcu_read_lock(.) here as we also want to 2733 * block IPIs that come from THPs splitting. 2734 */ 2735 2736 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2737 gup_fast_permitted(start, end)) { 2738 local_irq_save(flags); 2739 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2740 local_irq_restore(flags); 2741 } 2742 2743 return nr_pinned; 2744 } 2745 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2746 2747 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2748 unsigned int gup_flags, struct page **pages) 2749 { 2750 int ret; 2751 2752 /* 2753 * FIXME: FOLL_LONGTERM does not work with 2754 * get_user_pages_unlocked() (see comments in that function) 2755 */ 2756 if (gup_flags & FOLL_LONGTERM) { 2757 down_read(¤t->mm->mmap_sem); 2758 ret = __gup_longterm_locked(current, current->mm, 2759 start, nr_pages, 2760 pages, NULL, gup_flags); 2761 up_read(¤t->mm->mmap_sem); 2762 } else { 2763 ret = get_user_pages_unlocked(start, nr_pages, 2764 pages, gup_flags); 2765 } 2766 2767 return ret; 2768 } 2769 2770 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2771 unsigned int gup_flags, 2772 struct page **pages) 2773 { 2774 unsigned long addr, len, end; 2775 int nr_pinned = 0, ret = 0; 2776 2777 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2778 FOLL_FORCE | FOLL_PIN | FOLL_GET))) 2779 return -EINVAL; 2780 2781 start = untagged_addr(start) & PAGE_MASK; 2782 addr = start; 2783 len = (unsigned long) nr_pages << PAGE_SHIFT; 2784 end = start + len; 2785 2786 if (end <= start) 2787 return 0; 2788 if (unlikely(!access_ok((void __user *)start, len))) 2789 return -EFAULT; 2790 2791 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2792 gup_fast_permitted(start, end)) { 2793 local_irq_disable(); 2794 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned); 2795 local_irq_enable(); 2796 ret = nr_pinned; 2797 } 2798 2799 if (nr_pinned < nr_pages) { 2800 /* Try to get the remaining pages with get_user_pages */ 2801 start += nr_pinned << PAGE_SHIFT; 2802 pages += nr_pinned; 2803 2804 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2805 gup_flags, pages); 2806 2807 /* Have to be a bit careful with return values */ 2808 if (nr_pinned > 0) { 2809 if (ret < 0) 2810 ret = nr_pinned; 2811 else 2812 ret += nr_pinned; 2813 } 2814 } 2815 2816 return ret; 2817 } 2818 2819 /** 2820 * get_user_pages_fast() - pin user pages in memory 2821 * @start: starting user address 2822 * @nr_pages: number of pages from start to pin 2823 * @gup_flags: flags modifying pin behaviour 2824 * @pages: array that receives pointers to the pages pinned. 2825 * Should be at least nr_pages long. 2826 * 2827 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2828 * If not successful, it will fall back to taking the lock and 2829 * calling get_user_pages(). 2830 * 2831 * Returns number of pages pinned. This may be fewer than the number requested. 2832 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2833 * -errno. 2834 */ 2835 int get_user_pages_fast(unsigned long start, int nr_pages, 2836 unsigned int gup_flags, struct page **pages) 2837 { 2838 /* 2839 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2840 * never directly by the caller, so enforce that: 2841 */ 2842 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2843 return -EINVAL; 2844 2845 /* 2846 * The caller may or may not have explicitly set FOLL_GET; either way is 2847 * OK. However, internally (within mm/gup.c), gup fast variants must set 2848 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2849 * request. 2850 */ 2851 gup_flags |= FOLL_GET; 2852 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2853 } 2854 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2855 2856 /** 2857 * pin_user_pages_fast() - pin user pages in memory without taking locks 2858 * 2859 * @start: starting user address 2860 * @nr_pages: number of pages from start to pin 2861 * @gup_flags: flags modifying pin behaviour 2862 * @pages: array that receives pointers to the pages pinned. 2863 * Should be at least nr_pages long. 2864 * 2865 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2866 * get_user_pages_fast() for documentation on the function arguments, because 2867 * the arguments here are identical. 2868 * 2869 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2870 * see Documentation/vm/pin_user_pages.rst for further details. 2871 * 2872 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2873 * is NOT intended for Case 2 (RDMA: long-term pins). 2874 */ 2875 int pin_user_pages_fast(unsigned long start, int nr_pages, 2876 unsigned int gup_flags, struct page **pages) 2877 { 2878 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2879 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2880 return -EINVAL; 2881 2882 gup_flags |= FOLL_PIN; 2883 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2884 } 2885 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2886 2887 /** 2888 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2889 * 2890 * @tsk: the task_struct to use for page fault accounting, or 2891 * NULL if faults are not to be recorded. 2892 * @mm: mm_struct of target mm 2893 * @start: starting user address 2894 * @nr_pages: number of pages from start to pin 2895 * @gup_flags: flags modifying lookup behaviour 2896 * @pages: array that receives pointers to the pages pinned. 2897 * Should be at least nr_pages long. Or NULL, if caller 2898 * only intends to ensure the pages are faulted in. 2899 * @vmas: array of pointers to vmas corresponding to each page. 2900 * Or NULL if the caller does not require them. 2901 * @locked: pointer to lock flag indicating whether lock is held and 2902 * subsequently whether VM_FAULT_RETRY functionality can be 2903 * utilised. Lock must initially be held. 2904 * 2905 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2906 * get_user_pages_remote() for documentation on the function arguments, because 2907 * the arguments here are identical. 2908 * 2909 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2910 * see Documentation/vm/pin_user_pages.rst for details. 2911 * 2912 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2913 * is NOT intended for Case 2 (RDMA: long-term pins). 2914 */ 2915 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2916 unsigned long start, unsigned long nr_pages, 2917 unsigned int gup_flags, struct page **pages, 2918 struct vm_area_struct **vmas, int *locked) 2919 { 2920 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2921 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2922 return -EINVAL; 2923 2924 gup_flags |= FOLL_PIN; 2925 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 2926 pages, vmas, locked); 2927 } 2928 EXPORT_SYMBOL(pin_user_pages_remote); 2929 2930 /** 2931 * pin_user_pages() - pin user pages in memory for use by other devices 2932 * 2933 * @start: starting user address 2934 * @nr_pages: number of pages from start to pin 2935 * @gup_flags: flags modifying lookup behaviour 2936 * @pages: array that receives pointers to the pages pinned. 2937 * Should be at least nr_pages long. Or NULL, if caller 2938 * only intends to ensure the pages are faulted in. 2939 * @vmas: array of pointers to vmas corresponding to each page. 2940 * Or NULL if the caller does not require them. 2941 * 2942 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2943 * FOLL_PIN is set. 2944 * 2945 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2946 * see Documentation/vm/pin_user_pages.rst for details. 2947 * 2948 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2949 * is NOT intended for Case 2 (RDMA: long-term pins). 2950 */ 2951 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2952 unsigned int gup_flags, struct page **pages, 2953 struct vm_area_struct **vmas) 2954 { 2955 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2956 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2957 return -EINVAL; 2958 2959 gup_flags |= FOLL_PIN; 2960 return __gup_longterm_locked(current, current->mm, start, nr_pages, 2961 pages, vmas, gup_flags); 2962 } 2963 EXPORT_SYMBOL(pin_user_pages); 2964 2965 /* 2966 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2967 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2968 * FOLL_PIN and rejects FOLL_GET. 2969 */ 2970 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2971 struct page **pages, unsigned int gup_flags) 2972 { 2973 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2974 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2975 return -EINVAL; 2976 2977 gup_flags |= FOLL_PIN; 2978 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2979 } 2980 EXPORT_SYMBOL(pin_user_pages_unlocked); 2981