xref: /openbmc/linux/mm/gup.c (revision 6d99a79c)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 struct follow_page_context {
24 	struct dev_pagemap *pgmap;
25 	unsigned int page_mask;
26 };
27 
28 static struct page *no_page_table(struct vm_area_struct *vma,
29 		unsigned int flags)
30 {
31 	/*
32 	 * When core dumping an enormous anonymous area that nobody
33 	 * has touched so far, we don't want to allocate unnecessary pages or
34 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
35 	 * then get_dump_page() will return NULL to leave a hole in the dump.
36 	 * But we can only make this optimization where a hole would surely
37 	 * be zero-filled if handle_mm_fault() actually did handle it.
38 	 */
39 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
40 		return ERR_PTR(-EFAULT);
41 	return NULL;
42 }
43 
44 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
45 		pte_t *pte, unsigned int flags)
46 {
47 	/* No page to get reference */
48 	if (flags & FOLL_GET)
49 		return -EFAULT;
50 
51 	if (flags & FOLL_TOUCH) {
52 		pte_t entry = *pte;
53 
54 		if (flags & FOLL_WRITE)
55 			entry = pte_mkdirty(entry);
56 		entry = pte_mkyoung(entry);
57 
58 		if (!pte_same(*pte, entry)) {
59 			set_pte_at(vma->vm_mm, address, pte, entry);
60 			update_mmu_cache(vma, address, pte);
61 		}
62 	}
63 
64 	/* Proper page table entry exists, but no corresponding struct page */
65 	return -EEXIST;
66 }
67 
68 /*
69  * FOLL_FORCE can write to even unwritable pte's, but only
70  * after we've gone through a COW cycle and they are dirty.
71  */
72 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
73 {
74 	return pte_write(pte) ||
75 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
76 }
77 
78 static struct page *follow_page_pte(struct vm_area_struct *vma,
79 		unsigned long address, pmd_t *pmd, unsigned int flags,
80 		struct dev_pagemap **pgmap)
81 {
82 	struct mm_struct *mm = vma->vm_mm;
83 	struct page *page;
84 	spinlock_t *ptl;
85 	pte_t *ptep, pte;
86 
87 retry:
88 	if (unlikely(pmd_bad(*pmd)))
89 		return no_page_table(vma, flags);
90 
91 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
92 	pte = *ptep;
93 	if (!pte_present(pte)) {
94 		swp_entry_t entry;
95 		/*
96 		 * KSM's break_ksm() relies upon recognizing a ksm page
97 		 * even while it is being migrated, so for that case we
98 		 * need migration_entry_wait().
99 		 */
100 		if (likely(!(flags & FOLL_MIGRATION)))
101 			goto no_page;
102 		if (pte_none(pte))
103 			goto no_page;
104 		entry = pte_to_swp_entry(pte);
105 		if (!is_migration_entry(entry))
106 			goto no_page;
107 		pte_unmap_unlock(ptep, ptl);
108 		migration_entry_wait(mm, pmd, address);
109 		goto retry;
110 	}
111 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
112 		goto no_page;
113 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
114 		pte_unmap_unlock(ptep, ptl);
115 		return NULL;
116 	}
117 
118 	page = vm_normal_page(vma, address, pte);
119 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
120 		/*
121 		 * Only return device mapping pages in the FOLL_GET case since
122 		 * they are only valid while holding the pgmap reference.
123 		 */
124 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
125 		if (*pgmap)
126 			page = pte_page(pte);
127 		else
128 			goto no_page;
129 	} else if (unlikely(!page)) {
130 		if (flags & FOLL_DUMP) {
131 			/* Avoid special (like zero) pages in core dumps */
132 			page = ERR_PTR(-EFAULT);
133 			goto out;
134 		}
135 
136 		if (is_zero_pfn(pte_pfn(pte))) {
137 			page = pte_page(pte);
138 		} else {
139 			int ret;
140 
141 			ret = follow_pfn_pte(vma, address, ptep, flags);
142 			page = ERR_PTR(ret);
143 			goto out;
144 		}
145 	}
146 
147 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
148 		int ret;
149 		get_page(page);
150 		pte_unmap_unlock(ptep, ptl);
151 		lock_page(page);
152 		ret = split_huge_page(page);
153 		unlock_page(page);
154 		put_page(page);
155 		if (ret)
156 			return ERR_PTR(ret);
157 		goto retry;
158 	}
159 
160 	if (flags & FOLL_GET)
161 		get_page(page);
162 	if (flags & FOLL_TOUCH) {
163 		if ((flags & FOLL_WRITE) &&
164 		    !pte_dirty(pte) && !PageDirty(page))
165 			set_page_dirty(page);
166 		/*
167 		 * pte_mkyoung() would be more correct here, but atomic care
168 		 * is needed to avoid losing the dirty bit: it is easier to use
169 		 * mark_page_accessed().
170 		 */
171 		mark_page_accessed(page);
172 	}
173 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
174 		/* Do not mlock pte-mapped THP */
175 		if (PageTransCompound(page))
176 			goto out;
177 
178 		/*
179 		 * The preliminary mapping check is mainly to avoid the
180 		 * pointless overhead of lock_page on the ZERO_PAGE
181 		 * which might bounce very badly if there is contention.
182 		 *
183 		 * If the page is already locked, we don't need to
184 		 * handle it now - vmscan will handle it later if and
185 		 * when it attempts to reclaim the page.
186 		 */
187 		if (page->mapping && trylock_page(page)) {
188 			lru_add_drain();  /* push cached pages to LRU */
189 			/*
190 			 * Because we lock page here, and migration is
191 			 * blocked by the pte's page reference, and we
192 			 * know the page is still mapped, we don't even
193 			 * need to check for file-cache page truncation.
194 			 */
195 			mlock_vma_page(page);
196 			unlock_page(page);
197 		}
198 	}
199 out:
200 	pte_unmap_unlock(ptep, ptl);
201 	return page;
202 no_page:
203 	pte_unmap_unlock(ptep, ptl);
204 	if (!pte_none(pte))
205 		return NULL;
206 	return no_page_table(vma, flags);
207 }
208 
209 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
210 				    unsigned long address, pud_t *pudp,
211 				    unsigned int flags,
212 				    struct follow_page_context *ctx)
213 {
214 	pmd_t *pmd, pmdval;
215 	spinlock_t *ptl;
216 	struct page *page;
217 	struct mm_struct *mm = vma->vm_mm;
218 
219 	pmd = pmd_offset(pudp, address);
220 	/*
221 	 * The READ_ONCE() will stabilize the pmdval in a register or
222 	 * on the stack so that it will stop changing under the code.
223 	 */
224 	pmdval = READ_ONCE(*pmd);
225 	if (pmd_none(pmdval))
226 		return no_page_table(vma, flags);
227 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
228 		page = follow_huge_pmd(mm, address, pmd, flags);
229 		if (page)
230 			return page;
231 		return no_page_table(vma, flags);
232 	}
233 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
234 		page = follow_huge_pd(vma, address,
235 				      __hugepd(pmd_val(pmdval)), flags,
236 				      PMD_SHIFT);
237 		if (page)
238 			return page;
239 		return no_page_table(vma, flags);
240 	}
241 retry:
242 	if (!pmd_present(pmdval)) {
243 		if (likely(!(flags & FOLL_MIGRATION)))
244 			return no_page_table(vma, flags);
245 		VM_BUG_ON(thp_migration_supported() &&
246 				  !is_pmd_migration_entry(pmdval));
247 		if (is_pmd_migration_entry(pmdval))
248 			pmd_migration_entry_wait(mm, pmd);
249 		pmdval = READ_ONCE(*pmd);
250 		/*
251 		 * MADV_DONTNEED may convert the pmd to null because
252 		 * mmap_sem is held in read mode
253 		 */
254 		if (pmd_none(pmdval))
255 			return no_page_table(vma, flags);
256 		goto retry;
257 	}
258 	if (pmd_devmap(pmdval)) {
259 		ptl = pmd_lock(mm, pmd);
260 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
261 		spin_unlock(ptl);
262 		if (page)
263 			return page;
264 	}
265 	if (likely(!pmd_trans_huge(pmdval)))
266 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
267 
268 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
269 		return no_page_table(vma, flags);
270 
271 retry_locked:
272 	ptl = pmd_lock(mm, pmd);
273 	if (unlikely(pmd_none(*pmd))) {
274 		spin_unlock(ptl);
275 		return no_page_table(vma, flags);
276 	}
277 	if (unlikely(!pmd_present(*pmd))) {
278 		spin_unlock(ptl);
279 		if (likely(!(flags & FOLL_MIGRATION)))
280 			return no_page_table(vma, flags);
281 		pmd_migration_entry_wait(mm, pmd);
282 		goto retry_locked;
283 	}
284 	if (unlikely(!pmd_trans_huge(*pmd))) {
285 		spin_unlock(ptl);
286 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
287 	}
288 	if (flags & FOLL_SPLIT) {
289 		int ret;
290 		page = pmd_page(*pmd);
291 		if (is_huge_zero_page(page)) {
292 			spin_unlock(ptl);
293 			ret = 0;
294 			split_huge_pmd(vma, pmd, address);
295 			if (pmd_trans_unstable(pmd))
296 				ret = -EBUSY;
297 		} else {
298 			get_page(page);
299 			spin_unlock(ptl);
300 			lock_page(page);
301 			ret = split_huge_page(page);
302 			unlock_page(page);
303 			put_page(page);
304 			if (pmd_none(*pmd))
305 				return no_page_table(vma, flags);
306 		}
307 
308 		return ret ? ERR_PTR(ret) :
309 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
310 	}
311 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
312 	spin_unlock(ptl);
313 	ctx->page_mask = HPAGE_PMD_NR - 1;
314 	return page;
315 }
316 
317 static struct page *follow_pud_mask(struct vm_area_struct *vma,
318 				    unsigned long address, p4d_t *p4dp,
319 				    unsigned int flags,
320 				    struct follow_page_context *ctx)
321 {
322 	pud_t *pud;
323 	spinlock_t *ptl;
324 	struct page *page;
325 	struct mm_struct *mm = vma->vm_mm;
326 
327 	pud = pud_offset(p4dp, address);
328 	if (pud_none(*pud))
329 		return no_page_table(vma, flags);
330 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
331 		page = follow_huge_pud(mm, address, pud, flags);
332 		if (page)
333 			return page;
334 		return no_page_table(vma, flags);
335 	}
336 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
337 		page = follow_huge_pd(vma, address,
338 				      __hugepd(pud_val(*pud)), flags,
339 				      PUD_SHIFT);
340 		if (page)
341 			return page;
342 		return no_page_table(vma, flags);
343 	}
344 	if (pud_devmap(*pud)) {
345 		ptl = pud_lock(mm, pud);
346 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
347 		spin_unlock(ptl);
348 		if (page)
349 			return page;
350 	}
351 	if (unlikely(pud_bad(*pud)))
352 		return no_page_table(vma, flags);
353 
354 	return follow_pmd_mask(vma, address, pud, flags, ctx);
355 }
356 
357 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
358 				    unsigned long address, pgd_t *pgdp,
359 				    unsigned int flags,
360 				    struct follow_page_context *ctx)
361 {
362 	p4d_t *p4d;
363 	struct page *page;
364 
365 	p4d = p4d_offset(pgdp, address);
366 	if (p4d_none(*p4d))
367 		return no_page_table(vma, flags);
368 	BUILD_BUG_ON(p4d_huge(*p4d));
369 	if (unlikely(p4d_bad(*p4d)))
370 		return no_page_table(vma, flags);
371 
372 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
373 		page = follow_huge_pd(vma, address,
374 				      __hugepd(p4d_val(*p4d)), flags,
375 				      P4D_SHIFT);
376 		if (page)
377 			return page;
378 		return no_page_table(vma, flags);
379 	}
380 	return follow_pud_mask(vma, address, p4d, flags, ctx);
381 }
382 
383 /**
384  * follow_page_mask - look up a page descriptor from a user-virtual address
385  * @vma: vm_area_struct mapping @address
386  * @address: virtual address to look up
387  * @flags: flags modifying lookup behaviour
388  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
389  *       pointer to output page_mask
390  *
391  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
392  *
393  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
394  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
395  *
396  * On output, the @ctx->page_mask is set according to the size of the page.
397  *
398  * Return: the mapped (struct page *), %NULL if no mapping exists, or
399  * an error pointer if there is a mapping to something not represented
400  * by a page descriptor (see also vm_normal_page()).
401  */
402 struct page *follow_page_mask(struct vm_area_struct *vma,
403 			      unsigned long address, unsigned int flags,
404 			      struct follow_page_context *ctx)
405 {
406 	pgd_t *pgd;
407 	struct page *page;
408 	struct mm_struct *mm = vma->vm_mm;
409 
410 	ctx->page_mask = 0;
411 
412 	/* make this handle hugepd */
413 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
414 	if (!IS_ERR(page)) {
415 		BUG_ON(flags & FOLL_GET);
416 		return page;
417 	}
418 
419 	pgd = pgd_offset(mm, address);
420 
421 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
422 		return no_page_table(vma, flags);
423 
424 	if (pgd_huge(*pgd)) {
425 		page = follow_huge_pgd(mm, address, pgd, flags);
426 		if (page)
427 			return page;
428 		return no_page_table(vma, flags);
429 	}
430 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
431 		page = follow_huge_pd(vma, address,
432 				      __hugepd(pgd_val(*pgd)), flags,
433 				      PGDIR_SHIFT);
434 		if (page)
435 			return page;
436 		return no_page_table(vma, flags);
437 	}
438 
439 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
440 }
441 
442 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
443 			 unsigned int foll_flags)
444 {
445 	struct follow_page_context ctx = { NULL };
446 	struct page *page;
447 
448 	page = follow_page_mask(vma, address, foll_flags, &ctx);
449 	if (ctx.pgmap)
450 		put_dev_pagemap(ctx.pgmap);
451 	return page;
452 }
453 
454 static int get_gate_page(struct mm_struct *mm, unsigned long address,
455 		unsigned int gup_flags, struct vm_area_struct **vma,
456 		struct page **page)
457 {
458 	pgd_t *pgd;
459 	p4d_t *p4d;
460 	pud_t *pud;
461 	pmd_t *pmd;
462 	pte_t *pte;
463 	int ret = -EFAULT;
464 
465 	/* user gate pages are read-only */
466 	if (gup_flags & FOLL_WRITE)
467 		return -EFAULT;
468 	if (address > TASK_SIZE)
469 		pgd = pgd_offset_k(address);
470 	else
471 		pgd = pgd_offset_gate(mm, address);
472 	BUG_ON(pgd_none(*pgd));
473 	p4d = p4d_offset(pgd, address);
474 	BUG_ON(p4d_none(*p4d));
475 	pud = pud_offset(p4d, address);
476 	BUG_ON(pud_none(*pud));
477 	pmd = pmd_offset(pud, address);
478 	if (!pmd_present(*pmd))
479 		return -EFAULT;
480 	VM_BUG_ON(pmd_trans_huge(*pmd));
481 	pte = pte_offset_map(pmd, address);
482 	if (pte_none(*pte))
483 		goto unmap;
484 	*vma = get_gate_vma(mm);
485 	if (!page)
486 		goto out;
487 	*page = vm_normal_page(*vma, address, *pte);
488 	if (!*page) {
489 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
490 			goto unmap;
491 		*page = pte_page(*pte);
492 
493 		/*
494 		 * This should never happen (a device public page in the gate
495 		 * area).
496 		 */
497 		if (is_device_public_page(*page))
498 			goto unmap;
499 	}
500 	get_page(*page);
501 out:
502 	ret = 0;
503 unmap:
504 	pte_unmap(pte);
505 	return ret;
506 }
507 
508 /*
509  * mmap_sem must be held on entry.  If @nonblocking != NULL and
510  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
511  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
512  */
513 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
514 		unsigned long address, unsigned int *flags, int *nonblocking)
515 {
516 	unsigned int fault_flags = 0;
517 	vm_fault_t ret;
518 
519 	/* mlock all present pages, but do not fault in new pages */
520 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
521 		return -ENOENT;
522 	if (*flags & FOLL_WRITE)
523 		fault_flags |= FAULT_FLAG_WRITE;
524 	if (*flags & FOLL_REMOTE)
525 		fault_flags |= FAULT_FLAG_REMOTE;
526 	if (nonblocking)
527 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
528 	if (*flags & FOLL_NOWAIT)
529 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
530 	if (*flags & FOLL_TRIED) {
531 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
532 		fault_flags |= FAULT_FLAG_TRIED;
533 	}
534 
535 	ret = handle_mm_fault(vma, address, fault_flags);
536 	if (ret & VM_FAULT_ERROR) {
537 		int err = vm_fault_to_errno(ret, *flags);
538 
539 		if (err)
540 			return err;
541 		BUG();
542 	}
543 
544 	if (tsk) {
545 		if (ret & VM_FAULT_MAJOR)
546 			tsk->maj_flt++;
547 		else
548 			tsk->min_flt++;
549 	}
550 
551 	if (ret & VM_FAULT_RETRY) {
552 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
553 			*nonblocking = 0;
554 		return -EBUSY;
555 	}
556 
557 	/*
558 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
559 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
560 	 * can thus safely do subsequent page lookups as if they were reads.
561 	 * But only do so when looping for pte_write is futile: in some cases
562 	 * userspace may also be wanting to write to the gotten user page,
563 	 * which a read fault here might prevent (a readonly page might get
564 	 * reCOWed by userspace write).
565 	 */
566 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
567 		*flags |= FOLL_COW;
568 	return 0;
569 }
570 
571 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
572 {
573 	vm_flags_t vm_flags = vma->vm_flags;
574 	int write = (gup_flags & FOLL_WRITE);
575 	int foreign = (gup_flags & FOLL_REMOTE);
576 
577 	if (vm_flags & (VM_IO | VM_PFNMAP))
578 		return -EFAULT;
579 
580 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
581 		return -EFAULT;
582 
583 	if (write) {
584 		if (!(vm_flags & VM_WRITE)) {
585 			if (!(gup_flags & FOLL_FORCE))
586 				return -EFAULT;
587 			/*
588 			 * We used to let the write,force case do COW in a
589 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
590 			 * set a breakpoint in a read-only mapping of an
591 			 * executable, without corrupting the file (yet only
592 			 * when that file had been opened for writing!).
593 			 * Anon pages in shared mappings are surprising: now
594 			 * just reject it.
595 			 */
596 			if (!is_cow_mapping(vm_flags))
597 				return -EFAULT;
598 		}
599 	} else if (!(vm_flags & VM_READ)) {
600 		if (!(gup_flags & FOLL_FORCE))
601 			return -EFAULT;
602 		/*
603 		 * Is there actually any vma we can reach here which does not
604 		 * have VM_MAYREAD set?
605 		 */
606 		if (!(vm_flags & VM_MAYREAD))
607 			return -EFAULT;
608 	}
609 	/*
610 	 * gups are always data accesses, not instruction
611 	 * fetches, so execute=false here
612 	 */
613 	if (!arch_vma_access_permitted(vma, write, false, foreign))
614 		return -EFAULT;
615 	return 0;
616 }
617 
618 /**
619  * __get_user_pages() - pin user pages in memory
620  * @tsk:	task_struct of target task
621  * @mm:		mm_struct of target mm
622  * @start:	starting user address
623  * @nr_pages:	number of pages from start to pin
624  * @gup_flags:	flags modifying pin behaviour
625  * @pages:	array that receives pointers to the pages pinned.
626  *		Should be at least nr_pages long. Or NULL, if caller
627  *		only intends to ensure the pages are faulted in.
628  * @vmas:	array of pointers to vmas corresponding to each page.
629  *		Or NULL if the caller does not require them.
630  * @nonblocking: whether waiting for disk IO or mmap_sem contention
631  *
632  * Returns number of pages pinned. This may be fewer than the number
633  * requested. If nr_pages is 0 or negative, returns 0. If no pages
634  * were pinned, returns -errno. Each page returned must be released
635  * with a put_page() call when it is finished with. vmas will only
636  * remain valid while mmap_sem is held.
637  *
638  * Must be called with mmap_sem held.  It may be released.  See below.
639  *
640  * __get_user_pages walks a process's page tables and takes a reference to
641  * each struct page that each user address corresponds to at a given
642  * instant. That is, it takes the page that would be accessed if a user
643  * thread accesses the given user virtual address at that instant.
644  *
645  * This does not guarantee that the page exists in the user mappings when
646  * __get_user_pages returns, and there may even be a completely different
647  * page there in some cases (eg. if mmapped pagecache has been invalidated
648  * and subsequently re faulted). However it does guarantee that the page
649  * won't be freed completely. And mostly callers simply care that the page
650  * contains data that was valid *at some point in time*. Typically, an IO
651  * or similar operation cannot guarantee anything stronger anyway because
652  * locks can't be held over the syscall boundary.
653  *
654  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
655  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
656  * appropriate) must be called after the page is finished with, and
657  * before put_page is called.
658  *
659  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
660  * or mmap_sem contention, and if waiting is needed to pin all pages,
661  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
662  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
663  * this case.
664  *
665  * A caller using such a combination of @nonblocking and @gup_flags
666  * must therefore hold the mmap_sem for reading only, and recognize
667  * when it's been released.  Otherwise, it must be held for either
668  * reading or writing and will not be released.
669  *
670  * In most cases, get_user_pages or get_user_pages_fast should be used
671  * instead of __get_user_pages. __get_user_pages should be used only if
672  * you need some special @gup_flags.
673  */
674 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
675 		unsigned long start, unsigned long nr_pages,
676 		unsigned int gup_flags, struct page **pages,
677 		struct vm_area_struct **vmas, int *nonblocking)
678 {
679 	long ret = 0, i = 0;
680 	struct vm_area_struct *vma = NULL;
681 	struct follow_page_context ctx = { NULL };
682 
683 	if (!nr_pages)
684 		return 0;
685 
686 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
687 
688 	/*
689 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
690 	 * fault information is unrelated to the reference behaviour of a task
691 	 * using the address space
692 	 */
693 	if (!(gup_flags & FOLL_FORCE))
694 		gup_flags |= FOLL_NUMA;
695 
696 	do {
697 		struct page *page;
698 		unsigned int foll_flags = gup_flags;
699 		unsigned int page_increm;
700 
701 		/* first iteration or cross vma bound */
702 		if (!vma || start >= vma->vm_end) {
703 			vma = find_extend_vma(mm, start);
704 			if (!vma && in_gate_area(mm, start)) {
705 				int ret;
706 				ret = get_gate_page(mm, start & PAGE_MASK,
707 						gup_flags, &vma,
708 						pages ? &pages[i] : NULL);
709 				if (ret)
710 					return i ? : ret;
711 				ctx.page_mask = 0;
712 				goto next_page;
713 			}
714 
715 			if (!vma || check_vma_flags(vma, gup_flags)) {
716 				ret = -EFAULT;
717 				goto out;
718 			}
719 			if (is_vm_hugetlb_page(vma)) {
720 				i = follow_hugetlb_page(mm, vma, pages, vmas,
721 						&start, &nr_pages, i,
722 						gup_flags, nonblocking);
723 				continue;
724 			}
725 		}
726 retry:
727 		/*
728 		 * If we have a pending SIGKILL, don't keep faulting pages and
729 		 * potentially allocating memory.
730 		 */
731 		if (unlikely(fatal_signal_pending(current))) {
732 			ret = -ERESTARTSYS;
733 			goto out;
734 		}
735 		cond_resched();
736 
737 		page = follow_page_mask(vma, start, foll_flags, &ctx);
738 		if (!page) {
739 			ret = faultin_page(tsk, vma, start, &foll_flags,
740 					nonblocking);
741 			switch (ret) {
742 			case 0:
743 				goto retry;
744 			case -EBUSY:
745 				ret = 0;
746 				/* FALLTHRU */
747 			case -EFAULT:
748 			case -ENOMEM:
749 			case -EHWPOISON:
750 				goto out;
751 			case -ENOENT:
752 				goto next_page;
753 			}
754 			BUG();
755 		} else if (PTR_ERR(page) == -EEXIST) {
756 			/*
757 			 * Proper page table entry exists, but no corresponding
758 			 * struct page.
759 			 */
760 			goto next_page;
761 		} else if (IS_ERR(page)) {
762 			ret = PTR_ERR(page);
763 			goto out;
764 		}
765 		if (pages) {
766 			pages[i] = page;
767 			flush_anon_page(vma, page, start);
768 			flush_dcache_page(page);
769 			ctx.page_mask = 0;
770 		}
771 next_page:
772 		if (vmas) {
773 			vmas[i] = vma;
774 			ctx.page_mask = 0;
775 		}
776 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
777 		if (page_increm > nr_pages)
778 			page_increm = nr_pages;
779 		i += page_increm;
780 		start += page_increm * PAGE_SIZE;
781 		nr_pages -= page_increm;
782 	} while (nr_pages);
783 out:
784 	if (ctx.pgmap)
785 		put_dev_pagemap(ctx.pgmap);
786 	return i ? i : ret;
787 }
788 
789 static bool vma_permits_fault(struct vm_area_struct *vma,
790 			      unsigned int fault_flags)
791 {
792 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
793 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
794 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
795 
796 	if (!(vm_flags & vma->vm_flags))
797 		return false;
798 
799 	/*
800 	 * The architecture might have a hardware protection
801 	 * mechanism other than read/write that can deny access.
802 	 *
803 	 * gup always represents data access, not instruction
804 	 * fetches, so execute=false here:
805 	 */
806 	if (!arch_vma_access_permitted(vma, write, false, foreign))
807 		return false;
808 
809 	return true;
810 }
811 
812 /*
813  * fixup_user_fault() - manually resolve a user page fault
814  * @tsk:	the task_struct to use for page fault accounting, or
815  *		NULL if faults are not to be recorded.
816  * @mm:		mm_struct of target mm
817  * @address:	user address
818  * @fault_flags:flags to pass down to handle_mm_fault()
819  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
820  *		does not allow retry
821  *
822  * This is meant to be called in the specific scenario where for locking reasons
823  * we try to access user memory in atomic context (within a pagefault_disable()
824  * section), this returns -EFAULT, and we want to resolve the user fault before
825  * trying again.
826  *
827  * Typically this is meant to be used by the futex code.
828  *
829  * The main difference with get_user_pages() is that this function will
830  * unconditionally call handle_mm_fault() which will in turn perform all the
831  * necessary SW fixup of the dirty and young bits in the PTE, while
832  * get_user_pages() only guarantees to update these in the struct page.
833  *
834  * This is important for some architectures where those bits also gate the
835  * access permission to the page because they are maintained in software.  On
836  * such architectures, gup() will not be enough to make a subsequent access
837  * succeed.
838  *
839  * This function will not return with an unlocked mmap_sem. So it has not the
840  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
841  */
842 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
843 		     unsigned long address, unsigned int fault_flags,
844 		     bool *unlocked)
845 {
846 	struct vm_area_struct *vma;
847 	vm_fault_t ret, major = 0;
848 
849 	if (unlocked)
850 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
851 
852 retry:
853 	vma = find_extend_vma(mm, address);
854 	if (!vma || address < vma->vm_start)
855 		return -EFAULT;
856 
857 	if (!vma_permits_fault(vma, fault_flags))
858 		return -EFAULT;
859 
860 	ret = handle_mm_fault(vma, address, fault_flags);
861 	major |= ret & VM_FAULT_MAJOR;
862 	if (ret & VM_FAULT_ERROR) {
863 		int err = vm_fault_to_errno(ret, 0);
864 
865 		if (err)
866 			return err;
867 		BUG();
868 	}
869 
870 	if (ret & VM_FAULT_RETRY) {
871 		down_read(&mm->mmap_sem);
872 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
873 			*unlocked = true;
874 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
875 			fault_flags |= FAULT_FLAG_TRIED;
876 			goto retry;
877 		}
878 	}
879 
880 	if (tsk) {
881 		if (major)
882 			tsk->maj_flt++;
883 		else
884 			tsk->min_flt++;
885 	}
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(fixup_user_fault);
889 
890 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
891 						struct mm_struct *mm,
892 						unsigned long start,
893 						unsigned long nr_pages,
894 						struct page **pages,
895 						struct vm_area_struct **vmas,
896 						int *locked,
897 						unsigned int flags)
898 {
899 	long ret, pages_done;
900 	bool lock_dropped;
901 
902 	if (locked) {
903 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
904 		BUG_ON(vmas);
905 		/* check caller initialized locked */
906 		BUG_ON(*locked != 1);
907 	}
908 
909 	if (pages)
910 		flags |= FOLL_GET;
911 
912 	pages_done = 0;
913 	lock_dropped = false;
914 	for (;;) {
915 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
916 				       vmas, locked);
917 		if (!locked)
918 			/* VM_FAULT_RETRY couldn't trigger, bypass */
919 			return ret;
920 
921 		/* VM_FAULT_RETRY cannot return errors */
922 		if (!*locked) {
923 			BUG_ON(ret < 0);
924 			BUG_ON(ret >= nr_pages);
925 		}
926 
927 		if (!pages)
928 			/* If it's a prefault don't insist harder */
929 			return ret;
930 
931 		if (ret > 0) {
932 			nr_pages -= ret;
933 			pages_done += ret;
934 			if (!nr_pages)
935 				break;
936 		}
937 		if (*locked) {
938 			/*
939 			 * VM_FAULT_RETRY didn't trigger or it was a
940 			 * FOLL_NOWAIT.
941 			 */
942 			if (!pages_done)
943 				pages_done = ret;
944 			break;
945 		}
946 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
947 		pages += ret;
948 		start += ret << PAGE_SHIFT;
949 
950 		/*
951 		 * Repeat on the address that fired VM_FAULT_RETRY
952 		 * without FAULT_FLAG_ALLOW_RETRY but with
953 		 * FAULT_FLAG_TRIED.
954 		 */
955 		*locked = 1;
956 		lock_dropped = true;
957 		down_read(&mm->mmap_sem);
958 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
959 				       pages, NULL, NULL);
960 		if (ret != 1) {
961 			BUG_ON(ret > 1);
962 			if (!pages_done)
963 				pages_done = ret;
964 			break;
965 		}
966 		nr_pages--;
967 		pages_done++;
968 		if (!nr_pages)
969 			break;
970 		pages++;
971 		start += PAGE_SIZE;
972 	}
973 	if (lock_dropped && *locked) {
974 		/*
975 		 * We must let the caller know we temporarily dropped the lock
976 		 * and so the critical section protected by it was lost.
977 		 */
978 		up_read(&mm->mmap_sem);
979 		*locked = 0;
980 	}
981 	return pages_done;
982 }
983 
984 /*
985  * We can leverage the VM_FAULT_RETRY functionality in the page fault
986  * paths better by using either get_user_pages_locked() or
987  * get_user_pages_unlocked().
988  *
989  * get_user_pages_locked() is suitable to replace the form:
990  *
991  *      down_read(&mm->mmap_sem);
992  *      do_something()
993  *      get_user_pages(tsk, mm, ..., pages, NULL);
994  *      up_read(&mm->mmap_sem);
995  *
996  *  to:
997  *
998  *      int locked = 1;
999  *      down_read(&mm->mmap_sem);
1000  *      do_something()
1001  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1002  *      if (locked)
1003  *          up_read(&mm->mmap_sem);
1004  */
1005 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1006 			   unsigned int gup_flags, struct page **pages,
1007 			   int *locked)
1008 {
1009 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1010 				       pages, NULL, locked,
1011 				       gup_flags | FOLL_TOUCH);
1012 }
1013 EXPORT_SYMBOL(get_user_pages_locked);
1014 
1015 /*
1016  * get_user_pages_unlocked() is suitable to replace the form:
1017  *
1018  *      down_read(&mm->mmap_sem);
1019  *      get_user_pages(tsk, mm, ..., pages, NULL);
1020  *      up_read(&mm->mmap_sem);
1021  *
1022  *  with:
1023  *
1024  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1025  *
1026  * It is functionally equivalent to get_user_pages_fast so
1027  * get_user_pages_fast should be used instead if specific gup_flags
1028  * (e.g. FOLL_FORCE) are not required.
1029  */
1030 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1031 			     struct page **pages, unsigned int gup_flags)
1032 {
1033 	struct mm_struct *mm = current->mm;
1034 	int locked = 1;
1035 	long ret;
1036 
1037 	down_read(&mm->mmap_sem);
1038 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1039 				      &locked, gup_flags | FOLL_TOUCH);
1040 	if (locked)
1041 		up_read(&mm->mmap_sem);
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(get_user_pages_unlocked);
1045 
1046 /*
1047  * get_user_pages_remote() - pin user pages in memory
1048  * @tsk:	the task_struct to use for page fault accounting, or
1049  *		NULL if faults are not to be recorded.
1050  * @mm:		mm_struct of target mm
1051  * @start:	starting user address
1052  * @nr_pages:	number of pages from start to pin
1053  * @gup_flags:	flags modifying lookup behaviour
1054  * @pages:	array that receives pointers to the pages pinned.
1055  *		Should be at least nr_pages long. Or NULL, if caller
1056  *		only intends to ensure the pages are faulted in.
1057  * @vmas:	array of pointers to vmas corresponding to each page.
1058  *		Or NULL if the caller does not require them.
1059  * @locked:	pointer to lock flag indicating whether lock is held and
1060  *		subsequently whether VM_FAULT_RETRY functionality can be
1061  *		utilised. Lock must initially be held.
1062  *
1063  * Returns number of pages pinned. This may be fewer than the number
1064  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1065  * were pinned, returns -errno. Each page returned must be released
1066  * with a put_page() call when it is finished with. vmas will only
1067  * remain valid while mmap_sem is held.
1068  *
1069  * Must be called with mmap_sem held for read or write.
1070  *
1071  * get_user_pages walks a process's page tables and takes a reference to
1072  * each struct page that each user address corresponds to at a given
1073  * instant. That is, it takes the page that would be accessed if a user
1074  * thread accesses the given user virtual address at that instant.
1075  *
1076  * This does not guarantee that the page exists in the user mappings when
1077  * get_user_pages returns, and there may even be a completely different
1078  * page there in some cases (eg. if mmapped pagecache has been invalidated
1079  * and subsequently re faulted). However it does guarantee that the page
1080  * won't be freed completely. And mostly callers simply care that the page
1081  * contains data that was valid *at some point in time*. Typically, an IO
1082  * or similar operation cannot guarantee anything stronger anyway because
1083  * locks can't be held over the syscall boundary.
1084  *
1085  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1086  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1087  * be called after the page is finished with, and before put_page is called.
1088  *
1089  * get_user_pages is typically used for fewer-copy IO operations, to get a
1090  * handle on the memory by some means other than accesses via the user virtual
1091  * addresses. The pages may be submitted for DMA to devices or accessed via
1092  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1093  * use the correct cache flushing APIs.
1094  *
1095  * See also get_user_pages_fast, for performance critical applications.
1096  *
1097  * get_user_pages should be phased out in favor of
1098  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1099  * should use get_user_pages because it cannot pass
1100  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1101  */
1102 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1103 		unsigned long start, unsigned long nr_pages,
1104 		unsigned int gup_flags, struct page **pages,
1105 		struct vm_area_struct **vmas, int *locked)
1106 {
1107 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1108 				       locked,
1109 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1110 }
1111 EXPORT_SYMBOL(get_user_pages_remote);
1112 
1113 /*
1114  * This is the same as get_user_pages_remote(), just with a
1115  * less-flexible calling convention where we assume that the task
1116  * and mm being operated on are the current task's and don't allow
1117  * passing of a locked parameter.  We also obviously don't pass
1118  * FOLL_REMOTE in here.
1119  */
1120 long get_user_pages(unsigned long start, unsigned long nr_pages,
1121 		unsigned int gup_flags, struct page **pages,
1122 		struct vm_area_struct **vmas)
1123 {
1124 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1125 				       pages, vmas, NULL,
1126 				       gup_flags | FOLL_TOUCH);
1127 }
1128 EXPORT_SYMBOL(get_user_pages);
1129 
1130 #ifdef CONFIG_FS_DAX
1131 /*
1132  * This is the same as get_user_pages() in that it assumes we are
1133  * operating on the current task's mm, but it goes further to validate
1134  * that the vmas associated with the address range are suitable for
1135  * longterm elevated page reference counts. For example, filesystem-dax
1136  * mappings are subject to the lifetime enforced by the filesystem and
1137  * we need guarantees that longterm users like RDMA and V4L2 only
1138  * establish mappings that have a kernel enforced revocation mechanism.
1139  *
1140  * "longterm" == userspace controlled elevated page count lifetime.
1141  * Contrast this to iov_iter_get_pages() usages which are transient.
1142  */
1143 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1144 		unsigned int gup_flags, struct page **pages,
1145 		struct vm_area_struct **vmas_arg)
1146 {
1147 	struct vm_area_struct **vmas = vmas_arg;
1148 	struct vm_area_struct *vma_prev = NULL;
1149 	long rc, i;
1150 
1151 	if (!pages)
1152 		return -EINVAL;
1153 
1154 	if (!vmas) {
1155 		vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1156 			       GFP_KERNEL);
1157 		if (!vmas)
1158 			return -ENOMEM;
1159 	}
1160 
1161 	rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1162 
1163 	for (i = 0; i < rc; i++) {
1164 		struct vm_area_struct *vma = vmas[i];
1165 
1166 		if (vma == vma_prev)
1167 			continue;
1168 
1169 		vma_prev = vma;
1170 
1171 		if (vma_is_fsdax(vma))
1172 			break;
1173 	}
1174 
1175 	/*
1176 	 * Either get_user_pages() failed, or the vma validation
1177 	 * succeeded, in either case we don't need to put_page() before
1178 	 * returning.
1179 	 */
1180 	if (i >= rc)
1181 		goto out;
1182 
1183 	for (i = 0; i < rc; i++)
1184 		put_page(pages[i]);
1185 	rc = -EOPNOTSUPP;
1186 out:
1187 	if (vmas != vmas_arg)
1188 		kfree(vmas);
1189 	return rc;
1190 }
1191 EXPORT_SYMBOL(get_user_pages_longterm);
1192 #endif /* CONFIG_FS_DAX */
1193 
1194 /**
1195  * populate_vma_page_range() -  populate a range of pages in the vma.
1196  * @vma:   target vma
1197  * @start: start address
1198  * @end:   end address
1199  * @nonblocking:
1200  *
1201  * This takes care of mlocking the pages too if VM_LOCKED is set.
1202  *
1203  * return 0 on success, negative error code on error.
1204  *
1205  * vma->vm_mm->mmap_sem must be held.
1206  *
1207  * If @nonblocking is NULL, it may be held for read or write and will
1208  * be unperturbed.
1209  *
1210  * If @nonblocking is non-NULL, it must held for read only and may be
1211  * released.  If it's released, *@nonblocking will be set to 0.
1212  */
1213 long populate_vma_page_range(struct vm_area_struct *vma,
1214 		unsigned long start, unsigned long end, int *nonblocking)
1215 {
1216 	struct mm_struct *mm = vma->vm_mm;
1217 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1218 	int gup_flags;
1219 
1220 	VM_BUG_ON(start & ~PAGE_MASK);
1221 	VM_BUG_ON(end   & ~PAGE_MASK);
1222 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1223 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1224 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1225 
1226 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1227 	if (vma->vm_flags & VM_LOCKONFAULT)
1228 		gup_flags &= ~FOLL_POPULATE;
1229 	/*
1230 	 * We want to touch writable mappings with a write fault in order
1231 	 * to break COW, except for shared mappings because these don't COW
1232 	 * and we would not want to dirty them for nothing.
1233 	 */
1234 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1235 		gup_flags |= FOLL_WRITE;
1236 
1237 	/*
1238 	 * We want mlock to succeed for regions that have any permissions
1239 	 * other than PROT_NONE.
1240 	 */
1241 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1242 		gup_flags |= FOLL_FORCE;
1243 
1244 	/*
1245 	 * We made sure addr is within a VMA, so the following will
1246 	 * not result in a stack expansion that recurses back here.
1247 	 */
1248 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1249 				NULL, NULL, nonblocking);
1250 }
1251 
1252 /*
1253  * __mm_populate - populate and/or mlock pages within a range of address space.
1254  *
1255  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1256  * flags. VMAs must be already marked with the desired vm_flags, and
1257  * mmap_sem must not be held.
1258  */
1259 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1260 {
1261 	struct mm_struct *mm = current->mm;
1262 	unsigned long end, nstart, nend;
1263 	struct vm_area_struct *vma = NULL;
1264 	int locked = 0;
1265 	long ret = 0;
1266 
1267 	end = start + len;
1268 
1269 	for (nstart = start; nstart < end; nstart = nend) {
1270 		/*
1271 		 * We want to fault in pages for [nstart; end) address range.
1272 		 * Find first corresponding VMA.
1273 		 */
1274 		if (!locked) {
1275 			locked = 1;
1276 			down_read(&mm->mmap_sem);
1277 			vma = find_vma(mm, nstart);
1278 		} else if (nstart >= vma->vm_end)
1279 			vma = vma->vm_next;
1280 		if (!vma || vma->vm_start >= end)
1281 			break;
1282 		/*
1283 		 * Set [nstart; nend) to intersection of desired address
1284 		 * range with the first VMA. Also, skip undesirable VMA types.
1285 		 */
1286 		nend = min(end, vma->vm_end);
1287 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1288 			continue;
1289 		if (nstart < vma->vm_start)
1290 			nstart = vma->vm_start;
1291 		/*
1292 		 * Now fault in a range of pages. populate_vma_page_range()
1293 		 * double checks the vma flags, so that it won't mlock pages
1294 		 * if the vma was already munlocked.
1295 		 */
1296 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1297 		if (ret < 0) {
1298 			if (ignore_errors) {
1299 				ret = 0;
1300 				continue;	/* continue at next VMA */
1301 			}
1302 			break;
1303 		}
1304 		nend = nstart + ret * PAGE_SIZE;
1305 		ret = 0;
1306 	}
1307 	if (locked)
1308 		up_read(&mm->mmap_sem);
1309 	return ret;	/* 0 or negative error code */
1310 }
1311 
1312 /**
1313  * get_dump_page() - pin user page in memory while writing it to core dump
1314  * @addr: user address
1315  *
1316  * Returns struct page pointer of user page pinned for dump,
1317  * to be freed afterwards by put_page().
1318  *
1319  * Returns NULL on any kind of failure - a hole must then be inserted into
1320  * the corefile, to preserve alignment with its headers; and also returns
1321  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1322  * allowing a hole to be left in the corefile to save diskspace.
1323  *
1324  * Called without mmap_sem, but after all other threads have been killed.
1325  */
1326 #ifdef CONFIG_ELF_CORE
1327 struct page *get_dump_page(unsigned long addr)
1328 {
1329 	struct vm_area_struct *vma;
1330 	struct page *page;
1331 
1332 	if (__get_user_pages(current, current->mm, addr, 1,
1333 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1334 			     NULL) < 1)
1335 		return NULL;
1336 	flush_cache_page(vma, addr, page_to_pfn(page));
1337 	return page;
1338 }
1339 #endif /* CONFIG_ELF_CORE */
1340 
1341 /*
1342  * Generic Fast GUP
1343  *
1344  * get_user_pages_fast attempts to pin user pages by walking the page
1345  * tables directly and avoids taking locks. Thus the walker needs to be
1346  * protected from page table pages being freed from under it, and should
1347  * block any THP splits.
1348  *
1349  * One way to achieve this is to have the walker disable interrupts, and
1350  * rely on IPIs from the TLB flushing code blocking before the page table
1351  * pages are freed. This is unsuitable for architectures that do not need
1352  * to broadcast an IPI when invalidating TLBs.
1353  *
1354  * Another way to achieve this is to batch up page table containing pages
1355  * belonging to more than one mm_user, then rcu_sched a callback to free those
1356  * pages. Disabling interrupts will allow the fast_gup walker to both block
1357  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1358  * (which is a relatively rare event). The code below adopts this strategy.
1359  *
1360  * Before activating this code, please be aware that the following assumptions
1361  * are currently made:
1362  *
1363  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1364  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1365  *
1366  *  *) ptes can be read atomically by the architecture.
1367  *
1368  *  *) access_ok is sufficient to validate userspace address ranges.
1369  *
1370  * The last two assumptions can be relaxed by the addition of helper functions.
1371  *
1372  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1373  */
1374 #ifdef CONFIG_HAVE_GENERIC_GUP
1375 
1376 #ifndef gup_get_pte
1377 /*
1378  * We assume that the PTE can be read atomically. If this is not the case for
1379  * your architecture, please provide the helper.
1380  */
1381 static inline pte_t gup_get_pte(pte_t *ptep)
1382 {
1383 	return READ_ONCE(*ptep);
1384 }
1385 #endif
1386 
1387 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1388 {
1389 	while ((*nr) - nr_start) {
1390 		struct page *page = pages[--(*nr)];
1391 
1392 		ClearPageReferenced(page);
1393 		put_page(page);
1394 	}
1395 }
1396 
1397 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1398 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1399 			 int write, struct page **pages, int *nr)
1400 {
1401 	struct dev_pagemap *pgmap = NULL;
1402 	int nr_start = *nr, ret = 0;
1403 	pte_t *ptep, *ptem;
1404 
1405 	ptem = ptep = pte_offset_map(&pmd, addr);
1406 	do {
1407 		pte_t pte = gup_get_pte(ptep);
1408 		struct page *head, *page;
1409 
1410 		/*
1411 		 * Similar to the PMD case below, NUMA hinting must take slow
1412 		 * path using the pte_protnone check.
1413 		 */
1414 		if (pte_protnone(pte))
1415 			goto pte_unmap;
1416 
1417 		if (!pte_access_permitted(pte, write))
1418 			goto pte_unmap;
1419 
1420 		if (pte_devmap(pte)) {
1421 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1422 			if (unlikely(!pgmap)) {
1423 				undo_dev_pagemap(nr, nr_start, pages);
1424 				goto pte_unmap;
1425 			}
1426 		} else if (pte_special(pte))
1427 			goto pte_unmap;
1428 
1429 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1430 		page = pte_page(pte);
1431 		head = compound_head(page);
1432 
1433 		if (!page_cache_get_speculative(head))
1434 			goto pte_unmap;
1435 
1436 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1437 			put_page(head);
1438 			goto pte_unmap;
1439 		}
1440 
1441 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1442 
1443 		SetPageReferenced(page);
1444 		pages[*nr] = page;
1445 		(*nr)++;
1446 
1447 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1448 
1449 	ret = 1;
1450 
1451 pte_unmap:
1452 	if (pgmap)
1453 		put_dev_pagemap(pgmap);
1454 	pte_unmap(ptem);
1455 	return ret;
1456 }
1457 #else
1458 
1459 /*
1460  * If we can't determine whether or not a pte is special, then fail immediately
1461  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1462  * to be special.
1463  *
1464  * For a futex to be placed on a THP tail page, get_futex_key requires a
1465  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1466  * useful to have gup_huge_pmd even if we can't operate on ptes.
1467  */
1468 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1469 			 int write, struct page **pages, int *nr)
1470 {
1471 	return 0;
1472 }
1473 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1474 
1475 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1476 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1477 		unsigned long end, struct page **pages, int *nr)
1478 {
1479 	int nr_start = *nr;
1480 	struct dev_pagemap *pgmap = NULL;
1481 
1482 	do {
1483 		struct page *page = pfn_to_page(pfn);
1484 
1485 		pgmap = get_dev_pagemap(pfn, pgmap);
1486 		if (unlikely(!pgmap)) {
1487 			undo_dev_pagemap(nr, nr_start, pages);
1488 			return 0;
1489 		}
1490 		SetPageReferenced(page);
1491 		pages[*nr] = page;
1492 		get_page(page);
1493 		(*nr)++;
1494 		pfn++;
1495 	} while (addr += PAGE_SIZE, addr != end);
1496 
1497 	if (pgmap)
1498 		put_dev_pagemap(pgmap);
1499 	return 1;
1500 }
1501 
1502 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1503 		unsigned long end, struct page **pages, int *nr)
1504 {
1505 	unsigned long fault_pfn;
1506 	int nr_start = *nr;
1507 
1508 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1509 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1510 		return 0;
1511 
1512 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1513 		undo_dev_pagemap(nr, nr_start, pages);
1514 		return 0;
1515 	}
1516 	return 1;
1517 }
1518 
1519 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1520 		unsigned long end, struct page **pages, int *nr)
1521 {
1522 	unsigned long fault_pfn;
1523 	int nr_start = *nr;
1524 
1525 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1526 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1527 		return 0;
1528 
1529 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1530 		undo_dev_pagemap(nr, nr_start, pages);
1531 		return 0;
1532 	}
1533 	return 1;
1534 }
1535 #else
1536 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1537 		unsigned long end, struct page **pages, int *nr)
1538 {
1539 	BUILD_BUG();
1540 	return 0;
1541 }
1542 
1543 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1544 		unsigned long end, struct page **pages, int *nr)
1545 {
1546 	BUILD_BUG();
1547 	return 0;
1548 }
1549 #endif
1550 
1551 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1552 		unsigned long end, int write, struct page **pages, int *nr)
1553 {
1554 	struct page *head, *page;
1555 	int refs;
1556 
1557 	if (!pmd_access_permitted(orig, write))
1558 		return 0;
1559 
1560 	if (pmd_devmap(orig))
1561 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1562 
1563 	refs = 0;
1564 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1565 	do {
1566 		pages[*nr] = page;
1567 		(*nr)++;
1568 		page++;
1569 		refs++;
1570 	} while (addr += PAGE_SIZE, addr != end);
1571 
1572 	head = compound_head(pmd_page(orig));
1573 	if (!page_cache_add_speculative(head, refs)) {
1574 		*nr -= refs;
1575 		return 0;
1576 	}
1577 
1578 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1579 		*nr -= refs;
1580 		while (refs--)
1581 			put_page(head);
1582 		return 0;
1583 	}
1584 
1585 	SetPageReferenced(head);
1586 	return 1;
1587 }
1588 
1589 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1590 		unsigned long end, int write, struct page **pages, int *nr)
1591 {
1592 	struct page *head, *page;
1593 	int refs;
1594 
1595 	if (!pud_access_permitted(orig, write))
1596 		return 0;
1597 
1598 	if (pud_devmap(orig))
1599 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1600 
1601 	refs = 0;
1602 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1603 	do {
1604 		pages[*nr] = page;
1605 		(*nr)++;
1606 		page++;
1607 		refs++;
1608 	} while (addr += PAGE_SIZE, addr != end);
1609 
1610 	head = compound_head(pud_page(orig));
1611 	if (!page_cache_add_speculative(head, refs)) {
1612 		*nr -= refs;
1613 		return 0;
1614 	}
1615 
1616 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1617 		*nr -= refs;
1618 		while (refs--)
1619 			put_page(head);
1620 		return 0;
1621 	}
1622 
1623 	SetPageReferenced(head);
1624 	return 1;
1625 }
1626 
1627 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1628 			unsigned long end, int write,
1629 			struct page **pages, int *nr)
1630 {
1631 	int refs;
1632 	struct page *head, *page;
1633 
1634 	if (!pgd_access_permitted(orig, write))
1635 		return 0;
1636 
1637 	BUILD_BUG_ON(pgd_devmap(orig));
1638 	refs = 0;
1639 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1640 	do {
1641 		pages[*nr] = page;
1642 		(*nr)++;
1643 		page++;
1644 		refs++;
1645 	} while (addr += PAGE_SIZE, addr != end);
1646 
1647 	head = compound_head(pgd_page(orig));
1648 	if (!page_cache_add_speculative(head, refs)) {
1649 		*nr -= refs;
1650 		return 0;
1651 	}
1652 
1653 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1654 		*nr -= refs;
1655 		while (refs--)
1656 			put_page(head);
1657 		return 0;
1658 	}
1659 
1660 	SetPageReferenced(head);
1661 	return 1;
1662 }
1663 
1664 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1665 		int write, struct page **pages, int *nr)
1666 {
1667 	unsigned long next;
1668 	pmd_t *pmdp;
1669 
1670 	pmdp = pmd_offset(&pud, addr);
1671 	do {
1672 		pmd_t pmd = READ_ONCE(*pmdp);
1673 
1674 		next = pmd_addr_end(addr, end);
1675 		if (!pmd_present(pmd))
1676 			return 0;
1677 
1678 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1679 			/*
1680 			 * NUMA hinting faults need to be handled in the GUP
1681 			 * slowpath for accounting purposes and so that they
1682 			 * can be serialised against THP migration.
1683 			 */
1684 			if (pmd_protnone(pmd))
1685 				return 0;
1686 
1687 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1688 				pages, nr))
1689 				return 0;
1690 
1691 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1692 			/*
1693 			 * architecture have different format for hugetlbfs
1694 			 * pmd format and THP pmd format
1695 			 */
1696 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1697 					 PMD_SHIFT, next, write, pages, nr))
1698 				return 0;
1699 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1700 			return 0;
1701 	} while (pmdp++, addr = next, addr != end);
1702 
1703 	return 1;
1704 }
1705 
1706 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1707 			 int write, struct page **pages, int *nr)
1708 {
1709 	unsigned long next;
1710 	pud_t *pudp;
1711 
1712 	pudp = pud_offset(&p4d, addr);
1713 	do {
1714 		pud_t pud = READ_ONCE(*pudp);
1715 
1716 		next = pud_addr_end(addr, end);
1717 		if (pud_none(pud))
1718 			return 0;
1719 		if (unlikely(pud_huge(pud))) {
1720 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1721 					  pages, nr))
1722 				return 0;
1723 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1724 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1725 					 PUD_SHIFT, next, write, pages, nr))
1726 				return 0;
1727 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1728 			return 0;
1729 	} while (pudp++, addr = next, addr != end);
1730 
1731 	return 1;
1732 }
1733 
1734 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1735 			 int write, struct page **pages, int *nr)
1736 {
1737 	unsigned long next;
1738 	p4d_t *p4dp;
1739 
1740 	p4dp = p4d_offset(&pgd, addr);
1741 	do {
1742 		p4d_t p4d = READ_ONCE(*p4dp);
1743 
1744 		next = p4d_addr_end(addr, end);
1745 		if (p4d_none(p4d))
1746 			return 0;
1747 		BUILD_BUG_ON(p4d_huge(p4d));
1748 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1749 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1750 					 P4D_SHIFT, next, write, pages, nr))
1751 				return 0;
1752 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1753 			return 0;
1754 	} while (p4dp++, addr = next, addr != end);
1755 
1756 	return 1;
1757 }
1758 
1759 static void gup_pgd_range(unsigned long addr, unsigned long end,
1760 		int write, struct page **pages, int *nr)
1761 {
1762 	unsigned long next;
1763 	pgd_t *pgdp;
1764 
1765 	pgdp = pgd_offset(current->mm, addr);
1766 	do {
1767 		pgd_t pgd = READ_ONCE(*pgdp);
1768 
1769 		next = pgd_addr_end(addr, end);
1770 		if (pgd_none(pgd))
1771 			return;
1772 		if (unlikely(pgd_huge(pgd))) {
1773 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1774 					  pages, nr))
1775 				return;
1776 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1777 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1778 					 PGDIR_SHIFT, next, write, pages, nr))
1779 				return;
1780 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1781 			return;
1782 	} while (pgdp++, addr = next, addr != end);
1783 }
1784 
1785 #ifndef gup_fast_permitted
1786 /*
1787  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1788  * we need to fall back to the slow version:
1789  */
1790 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1791 {
1792 	unsigned long len, end;
1793 
1794 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1795 	end = start + len;
1796 	return end >= start;
1797 }
1798 #endif
1799 
1800 /*
1801  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1802  * the regular GUP.
1803  * Note a difference with get_user_pages_fast: this always returns the
1804  * number of pages pinned, 0 if no pages were pinned.
1805  */
1806 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1807 			  struct page **pages)
1808 {
1809 	unsigned long len, end;
1810 	unsigned long flags;
1811 	int nr = 0;
1812 
1813 	start &= PAGE_MASK;
1814 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1815 	end = start + len;
1816 
1817 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1818 					(void __user *)start, len)))
1819 		return 0;
1820 
1821 	/*
1822 	 * Disable interrupts.  We use the nested form as we can already have
1823 	 * interrupts disabled by get_futex_key.
1824 	 *
1825 	 * With interrupts disabled, we block page table pages from being
1826 	 * freed from under us. See struct mmu_table_batch comments in
1827 	 * include/asm-generic/tlb.h for more details.
1828 	 *
1829 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1830 	 * block IPIs that come from THPs splitting.
1831 	 */
1832 
1833 	if (gup_fast_permitted(start, nr_pages, write)) {
1834 		local_irq_save(flags);
1835 		gup_pgd_range(start, end, write, pages, &nr);
1836 		local_irq_restore(flags);
1837 	}
1838 
1839 	return nr;
1840 }
1841 
1842 /**
1843  * get_user_pages_fast() - pin user pages in memory
1844  * @start:	starting user address
1845  * @nr_pages:	number of pages from start to pin
1846  * @write:	whether pages will be written to
1847  * @pages:	array that receives pointers to the pages pinned.
1848  *		Should be at least nr_pages long.
1849  *
1850  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1851  * If not successful, it will fall back to taking the lock and
1852  * calling get_user_pages().
1853  *
1854  * Returns number of pages pinned. This may be fewer than the number
1855  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1856  * were pinned, returns -errno.
1857  */
1858 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1859 			struct page **pages)
1860 {
1861 	unsigned long addr, len, end;
1862 	int nr = 0, ret = 0;
1863 
1864 	start &= PAGE_MASK;
1865 	addr = start;
1866 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1867 	end = start + len;
1868 
1869 	if (nr_pages <= 0)
1870 		return 0;
1871 
1872 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1873 					(void __user *)start, len)))
1874 		return -EFAULT;
1875 
1876 	if (gup_fast_permitted(start, nr_pages, write)) {
1877 		local_irq_disable();
1878 		gup_pgd_range(addr, end, write, pages, &nr);
1879 		local_irq_enable();
1880 		ret = nr;
1881 	}
1882 
1883 	if (nr < nr_pages) {
1884 		/* Try to get the remaining pages with get_user_pages */
1885 		start += nr << PAGE_SHIFT;
1886 		pages += nr;
1887 
1888 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1889 				write ? FOLL_WRITE : 0);
1890 
1891 		/* Have to be a bit careful with return values */
1892 		if (nr > 0) {
1893 			if (ret < 0)
1894 				ret = nr;
1895 			else
1896 				ret += nr;
1897 		}
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 #endif /* CONFIG_HAVE_GENERIC_GUP */
1904