xref: /openbmc/linux/mm/gup.c (revision 6ba7dc6616ce69ef667204df29597767c1c9ebcf)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  
14  #include <linux/sched/signal.h>
15  #include <linux/rwsem.h>
16  #include <linux/hugetlb.h>
17  #include <linux/migrate.h>
18  #include <linux/mm_inline.h>
19  #include <linux/sched/mm.h>
20  
21  #include <asm/mmu_context.h>
22  #include <asm/pgtable.h>
23  #include <asm/tlbflush.h>
24  
25  #include "internal.h"
26  
27  struct follow_page_context {
28  	struct dev_pagemap *pgmap;
29  	unsigned int page_mask;
30  };
31  
32  typedef int (*set_dirty_func_t)(struct page *page);
33  
34  static void __put_user_pages_dirty(struct page **pages,
35  				   unsigned long npages,
36  				   set_dirty_func_t sdf)
37  {
38  	unsigned long index;
39  
40  	for (index = 0; index < npages; index++) {
41  		struct page *page = compound_head(pages[index]);
42  
43  		/*
44  		 * Checking PageDirty at this point may race with
45  		 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46  		 *
47  		 * 1) This code sees the page as already dirty, so it skips
48  		 * the call to sdf(). That could happen because
49  		 * clear_page_dirty_for_io() called page_mkclean(),
50  		 * followed by set_page_dirty(). However, now the page is
51  		 * going to get written back, which meets the original
52  		 * intention of setting it dirty, so all is well:
53  		 * clear_page_dirty_for_io() goes on to call
54  		 * TestClearPageDirty(), and write the page back.
55  		 *
56  		 * 2) This code sees the page as clean, so it calls sdf().
57  		 * The page stays dirty, despite being written back, so it
58  		 * gets written back again in the next writeback cycle.
59  		 * This is harmless.
60  		 */
61  		if (!PageDirty(page))
62  			sdf(page);
63  
64  		put_user_page(page);
65  	}
66  }
67  
68  /**
69   * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70   * @pages:  array of pages to be marked dirty and released.
71   * @npages: number of pages in the @pages array.
72   *
73   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74   * variants called on that page.
75   *
76   * For each page in the @pages array, make that page (or its head page, if a
77   * compound page) dirty, if it was previously listed as clean. Then, release
78   * the page using put_user_page().
79   *
80   * Please see the put_user_page() documentation for details.
81   *
82   * set_page_dirty(), which does not lock the page, is used here.
83   * Therefore, it is the caller's responsibility to ensure that this is
84   * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85   *
86   */
87  void put_user_pages_dirty(struct page **pages, unsigned long npages)
88  {
89  	__put_user_pages_dirty(pages, npages, set_page_dirty);
90  }
91  EXPORT_SYMBOL(put_user_pages_dirty);
92  
93  /**
94   * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95   * @pages:  array of pages to be marked dirty and released.
96   * @npages: number of pages in the @pages array.
97   *
98   * For each page in the @pages array, make that page (or its head page, if a
99   * compound page) dirty, if it was previously listed as clean. Then, release
100   * the page using put_user_page().
101   *
102   * Please see the put_user_page() documentation for details.
103   *
104   * This is just like put_user_pages_dirty(), except that it invokes
105   * set_page_dirty_lock(), instead of set_page_dirty().
106   *
107   */
108  void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109  {
110  	__put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111  }
112  EXPORT_SYMBOL(put_user_pages_dirty_lock);
113  
114  /**
115   * put_user_pages() - release an array of gup-pinned pages.
116   * @pages:  array of pages to be marked dirty and released.
117   * @npages: number of pages in the @pages array.
118   *
119   * For each page in the @pages array, release the page using put_user_page().
120   *
121   * Please see the put_user_page() documentation for details.
122   */
123  void put_user_pages(struct page **pages, unsigned long npages)
124  {
125  	unsigned long index;
126  
127  	/*
128  	 * TODO: this can be optimized for huge pages: if a series of pages is
129  	 * physically contiguous and part of the same compound page, then a
130  	 * single operation to the head page should suffice.
131  	 */
132  	for (index = 0; index < npages; index++)
133  		put_user_page(pages[index]);
134  }
135  EXPORT_SYMBOL(put_user_pages);
136  
137  #ifdef CONFIG_MMU
138  static struct page *no_page_table(struct vm_area_struct *vma,
139  		unsigned int flags)
140  {
141  	/*
142  	 * When core dumping an enormous anonymous area that nobody
143  	 * has touched so far, we don't want to allocate unnecessary pages or
144  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
145  	 * then get_dump_page() will return NULL to leave a hole in the dump.
146  	 * But we can only make this optimization where a hole would surely
147  	 * be zero-filled if handle_mm_fault() actually did handle it.
148  	 */
149  	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150  		return ERR_PTR(-EFAULT);
151  	return NULL;
152  }
153  
154  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155  		pte_t *pte, unsigned int flags)
156  {
157  	/* No page to get reference */
158  	if (flags & FOLL_GET)
159  		return -EFAULT;
160  
161  	if (flags & FOLL_TOUCH) {
162  		pte_t entry = *pte;
163  
164  		if (flags & FOLL_WRITE)
165  			entry = pte_mkdirty(entry);
166  		entry = pte_mkyoung(entry);
167  
168  		if (!pte_same(*pte, entry)) {
169  			set_pte_at(vma->vm_mm, address, pte, entry);
170  			update_mmu_cache(vma, address, pte);
171  		}
172  	}
173  
174  	/* Proper page table entry exists, but no corresponding struct page */
175  	return -EEXIST;
176  }
177  
178  /*
179   * FOLL_FORCE can write to even unwritable pte's, but only
180   * after we've gone through a COW cycle and they are dirty.
181   */
182  static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183  {
184  	return pte_write(pte) ||
185  		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186  }
187  
188  static struct page *follow_page_pte(struct vm_area_struct *vma,
189  		unsigned long address, pmd_t *pmd, unsigned int flags,
190  		struct dev_pagemap **pgmap)
191  {
192  	struct mm_struct *mm = vma->vm_mm;
193  	struct page *page;
194  	spinlock_t *ptl;
195  	pte_t *ptep, pte;
196  
197  retry:
198  	if (unlikely(pmd_bad(*pmd)))
199  		return no_page_table(vma, flags);
200  
201  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
202  	pte = *ptep;
203  	if (!pte_present(pte)) {
204  		swp_entry_t entry;
205  		/*
206  		 * KSM's break_ksm() relies upon recognizing a ksm page
207  		 * even while it is being migrated, so for that case we
208  		 * need migration_entry_wait().
209  		 */
210  		if (likely(!(flags & FOLL_MIGRATION)))
211  			goto no_page;
212  		if (pte_none(pte))
213  			goto no_page;
214  		entry = pte_to_swp_entry(pte);
215  		if (!is_migration_entry(entry))
216  			goto no_page;
217  		pte_unmap_unlock(ptep, ptl);
218  		migration_entry_wait(mm, pmd, address);
219  		goto retry;
220  	}
221  	if ((flags & FOLL_NUMA) && pte_protnone(pte))
222  		goto no_page;
223  	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224  		pte_unmap_unlock(ptep, ptl);
225  		return NULL;
226  	}
227  
228  	page = vm_normal_page(vma, address, pte);
229  	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230  		/*
231  		 * Only return device mapping pages in the FOLL_GET case since
232  		 * they are only valid while holding the pgmap reference.
233  		 */
234  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235  		if (*pgmap)
236  			page = pte_page(pte);
237  		else
238  			goto no_page;
239  	} else if (unlikely(!page)) {
240  		if (flags & FOLL_DUMP) {
241  			/* Avoid special (like zero) pages in core dumps */
242  			page = ERR_PTR(-EFAULT);
243  			goto out;
244  		}
245  
246  		if (is_zero_pfn(pte_pfn(pte))) {
247  			page = pte_page(pte);
248  		} else {
249  			int ret;
250  
251  			ret = follow_pfn_pte(vma, address, ptep, flags);
252  			page = ERR_PTR(ret);
253  			goto out;
254  		}
255  	}
256  
257  	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258  		int ret;
259  		get_page(page);
260  		pte_unmap_unlock(ptep, ptl);
261  		lock_page(page);
262  		ret = split_huge_page(page);
263  		unlock_page(page);
264  		put_page(page);
265  		if (ret)
266  			return ERR_PTR(ret);
267  		goto retry;
268  	}
269  
270  	if (flags & FOLL_GET) {
271  		if (unlikely(!try_get_page(page))) {
272  			page = ERR_PTR(-ENOMEM);
273  			goto out;
274  		}
275  	}
276  	if (flags & FOLL_TOUCH) {
277  		if ((flags & FOLL_WRITE) &&
278  		    !pte_dirty(pte) && !PageDirty(page))
279  			set_page_dirty(page);
280  		/*
281  		 * pte_mkyoung() would be more correct here, but atomic care
282  		 * is needed to avoid losing the dirty bit: it is easier to use
283  		 * mark_page_accessed().
284  		 */
285  		mark_page_accessed(page);
286  	}
287  	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288  		/* Do not mlock pte-mapped THP */
289  		if (PageTransCompound(page))
290  			goto out;
291  
292  		/*
293  		 * The preliminary mapping check is mainly to avoid the
294  		 * pointless overhead of lock_page on the ZERO_PAGE
295  		 * which might bounce very badly if there is contention.
296  		 *
297  		 * If the page is already locked, we don't need to
298  		 * handle it now - vmscan will handle it later if and
299  		 * when it attempts to reclaim the page.
300  		 */
301  		if (page->mapping && trylock_page(page)) {
302  			lru_add_drain();  /* push cached pages to LRU */
303  			/*
304  			 * Because we lock page here, and migration is
305  			 * blocked by the pte's page reference, and we
306  			 * know the page is still mapped, we don't even
307  			 * need to check for file-cache page truncation.
308  			 */
309  			mlock_vma_page(page);
310  			unlock_page(page);
311  		}
312  	}
313  out:
314  	pte_unmap_unlock(ptep, ptl);
315  	return page;
316  no_page:
317  	pte_unmap_unlock(ptep, ptl);
318  	if (!pte_none(pte))
319  		return NULL;
320  	return no_page_table(vma, flags);
321  }
322  
323  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324  				    unsigned long address, pud_t *pudp,
325  				    unsigned int flags,
326  				    struct follow_page_context *ctx)
327  {
328  	pmd_t *pmd, pmdval;
329  	spinlock_t *ptl;
330  	struct page *page;
331  	struct mm_struct *mm = vma->vm_mm;
332  
333  	pmd = pmd_offset(pudp, address);
334  	/*
335  	 * The READ_ONCE() will stabilize the pmdval in a register or
336  	 * on the stack so that it will stop changing under the code.
337  	 */
338  	pmdval = READ_ONCE(*pmd);
339  	if (pmd_none(pmdval))
340  		return no_page_table(vma, flags);
341  	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342  		page = follow_huge_pmd(mm, address, pmd, flags);
343  		if (page)
344  			return page;
345  		return no_page_table(vma, flags);
346  	}
347  	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348  		page = follow_huge_pd(vma, address,
349  				      __hugepd(pmd_val(pmdval)), flags,
350  				      PMD_SHIFT);
351  		if (page)
352  			return page;
353  		return no_page_table(vma, flags);
354  	}
355  retry:
356  	if (!pmd_present(pmdval)) {
357  		if (likely(!(flags & FOLL_MIGRATION)))
358  			return no_page_table(vma, flags);
359  		VM_BUG_ON(thp_migration_supported() &&
360  				  !is_pmd_migration_entry(pmdval));
361  		if (is_pmd_migration_entry(pmdval))
362  			pmd_migration_entry_wait(mm, pmd);
363  		pmdval = READ_ONCE(*pmd);
364  		/*
365  		 * MADV_DONTNEED may convert the pmd to null because
366  		 * mmap_sem is held in read mode
367  		 */
368  		if (pmd_none(pmdval))
369  			return no_page_table(vma, flags);
370  		goto retry;
371  	}
372  	if (pmd_devmap(pmdval)) {
373  		ptl = pmd_lock(mm, pmd);
374  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375  		spin_unlock(ptl);
376  		if (page)
377  			return page;
378  	}
379  	if (likely(!pmd_trans_huge(pmdval)))
380  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381  
382  	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383  		return no_page_table(vma, flags);
384  
385  retry_locked:
386  	ptl = pmd_lock(mm, pmd);
387  	if (unlikely(pmd_none(*pmd))) {
388  		spin_unlock(ptl);
389  		return no_page_table(vma, flags);
390  	}
391  	if (unlikely(!pmd_present(*pmd))) {
392  		spin_unlock(ptl);
393  		if (likely(!(flags & FOLL_MIGRATION)))
394  			return no_page_table(vma, flags);
395  		pmd_migration_entry_wait(mm, pmd);
396  		goto retry_locked;
397  	}
398  	if (unlikely(!pmd_trans_huge(*pmd))) {
399  		spin_unlock(ptl);
400  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401  	}
402  	if (flags & FOLL_SPLIT) {
403  		int ret;
404  		page = pmd_page(*pmd);
405  		if (is_huge_zero_page(page)) {
406  			spin_unlock(ptl);
407  			ret = 0;
408  			split_huge_pmd(vma, pmd, address);
409  			if (pmd_trans_unstable(pmd))
410  				ret = -EBUSY;
411  		} else {
412  			if (unlikely(!try_get_page(page))) {
413  				spin_unlock(ptl);
414  				return ERR_PTR(-ENOMEM);
415  			}
416  			spin_unlock(ptl);
417  			lock_page(page);
418  			ret = split_huge_page(page);
419  			unlock_page(page);
420  			put_page(page);
421  			if (pmd_none(*pmd))
422  				return no_page_table(vma, flags);
423  		}
424  
425  		return ret ? ERR_PTR(ret) :
426  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427  	}
428  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
429  	spin_unlock(ptl);
430  	ctx->page_mask = HPAGE_PMD_NR - 1;
431  	return page;
432  }
433  
434  static struct page *follow_pud_mask(struct vm_area_struct *vma,
435  				    unsigned long address, p4d_t *p4dp,
436  				    unsigned int flags,
437  				    struct follow_page_context *ctx)
438  {
439  	pud_t *pud;
440  	spinlock_t *ptl;
441  	struct page *page;
442  	struct mm_struct *mm = vma->vm_mm;
443  
444  	pud = pud_offset(p4dp, address);
445  	if (pud_none(*pud))
446  		return no_page_table(vma, flags);
447  	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448  		page = follow_huge_pud(mm, address, pud, flags);
449  		if (page)
450  			return page;
451  		return no_page_table(vma, flags);
452  	}
453  	if (is_hugepd(__hugepd(pud_val(*pud)))) {
454  		page = follow_huge_pd(vma, address,
455  				      __hugepd(pud_val(*pud)), flags,
456  				      PUD_SHIFT);
457  		if (page)
458  			return page;
459  		return no_page_table(vma, flags);
460  	}
461  	if (pud_devmap(*pud)) {
462  		ptl = pud_lock(mm, pud);
463  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464  		spin_unlock(ptl);
465  		if (page)
466  			return page;
467  	}
468  	if (unlikely(pud_bad(*pud)))
469  		return no_page_table(vma, flags);
470  
471  	return follow_pmd_mask(vma, address, pud, flags, ctx);
472  }
473  
474  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475  				    unsigned long address, pgd_t *pgdp,
476  				    unsigned int flags,
477  				    struct follow_page_context *ctx)
478  {
479  	p4d_t *p4d;
480  	struct page *page;
481  
482  	p4d = p4d_offset(pgdp, address);
483  	if (p4d_none(*p4d))
484  		return no_page_table(vma, flags);
485  	BUILD_BUG_ON(p4d_huge(*p4d));
486  	if (unlikely(p4d_bad(*p4d)))
487  		return no_page_table(vma, flags);
488  
489  	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490  		page = follow_huge_pd(vma, address,
491  				      __hugepd(p4d_val(*p4d)), flags,
492  				      P4D_SHIFT);
493  		if (page)
494  			return page;
495  		return no_page_table(vma, flags);
496  	}
497  	return follow_pud_mask(vma, address, p4d, flags, ctx);
498  }
499  
500  /**
501   * follow_page_mask - look up a page descriptor from a user-virtual address
502   * @vma: vm_area_struct mapping @address
503   * @address: virtual address to look up
504   * @flags: flags modifying lookup behaviour
505   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506   *       pointer to output page_mask
507   *
508   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509   *
510   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512   *
513   * On output, the @ctx->page_mask is set according to the size of the page.
514   *
515   * Return: the mapped (struct page *), %NULL if no mapping exists, or
516   * an error pointer if there is a mapping to something not represented
517   * by a page descriptor (see also vm_normal_page()).
518   */
519  static struct page *follow_page_mask(struct vm_area_struct *vma,
520  			      unsigned long address, unsigned int flags,
521  			      struct follow_page_context *ctx)
522  {
523  	pgd_t *pgd;
524  	struct page *page;
525  	struct mm_struct *mm = vma->vm_mm;
526  
527  	ctx->page_mask = 0;
528  
529  	/* make this handle hugepd */
530  	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531  	if (!IS_ERR(page)) {
532  		BUG_ON(flags & FOLL_GET);
533  		return page;
534  	}
535  
536  	pgd = pgd_offset(mm, address);
537  
538  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539  		return no_page_table(vma, flags);
540  
541  	if (pgd_huge(*pgd)) {
542  		page = follow_huge_pgd(mm, address, pgd, flags);
543  		if (page)
544  			return page;
545  		return no_page_table(vma, flags);
546  	}
547  	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548  		page = follow_huge_pd(vma, address,
549  				      __hugepd(pgd_val(*pgd)), flags,
550  				      PGDIR_SHIFT);
551  		if (page)
552  			return page;
553  		return no_page_table(vma, flags);
554  	}
555  
556  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
557  }
558  
559  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560  			 unsigned int foll_flags)
561  {
562  	struct follow_page_context ctx = { NULL };
563  	struct page *page;
564  
565  	page = follow_page_mask(vma, address, foll_flags, &ctx);
566  	if (ctx.pgmap)
567  		put_dev_pagemap(ctx.pgmap);
568  	return page;
569  }
570  
571  static int get_gate_page(struct mm_struct *mm, unsigned long address,
572  		unsigned int gup_flags, struct vm_area_struct **vma,
573  		struct page **page)
574  {
575  	pgd_t *pgd;
576  	p4d_t *p4d;
577  	pud_t *pud;
578  	pmd_t *pmd;
579  	pte_t *pte;
580  	int ret = -EFAULT;
581  
582  	/* user gate pages are read-only */
583  	if (gup_flags & FOLL_WRITE)
584  		return -EFAULT;
585  	if (address > TASK_SIZE)
586  		pgd = pgd_offset_k(address);
587  	else
588  		pgd = pgd_offset_gate(mm, address);
589  	if (pgd_none(*pgd))
590  		return -EFAULT;
591  	p4d = p4d_offset(pgd, address);
592  	if (p4d_none(*p4d))
593  		return -EFAULT;
594  	pud = pud_offset(p4d, address);
595  	if (pud_none(*pud))
596  		return -EFAULT;
597  	pmd = pmd_offset(pud, address);
598  	if (!pmd_present(*pmd))
599  		return -EFAULT;
600  	VM_BUG_ON(pmd_trans_huge(*pmd));
601  	pte = pte_offset_map(pmd, address);
602  	if (pte_none(*pte))
603  		goto unmap;
604  	*vma = get_gate_vma(mm);
605  	if (!page)
606  		goto out;
607  	*page = vm_normal_page(*vma, address, *pte);
608  	if (!*page) {
609  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
610  			goto unmap;
611  		*page = pte_page(*pte);
612  	}
613  	if (unlikely(!try_get_page(*page))) {
614  		ret = -ENOMEM;
615  		goto unmap;
616  	}
617  out:
618  	ret = 0;
619  unmap:
620  	pte_unmap(pte);
621  	return ret;
622  }
623  
624  /*
625   * mmap_sem must be held on entry.  If @nonblocking != NULL and
626   * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
627   * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
628   */
629  static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
630  		unsigned long address, unsigned int *flags, int *nonblocking)
631  {
632  	unsigned int fault_flags = 0;
633  	vm_fault_t ret;
634  
635  	/* mlock all present pages, but do not fault in new pages */
636  	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
637  		return -ENOENT;
638  	if (*flags & FOLL_WRITE)
639  		fault_flags |= FAULT_FLAG_WRITE;
640  	if (*flags & FOLL_REMOTE)
641  		fault_flags |= FAULT_FLAG_REMOTE;
642  	if (nonblocking)
643  		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
644  	if (*flags & FOLL_NOWAIT)
645  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
646  	if (*flags & FOLL_TRIED) {
647  		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
648  		fault_flags |= FAULT_FLAG_TRIED;
649  	}
650  
651  	ret = handle_mm_fault(vma, address, fault_flags);
652  	if (ret & VM_FAULT_ERROR) {
653  		int err = vm_fault_to_errno(ret, *flags);
654  
655  		if (err)
656  			return err;
657  		BUG();
658  	}
659  
660  	if (tsk) {
661  		if (ret & VM_FAULT_MAJOR)
662  			tsk->maj_flt++;
663  		else
664  			tsk->min_flt++;
665  	}
666  
667  	if (ret & VM_FAULT_RETRY) {
668  		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
669  			*nonblocking = 0;
670  		return -EBUSY;
671  	}
672  
673  	/*
674  	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
675  	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
676  	 * can thus safely do subsequent page lookups as if they were reads.
677  	 * But only do so when looping for pte_write is futile: in some cases
678  	 * userspace may also be wanting to write to the gotten user page,
679  	 * which a read fault here might prevent (a readonly page might get
680  	 * reCOWed by userspace write).
681  	 */
682  	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
683  		*flags |= FOLL_COW;
684  	return 0;
685  }
686  
687  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
688  {
689  	vm_flags_t vm_flags = vma->vm_flags;
690  	int write = (gup_flags & FOLL_WRITE);
691  	int foreign = (gup_flags & FOLL_REMOTE);
692  
693  	if (vm_flags & (VM_IO | VM_PFNMAP))
694  		return -EFAULT;
695  
696  	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
697  		return -EFAULT;
698  
699  	if (write) {
700  		if (!(vm_flags & VM_WRITE)) {
701  			if (!(gup_flags & FOLL_FORCE))
702  				return -EFAULT;
703  			/*
704  			 * We used to let the write,force case do COW in a
705  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
706  			 * set a breakpoint in a read-only mapping of an
707  			 * executable, without corrupting the file (yet only
708  			 * when that file had been opened for writing!).
709  			 * Anon pages in shared mappings are surprising: now
710  			 * just reject it.
711  			 */
712  			if (!is_cow_mapping(vm_flags))
713  				return -EFAULT;
714  		}
715  	} else if (!(vm_flags & VM_READ)) {
716  		if (!(gup_flags & FOLL_FORCE))
717  			return -EFAULT;
718  		/*
719  		 * Is there actually any vma we can reach here which does not
720  		 * have VM_MAYREAD set?
721  		 */
722  		if (!(vm_flags & VM_MAYREAD))
723  			return -EFAULT;
724  	}
725  	/*
726  	 * gups are always data accesses, not instruction
727  	 * fetches, so execute=false here
728  	 */
729  	if (!arch_vma_access_permitted(vma, write, false, foreign))
730  		return -EFAULT;
731  	return 0;
732  }
733  
734  /**
735   * __get_user_pages() - pin user pages in memory
736   * @tsk:	task_struct of target task
737   * @mm:		mm_struct of target mm
738   * @start:	starting user address
739   * @nr_pages:	number of pages from start to pin
740   * @gup_flags:	flags modifying pin behaviour
741   * @pages:	array that receives pointers to the pages pinned.
742   *		Should be at least nr_pages long. Or NULL, if caller
743   *		only intends to ensure the pages are faulted in.
744   * @vmas:	array of pointers to vmas corresponding to each page.
745   *		Or NULL if the caller does not require them.
746   * @nonblocking: whether waiting for disk IO or mmap_sem contention
747   *
748   * Returns number of pages pinned. This may be fewer than the number
749   * requested. If nr_pages is 0 or negative, returns 0. If no pages
750   * were pinned, returns -errno. Each page returned must be released
751   * with a put_page() call when it is finished with. vmas will only
752   * remain valid while mmap_sem is held.
753   *
754   * Must be called with mmap_sem held.  It may be released.  See below.
755   *
756   * __get_user_pages walks a process's page tables and takes a reference to
757   * each struct page that each user address corresponds to at a given
758   * instant. That is, it takes the page that would be accessed if a user
759   * thread accesses the given user virtual address at that instant.
760   *
761   * This does not guarantee that the page exists in the user mappings when
762   * __get_user_pages returns, and there may even be a completely different
763   * page there in some cases (eg. if mmapped pagecache has been invalidated
764   * and subsequently re faulted). However it does guarantee that the page
765   * won't be freed completely. And mostly callers simply care that the page
766   * contains data that was valid *at some point in time*. Typically, an IO
767   * or similar operation cannot guarantee anything stronger anyway because
768   * locks can't be held over the syscall boundary.
769   *
770   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
771   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
772   * appropriate) must be called after the page is finished with, and
773   * before put_page is called.
774   *
775   * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
776   * or mmap_sem contention, and if waiting is needed to pin all pages,
777   * *@nonblocking will be set to 0.  Further, if @gup_flags does not
778   * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
779   * this case.
780   *
781   * A caller using such a combination of @nonblocking and @gup_flags
782   * must therefore hold the mmap_sem for reading only, and recognize
783   * when it's been released.  Otherwise, it must be held for either
784   * reading or writing and will not be released.
785   *
786   * In most cases, get_user_pages or get_user_pages_fast should be used
787   * instead of __get_user_pages. __get_user_pages should be used only if
788   * you need some special @gup_flags.
789   */
790  static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
791  		unsigned long start, unsigned long nr_pages,
792  		unsigned int gup_flags, struct page **pages,
793  		struct vm_area_struct **vmas, int *nonblocking)
794  {
795  	long ret = 0, i = 0;
796  	struct vm_area_struct *vma = NULL;
797  	struct follow_page_context ctx = { NULL };
798  
799  	if (!nr_pages)
800  		return 0;
801  
802  	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
803  
804  	/*
805  	 * If FOLL_FORCE is set then do not force a full fault as the hinting
806  	 * fault information is unrelated to the reference behaviour of a task
807  	 * using the address space
808  	 */
809  	if (!(gup_flags & FOLL_FORCE))
810  		gup_flags |= FOLL_NUMA;
811  
812  	do {
813  		struct page *page;
814  		unsigned int foll_flags = gup_flags;
815  		unsigned int page_increm;
816  
817  		/* first iteration or cross vma bound */
818  		if (!vma || start >= vma->vm_end) {
819  			vma = find_extend_vma(mm, start);
820  			if (!vma && in_gate_area(mm, start)) {
821  				ret = get_gate_page(mm, start & PAGE_MASK,
822  						gup_flags, &vma,
823  						pages ? &pages[i] : NULL);
824  				if (ret)
825  					goto out;
826  				ctx.page_mask = 0;
827  				goto next_page;
828  			}
829  
830  			if (!vma || check_vma_flags(vma, gup_flags)) {
831  				ret = -EFAULT;
832  				goto out;
833  			}
834  			if (is_vm_hugetlb_page(vma)) {
835  				i = follow_hugetlb_page(mm, vma, pages, vmas,
836  						&start, &nr_pages, i,
837  						gup_flags, nonblocking);
838  				continue;
839  			}
840  		}
841  retry:
842  		/*
843  		 * If we have a pending SIGKILL, don't keep faulting pages and
844  		 * potentially allocating memory.
845  		 */
846  		if (fatal_signal_pending(current)) {
847  			ret = -ERESTARTSYS;
848  			goto out;
849  		}
850  		cond_resched();
851  
852  		page = follow_page_mask(vma, start, foll_flags, &ctx);
853  		if (!page) {
854  			ret = faultin_page(tsk, vma, start, &foll_flags,
855  					nonblocking);
856  			switch (ret) {
857  			case 0:
858  				goto retry;
859  			case -EBUSY:
860  				ret = 0;
861  				/* FALLTHRU */
862  			case -EFAULT:
863  			case -ENOMEM:
864  			case -EHWPOISON:
865  				goto out;
866  			case -ENOENT:
867  				goto next_page;
868  			}
869  			BUG();
870  		} else if (PTR_ERR(page) == -EEXIST) {
871  			/*
872  			 * Proper page table entry exists, but no corresponding
873  			 * struct page.
874  			 */
875  			goto next_page;
876  		} else if (IS_ERR(page)) {
877  			ret = PTR_ERR(page);
878  			goto out;
879  		}
880  		if (pages) {
881  			pages[i] = page;
882  			flush_anon_page(vma, page, start);
883  			flush_dcache_page(page);
884  			ctx.page_mask = 0;
885  		}
886  next_page:
887  		if (vmas) {
888  			vmas[i] = vma;
889  			ctx.page_mask = 0;
890  		}
891  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
892  		if (page_increm > nr_pages)
893  			page_increm = nr_pages;
894  		i += page_increm;
895  		start += page_increm * PAGE_SIZE;
896  		nr_pages -= page_increm;
897  	} while (nr_pages);
898  out:
899  	if (ctx.pgmap)
900  		put_dev_pagemap(ctx.pgmap);
901  	return i ? i : ret;
902  }
903  
904  static bool vma_permits_fault(struct vm_area_struct *vma,
905  			      unsigned int fault_flags)
906  {
907  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
908  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
909  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
910  
911  	if (!(vm_flags & vma->vm_flags))
912  		return false;
913  
914  	/*
915  	 * The architecture might have a hardware protection
916  	 * mechanism other than read/write that can deny access.
917  	 *
918  	 * gup always represents data access, not instruction
919  	 * fetches, so execute=false here:
920  	 */
921  	if (!arch_vma_access_permitted(vma, write, false, foreign))
922  		return false;
923  
924  	return true;
925  }
926  
927  /*
928   * fixup_user_fault() - manually resolve a user page fault
929   * @tsk:	the task_struct to use for page fault accounting, or
930   *		NULL if faults are not to be recorded.
931   * @mm:		mm_struct of target mm
932   * @address:	user address
933   * @fault_flags:flags to pass down to handle_mm_fault()
934   * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
935   *		does not allow retry
936   *
937   * This is meant to be called in the specific scenario where for locking reasons
938   * we try to access user memory in atomic context (within a pagefault_disable()
939   * section), this returns -EFAULT, and we want to resolve the user fault before
940   * trying again.
941   *
942   * Typically this is meant to be used by the futex code.
943   *
944   * The main difference with get_user_pages() is that this function will
945   * unconditionally call handle_mm_fault() which will in turn perform all the
946   * necessary SW fixup of the dirty and young bits in the PTE, while
947   * get_user_pages() only guarantees to update these in the struct page.
948   *
949   * This is important for some architectures where those bits also gate the
950   * access permission to the page because they are maintained in software.  On
951   * such architectures, gup() will not be enough to make a subsequent access
952   * succeed.
953   *
954   * This function will not return with an unlocked mmap_sem. So it has not the
955   * same semantics wrt the @mm->mmap_sem as does filemap_fault().
956   */
957  int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
958  		     unsigned long address, unsigned int fault_flags,
959  		     bool *unlocked)
960  {
961  	struct vm_area_struct *vma;
962  	vm_fault_t ret, major = 0;
963  
964  	if (unlocked)
965  		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
966  
967  retry:
968  	vma = find_extend_vma(mm, address);
969  	if (!vma || address < vma->vm_start)
970  		return -EFAULT;
971  
972  	if (!vma_permits_fault(vma, fault_flags))
973  		return -EFAULT;
974  
975  	ret = handle_mm_fault(vma, address, fault_flags);
976  	major |= ret & VM_FAULT_MAJOR;
977  	if (ret & VM_FAULT_ERROR) {
978  		int err = vm_fault_to_errno(ret, 0);
979  
980  		if (err)
981  			return err;
982  		BUG();
983  	}
984  
985  	if (ret & VM_FAULT_RETRY) {
986  		down_read(&mm->mmap_sem);
987  		if (!(fault_flags & FAULT_FLAG_TRIED)) {
988  			*unlocked = true;
989  			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
990  			fault_flags |= FAULT_FLAG_TRIED;
991  			goto retry;
992  		}
993  	}
994  
995  	if (tsk) {
996  		if (major)
997  			tsk->maj_flt++;
998  		else
999  			tsk->min_flt++;
1000  	}
1001  	return 0;
1002  }
1003  EXPORT_SYMBOL_GPL(fixup_user_fault);
1004  
1005  static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1006  						struct mm_struct *mm,
1007  						unsigned long start,
1008  						unsigned long nr_pages,
1009  						struct page **pages,
1010  						struct vm_area_struct **vmas,
1011  						int *locked,
1012  						unsigned int flags)
1013  {
1014  	long ret, pages_done;
1015  	bool lock_dropped;
1016  
1017  	if (locked) {
1018  		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1019  		BUG_ON(vmas);
1020  		/* check caller initialized locked */
1021  		BUG_ON(*locked != 1);
1022  	}
1023  
1024  	if (pages)
1025  		flags |= FOLL_GET;
1026  
1027  	pages_done = 0;
1028  	lock_dropped = false;
1029  	for (;;) {
1030  		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1031  				       vmas, locked);
1032  		if (!locked)
1033  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1034  			return ret;
1035  
1036  		/* VM_FAULT_RETRY cannot return errors */
1037  		if (!*locked) {
1038  			BUG_ON(ret < 0);
1039  			BUG_ON(ret >= nr_pages);
1040  		}
1041  
1042  		if (ret > 0) {
1043  			nr_pages -= ret;
1044  			pages_done += ret;
1045  			if (!nr_pages)
1046  				break;
1047  		}
1048  		if (*locked) {
1049  			/*
1050  			 * VM_FAULT_RETRY didn't trigger or it was a
1051  			 * FOLL_NOWAIT.
1052  			 */
1053  			if (!pages_done)
1054  				pages_done = ret;
1055  			break;
1056  		}
1057  		/*
1058  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1059  		 * For the prefault case (!pages) we only update counts.
1060  		 */
1061  		if (likely(pages))
1062  			pages += ret;
1063  		start += ret << PAGE_SHIFT;
1064  
1065  		/*
1066  		 * Repeat on the address that fired VM_FAULT_RETRY
1067  		 * without FAULT_FLAG_ALLOW_RETRY but with
1068  		 * FAULT_FLAG_TRIED.
1069  		 */
1070  		*locked = 1;
1071  		lock_dropped = true;
1072  		down_read(&mm->mmap_sem);
1073  		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1074  				       pages, NULL, NULL);
1075  		if (ret != 1) {
1076  			BUG_ON(ret > 1);
1077  			if (!pages_done)
1078  				pages_done = ret;
1079  			break;
1080  		}
1081  		nr_pages--;
1082  		pages_done++;
1083  		if (!nr_pages)
1084  			break;
1085  		if (likely(pages))
1086  			pages++;
1087  		start += PAGE_SIZE;
1088  	}
1089  	if (lock_dropped && *locked) {
1090  		/*
1091  		 * We must let the caller know we temporarily dropped the lock
1092  		 * and so the critical section protected by it was lost.
1093  		 */
1094  		up_read(&mm->mmap_sem);
1095  		*locked = 0;
1096  	}
1097  	return pages_done;
1098  }
1099  
1100  /*
1101   * get_user_pages_remote() - pin user pages in memory
1102   * @tsk:	the task_struct to use for page fault accounting, or
1103   *		NULL if faults are not to be recorded.
1104   * @mm:		mm_struct of target mm
1105   * @start:	starting user address
1106   * @nr_pages:	number of pages from start to pin
1107   * @gup_flags:	flags modifying lookup behaviour
1108   * @pages:	array that receives pointers to the pages pinned.
1109   *		Should be at least nr_pages long. Or NULL, if caller
1110   *		only intends to ensure the pages are faulted in.
1111   * @vmas:	array of pointers to vmas corresponding to each page.
1112   *		Or NULL if the caller does not require them.
1113   * @locked:	pointer to lock flag indicating whether lock is held and
1114   *		subsequently whether VM_FAULT_RETRY functionality can be
1115   *		utilised. Lock must initially be held.
1116   *
1117   * Returns number of pages pinned. This may be fewer than the number
1118   * requested. If nr_pages is 0 or negative, returns 0. If no pages
1119   * were pinned, returns -errno. Each page returned must be released
1120   * with a put_page() call when it is finished with. vmas will only
1121   * remain valid while mmap_sem is held.
1122   *
1123   * Must be called with mmap_sem held for read or write.
1124   *
1125   * get_user_pages walks a process's page tables and takes a reference to
1126   * each struct page that each user address corresponds to at a given
1127   * instant. That is, it takes the page that would be accessed if a user
1128   * thread accesses the given user virtual address at that instant.
1129   *
1130   * This does not guarantee that the page exists in the user mappings when
1131   * get_user_pages returns, and there may even be a completely different
1132   * page there in some cases (eg. if mmapped pagecache has been invalidated
1133   * and subsequently re faulted). However it does guarantee that the page
1134   * won't be freed completely. And mostly callers simply care that the page
1135   * contains data that was valid *at some point in time*. Typically, an IO
1136   * or similar operation cannot guarantee anything stronger anyway because
1137   * locks can't be held over the syscall boundary.
1138   *
1139   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1140   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1141   * be called after the page is finished with, and before put_page is called.
1142   *
1143   * get_user_pages is typically used for fewer-copy IO operations, to get a
1144   * handle on the memory by some means other than accesses via the user virtual
1145   * addresses. The pages may be submitted for DMA to devices or accessed via
1146   * their kernel linear mapping (via the kmap APIs). Care should be taken to
1147   * use the correct cache flushing APIs.
1148   *
1149   * See also get_user_pages_fast, for performance critical applications.
1150   *
1151   * get_user_pages should be phased out in favor of
1152   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1153   * should use get_user_pages because it cannot pass
1154   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1155   */
1156  long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1157  		unsigned long start, unsigned long nr_pages,
1158  		unsigned int gup_flags, struct page **pages,
1159  		struct vm_area_struct **vmas, int *locked)
1160  {
1161  	/*
1162  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1163  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1164  	 * vmas.  As there are no users of this flag in this call we simply
1165  	 * disallow this option for now.
1166  	 */
1167  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1168  		return -EINVAL;
1169  
1170  	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1171  				       locked,
1172  				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1173  }
1174  EXPORT_SYMBOL(get_user_pages_remote);
1175  
1176  /**
1177   * populate_vma_page_range() -  populate a range of pages in the vma.
1178   * @vma:   target vma
1179   * @start: start address
1180   * @end:   end address
1181   * @nonblocking:
1182   *
1183   * This takes care of mlocking the pages too if VM_LOCKED is set.
1184   *
1185   * return 0 on success, negative error code on error.
1186   *
1187   * vma->vm_mm->mmap_sem must be held.
1188   *
1189   * If @nonblocking is NULL, it may be held for read or write and will
1190   * be unperturbed.
1191   *
1192   * If @nonblocking is non-NULL, it must held for read only and may be
1193   * released.  If it's released, *@nonblocking will be set to 0.
1194   */
1195  long populate_vma_page_range(struct vm_area_struct *vma,
1196  		unsigned long start, unsigned long end, int *nonblocking)
1197  {
1198  	struct mm_struct *mm = vma->vm_mm;
1199  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1200  	int gup_flags;
1201  
1202  	VM_BUG_ON(start & ~PAGE_MASK);
1203  	VM_BUG_ON(end   & ~PAGE_MASK);
1204  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1205  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1206  	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1207  
1208  	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1209  	if (vma->vm_flags & VM_LOCKONFAULT)
1210  		gup_flags &= ~FOLL_POPULATE;
1211  	/*
1212  	 * We want to touch writable mappings with a write fault in order
1213  	 * to break COW, except for shared mappings because these don't COW
1214  	 * and we would not want to dirty them for nothing.
1215  	 */
1216  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1217  		gup_flags |= FOLL_WRITE;
1218  
1219  	/*
1220  	 * We want mlock to succeed for regions that have any permissions
1221  	 * other than PROT_NONE.
1222  	 */
1223  	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1224  		gup_flags |= FOLL_FORCE;
1225  
1226  	/*
1227  	 * We made sure addr is within a VMA, so the following will
1228  	 * not result in a stack expansion that recurses back here.
1229  	 */
1230  	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1231  				NULL, NULL, nonblocking);
1232  }
1233  
1234  /*
1235   * __mm_populate - populate and/or mlock pages within a range of address space.
1236   *
1237   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1238   * flags. VMAs must be already marked with the desired vm_flags, and
1239   * mmap_sem must not be held.
1240   */
1241  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1242  {
1243  	struct mm_struct *mm = current->mm;
1244  	unsigned long end, nstart, nend;
1245  	struct vm_area_struct *vma = NULL;
1246  	int locked = 0;
1247  	long ret = 0;
1248  
1249  	end = start + len;
1250  
1251  	for (nstart = start; nstart < end; nstart = nend) {
1252  		/*
1253  		 * We want to fault in pages for [nstart; end) address range.
1254  		 * Find first corresponding VMA.
1255  		 */
1256  		if (!locked) {
1257  			locked = 1;
1258  			down_read(&mm->mmap_sem);
1259  			vma = find_vma(mm, nstart);
1260  		} else if (nstart >= vma->vm_end)
1261  			vma = vma->vm_next;
1262  		if (!vma || vma->vm_start >= end)
1263  			break;
1264  		/*
1265  		 * Set [nstart; nend) to intersection of desired address
1266  		 * range with the first VMA. Also, skip undesirable VMA types.
1267  		 */
1268  		nend = min(end, vma->vm_end);
1269  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1270  			continue;
1271  		if (nstart < vma->vm_start)
1272  			nstart = vma->vm_start;
1273  		/*
1274  		 * Now fault in a range of pages. populate_vma_page_range()
1275  		 * double checks the vma flags, so that it won't mlock pages
1276  		 * if the vma was already munlocked.
1277  		 */
1278  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1279  		if (ret < 0) {
1280  			if (ignore_errors) {
1281  				ret = 0;
1282  				continue;	/* continue at next VMA */
1283  			}
1284  			break;
1285  		}
1286  		nend = nstart + ret * PAGE_SIZE;
1287  		ret = 0;
1288  	}
1289  	if (locked)
1290  		up_read(&mm->mmap_sem);
1291  	return ret;	/* 0 or negative error code */
1292  }
1293  
1294  /**
1295   * get_dump_page() - pin user page in memory while writing it to core dump
1296   * @addr: user address
1297   *
1298   * Returns struct page pointer of user page pinned for dump,
1299   * to be freed afterwards by put_page().
1300   *
1301   * Returns NULL on any kind of failure - a hole must then be inserted into
1302   * the corefile, to preserve alignment with its headers; and also returns
1303   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1304   * allowing a hole to be left in the corefile to save diskspace.
1305   *
1306   * Called without mmap_sem, but after all other threads have been killed.
1307   */
1308  #ifdef CONFIG_ELF_CORE
1309  struct page *get_dump_page(unsigned long addr)
1310  {
1311  	struct vm_area_struct *vma;
1312  	struct page *page;
1313  
1314  	if (__get_user_pages(current, current->mm, addr, 1,
1315  			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1316  			     NULL) < 1)
1317  		return NULL;
1318  	flush_cache_page(vma, addr, page_to_pfn(page));
1319  	return page;
1320  }
1321  #endif /* CONFIG_ELF_CORE */
1322  #else /* CONFIG_MMU */
1323  static long __get_user_pages_locked(struct task_struct *tsk,
1324  		struct mm_struct *mm, unsigned long start,
1325  		unsigned long nr_pages, struct page **pages,
1326  		struct vm_area_struct **vmas, int *locked,
1327  		unsigned int foll_flags)
1328  {
1329  	struct vm_area_struct *vma;
1330  	unsigned long vm_flags;
1331  	int i;
1332  
1333  	/* calculate required read or write permissions.
1334  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1335  	 */
1336  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1337  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1338  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1339  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1340  
1341  	for (i = 0; i < nr_pages; i++) {
1342  		vma = find_vma(mm, start);
1343  		if (!vma)
1344  			goto finish_or_fault;
1345  
1346  		/* protect what we can, including chardevs */
1347  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1348  		    !(vm_flags & vma->vm_flags))
1349  			goto finish_or_fault;
1350  
1351  		if (pages) {
1352  			pages[i] = virt_to_page(start);
1353  			if (pages[i])
1354  				get_page(pages[i]);
1355  		}
1356  		if (vmas)
1357  			vmas[i] = vma;
1358  		start = (start + PAGE_SIZE) & PAGE_MASK;
1359  	}
1360  
1361  	return i;
1362  
1363  finish_or_fault:
1364  	return i ? : -EFAULT;
1365  }
1366  #endif /* !CONFIG_MMU */
1367  
1368  #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1369  static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1370  {
1371  	long i;
1372  	struct vm_area_struct *vma_prev = NULL;
1373  
1374  	for (i = 0; i < nr_pages; i++) {
1375  		struct vm_area_struct *vma = vmas[i];
1376  
1377  		if (vma == vma_prev)
1378  			continue;
1379  
1380  		vma_prev = vma;
1381  
1382  		if (vma_is_fsdax(vma))
1383  			return true;
1384  	}
1385  	return false;
1386  }
1387  
1388  #ifdef CONFIG_CMA
1389  static struct page *new_non_cma_page(struct page *page, unsigned long private)
1390  {
1391  	/*
1392  	 * We want to make sure we allocate the new page from the same node
1393  	 * as the source page.
1394  	 */
1395  	int nid = page_to_nid(page);
1396  	/*
1397  	 * Trying to allocate a page for migration. Ignore allocation
1398  	 * failure warnings. We don't force __GFP_THISNODE here because
1399  	 * this node here is the node where we have CMA reservation and
1400  	 * in some case these nodes will have really less non movable
1401  	 * allocation memory.
1402  	 */
1403  	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1404  
1405  	if (PageHighMem(page))
1406  		gfp_mask |= __GFP_HIGHMEM;
1407  
1408  #ifdef CONFIG_HUGETLB_PAGE
1409  	if (PageHuge(page)) {
1410  		struct hstate *h = page_hstate(page);
1411  		/*
1412  		 * We don't want to dequeue from the pool because pool pages will
1413  		 * mostly be from the CMA region.
1414  		 */
1415  		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1416  	}
1417  #endif
1418  	if (PageTransHuge(page)) {
1419  		struct page *thp;
1420  		/*
1421  		 * ignore allocation failure warnings
1422  		 */
1423  		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1424  
1425  		/*
1426  		 * Remove the movable mask so that we don't allocate from
1427  		 * CMA area again.
1428  		 */
1429  		thp_gfpmask &= ~__GFP_MOVABLE;
1430  		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1431  		if (!thp)
1432  			return NULL;
1433  		prep_transhuge_page(thp);
1434  		return thp;
1435  	}
1436  
1437  	return __alloc_pages_node(nid, gfp_mask, 0);
1438  }
1439  
1440  static long check_and_migrate_cma_pages(struct task_struct *tsk,
1441  					struct mm_struct *mm,
1442  					unsigned long start,
1443  					unsigned long nr_pages,
1444  					struct page **pages,
1445  					struct vm_area_struct **vmas,
1446  					unsigned int gup_flags)
1447  {
1448  	unsigned long i;
1449  	unsigned long step;
1450  	bool drain_allow = true;
1451  	bool migrate_allow = true;
1452  	LIST_HEAD(cma_page_list);
1453  
1454  check_again:
1455  	for (i = 0; i < nr_pages;) {
1456  
1457  		struct page *head = compound_head(pages[i]);
1458  
1459  		/*
1460  		 * gup may start from a tail page. Advance step by the left
1461  		 * part.
1462  		 */
1463  		step = (1 << compound_order(head)) - (pages[i] - head);
1464  		/*
1465  		 * If we get a page from the CMA zone, since we are going to
1466  		 * be pinning these entries, we might as well move them out
1467  		 * of the CMA zone if possible.
1468  		 */
1469  		if (is_migrate_cma_page(head)) {
1470  			if (PageHuge(head))
1471  				isolate_huge_page(head, &cma_page_list);
1472  			else {
1473  				if (!PageLRU(head) && drain_allow) {
1474  					lru_add_drain_all();
1475  					drain_allow = false;
1476  				}
1477  
1478  				if (!isolate_lru_page(head)) {
1479  					list_add_tail(&head->lru, &cma_page_list);
1480  					mod_node_page_state(page_pgdat(head),
1481  							    NR_ISOLATED_ANON +
1482  							    page_is_file_cache(head),
1483  							    hpage_nr_pages(head));
1484  				}
1485  			}
1486  		}
1487  
1488  		i += step;
1489  	}
1490  
1491  	if (!list_empty(&cma_page_list)) {
1492  		/*
1493  		 * drop the above get_user_pages reference.
1494  		 */
1495  		for (i = 0; i < nr_pages; i++)
1496  			put_page(pages[i]);
1497  
1498  		if (migrate_pages(&cma_page_list, new_non_cma_page,
1499  				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1500  			/*
1501  			 * some of the pages failed migration. Do get_user_pages
1502  			 * without migration.
1503  			 */
1504  			migrate_allow = false;
1505  
1506  			if (!list_empty(&cma_page_list))
1507  				putback_movable_pages(&cma_page_list);
1508  		}
1509  		/*
1510  		 * We did migrate all the pages, Try to get the page references
1511  		 * again migrating any new CMA pages which we failed to isolate
1512  		 * earlier.
1513  		 */
1514  		nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1515  						   pages, vmas, NULL,
1516  						   gup_flags);
1517  
1518  		if ((nr_pages > 0) && migrate_allow) {
1519  			drain_allow = true;
1520  			goto check_again;
1521  		}
1522  	}
1523  
1524  	return nr_pages;
1525  }
1526  #else
1527  static long check_and_migrate_cma_pages(struct task_struct *tsk,
1528  					struct mm_struct *mm,
1529  					unsigned long start,
1530  					unsigned long nr_pages,
1531  					struct page **pages,
1532  					struct vm_area_struct **vmas,
1533  					unsigned int gup_flags)
1534  {
1535  	return nr_pages;
1536  }
1537  #endif /* CONFIG_CMA */
1538  
1539  /*
1540   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1541   * allows us to process the FOLL_LONGTERM flag.
1542   */
1543  static long __gup_longterm_locked(struct task_struct *tsk,
1544  				  struct mm_struct *mm,
1545  				  unsigned long start,
1546  				  unsigned long nr_pages,
1547  				  struct page **pages,
1548  				  struct vm_area_struct **vmas,
1549  				  unsigned int gup_flags)
1550  {
1551  	struct vm_area_struct **vmas_tmp = vmas;
1552  	unsigned long flags = 0;
1553  	long rc, i;
1554  
1555  	if (gup_flags & FOLL_LONGTERM) {
1556  		if (!pages)
1557  			return -EINVAL;
1558  
1559  		if (!vmas_tmp) {
1560  			vmas_tmp = kcalloc(nr_pages,
1561  					   sizeof(struct vm_area_struct *),
1562  					   GFP_KERNEL);
1563  			if (!vmas_tmp)
1564  				return -ENOMEM;
1565  		}
1566  		flags = memalloc_nocma_save();
1567  	}
1568  
1569  	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1570  				     vmas_tmp, NULL, gup_flags);
1571  
1572  	if (gup_flags & FOLL_LONGTERM) {
1573  		memalloc_nocma_restore(flags);
1574  		if (rc < 0)
1575  			goto out;
1576  
1577  		if (check_dax_vmas(vmas_tmp, rc)) {
1578  			for (i = 0; i < rc; i++)
1579  				put_page(pages[i]);
1580  			rc = -EOPNOTSUPP;
1581  			goto out;
1582  		}
1583  
1584  		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1585  						 vmas_tmp, gup_flags);
1586  	}
1587  
1588  out:
1589  	if (vmas_tmp != vmas)
1590  		kfree(vmas_tmp);
1591  	return rc;
1592  }
1593  #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1594  static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1595  						  struct mm_struct *mm,
1596  						  unsigned long start,
1597  						  unsigned long nr_pages,
1598  						  struct page **pages,
1599  						  struct vm_area_struct **vmas,
1600  						  unsigned int flags)
1601  {
1602  	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1603  				       NULL, flags);
1604  }
1605  #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1606  
1607  /*
1608   * This is the same as get_user_pages_remote(), just with a
1609   * less-flexible calling convention where we assume that the task
1610   * and mm being operated on are the current task's and don't allow
1611   * passing of a locked parameter.  We also obviously don't pass
1612   * FOLL_REMOTE in here.
1613   */
1614  long get_user_pages(unsigned long start, unsigned long nr_pages,
1615  		unsigned int gup_flags, struct page **pages,
1616  		struct vm_area_struct **vmas)
1617  {
1618  	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1619  				     pages, vmas, gup_flags | FOLL_TOUCH);
1620  }
1621  EXPORT_SYMBOL(get_user_pages);
1622  
1623  /*
1624   * We can leverage the VM_FAULT_RETRY functionality in the page fault
1625   * paths better by using either get_user_pages_locked() or
1626   * get_user_pages_unlocked().
1627   *
1628   * get_user_pages_locked() is suitable to replace the form:
1629   *
1630   *      down_read(&mm->mmap_sem);
1631   *      do_something()
1632   *      get_user_pages(tsk, mm, ..., pages, NULL);
1633   *      up_read(&mm->mmap_sem);
1634   *
1635   *  to:
1636   *
1637   *      int locked = 1;
1638   *      down_read(&mm->mmap_sem);
1639   *      do_something()
1640   *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1641   *      if (locked)
1642   *          up_read(&mm->mmap_sem);
1643   */
1644  long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1645  			   unsigned int gup_flags, struct page **pages,
1646  			   int *locked)
1647  {
1648  	/*
1649  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1650  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1651  	 * vmas.  As there are no users of this flag in this call we simply
1652  	 * disallow this option for now.
1653  	 */
1654  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1655  		return -EINVAL;
1656  
1657  	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1658  				       pages, NULL, locked,
1659  				       gup_flags | FOLL_TOUCH);
1660  }
1661  EXPORT_SYMBOL(get_user_pages_locked);
1662  
1663  /*
1664   * get_user_pages_unlocked() is suitable to replace the form:
1665   *
1666   *      down_read(&mm->mmap_sem);
1667   *      get_user_pages(tsk, mm, ..., pages, NULL);
1668   *      up_read(&mm->mmap_sem);
1669   *
1670   *  with:
1671   *
1672   *      get_user_pages_unlocked(tsk, mm, ..., pages);
1673   *
1674   * It is functionally equivalent to get_user_pages_fast so
1675   * get_user_pages_fast should be used instead if specific gup_flags
1676   * (e.g. FOLL_FORCE) are not required.
1677   */
1678  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1679  			     struct page **pages, unsigned int gup_flags)
1680  {
1681  	struct mm_struct *mm = current->mm;
1682  	int locked = 1;
1683  	long ret;
1684  
1685  	/*
1686  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1687  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1688  	 * vmas.  As there are no users of this flag in this call we simply
1689  	 * disallow this option for now.
1690  	 */
1691  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1692  		return -EINVAL;
1693  
1694  	down_read(&mm->mmap_sem);
1695  	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1696  				      &locked, gup_flags | FOLL_TOUCH);
1697  	if (locked)
1698  		up_read(&mm->mmap_sem);
1699  	return ret;
1700  }
1701  EXPORT_SYMBOL(get_user_pages_unlocked);
1702  
1703  /*
1704   * Fast GUP
1705   *
1706   * get_user_pages_fast attempts to pin user pages by walking the page
1707   * tables directly and avoids taking locks. Thus the walker needs to be
1708   * protected from page table pages being freed from under it, and should
1709   * block any THP splits.
1710   *
1711   * One way to achieve this is to have the walker disable interrupts, and
1712   * rely on IPIs from the TLB flushing code blocking before the page table
1713   * pages are freed. This is unsuitable for architectures that do not need
1714   * to broadcast an IPI when invalidating TLBs.
1715   *
1716   * Another way to achieve this is to batch up page table containing pages
1717   * belonging to more than one mm_user, then rcu_sched a callback to free those
1718   * pages. Disabling interrupts will allow the fast_gup walker to both block
1719   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1720   * (which is a relatively rare event). The code below adopts this strategy.
1721   *
1722   * Before activating this code, please be aware that the following assumptions
1723   * are currently made:
1724   *
1725   *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1726   *  free pages containing page tables or TLB flushing requires IPI broadcast.
1727   *
1728   *  *) ptes can be read atomically by the architecture.
1729   *
1730   *  *) access_ok is sufficient to validate userspace address ranges.
1731   *
1732   * The last two assumptions can be relaxed by the addition of helper functions.
1733   *
1734   * This code is based heavily on the PowerPC implementation by Nick Piggin.
1735   */
1736  #ifdef CONFIG_HAVE_FAST_GUP
1737  #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1738  /*
1739   * WARNING: only to be used in the get_user_pages_fast() implementation.
1740   *
1741   * With get_user_pages_fast(), we walk down the pagetables without taking any
1742   * locks.  For this we would like to load the pointers atomically, but sometimes
1743   * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1744   * we do have is the guarantee that a PTE will only either go from not present
1745   * to present, or present to not present or both -- it will not switch to a
1746   * completely different present page without a TLB flush in between; something
1747   * that we are blocking by holding interrupts off.
1748   *
1749   * Setting ptes from not present to present goes:
1750   *
1751   *   ptep->pte_high = h;
1752   *   smp_wmb();
1753   *   ptep->pte_low = l;
1754   *
1755   * And present to not present goes:
1756   *
1757   *   ptep->pte_low = 0;
1758   *   smp_wmb();
1759   *   ptep->pte_high = 0;
1760   *
1761   * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1762   * We load pte_high *after* loading pte_low, which ensures we don't see an older
1763   * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1764   * picked up a changed pte high. We might have gotten rubbish values from
1765   * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1766   * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1767   * operates on present ptes we're safe.
1768   */
1769  static inline pte_t gup_get_pte(pte_t *ptep)
1770  {
1771  	pte_t pte;
1772  
1773  	do {
1774  		pte.pte_low = ptep->pte_low;
1775  		smp_rmb();
1776  		pte.pte_high = ptep->pte_high;
1777  		smp_rmb();
1778  	} while (unlikely(pte.pte_low != ptep->pte_low));
1779  
1780  	return pte;
1781  }
1782  #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1783  /*
1784   * We require that the PTE can be read atomically.
1785   */
1786  static inline pte_t gup_get_pte(pte_t *ptep)
1787  {
1788  	return READ_ONCE(*ptep);
1789  }
1790  #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1791  
1792  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1793  					    struct page **pages)
1794  {
1795  	while ((*nr) - nr_start) {
1796  		struct page *page = pages[--(*nr)];
1797  
1798  		ClearPageReferenced(page);
1799  		put_page(page);
1800  	}
1801  }
1802  
1803  /*
1804   * Return the compund head page with ref appropriately incremented,
1805   * or NULL if that failed.
1806   */
1807  static inline struct page *try_get_compound_head(struct page *page, int refs)
1808  {
1809  	struct page *head = compound_head(page);
1810  	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1811  		return NULL;
1812  	if (unlikely(!page_cache_add_speculative(head, refs)))
1813  		return NULL;
1814  	return head;
1815  }
1816  
1817  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1818  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1819  			 unsigned int flags, struct page **pages, int *nr)
1820  {
1821  	struct dev_pagemap *pgmap = NULL;
1822  	int nr_start = *nr, ret = 0;
1823  	pte_t *ptep, *ptem;
1824  
1825  	ptem = ptep = pte_offset_map(&pmd, addr);
1826  	do {
1827  		pte_t pte = gup_get_pte(ptep);
1828  		struct page *head, *page;
1829  
1830  		/*
1831  		 * Similar to the PMD case below, NUMA hinting must take slow
1832  		 * path using the pte_protnone check.
1833  		 */
1834  		if (pte_protnone(pte))
1835  			goto pte_unmap;
1836  
1837  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1838  			goto pte_unmap;
1839  
1840  		if (pte_devmap(pte)) {
1841  			if (unlikely(flags & FOLL_LONGTERM))
1842  				goto pte_unmap;
1843  
1844  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1845  			if (unlikely(!pgmap)) {
1846  				undo_dev_pagemap(nr, nr_start, pages);
1847  				goto pte_unmap;
1848  			}
1849  		} else if (pte_special(pte))
1850  			goto pte_unmap;
1851  
1852  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1853  		page = pte_page(pte);
1854  
1855  		head = try_get_compound_head(page, 1);
1856  		if (!head)
1857  			goto pte_unmap;
1858  
1859  		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1860  			put_page(head);
1861  			goto pte_unmap;
1862  		}
1863  
1864  		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1865  
1866  		SetPageReferenced(page);
1867  		pages[*nr] = page;
1868  		(*nr)++;
1869  
1870  	} while (ptep++, addr += PAGE_SIZE, addr != end);
1871  
1872  	ret = 1;
1873  
1874  pte_unmap:
1875  	if (pgmap)
1876  		put_dev_pagemap(pgmap);
1877  	pte_unmap(ptem);
1878  	return ret;
1879  }
1880  #else
1881  
1882  /*
1883   * If we can't determine whether or not a pte is special, then fail immediately
1884   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1885   * to be special.
1886   *
1887   * For a futex to be placed on a THP tail page, get_futex_key requires a
1888   * __get_user_pages_fast implementation that can pin pages. Thus it's still
1889   * useful to have gup_huge_pmd even if we can't operate on ptes.
1890   */
1891  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1892  			 unsigned int flags, struct page **pages, int *nr)
1893  {
1894  	return 0;
1895  }
1896  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1897  
1898  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1900  		unsigned long end, struct page **pages, int *nr)
1901  {
1902  	int nr_start = *nr;
1903  	struct dev_pagemap *pgmap = NULL;
1904  
1905  	do {
1906  		struct page *page = pfn_to_page(pfn);
1907  
1908  		pgmap = get_dev_pagemap(pfn, pgmap);
1909  		if (unlikely(!pgmap)) {
1910  			undo_dev_pagemap(nr, nr_start, pages);
1911  			return 0;
1912  		}
1913  		SetPageReferenced(page);
1914  		pages[*nr] = page;
1915  		get_page(page);
1916  		(*nr)++;
1917  		pfn++;
1918  	} while (addr += PAGE_SIZE, addr != end);
1919  
1920  	if (pgmap)
1921  		put_dev_pagemap(pgmap);
1922  	return 1;
1923  }
1924  
1925  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1926  		unsigned long end, struct page **pages, int *nr)
1927  {
1928  	unsigned long fault_pfn;
1929  	int nr_start = *nr;
1930  
1931  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1932  	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1933  		return 0;
1934  
1935  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1936  		undo_dev_pagemap(nr, nr_start, pages);
1937  		return 0;
1938  	}
1939  	return 1;
1940  }
1941  
1942  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1943  		unsigned long end, struct page **pages, int *nr)
1944  {
1945  	unsigned long fault_pfn;
1946  	int nr_start = *nr;
1947  
1948  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1949  	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1950  		return 0;
1951  
1952  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1953  		undo_dev_pagemap(nr, nr_start, pages);
1954  		return 0;
1955  	}
1956  	return 1;
1957  }
1958  #else
1959  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1960  		unsigned long end, struct page **pages, int *nr)
1961  {
1962  	BUILD_BUG();
1963  	return 0;
1964  }
1965  
1966  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1967  		unsigned long end, struct page **pages, int *nr)
1968  {
1969  	BUILD_BUG();
1970  	return 0;
1971  }
1972  #endif
1973  
1974  #ifdef CONFIG_ARCH_HAS_HUGEPD
1975  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1976  				      unsigned long sz)
1977  {
1978  	unsigned long __boundary = (addr + sz) & ~(sz-1);
1979  	return (__boundary - 1 < end - 1) ? __boundary : end;
1980  }
1981  
1982  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1983  		       unsigned long end, int write, struct page **pages, int *nr)
1984  {
1985  	unsigned long pte_end;
1986  	struct page *head, *page;
1987  	pte_t pte;
1988  	int refs;
1989  
1990  	pte_end = (addr + sz) & ~(sz-1);
1991  	if (pte_end < end)
1992  		end = pte_end;
1993  
1994  	pte = READ_ONCE(*ptep);
1995  
1996  	if (!pte_access_permitted(pte, write))
1997  		return 0;
1998  
1999  	/* hugepages are never "special" */
2000  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2001  
2002  	refs = 0;
2003  	head = pte_page(pte);
2004  
2005  	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2006  	do {
2007  		VM_BUG_ON(compound_head(page) != head);
2008  		pages[*nr] = page;
2009  		(*nr)++;
2010  		page++;
2011  		refs++;
2012  	} while (addr += PAGE_SIZE, addr != end);
2013  
2014  	head = try_get_compound_head(head, refs);
2015  	if (!head) {
2016  		*nr -= refs;
2017  		return 0;
2018  	}
2019  
2020  	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2021  		/* Could be optimized better */
2022  		*nr -= refs;
2023  		while (refs--)
2024  			put_page(head);
2025  		return 0;
2026  	}
2027  
2028  	SetPageReferenced(head);
2029  	return 1;
2030  }
2031  
2032  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2033  		unsigned int pdshift, unsigned long end, int write,
2034  		struct page **pages, int *nr)
2035  {
2036  	pte_t *ptep;
2037  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2038  	unsigned long next;
2039  
2040  	ptep = hugepte_offset(hugepd, addr, pdshift);
2041  	do {
2042  		next = hugepte_addr_end(addr, end, sz);
2043  		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2044  			return 0;
2045  	} while (ptep++, addr = next, addr != end);
2046  
2047  	return 1;
2048  }
2049  #else
2050  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2051  		unsigned pdshift, unsigned long end, int write,
2052  		struct page **pages, int *nr)
2053  {
2054  	return 0;
2055  }
2056  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2057  
2058  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2059  		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2060  {
2061  	struct page *head, *page;
2062  	int refs;
2063  
2064  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2065  		return 0;
2066  
2067  	if (pmd_devmap(orig)) {
2068  		if (unlikely(flags & FOLL_LONGTERM))
2069  			return 0;
2070  		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2071  	}
2072  
2073  	refs = 0;
2074  	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2075  	do {
2076  		pages[*nr] = page;
2077  		(*nr)++;
2078  		page++;
2079  		refs++;
2080  	} while (addr += PAGE_SIZE, addr != end);
2081  
2082  	head = try_get_compound_head(pmd_page(orig), refs);
2083  	if (!head) {
2084  		*nr -= refs;
2085  		return 0;
2086  	}
2087  
2088  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2089  		*nr -= refs;
2090  		while (refs--)
2091  			put_page(head);
2092  		return 0;
2093  	}
2094  
2095  	SetPageReferenced(head);
2096  	return 1;
2097  }
2098  
2099  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2100  		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2101  {
2102  	struct page *head, *page;
2103  	int refs;
2104  
2105  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2106  		return 0;
2107  
2108  	if (pud_devmap(orig)) {
2109  		if (unlikely(flags & FOLL_LONGTERM))
2110  			return 0;
2111  		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2112  	}
2113  
2114  	refs = 0;
2115  	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2116  	do {
2117  		pages[*nr] = page;
2118  		(*nr)++;
2119  		page++;
2120  		refs++;
2121  	} while (addr += PAGE_SIZE, addr != end);
2122  
2123  	head = try_get_compound_head(pud_page(orig), refs);
2124  	if (!head) {
2125  		*nr -= refs;
2126  		return 0;
2127  	}
2128  
2129  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2130  		*nr -= refs;
2131  		while (refs--)
2132  			put_page(head);
2133  		return 0;
2134  	}
2135  
2136  	SetPageReferenced(head);
2137  	return 1;
2138  }
2139  
2140  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2141  			unsigned long end, unsigned int flags,
2142  			struct page **pages, int *nr)
2143  {
2144  	int refs;
2145  	struct page *head, *page;
2146  
2147  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2148  		return 0;
2149  
2150  	BUILD_BUG_ON(pgd_devmap(orig));
2151  	refs = 0;
2152  	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2153  	do {
2154  		pages[*nr] = page;
2155  		(*nr)++;
2156  		page++;
2157  		refs++;
2158  	} while (addr += PAGE_SIZE, addr != end);
2159  
2160  	head = try_get_compound_head(pgd_page(orig), refs);
2161  	if (!head) {
2162  		*nr -= refs;
2163  		return 0;
2164  	}
2165  
2166  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2167  		*nr -= refs;
2168  		while (refs--)
2169  			put_page(head);
2170  		return 0;
2171  	}
2172  
2173  	SetPageReferenced(head);
2174  	return 1;
2175  }
2176  
2177  static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2178  		unsigned int flags, struct page **pages, int *nr)
2179  {
2180  	unsigned long next;
2181  	pmd_t *pmdp;
2182  
2183  	pmdp = pmd_offset(&pud, addr);
2184  	do {
2185  		pmd_t pmd = READ_ONCE(*pmdp);
2186  
2187  		next = pmd_addr_end(addr, end);
2188  		if (!pmd_present(pmd))
2189  			return 0;
2190  
2191  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2192  			     pmd_devmap(pmd))) {
2193  			/*
2194  			 * NUMA hinting faults need to be handled in the GUP
2195  			 * slowpath for accounting purposes and so that they
2196  			 * can be serialised against THP migration.
2197  			 */
2198  			if (pmd_protnone(pmd))
2199  				return 0;
2200  
2201  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2202  				pages, nr))
2203  				return 0;
2204  
2205  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2206  			/*
2207  			 * architecture have different format for hugetlbfs
2208  			 * pmd format and THP pmd format
2209  			 */
2210  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2211  					 PMD_SHIFT, next, flags, pages, nr))
2212  				return 0;
2213  		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2214  			return 0;
2215  	} while (pmdp++, addr = next, addr != end);
2216  
2217  	return 1;
2218  }
2219  
2220  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2221  			 unsigned int flags, struct page **pages, int *nr)
2222  {
2223  	unsigned long next;
2224  	pud_t *pudp;
2225  
2226  	pudp = pud_offset(&p4d, addr);
2227  	do {
2228  		pud_t pud = READ_ONCE(*pudp);
2229  
2230  		next = pud_addr_end(addr, end);
2231  		if (pud_none(pud))
2232  			return 0;
2233  		if (unlikely(pud_huge(pud))) {
2234  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2235  					  pages, nr))
2236  				return 0;
2237  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2238  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2239  					 PUD_SHIFT, next, flags, pages, nr))
2240  				return 0;
2241  		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2242  			return 0;
2243  	} while (pudp++, addr = next, addr != end);
2244  
2245  	return 1;
2246  }
2247  
2248  static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2249  			 unsigned int flags, struct page **pages, int *nr)
2250  {
2251  	unsigned long next;
2252  	p4d_t *p4dp;
2253  
2254  	p4dp = p4d_offset(&pgd, addr);
2255  	do {
2256  		p4d_t p4d = READ_ONCE(*p4dp);
2257  
2258  		next = p4d_addr_end(addr, end);
2259  		if (p4d_none(p4d))
2260  			return 0;
2261  		BUILD_BUG_ON(p4d_huge(p4d));
2262  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2263  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2264  					 P4D_SHIFT, next, flags, pages, nr))
2265  				return 0;
2266  		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2267  			return 0;
2268  	} while (p4dp++, addr = next, addr != end);
2269  
2270  	return 1;
2271  }
2272  
2273  static void gup_pgd_range(unsigned long addr, unsigned long end,
2274  		unsigned int flags, struct page **pages, int *nr)
2275  {
2276  	unsigned long next;
2277  	pgd_t *pgdp;
2278  
2279  	pgdp = pgd_offset(current->mm, addr);
2280  	do {
2281  		pgd_t pgd = READ_ONCE(*pgdp);
2282  
2283  		next = pgd_addr_end(addr, end);
2284  		if (pgd_none(pgd))
2285  			return;
2286  		if (unlikely(pgd_huge(pgd))) {
2287  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2288  					  pages, nr))
2289  				return;
2290  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2291  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2292  					 PGDIR_SHIFT, next, flags, pages, nr))
2293  				return;
2294  		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2295  			return;
2296  	} while (pgdp++, addr = next, addr != end);
2297  }
2298  #else
2299  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2300  		unsigned int flags, struct page **pages, int *nr)
2301  {
2302  }
2303  #endif /* CONFIG_HAVE_FAST_GUP */
2304  
2305  #ifndef gup_fast_permitted
2306  /*
2307   * Check if it's allowed to use __get_user_pages_fast() for the range, or
2308   * we need to fall back to the slow version:
2309   */
2310  static bool gup_fast_permitted(unsigned long start, unsigned long end)
2311  {
2312  	return true;
2313  }
2314  #endif
2315  
2316  /*
2317   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2318   * the regular GUP.
2319   * Note a difference with get_user_pages_fast: this always returns the
2320   * number of pages pinned, 0 if no pages were pinned.
2321   *
2322   * If the architecture does not support this function, simply return with no
2323   * pages pinned.
2324   */
2325  int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2326  			  struct page **pages)
2327  {
2328  	unsigned long len, end;
2329  	unsigned long flags;
2330  	int nr = 0;
2331  
2332  	start = untagged_addr(start) & PAGE_MASK;
2333  	len = (unsigned long) nr_pages << PAGE_SHIFT;
2334  	end = start + len;
2335  
2336  	if (end <= start)
2337  		return 0;
2338  	if (unlikely(!access_ok((void __user *)start, len)))
2339  		return 0;
2340  
2341  	/*
2342  	 * Disable interrupts.  We use the nested form as we can already have
2343  	 * interrupts disabled by get_futex_key.
2344  	 *
2345  	 * With interrupts disabled, we block page table pages from being
2346  	 * freed from under us. See struct mmu_table_batch comments in
2347  	 * include/asm-generic/tlb.h for more details.
2348  	 *
2349  	 * We do not adopt an rcu_read_lock(.) here as we also want to
2350  	 * block IPIs that come from THPs splitting.
2351  	 */
2352  
2353  	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2354  	    gup_fast_permitted(start, end)) {
2355  		local_irq_save(flags);
2356  		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2357  		local_irq_restore(flags);
2358  	}
2359  
2360  	return nr;
2361  }
2362  EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2363  
2364  static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2365  				   unsigned int gup_flags, struct page **pages)
2366  {
2367  	int ret;
2368  
2369  	/*
2370  	 * FIXME: FOLL_LONGTERM does not work with
2371  	 * get_user_pages_unlocked() (see comments in that function)
2372  	 */
2373  	if (gup_flags & FOLL_LONGTERM) {
2374  		down_read(&current->mm->mmap_sem);
2375  		ret = __gup_longterm_locked(current, current->mm,
2376  					    start, nr_pages,
2377  					    pages, NULL, gup_flags);
2378  		up_read(&current->mm->mmap_sem);
2379  	} else {
2380  		ret = get_user_pages_unlocked(start, nr_pages,
2381  					      pages, gup_flags);
2382  	}
2383  
2384  	return ret;
2385  }
2386  
2387  /**
2388   * get_user_pages_fast() - pin user pages in memory
2389   * @start:	starting user address
2390   * @nr_pages:	number of pages from start to pin
2391   * @gup_flags:	flags modifying pin behaviour
2392   * @pages:	array that receives pointers to the pages pinned.
2393   *		Should be at least nr_pages long.
2394   *
2395   * Attempt to pin user pages in memory without taking mm->mmap_sem.
2396   * If not successful, it will fall back to taking the lock and
2397   * calling get_user_pages().
2398   *
2399   * Returns number of pages pinned. This may be fewer than the number
2400   * requested. If nr_pages is 0 or negative, returns 0. If no pages
2401   * were pinned, returns -errno.
2402   */
2403  int get_user_pages_fast(unsigned long start, int nr_pages,
2404  			unsigned int gup_flags, struct page **pages)
2405  {
2406  	unsigned long addr, len, end;
2407  	int nr = 0, ret = 0;
2408  
2409  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2410  		return -EINVAL;
2411  
2412  	start = untagged_addr(start) & PAGE_MASK;
2413  	addr = start;
2414  	len = (unsigned long) nr_pages << PAGE_SHIFT;
2415  	end = start + len;
2416  
2417  	if (end <= start)
2418  		return 0;
2419  	if (unlikely(!access_ok((void __user *)start, len)))
2420  		return -EFAULT;
2421  
2422  	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2423  	    gup_fast_permitted(start, end)) {
2424  		local_irq_disable();
2425  		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2426  		local_irq_enable();
2427  		ret = nr;
2428  	}
2429  
2430  	if (nr < nr_pages) {
2431  		/* Try to get the remaining pages with get_user_pages */
2432  		start += nr << PAGE_SHIFT;
2433  		pages += nr;
2434  
2435  		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2436  					      gup_flags, pages);
2437  
2438  		/* Have to be a bit careful with return values */
2439  		if (nr > 0) {
2440  			if (ret < 0)
2441  				ret = nr;
2442  			else
2443  				ret += nr;
2444  		}
2445  	}
2446  
2447  	return ret;
2448  }
2449  EXPORT_SYMBOL_GPL(get_user_pages_fast);
2450