xref: /openbmc/linux/mm/gup.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (is_zero_page(page) ||
55 		    !folio_test_anon(folio))
56 			continue;
57 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
58 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 		else
60 			/* Either a PTE-mapped or a PMD-mapped THP. */
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
62 				       !PageAnonExclusive(page), page);
63 	}
64 }
65 
66 /*
67  * Return the folio with ref appropriately incremented,
68  * or NULL if that failed.
69  */
70 static inline struct folio *try_get_folio(struct page *page, int refs)
71 {
72 	struct folio *folio;
73 
74 retry:
75 	folio = page_folio(page);
76 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 		return NULL;
78 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
79 		return NULL;
80 
81 	/*
82 	 * At this point we have a stable reference to the folio; but it
83 	 * could be that between calling page_folio() and the refcount
84 	 * increment, the folio was split, in which case we'd end up
85 	 * holding a reference on a folio that has nothing to do with the page
86 	 * we were given anymore.
87 	 * So now that the folio is stable, recheck that the page still
88 	 * belongs to this folio.
89 	 */
90 	if (unlikely(page_folio(page) != folio)) {
91 		if (!put_devmap_managed_page_refs(&folio->page, refs))
92 			folio_put_refs(folio, refs);
93 		goto retry;
94 	}
95 
96 	return folio;
97 }
98 
99 /**
100  * try_grab_folio() - Attempt to get or pin a folio.
101  * @page:  pointer to page to be grabbed
102  * @refs:  the value to (effectively) add to the folio's refcount
103  * @flags: gup flags: these are the FOLL_* flag values.
104  *
105  * "grab" names in this file mean, "look at flags to decide whether to use
106  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107  *
108  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
109  * same time. (That's true throughout the get_user_pages*() and
110  * pin_user_pages*() APIs.) Cases:
111  *
112  *    FOLL_GET: folio's refcount will be incremented by @refs.
113  *
114  *    FOLL_PIN on large folios: folio's refcount will be incremented by
115  *    @refs, and its pincount will be incremented by @refs.
116  *
117  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
118  *    @refs * GUP_PIN_COUNTING_BIAS.
119  *
120  * Return: The folio containing @page (with refcount appropriately
121  * incremented) for success, or NULL upon failure. If neither FOLL_GET
122  * nor FOLL_PIN was set, that's considered failure, and furthermore,
123  * a likely bug in the caller, so a warning is also emitted.
124  */
125 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 {
127 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
128 		return NULL;
129 
130 	if (flags & FOLL_GET)
131 		return try_get_folio(page, refs);
132 	else if (flags & FOLL_PIN) {
133 		struct folio *folio;
134 
135 		/*
136 		 * Don't take a pin on the zero page - it's not going anywhere
137 		 * and it is used in a *lot* of places.
138 		 */
139 		if (is_zero_page(page))
140 			return page_folio(page);
141 
142 		/*
143 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
144 		 * right zone, so fail and let the caller fall back to the slow
145 		 * path.
146 		 */
147 		if (unlikely((flags & FOLL_LONGTERM) &&
148 			     !is_longterm_pinnable_page(page)))
149 			return NULL;
150 
151 		/*
152 		 * CAUTION: Don't use compound_head() on the page before this
153 		 * point, the result won't be stable.
154 		 */
155 		folio = try_get_folio(page, refs);
156 		if (!folio)
157 			return NULL;
158 
159 		/*
160 		 * When pinning a large folio, use an exact count to track it.
161 		 *
162 		 * However, be sure to *also* increment the normal folio
163 		 * refcount field at least once, so that the folio really
164 		 * is pinned.  That's why the refcount from the earlier
165 		 * try_get_folio() is left intact.
166 		 */
167 		if (folio_test_large(folio))
168 			atomic_add(refs, &folio->_pincount);
169 		else
170 			folio_ref_add(folio,
171 					refs * (GUP_PIN_COUNTING_BIAS - 1));
172 		/*
173 		 * Adjust the pincount before re-checking the PTE for changes.
174 		 * This is essentially a smp_mb() and is paired with a memory
175 		 * barrier in page_try_share_anon_rmap().
176 		 */
177 		smp_mb__after_atomic();
178 
179 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
180 
181 		return folio;
182 	}
183 
184 	WARN_ON_ONCE(1);
185 	return NULL;
186 }
187 
188 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
189 {
190 	if (flags & FOLL_PIN) {
191 		if (is_zero_folio(folio))
192 			return;
193 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
194 		if (folio_test_large(folio))
195 			atomic_sub(refs, &folio->_pincount);
196 		else
197 			refs *= GUP_PIN_COUNTING_BIAS;
198 	}
199 
200 	if (!put_devmap_managed_page_refs(&folio->page, refs))
201 		folio_put_refs(folio, refs);
202 }
203 
204 /**
205  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
206  * @page:    pointer to page to be grabbed
207  * @flags:   gup flags: these are the FOLL_* flag values.
208  *
209  * This might not do anything at all, depending on the flags argument.
210  *
211  * "grab" names in this file mean, "look at flags to decide whether to use
212  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
213  *
214  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
215  * time. Cases: please see the try_grab_folio() documentation, with
216  * "refs=1".
217  *
218  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
219  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
220  *
221  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
222  *			be grabbed.
223  */
224 int __must_check try_grab_page(struct page *page, unsigned int flags)
225 {
226 	struct folio *folio = page_folio(page);
227 
228 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
229 		return -ENOMEM;
230 
231 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
232 		return -EREMOTEIO;
233 
234 	if (flags & FOLL_GET)
235 		folio_ref_inc(folio);
236 	else if (flags & FOLL_PIN) {
237 		/*
238 		 * Don't take a pin on the zero page - it's not going anywhere
239 		 * and it is used in a *lot* of places.
240 		 */
241 		if (is_zero_page(page))
242 			return 0;
243 
244 		/*
245 		 * Similar to try_grab_folio(): be sure to *also*
246 		 * increment the normal page refcount field at least once,
247 		 * so that the page really is pinned.
248 		 */
249 		if (folio_test_large(folio)) {
250 			folio_ref_add(folio, 1);
251 			atomic_add(1, &folio->_pincount);
252 		} else {
253 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
254 		}
255 
256 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
257 	}
258 
259 	return 0;
260 }
261 
262 /**
263  * unpin_user_page() - release a dma-pinned page
264  * @page:            pointer to page to be released
265  *
266  * Pages that were pinned via pin_user_pages*() must be released via either
267  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
268  * that such pages can be separately tracked and uniquely handled. In
269  * particular, interactions with RDMA and filesystems need special handling.
270  */
271 void unpin_user_page(struct page *page)
272 {
273 	sanity_check_pinned_pages(&page, 1);
274 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
275 }
276 EXPORT_SYMBOL(unpin_user_page);
277 
278 /**
279  * folio_add_pin - Try to get an additional pin on a pinned folio
280  * @folio: The folio to be pinned
281  *
282  * Get an additional pin on a folio we already have a pin on.  Makes no change
283  * if the folio is a zero_page.
284  */
285 void folio_add_pin(struct folio *folio)
286 {
287 	if (is_zero_folio(folio))
288 		return;
289 
290 	/*
291 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
292 	 * page refcount field at least once, so that the page really is
293 	 * pinned.
294 	 */
295 	if (folio_test_large(folio)) {
296 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
297 		folio_ref_inc(folio);
298 		atomic_inc(&folio->_pincount);
299 	} else {
300 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
301 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
302 	}
303 }
304 
305 static inline struct folio *gup_folio_range_next(struct page *start,
306 		unsigned long npages, unsigned long i, unsigned int *ntails)
307 {
308 	struct page *next = nth_page(start, i);
309 	struct folio *folio = page_folio(next);
310 	unsigned int nr = 1;
311 
312 	if (folio_test_large(folio))
313 		nr = min_t(unsigned int, npages - i,
314 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
315 
316 	*ntails = nr;
317 	return folio;
318 }
319 
320 static inline struct folio *gup_folio_next(struct page **list,
321 		unsigned long npages, unsigned long i, unsigned int *ntails)
322 {
323 	struct folio *folio = page_folio(list[i]);
324 	unsigned int nr;
325 
326 	for (nr = i + 1; nr < npages; nr++) {
327 		if (page_folio(list[nr]) != folio)
328 			break;
329 	}
330 
331 	*ntails = nr - i;
332 	return folio;
333 }
334 
335 /**
336  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
337  * @pages:  array of pages to be maybe marked dirty, and definitely released.
338  * @npages: number of pages in the @pages array.
339  * @make_dirty: whether to mark the pages dirty
340  *
341  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
342  * variants called on that page.
343  *
344  * For each page in the @pages array, make that page (or its head page, if a
345  * compound page) dirty, if @make_dirty is true, and if the page was previously
346  * listed as clean. In any case, releases all pages using unpin_user_page(),
347  * possibly via unpin_user_pages(), for the non-dirty case.
348  *
349  * Please see the unpin_user_page() documentation for details.
350  *
351  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
352  * required, then the caller should a) verify that this is really correct,
353  * because _lock() is usually required, and b) hand code it:
354  * set_page_dirty_lock(), unpin_user_page().
355  *
356  */
357 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
358 				 bool make_dirty)
359 {
360 	unsigned long i;
361 	struct folio *folio;
362 	unsigned int nr;
363 
364 	if (!make_dirty) {
365 		unpin_user_pages(pages, npages);
366 		return;
367 	}
368 
369 	sanity_check_pinned_pages(pages, npages);
370 	for (i = 0; i < npages; i += nr) {
371 		folio = gup_folio_next(pages, npages, i, &nr);
372 		/*
373 		 * Checking PageDirty at this point may race with
374 		 * clear_page_dirty_for_io(), but that's OK. Two key
375 		 * cases:
376 		 *
377 		 * 1) This code sees the page as already dirty, so it
378 		 * skips the call to set_page_dirty(). That could happen
379 		 * because clear_page_dirty_for_io() called
380 		 * page_mkclean(), followed by set_page_dirty().
381 		 * However, now the page is going to get written back,
382 		 * which meets the original intention of setting it
383 		 * dirty, so all is well: clear_page_dirty_for_io() goes
384 		 * on to call TestClearPageDirty(), and write the page
385 		 * back.
386 		 *
387 		 * 2) This code sees the page as clean, so it calls
388 		 * set_page_dirty(). The page stays dirty, despite being
389 		 * written back, so it gets written back again in the
390 		 * next writeback cycle. This is harmless.
391 		 */
392 		if (!folio_test_dirty(folio)) {
393 			folio_lock(folio);
394 			folio_mark_dirty(folio);
395 			folio_unlock(folio);
396 		}
397 		gup_put_folio(folio, nr, FOLL_PIN);
398 	}
399 }
400 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
401 
402 /**
403  * unpin_user_page_range_dirty_lock() - release and optionally dirty
404  * gup-pinned page range
405  *
406  * @page:  the starting page of a range maybe marked dirty, and definitely released.
407  * @npages: number of consecutive pages to release.
408  * @make_dirty: whether to mark the pages dirty
409  *
410  * "gup-pinned page range" refers to a range of pages that has had one of the
411  * pin_user_pages() variants called on that page.
412  *
413  * For the page ranges defined by [page .. page+npages], make that range (or
414  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
415  * page range was previously listed as clean.
416  *
417  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
418  * required, then the caller should a) verify that this is really correct,
419  * because _lock() is usually required, and b) hand code it:
420  * set_page_dirty_lock(), unpin_user_page().
421  *
422  */
423 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
424 				      bool make_dirty)
425 {
426 	unsigned long i;
427 	struct folio *folio;
428 	unsigned int nr;
429 
430 	for (i = 0; i < npages; i += nr) {
431 		folio = gup_folio_range_next(page, npages, i, &nr);
432 		if (make_dirty && !folio_test_dirty(folio)) {
433 			folio_lock(folio);
434 			folio_mark_dirty(folio);
435 			folio_unlock(folio);
436 		}
437 		gup_put_folio(folio, nr, FOLL_PIN);
438 	}
439 }
440 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
441 
442 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
443 {
444 	unsigned long i;
445 	struct folio *folio;
446 	unsigned int nr;
447 
448 	/*
449 	 * Don't perform any sanity checks because we might have raced with
450 	 * fork() and some anonymous pages might now actually be shared --
451 	 * which is why we're unpinning after all.
452 	 */
453 	for (i = 0; i < npages; i += nr) {
454 		folio = gup_folio_next(pages, npages, i, &nr);
455 		gup_put_folio(folio, nr, FOLL_PIN);
456 	}
457 }
458 
459 /**
460  * unpin_user_pages() - release an array of gup-pinned pages.
461  * @pages:  array of pages to be marked dirty and released.
462  * @npages: number of pages in the @pages array.
463  *
464  * For each page in the @pages array, release the page using unpin_user_page().
465  *
466  * Please see the unpin_user_page() documentation for details.
467  */
468 void unpin_user_pages(struct page **pages, unsigned long npages)
469 {
470 	unsigned long i;
471 	struct folio *folio;
472 	unsigned int nr;
473 
474 	/*
475 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
476 	 * leaving them pinned), but probably not. More likely, gup/pup returned
477 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
478 	 */
479 	if (WARN_ON(IS_ERR_VALUE(npages)))
480 		return;
481 
482 	sanity_check_pinned_pages(pages, npages);
483 	for (i = 0; i < npages; i += nr) {
484 		folio = gup_folio_next(pages, npages, i, &nr);
485 		gup_put_folio(folio, nr, FOLL_PIN);
486 	}
487 }
488 EXPORT_SYMBOL(unpin_user_pages);
489 
490 /*
491  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
492  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
493  * cache bouncing on large SMP machines for concurrent pinned gups.
494  */
495 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
496 {
497 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
498 		set_bit(MMF_HAS_PINNED, mm_flags);
499 }
500 
501 #ifdef CONFIG_MMU
502 static struct page *no_page_table(struct vm_area_struct *vma,
503 		unsigned int flags)
504 {
505 	/*
506 	 * When core dumping an enormous anonymous area that nobody
507 	 * has touched so far, we don't want to allocate unnecessary pages or
508 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
509 	 * then get_dump_page() will return NULL to leave a hole in the dump.
510 	 * But we can only make this optimization where a hole would surely
511 	 * be zero-filled if handle_mm_fault() actually did handle it.
512 	 */
513 	if ((flags & FOLL_DUMP) &&
514 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
515 		return ERR_PTR(-EFAULT);
516 	return NULL;
517 }
518 
519 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
520 		pte_t *pte, unsigned int flags)
521 {
522 	if (flags & FOLL_TOUCH) {
523 		pte_t entry = *pte;
524 
525 		if (flags & FOLL_WRITE)
526 			entry = pte_mkdirty(entry);
527 		entry = pte_mkyoung(entry);
528 
529 		if (!pte_same(*pte, entry)) {
530 			set_pte_at(vma->vm_mm, address, pte, entry);
531 			update_mmu_cache(vma, address, pte);
532 		}
533 	}
534 
535 	/* Proper page table entry exists, but no corresponding struct page */
536 	return -EEXIST;
537 }
538 
539 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
540 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
541 					struct vm_area_struct *vma,
542 					unsigned int flags)
543 {
544 	/* If the pte is writable, we can write to the page. */
545 	if (pte_write(pte))
546 		return true;
547 
548 	/* Maybe FOLL_FORCE is set to override it? */
549 	if (!(flags & FOLL_FORCE))
550 		return false;
551 
552 	/* But FOLL_FORCE has no effect on shared mappings */
553 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
554 		return false;
555 
556 	/* ... or read-only private ones */
557 	if (!(vma->vm_flags & VM_MAYWRITE))
558 		return false;
559 
560 	/* ... or already writable ones that just need to take a write fault */
561 	if (vma->vm_flags & VM_WRITE)
562 		return false;
563 
564 	/*
565 	 * See can_change_pte_writable(): we broke COW and could map the page
566 	 * writable if we have an exclusive anonymous page ...
567 	 */
568 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
569 		return false;
570 
571 	/* ... and a write-fault isn't required for other reasons. */
572 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
573 		return false;
574 	return !userfaultfd_pte_wp(vma, pte);
575 }
576 
577 static struct page *follow_page_pte(struct vm_area_struct *vma,
578 		unsigned long address, pmd_t *pmd, unsigned int flags,
579 		struct dev_pagemap **pgmap)
580 {
581 	struct mm_struct *mm = vma->vm_mm;
582 	struct page *page;
583 	spinlock_t *ptl;
584 	pte_t *ptep, pte;
585 	int ret;
586 
587 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
588 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
589 			 (FOLL_PIN | FOLL_GET)))
590 		return ERR_PTR(-EINVAL);
591 	if (unlikely(pmd_bad(*pmd)))
592 		return no_page_table(vma, flags);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	pte = *ptep;
596 	if (!pte_present(pte))
597 		goto no_page;
598 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
599 		goto no_page;
600 
601 	page = vm_normal_page(vma, address, pte);
602 
603 	/*
604 	 * We only care about anon pages in can_follow_write_pte() and don't
605 	 * have to worry about pte_devmap() because they are never anon.
606 	 */
607 	if ((flags & FOLL_WRITE) &&
608 	    !can_follow_write_pte(pte, page, vma, flags)) {
609 		page = NULL;
610 		goto out;
611 	}
612 
613 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
614 		/*
615 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
616 		 * case since they are only valid while holding the pgmap
617 		 * reference.
618 		 */
619 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
620 		if (*pgmap)
621 			page = pte_page(pte);
622 		else
623 			goto no_page;
624 	} else if (unlikely(!page)) {
625 		if (flags & FOLL_DUMP) {
626 			/* Avoid special (like zero) pages in core dumps */
627 			page = ERR_PTR(-EFAULT);
628 			goto out;
629 		}
630 
631 		if (is_zero_pfn(pte_pfn(pte))) {
632 			page = pte_page(pte);
633 		} else {
634 			ret = follow_pfn_pte(vma, address, ptep, flags);
635 			page = ERR_PTR(ret);
636 			goto out;
637 		}
638 	}
639 
640 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
641 		page = ERR_PTR(-EMLINK);
642 		goto out;
643 	}
644 
645 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
646 		       !PageAnonExclusive(page), page);
647 
648 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
649 	ret = try_grab_page(page, flags);
650 	if (unlikely(ret)) {
651 		page = ERR_PTR(ret);
652 		goto out;
653 	}
654 
655 	/*
656 	 * We need to make the page accessible if and only if we are going
657 	 * to access its content (the FOLL_PIN case).  Please see
658 	 * Documentation/core-api/pin_user_pages.rst for details.
659 	 */
660 	if (flags & FOLL_PIN) {
661 		ret = arch_make_page_accessible(page);
662 		if (ret) {
663 			unpin_user_page(page);
664 			page = ERR_PTR(ret);
665 			goto out;
666 		}
667 	}
668 	if (flags & FOLL_TOUCH) {
669 		if ((flags & FOLL_WRITE) &&
670 		    !pte_dirty(pte) && !PageDirty(page))
671 			set_page_dirty(page);
672 		/*
673 		 * pte_mkyoung() would be more correct here, but atomic care
674 		 * is needed to avoid losing the dirty bit: it is easier to use
675 		 * mark_page_accessed().
676 		 */
677 		mark_page_accessed(page);
678 	}
679 out:
680 	pte_unmap_unlock(ptep, ptl);
681 	return page;
682 no_page:
683 	pte_unmap_unlock(ptep, ptl);
684 	if (!pte_none(pte))
685 		return NULL;
686 	return no_page_table(vma, flags);
687 }
688 
689 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
690 				    unsigned long address, pud_t *pudp,
691 				    unsigned int flags,
692 				    struct follow_page_context *ctx)
693 {
694 	pmd_t *pmd, pmdval;
695 	spinlock_t *ptl;
696 	struct page *page;
697 	struct mm_struct *mm = vma->vm_mm;
698 
699 	pmd = pmd_offset(pudp, address);
700 	/*
701 	 * The READ_ONCE() will stabilize the pmdval in a register or
702 	 * on the stack so that it will stop changing under the code.
703 	 */
704 	pmdval = READ_ONCE(*pmd);
705 	if (pmd_none(pmdval))
706 		return no_page_table(vma, flags);
707 	if (!pmd_present(pmdval))
708 		return no_page_table(vma, flags);
709 	if (pmd_devmap(pmdval)) {
710 		ptl = pmd_lock(mm, pmd);
711 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
712 		spin_unlock(ptl);
713 		if (page)
714 			return page;
715 	}
716 	if (likely(!pmd_trans_huge(pmdval)))
717 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
718 
719 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
720 		return no_page_table(vma, flags);
721 
722 	ptl = pmd_lock(mm, pmd);
723 	if (unlikely(!pmd_present(*pmd))) {
724 		spin_unlock(ptl);
725 		return no_page_table(vma, flags);
726 	}
727 	if (unlikely(!pmd_trans_huge(*pmd))) {
728 		spin_unlock(ptl);
729 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
730 	}
731 	if (flags & FOLL_SPLIT_PMD) {
732 		int ret;
733 		page = pmd_page(*pmd);
734 		if (is_huge_zero_page(page)) {
735 			spin_unlock(ptl);
736 			ret = 0;
737 			split_huge_pmd(vma, pmd, address);
738 			if (pmd_trans_unstable(pmd))
739 				ret = -EBUSY;
740 		} else {
741 			spin_unlock(ptl);
742 			split_huge_pmd(vma, pmd, address);
743 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
744 		}
745 
746 		return ret ? ERR_PTR(ret) :
747 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
748 	}
749 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
750 	spin_unlock(ptl);
751 	ctx->page_mask = HPAGE_PMD_NR - 1;
752 	return page;
753 }
754 
755 static struct page *follow_pud_mask(struct vm_area_struct *vma,
756 				    unsigned long address, p4d_t *p4dp,
757 				    unsigned int flags,
758 				    struct follow_page_context *ctx)
759 {
760 	pud_t *pud;
761 	spinlock_t *ptl;
762 	struct page *page;
763 	struct mm_struct *mm = vma->vm_mm;
764 
765 	pud = pud_offset(p4dp, address);
766 	if (pud_none(*pud))
767 		return no_page_table(vma, flags);
768 	if (pud_devmap(*pud)) {
769 		ptl = pud_lock(mm, pud);
770 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
771 		spin_unlock(ptl);
772 		if (page)
773 			return page;
774 	}
775 	if (unlikely(pud_bad(*pud)))
776 		return no_page_table(vma, flags);
777 
778 	return follow_pmd_mask(vma, address, pud, flags, ctx);
779 }
780 
781 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
782 				    unsigned long address, pgd_t *pgdp,
783 				    unsigned int flags,
784 				    struct follow_page_context *ctx)
785 {
786 	p4d_t *p4d;
787 
788 	p4d = p4d_offset(pgdp, address);
789 	if (p4d_none(*p4d))
790 		return no_page_table(vma, flags);
791 	BUILD_BUG_ON(p4d_huge(*p4d));
792 	if (unlikely(p4d_bad(*p4d)))
793 		return no_page_table(vma, flags);
794 
795 	return follow_pud_mask(vma, address, p4d, flags, ctx);
796 }
797 
798 /**
799  * follow_page_mask - look up a page descriptor from a user-virtual address
800  * @vma: vm_area_struct mapping @address
801  * @address: virtual address to look up
802  * @flags: flags modifying lookup behaviour
803  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
804  *       pointer to output page_mask
805  *
806  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
807  *
808  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
809  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
810  *
811  * When getting an anonymous page and the caller has to trigger unsharing
812  * of a shared anonymous page first, -EMLINK is returned. The caller should
813  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
814  * relevant with FOLL_PIN and !FOLL_WRITE.
815  *
816  * On output, the @ctx->page_mask is set according to the size of the page.
817  *
818  * Return: the mapped (struct page *), %NULL if no mapping exists, or
819  * an error pointer if there is a mapping to something not represented
820  * by a page descriptor (see also vm_normal_page()).
821  */
822 static struct page *follow_page_mask(struct vm_area_struct *vma,
823 			      unsigned long address, unsigned int flags,
824 			      struct follow_page_context *ctx)
825 {
826 	pgd_t *pgd;
827 	struct page *page;
828 	struct mm_struct *mm = vma->vm_mm;
829 
830 	ctx->page_mask = 0;
831 
832 	/*
833 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
834 	 * special hugetlb page table walking code.  This eliminates the
835 	 * need to check for hugetlb entries in the general walking code.
836 	 *
837 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
838 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
839 	 */
840 	if (is_vm_hugetlb_page(vma)) {
841 		page = hugetlb_follow_page_mask(vma, address, flags);
842 		if (!page)
843 			page = no_page_table(vma, flags);
844 		return page;
845 	}
846 
847 	pgd = pgd_offset(mm, address);
848 
849 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
850 		return no_page_table(vma, flags);
851 
852 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
853 }
854 
855 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
856 			 unsigned int foll_flags)
857 {
858 	struct follow_page_context ctx = { NULL };
859 	struct page *page;
860 
861 	if (vma_is_secretmem(vma))
862 		return NULL;
863 
864 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
865 		return NULL;
866 
867 	page = follow_page_mask(vma, address, foll_flags, &ctx);
868 	if (ctx.pgmap)
869 		put_dev_pagemap(ctx.pgmap);
870 	return page;
871 }
872 
873 static int get_gate_page(struct mm_struct *mm, unsigned long address,
874 		unsigned int gup_flags, struct vm_area_struct **vma,
875 		struct page **page)
876 {
877 	pgd_t *pgd;
878 	p4d_t *p4d;
879 	pud_t *pud;
880 	pmd_t *pmd;
881 	pte_t *pte;
882 	int ret = -EFAULT;
883 
884 	/* user gate pages are read-only */
885 	if (gup_flags & FOLL_WRITE)
886 		return -EFAULT;
887 	if (address > TASK_SIZE)
888 		pgd = pgd_offset_k(address);
889 	else
890 		pgd = pgd_offset_gate(mm, address);
891 	if (pgd_none(*pgd))
892 		return -EFAULT;
893 	p4d = p4d_offset(pgd, address);
894 	if (p4d_none(*p4d))
895 		return -EFAULT;
896 	pud = pud_offset(p4d, address);
897 	if (pud_none(*pud))
898 		return -EFAULT;
899 	pmd = pmd_offset(pud, address);
900 	if (!pmd_present(*pmd))
901 		return -EFAULT;
902 	VM_BUG_ON(pmd_trans_huge(*pmd));
903 	pte = pte_offset_map(pmd, address);
904 	if (pte_none(*pte))
905 		goto unmap;
906 	*vma = get_gate_vma(mm);
907 	if (!page)
908 		goto out;
909 	*page = vm_normal_page(*vma, address, *pte);
910 	if (!*page) {
911 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
912 			goto unmap;
913 		*page = pte_page(*pte);
914 	}
915 	ret = try_grab_page(*page, gup_flags);
916 	if (unlikely(ret))
917 		goto unmap;
918 out:
919 	ret = 0;
920 unmap:
921 	pte_unmap(pte);
922 	return ret;
923 }
924 
925 /*
926  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
927  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
928  * to 0 and -EBUSY returned.
929  */
930 static int faultin_page(struct vm_area_struct *vma,
931 		unsigned long address, unsigned int *flags, bool unshare,
932 		int *locked)
933 {
934 	unsigned int fault_flags = 0;
935 	vm_fault_t ret;
936 
937 	if (*flags & FOLL_NOFAULT)
938 		return -EFAULT;
939 	if (*flags & FOLL_WRITE)
940 		fault_flags |= FAULT_FLAG_WRITE;
941 	if (*flags & FOLL_REMOTE)
942 		fault_flags |= FAULT_FLAG_REMOTE;
943 	if (*flags & FOLL_UNLOCKABLE) {
944 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
945 		/*
946 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
947 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
948 		 * That's because some callers may not be prepared to
949 		 * handle early exits caused by non-fatal signals.
950 		 */
951 		if (*flags & FOLL_INTERRUPTIBLE)
952 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
953 	}
954 	if (*flags & FOLL_NOWAIT)
955 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
956 	if (*flags & FOLL_TRIED) {
957 		/*
958 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
959 		 * can co-exist
960 		 */
961 		fault_flags |= FAULT_FLAG_TRIED;
962 	}
963 	if (unshare) {
964 		fault_flags |= FAULT_FLAG_UNSHARE;
965 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
966 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
967 	}
968 
969 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
970 
971 	if (ret & VM_FAULT_COMPLETED) {
972 		/*
973 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
974 		 * mmap lock in the page fault handler. Sanity check this.
975 		 */
976 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
977 		*locked = 0;
978 
979 		/*
980 		 * We should do the same as VM_FAULT_RETRY, but let's not
981 		 * return -EBUSY since that's not reflecting the reality of
982 		 * what has happened - we've just fully completed a page
983 		 * fault, with the mmap lock released.  Use -EAGAIN to show
984 		 * that we want to take the mmap lock _again_.
985 		 */
986 		return -EAGAIN;
987 	}
988 
989 	if (ret & VM_FAULT_ERROR) {
990 		int err = vm_fault_to_errno(ret, *flags);
991 
992 		if (err)
993 			return err;
994 		BUG();
995 	}
996 
997 	if (ret & VM_FAULT_RETRY) {
998 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
999 			*locked = 0;
1000 		return -EBUSY;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1007 {
1008 	vm_flags_t vm_flags = vma->vm_flags;
1009 	int write = (gup_flags & FOLL_WRITE);
1010 	int foreign = (gup_flags & FOLL_REMOTE);
1011 
1012 	if (vm_flags & (VM_IO | VM_PFNMAP))
1013 		return -EFAULT;
1014 
1015 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1016 		return -EFAULT;
1017 
1018 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1019 		return -EOPNOTSUPP;
1020 
1021 	if (vma_is_secretmem(vma))
1022 		return -EFAULT;
1023 
1024 	if (write) {
1025 		if (!(vm_flags & VM_WRITE)) {
1026 			if (!(gup_flags & FOLL_FORCE))
1027 				return -EFAULT;
1028 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1029 			if (is_vm_hugetlb_page(vma))
1030 				return -EFAULT;
1031 			/*
1032 			 * We used to let the write,force case do COW in a
1033 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1034 			 * set a breakpoint in a read-only mapping of an
1035 			 * executable, without corrupting the file (yet only
1036 			 * when that file had been opened for writing!).
1037 			 * Anon pages in shared mappings are surprising: now
1038 			 * just reject it.
1039 			 */
1040 			if (!is_cow_mapping(vm_flags))
1041 				return -EFAULT;
1042 		}
1043 	} else if (!(vm_flags & VM_READ)) {
1044 		if (!(gup_flags & FOLL_FORCE))
1045 			return -EFAULT;
1046 		/*
1047 		 * Is there actually any vma we can reach here which does not
1048 		 * have VM_MAYREAD set?
1049 		 */
1050 		if (!(vm_flags & VM_MAYREAD))
1051 			return -EFAULT;
1052 	}
1053 	/*
1054 	 * gups are always data accesses, not instruction
1055 	 * fetches, so execute=false here
1056 	 */
1057 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1058 		return -EFAULT;
1059 	return 0;
1060 }
1061 
1062 /**
1063  * __get_user_pages() - pin user pages in memory
1064  * @mm:		mm_struct of target mm
1065  * @start:	starting user address
1066  * @nr_pages:	number of pages from start to pin
1067  * @gup_flags:	flags modifying pin behaviour
1068  * @pages:	array that receives pointers to the pages pinned.
1069  *		Should be at least nr_pages long. Or NULL, if caller
1070  *		only intends to ensure the pages are faulted in.
1071  * @vmas:	array of pointers to vmas corresponding to each page.
1072  *		Or NULL if the caller does not require them.
1073  * @locked:     whether we're still with the mmap_lock held
1074  *
1075  * Returns either number of pages pinned (which may be less than the
1076  * number requested), or an error. Details about the return value:
1077  *
1078  * -- If nr_pages is 0, returns 0.
1079  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1080  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1081  *    pages pinned. Again, this may be less than nr_pages.
1082  * -- 0 return value is possible when the fault would need to be retried.
1083  *
1084  * The caller is responsible for releasing returned @pages, via put_page().
1085  *
1086  * @vmas are valid only as long as mmap_lock is held.
1087  *
1088  * Must be called with mmap_lock held.  It may be released.  See below.
1089  *
1090  * __get_user_pages walks a process's page tables and takes a reference to
1091  * each struct page that each user address corresponds to at a given
1092  * instant. That is, it takes the page that would be accessed if a user
1093  * thread accesses the given user virtual address at that instant.
1094  *
1095  * This does not guarantee that the page exists in the user mappings when
1096  * __get_user_pages returns, and there may even be a completely different
1097  * page there in some cases (eg. if mmapped pagecache has been invalidated
1098  * and subsequently re-faulted). However it does guarantee that the page
1099  * won't be freed completely. And mostly callers simply care that the page
1100  * contains data that was valid *at some point in time*. Typically, an IO
1101  * or similar operation cannot guarantee anything stronger anyway because
1102  * locks can't be held over the syscall boundary.
1103  *
1104  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1105  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1106  * appropriate) must be called after the page is finished with, and
1107  * before put_page is called.
1108  *
1109  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1110  * be released. If this happens *@locked will be set to 0 on return.
1111  *
1112  * A caller using such a combination of @gup_flags must therefore hold the
1113  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1114  * it must be held for either reading or writing and will not be released.
1115  *
1116  * In most cases, get_user_pages or get_user_pages_fast should be used
1117  * instead of __get_user_pages. __get_user_pages should be used only if
1118  * you need some special @gup_flags.
1119  */
1120 static long __get_user_pages(struct mm_struct *mm,
1121 		unsigned long start, unsigned long nr_pages,
1122 		unsigned int gup_flags, struct page **pages,
1123 		struct vm_area_struct **vmas, int *locked)
1124 {
1125 	long ret = 0, i = 0;
1126 	struct vm_area_struct *vma = NULL;
1127 	struct follow_page_context ctx = { NULL };
1128 
1129 	if (!nr_pages)
1130 		return 0;
1131 
1132 	start = untagged_addr_remote(mm, start);
1133 
1134 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1135 
1136 	do {
1137 		struct page *page;
1138 		unsigned int foll_flags = gup_flags;
1139 		unsigned int page_increm;
1140 
1141 		/* first iteration or cross vma bound */
1142 		if (!vma || start >= vma->vm_end) {
1143 			vma = find_extend_vma(mm, start);
1144 			if (!vma && in_gate_area(mm, start)) {
1145 				ret = get_gate_page(mm, start & PAGE_MASK,
1146 						gup_flags, &vma,
1147 						pages ? &pages[i] : NULL);
1148 				if (ret)
1149 					goto out;
1150 				ctx.page_mask = 0;
1151 				goto next_page;
1152 			}
1153 
1154 			if (!vma) {
1155 				ret = -EFAULT;
1156 				goto out;
1157 			}
1158 			ret = check_vma_flags(vma, gup_flags);
1159 			if (ret)
1160 				goto out;
1161 
1162 			if (is_vm_hugetlb_page(vma)) {
1163 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1164 						&start, &nr_pages, i,
1165 						gup_flags, locked);
1166 				if (!*locked) {
1167 					/*
1168 					 * We've got a VM_FAULT_RETRY
1169 					 * and we've lost mmap_lock.
1170 					 * We must stop here.
1171 					 */
1172 					BUG_ON(gup_flags & FOLL_NOWAIT);
1173 					goto out;
1174 				}
1175 				continue;
1176 			}
1177 		}
1178 retry:
1179 		/*
1180 		 * If we have a pending SIGKILL, don't keep faulting pages and
1181 		 * potentially allocating memory.
1182 		 */
1183 		if (fatal_signal_pending(current)) {
1184 			ret = -EINTR;
1185 			goto out;
1186 		}
1187 		cond_resched();
1188 
1189 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1190 		if (!page || PTR_ERR(page) == -EMLINK) {
1191 			ret = faultin_page(vma, start, &foll_flags,
1192 					   PTR_ERR(page) == -EMLINK, locked);
1193 			switch (ret) {
1194 			case 0:
1195 				goto retry;
1196 			case -EBUSY:
1197 			case -EAGAIN:
1198 				ret = 0;
1199 				fallthrough;
1200 			case -EFAULT:
1201 			case -ENOMEM:
1202 			case -EHWPOISON:
1203 				goto out;
1204 			}
1205 			BUG();
1206 		} else if (PTR_ERR(page) == -EEXIST) {
1207 			/*
1208 			 * Proper page table entry exists, but no corresponding
1209 			 * struct page. If the caller expects **pages to be
1210 			 * filled in, bail out now, because that can't be done
1211 			 * for this page.
1212 			 */
1213 			if (pages) {
1214 				ret = PTR_ERR(page);
1215 				goto out;
1216 			}
1217 
1218 			goto next_page;
1219 		} else if (IS_ERR(page)) {
1220 			ret = PTR_ERR(page);
1221 			goto out;
1222 		}
1223 		if (pages) {
1224 			pages[i] = page;
1225 			flush_anon_page(vma, page, start);
1226 			flush_dcache_page(page);
1227 			ctx.page_mask = 0;
1228 		}
1229 next_page:
1230 		if (vmas) {
1231 			vmas[i] = vma;
1232 			ctx.page_mask = 0;
1233 		}
1234 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1235 		if (page_increm > nr_pages)
1236 			page_increm = nr_pages;
1237 		i += page_increm;
1238 		start += page_increm * PAGE_SIZE;
1239 		nr_pages -= page_increm;
1240 	} while (nr_pages);
1241 out:
1242 	if (ctx.pgmap)
1243 		put_dev_pagemap(ctx.pgmap);
1244 	return i ? i : ret;
1245 }
1246 
1247 static bool vma_permits_fault(struct vm_area_struct *vma,
1248 			      unsigned int fault_flags)
1249 {
1250 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1251 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1252 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1253 
1254 	if (!(vm_flags & vma->vm_flags))
1255 		return false;
1256 
1257 	/*
1258 	 * The architecture might have a hardware protection
1259 	 * mechanism other than read/write that can deny access.
1260 	 *
1261 	 * gup always represents data access, not instruction
1262 	 * fetches, so execute=false here:
1263 	 */
1264 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1265 		return false;
1266 
1267 	return true;
1268 }
1269 
1270 /**
1271  * fixup_user_fault() - manually resolve a user page fault
1272  * @mm:		mm_struct of target mm
1273  * @address:	user address
1274  * @fault_flags:flags to pass down to handle_mm_fault()
1275  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1276  *		does not allow retry. If NULL, the caller must guarantee
1277  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1278  *
1279  * This is meant to be called in the specific scenario where for locking reasons
1280  * we try to access user memory in atomic context (within a pagefault_disable()
1281  * section), this returns -EFAULT, and we want to resolve the user fault before
1282  * trying again.
1283  *
1284  * Typically this is meant to be used by the futex code.
1285  *
1286  * The main difference with get_user_pages() is that this function will
1287  * unconditionally call handle_mm_fault() which will in turn perform all the
1288  * necessary SW fixup of the dirty and young bits in the PTE, while
1289  * get_user_pages() only guarantees to update these in the struct page.
1290  *
1291  * This is important for some architectures where those bits also gate the
1292  * access permission to the page because they are maintained in software.  On
1293  * such architectures, gup() will not be enough to make a subsequent access
1294  * succeed.
1295  *
1296  * This function will not return with an unlocked mmap_lock. So it has not the
1297  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1298  */
1299 int fixup_user_fault(struct mm_struct *mm,
1300 		     unsigned long address, unsigned int fault_flags,
1301 		     bool *unlocked)
1302 {
1303 	struct vm_area_struct *vma;
1304 	vm_fault_t ret;
1305 
1306 	address = untagged_addr_remote(mm, address);
1307 
1308 	if (unlocked)
1309 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1310 
1311 retry:
1312 	vma = find_extend_vma(mm, address);
1313 	if (!vma || address < vma->vm_start)
1314 		return -EFAULT;
1315 
1316 	if (!vma_permits_fault(vma, fault_flags))
1317 		return -EFAULT;
1318 
1319 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1320 	    fatal_signal_pending(current))
1321 		return -EINTR;
1322 
1323 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1324 
1325 	if (ret & VM_FAULT_COMPLETED) {
1326 		/*
1327 		 * NOTE: it's a pity that we need to retake the lock here
1328 		 * to pair with the unlock() in the callers. Ideally we
1329 		 * could tell the callers so they do not need to unlock.
1330 		 */
1331 		mmap_read_lock(mm);
1332 		*unlocked = true;
1333 		return 0;
1334 	}
1335 
1336 	if (ret & VM_FAULT_ERROR) {
1337 		int err = vm_fault_to_errno(ret, 0);
1338 
1339 		if (err)
1340 			return err;
1341 		BUG();
1342 	}
1343 
1344 	if (ret & VM_FAULT_RETRY) {
1345 		mmap_read_lock(mm);
1346 		*unlocked = true;
1347 		fault_flags |= FAULT_FLAG_TRIED;
1348 		goto retry;
1349 	}
1350 
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL_GPL(fixup_user_fault);
1354 
1355 /*
1356  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1357  * specified, it'll also respond to generic signals.  The caller of GUP
1358  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1359  */
1360 static bool gup_signal_pending(unsigned int flags)
1361 {
1362 	if (fatal_signal_pending(current))
1363 		return true;
1364 
1365 	if (!(flags & FOLL_INTERRUPTIBLE))
1366 		return false;
1367 
1368 	return signal_pending(current);
1369 }
1370 
1371 /*
1372  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1373  * the caller. This function may drop the mmap_lock. If it does so, then it will
1374  * set (*locked = 0).
1375  *
1376  * (*locked == 0) means that the caller expects this function to acquire and
1377  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1378  * the function returns, even though it may have changed temporarily during
1379  * function execution.
1380  *
1381  * Please note that this function, unlike __get_user_pages(), will not return 0
1382  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1383  */
1384 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1385 						unsigned long start,
1386 						unsigned long nr_pages,
1387 						struct page **pages,
1388 						struct vm_area_struct **vmas,
1389 						int *locked,
1390 						unsigned int flags)
1391 {
1392 	long ret, pages_done;
1393 	bool must_unlock = false;
1394 
1395 	/*
1396 	 * The internal caller expects GUP to manage the lock internally and the
1397 	 * lock must be released when this returns.
1398 	 */
1399 	if (!*locked) {
1400 		if (mmap_read_lock_killable(mm))
1401 			return -EAGAIN;
1402 		must_unlock = true;
1403 		*locked = 1;
1404 	}
1405 	else
1406 		mmap_assert_locked(mm);
1407 
1408 	if (flags & FOLL_PIN)
1409 		mm_set_has_pinned_flag(&mm->flags);
1410 
1411 	/*
1412 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1413 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1414 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1415 	 * for FOLL_GET, not for the newer FOLL_PIN.
1416 	 *
1417 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1418 	 * that here, as any failures will be obvious enough.
1419 	 */
1420 	if (pages && !(flags & FOLL_PIN))
1421 		flags |= FOLL_GET;
1422 
1423 	pages_done = 0;
1424 	for (;;) {
1425 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1426 				       vmas, locked);
1427 		if (!(flags & FOLL_UNLOCKABLE)) {
1428 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1429 			pages_done = ret;
1430 			break;
1431 		}
1432 
1433 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1434 		if (!*locked) {
1435 			BUG_ON(ret < 0);
1436 			BUG_ON(ret >= nr_pages);
1437 		}
1438 
1439 		if (ret > 0) {
1440 			nr_pages -= ret;
1441 			pages_done += ret;
1442 			if (!nr_pages)
1443 				break;
1444 		}
1445 		if (*locked) {
1446 			/*
1447 			 * VM_FAULT_RETRY didn't trigger or it was a
1448 			 * FOLL_NOWAIT.
1449 			 */
1450 			if (!pages_done)
1451 				pages_done = ret;
1452 			break;
1453 		}
1454 		/*
1455 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1456 		 * For the prefault case (!pages) we only update counts.
1457 		 */
1458 		if (likely(pages))
1459 			pages += ret;
1460 		start += ret << PAGE_SHIFT;
1461 
1462 		/* The lock was temporarily dropped, so we must unlock later */
1463 		must_unlock = true;
1464 
1465 retry:
1466 		/*
1467 		 * Repeat on the address that fired VM_FAULT_RETRY
1468 		 * with both FAULT_FLAG_ALLOW_RETRY and
1469 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1470 		 * by fatal signals of even common signals, depending on
1471 		 * the caller's request. So we need to check it before we
1472 		 * start trying again otherwise it can loop forever.
1473 		 */
1474 		if (gup_signal_pending(flags)) {
1475 			if (!pages_done)
1476 				pages_done = -EINTR;
1477 			break;
1478 		}
1479 
1480 		ret = mmap_read_lock_killable(mm);
1481 		if (ret) {
1482 			BUG_ON(ret > 0);
1483 			if (!pages_done)
1484 				pages_done = ret;
1485 			break;
1486 		}
1487 
1488 		*locked = 1;
1489 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1490 				       pages, NULL, locked);
1491 		if (!*locked) {
1492 			/* Continue to retry until we succeeded */
1493 			BUG_ON(ret != 0);
1494 			goto retry;
1495 		}
1496 		if (ret != 1) {
1497 			BUG_ON(ret > 1);
1498 			if (!pages_done)
1499 				pages_done = ret;
1500 			break;
1501 		}
1502 		nr_pages--;
1503 		pages_done++;
1504 		if (!nr_pages)
1505 			break;
1506 		if (likely(pages))
1507 			pages++;
1508 		start += PAGE_SIZE;
1509 	}
1510 	if (must_unlock && *locked) {
1511 		/*
1512 		 * We either temporarily dropped the lock, or the caller
1513 		 * requested that we both acquire and drop the lock. Either way,
1514 		 * we must now unlock, and notify the caller of that state.
1515 		 */
1516 		mmap_read_unlock(mm);
1517 		*locked = 0;
1518 	}
1519 	return pages_done;
1520 }
1521 
1522 /**
1523  * populate_vma_page_range() -  populate a range of pages in the vma.
1524  * @vma:   target vma
1525  * @start: start address
1526  * @end:   end address
1527  * @locked: whether the mmap_lock is still held
1528  *
1529  * This takes care of mlocking the pages too if VM_LOCKED is set.
1530  *
1531  * Return either number of pages pinned in the vma, or a negative error
1532  * code on error.
1533  *
1534  * vma->vm_mm->mmap_lock must be held.
1535  *
1536  * If @locked is NULL, it may be held for read or write and will
1537  * be unperturbed.
1538  *
1539  * If @locked is non-NULL, it must held for read only and may be
1540  * released.  If it's released, *@locked will be set to 0.
1541  */
1542 long populate_vma_page_range(struct vm_area_struct *vma,
1543 		unsigned long start, unsigned long end, int *locked)
1544 {
1545 	struct mm_struct *mm = vma->vm_mm;
1546 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1547 	int local_locked = 1;
1548 	int gup_flags;
1549 	long ret;
1550 
1551 	VM_BUG_ON(!PAGE_ALIGNED(start));
1552 	VM_BUG_ON(!PAGE_ALIGNED(end));
1553 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1554 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1555 	mmap_assert_locked(mm);
1556 
1557 	/*
1558 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1559 	 * faultin_page() to break COW, so it has no work to do here.
1560 	 */
1561 	if (vma->vm_flags & VM_LOCKONFAULT)
1562 		return nr_pages;
1563 
1564 	gup_flags = FOLL_TOUCH;
1565 	/*
1566 	 * We want to touch writable mappings with a write fault in order
1567 	 * to break COW, except for shared mappings because these don't COW
1568 	 * and we would not want to dirty them for nothing.
1569 	 */
1570 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1571 		gup_flags |= FOLL_WRITE;
1572 
1573 	/*
1574 	 * We want mlock to succeed for regions that have any permissions
1575 	 * other than PROT_NONE.
1576 	 */
1577 	if (vma_is_accessible(vma))
1578 		gup_flags |= FOLL_FORCE;
1579 
1580 	if (locked)
1581 		gup_flags |= FOLL_UNLOCKABLE;
1582 
1583 	/*
1584 	 * We made sure addr is within a VMA, so the following will
1585 	 * not result in a stack expansion that recurses back here.
1586 	 */
1587 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1588 				NULL, NULL, locked ? locked : &local_locked);
1589 	lru_add_drain();
1590 	return ret;
1591 }
1592 
1593 /*
1594  * faultin_vma_page_range() - populate (prefault) page tables inside the
1595  *			      given VMA range readable/writable
1596  *
1597  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1598  *
1599  * @vma: target vma
1600  * @start: start address
1601  * @end: end address
1602  * @write: whether to prefault readable or writable
1603  * @locked: whether the mmap_lock is still held
1604  *
1605  * Returns either number of processed pages in the vma, or a negative error
1606  * code on error (see __get_user_pages()).
1607  *
1608  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1609  * covered by the VMA. If it's released, *@locked will be set to 0.
1610  */
1611 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1612 			    unsigned long end, bool write, int *locked)
1613 {
1614 	struct mm_struct *mm = vma->vm_mm;
1615 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1616 	int gup_flags;
1617 	long ret;
1618 
1619 	VM_BUG_ON(!PAGE_ALIGNED(start));
1620 	VM_BUG_ON(!PAGE_ALIGNED(end));
1621 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1622 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1623 	mmap_assert_locked(mm);
1624 
1625 	/*
1626 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1627 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1628 	 *	       difference with !FOLL_FORCE, because the page is writable
1629 	 *	       in the page table.
1630 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1631 	 *		  a poisoned page.
1632 	 * !FOLL_FORCE: Require proper access permissions.
1633 	 */
1634 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1635 	if (write)
1636 		gup_flags |= FOLL_WRITE;
1637 
1638 	/*
1639 	 * We want to report -EINVAL instead of -EFAULT for any permission
1640 	 * problems or incompatible mappings.
1641 	 */
1642 	if (check_vma_flags(vma, gup_flags))
1643 		return -EINVAL;
1644 
1645 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1646 				NULL, NULL, locked);
1647 	lru_add_drain();
1648 	return ret;
1649 }
1650 
1651 /*
1652  * __mm_populate - populate and/or mlock pages within a range of address space.
1653  *
1654  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1655  * flags. VMAs must be already marked with the desired vm_flags, and
1656  * mmap_lock must not be held.
1657  */
1658 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1659 {
1660 	struct mm_struct *mm = current->mm;
1661 	unsigned long end, nstart, nend;
1662 	struct vm_area_struct *vma = NULL;
1663 	int locked = 0;
1664 	long ret = 0;
1665 
1666 	end = start + len;
1667 
1668 	for (nstart = start; nstart < end; nstart = nend) {
1669 		/*
1670 		 * We want to fault in pages for [nstart; end) address range.
1671 		 * Find first corresponding VMA.
1672 		 */
1673 		if (!locked) {
1674 			locked = 1;
1675 			mmap_read_lock(mm);
1676 			vma = find_vma_intersection(mm, nstart, end);
1677 		} else if (nstart >= vma->vm_end)
1678 			vma = find_vma_intersection(mm, vma->vm_end, end);
1679 
1680 		if (!vma)
1681 			break;
1682 		/*
1683 		 * Set [nstart; nend) to intersection of desired address
1684 		 * range with the first VMA. Also, skip undesirable VMA types.
1685 		 */
1686 		nend = min(end, vma->vm_end);
1687 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1688 			continue;
1689 		if (nstart < vma->vm_start)
1690 			nstart = vma->vm_start;
1691 		/*
1692 		 * Now fault in a range of pages. populate_vma_page_range()
1693 		 * double checks the vma flags, so that it won't mlock pages
1694 		 * if the vma was already munlocked.
1695 		 */
1696 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1697 		if (ret < 0) {
1698 			if (ignore_errors) {
1699 				ret = 0;
1700 				continue;	/* continue at next VMA */
1701 			}
1702 			break;
1703 		}
1704 		nend = nstart + ret * PAGE_SIZE;
1705 		ret = 0;
1706 	}
1707 	if (locked)
1708 		mmap_read_unlock(mm);
1709 	return ret;	/* 0 or negative error code */
1710 }
1711 #else /* CONFIG_MMU */
1712 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1713 		unsigned long nr_pages, struct page **pages,
1714 		struct vm_area_struct **vmas, int *locked,
1715 		unsigned int foll_flags)
1716 {
1717 	struct vm_area_struct *vma;
1718 	bool must_unlock = false;
1719 	unsigned long vm_flags;
1720 	long i;
1721 
1722 	if (!nr_pages)
1723 		return 0;
1724 
1725 	/*
1726 	 * The internal caller expects GUP to manage the lock internally and the
1727 	 * lock must be released when this returns.
1728 	 */
1729 	if (!*locked) {
1730 		if (mmap_read_lock_killable(mm))
1731 			return -EAGAIN;
1732 		must_unlock = true;
1733 		*locked = 1;
1734 	}
1735 
1736 	/* calculate required read or write permissions.
1737 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1738 	 */
1739 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1740 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1741 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1742 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1743 
1744 	for (i = 0; i < nr_pages; i++) {
1745 		vma = find_vma(mm, start);
1746 		if (!vma)
1747 			break;
1748 
1749 		/* protect what we can, including chardevs */
1750 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1751 		    !(vm_flags & vma->vm_flags))
1752 			break;
1753 
1754 		if (pages) {
1755 			pages[i] = virt_to_page((void *)start);
1756 			if (pages[i])
1757 				get_page(pages[i]);
1758 		}
1759 		if (vmas)
1760 			vmas[i] = vma;
1761 		start = (start + PAGE_SIZE) & PAGE_MASK;
1762 	}
1763 
1764 	if (must_unlock && *locked) {
1765 		mmap_read_unlock(mm);
1766 		*locked = 0;
1767 	}
1768 
1769 	return i ? : -EFAULT;
1770 }
1771 #endif /* !CONFIG_MMU */
1772 
1773 /**
1774  * fault_in_writeable - fault in userspace address range for writing
1775  * @uaddr: start of address range
1776  * @size: size of address range
1777  *
1778  * Returns the number of bytes not faulted in (like copy_to_user() and
1779  * copy_from_user()).
1780  */
1781 size_t fault_in_writeable(char __user *uaddr, size_t size)
1782 {
1783 	char __user *start = uaddr, *end;
1784 
1785 	if (unlikely(size == 0))
1786 		return 0;
1787 	if (!user_write_access_begin(uaddr, size))
1788 		return size;
1789 	if (!PAGE_ALIGNED(uaddr)) {
1790 		unsafe_put_user(0, uaddr, out);
1791 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1792 	}
1793 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1794 	if (unlikely(end < start))
1795 		end = NULL;
1796 	while (uaddr != end) {
1797 		unsafe_put_user(0, uaddr, out);
1798 		uaddr += PAGE_SIZE;
1799 	}
1800 
1801 out:
1802 	user_write_access_end();
1803 	if (size > uaddr - start)
1804 		return size - (uaddr - start);
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(fault_in_writeable);
1808 
1809 /**
1810  * fault_in_subpage_writeable - fault in an address range for writing
1811  * @uaddr: start of address range
1812  * @size: size of address range
1813  *
1814  * Fault in a user address range for writing while checking for permissions at
1815  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1816  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1817  *
1818  * Returns the number of bytes not faulted in (like copy_to_user() and
1819  * copy_from_user()).
1820  */
1821 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1822 {
1823 	size_t faulted_in;
1824 
1825 	/*
1826 	 * Attempt faulting in at page granularity first for page table
1827 	 * permission checking. The arch-specific probe_subpage_writeable()
1828 	 * functions may not check for this.
1829 	 */
1830 	faulted_in = size - fault_in_writeable(uaddr, size);
1831 	if (faulted_in)
1832 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1833 
1834 	return size - faulted_in;
1835 }
1836 EXPORT_SYMBOL(fault_in_subpage_writeable);
1837 
1838 /*
1839  * fault_in_safe_writeable - fault in an address range for writing
1840  * @uaddr: start of address range
1841  * @size: length of address range
1842  *
1843  * Faults in an address range for writing.  This is primarily useful when we
1844  * already know that some or all of the pages in the address range aren't in
1845  * memory.
1846  *
1847  * Unlike fault_in_writeable(), this function is non-destructive.
1848  *
1849  * Note that we don't pin or otherwise hold the pages referenced that we fault
1850  * in.  There's no guarantee that they'll stay in memory for any duration of
1851  * time.
1852  *
1853  * Returns the number of bytes not faulted in, like copy_to_user() and
1854  * copy_from_user().
1855  */
1856 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1857 {
1858 	unsigned long start = (unsigned long)uaddr, end;
1859 	struct mm_struct *mm = current->mm;
1860 	bool unlocked = false;
1861 
1862 	if (unlikely(size == 0))
1863 		return 0;
1864 	end = PAGE_ALIGN(start + size);
1865 	if (end < start)
1866 		end = 0;
1867 
1868 	mmap_read_lock(mm);
1869 	do {
1870 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1871 			break;
1872 		start = (start + PAGE_SIZE) & PAGE_MASK;
1873 	} while (start != end);
1874 	mmap_read_unlock(mm);
1875 
1876 	if (size > (unsigned long)uaddr - start)
1877 		return size - ((unsigned long)uaddr - start);
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL(fault_in_safe_writeable);
1881 
1882 /**
1883  * fault_in_readable - fault in userspace address range for reading
1884  * @uaddr: start of user address range
1885  * @size: size of user address range
1886  *
1887  * Returns the number of bytes not faulted in (like copy_to_user() and
1888  * copy_from_user()).
1889  */
1890 size_t fault_in_readable(const char __user *uaddr, size_t size)
1891 {
1892 	const char __user *start = uaddr, *end;
1893 	volatile char c;
1894 
1895 	if (unlikely(size == 0))
1896 		return 0;
1897 	if (!user_read_access_begin(uaddr, size))
1898 		return size;
1899 	if (!PAGE_ALIGNED(uaddr)) {
1900 		unsafe_get_user(c, uaddr, out);
1901 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1902 	}
1903 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1904 	if (unlikely(end < start))
1905 		end = NULL;
1906 	while (uaddr != end) {
1907 		unsafe_get_user(c, uaddr, out);
1908 		uaddr += PAGE_SIZE;
1909 	}
1910 
1911 out:
1912 	user_read_access_end();
1913 	(void)c;
1914 	if (size > uaddr - start)
1915 		return size - (uaddr - start);
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(fault_in_readable);
1919 
1920 /**
1921  * get_dump_page() - pin user page in memory while writing it to core dump
1922  * @addr: user address
1923  *
1924  * Returns struct page pointer of user page pinned for dump,
1925  * to be freed afterwards by put_page().
1926  *
1927  * Returns NULL on any kind of failure - a hole must then be inserted into
1928  * the corefile, to preserve alignment with its headers; and also returns
1929  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1930  * allowing a hole to be left in the corefile to save disk space.
1931  *
1932  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1933  */
1934 #ifdef CONFIG_ELF_CORE
1935 struct page *get_dump_page(unsigned long addr)
1936 {
1937 	struct page *page;
1938 	int locked = 0;
1939 	int ret;
1940 
1941 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, NULL,
1942 				      &locked,
1943 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1944 	return (ret == 1) ? page : NULL;
1945 }
1946 #endif /* CONFIG_ELF_CORE */
1947 
1948 #ifdef CONFIG_MIGRATION
1949 /*
1950  * Returns the number of collected pages. Return value is always >= 0.
1951  */
1952 static unsigned long collect_longterm_unpinnable_pages(
1953 					struct list_head *movable_page_list,
1954 					unsigned long nr_pages,
1955 					struct page **pages)
1956 {
1957 	unsigned long i, collected = 0;
1958 	struct folio *prev_folio = NULL;
1959 	bool drain_allow = true;
1960 
1961 	for (i = 0; i < nr_pages; i++) {
1962 		struct folio *folio = page_folio(pages[i]);
1963 
1964 		if (folio == prev_folio)
1965 			continue;
1966 		prev_folio = folio;
1967 
1968 		if (folio_is_longterm_pinnable(folio))
1969 			continue;
1970 
1971 		collected++;
1972 
1973 		if (folio_is_device_coherent(folio))
1974 			continue;
1975 
1976 		if (folio_test_hugetlb(folio)) {
1977 			isolate_hugetlb(folio, movable_page_list);
1978 			continue;
1979 		}
1980 
1981 		if (!folio_test_lru(folio) && drain_allow) {
1982 			lru_add_drain_all();
1983 			drain_allow = false;
1984 		}
1985 
1986 		if (!folio_isolate_lru(folio))
1987 			continue;
1988 
1989 		list_add_tail(&folio->lru, movable_page_list);
1990 		node_stat_mod_folio(folio,
1991 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1992 				    folio_nr_pages(folio));
1993 	}
1994 
1995 	return collected;
1996 }
1997 
1998 /*
1999  * Unpins all pages and migrates device coherent pages and movable_page_list.
2000  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2001  * (or partial success).
2002  */
2003 static int migrate_longterm_unpinnable_pages(
2004 					struct list_head *movable_page_list,
2005 					unsigned long nr_pages,
2006 					struct page **pages)
2007 {
2008 	int ret;
2009 	unsigned long i;
2010 
2011 	for (i = 0; i < nr_pages; i++) {
2012 		struct folio *folio = page_folio(pages[i]);
2013 
2014 		if (folio_is_device_coherent(folio)) {
2015 			/*
2016 			 * Migration will fail if the page is pinned, so convert
2017 			 * the pin on the source page to a normal reference.
2018 			 */
2019 			pages[i] = NULL;
2020 			folio_get(folio);
2021 			gup_put_folio(folio, 1, FOLL_PIN);
2022 
2023 			if (migrate_device_coherent_page(&folio->page)) {
2024 				ret = -EBUSY;
2025 				goto err;
2026 			}
2027 
2028 			continue;
2029 		}
2030 
2031 		/*
2032 		 * We can't migrate pages with unexpected references, so drop
2033 		 * the reference obtained by __get_user_pages_locked().
2034 		 * Migrating pages have been added to movable_page_list after
2035 		 * calling folio_isolate_lru() which takes a reference so the
2036 		 * page won't be freed if it's migrating.
2037 		 */
2038 		unpin_user_page(pages[i]);
2039 		pages[i] = NULL;
2040 	}
2041 
2042 	if (!list_empty(movable_page_list)) {
2043 		struct migration_target_control mtc = {
2044 			.nid = NUMA_NO_NODE,
2045 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2046 		};
2047 
2048 		if (migrate_pages(movable_page_list, alloc_migration_target,
2049 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2050 				  MR_LONGTERM_PIN, NULL)) {
2051 			ret = -ENOMEM;
2052 			goto err;
2053 		}
2054 	}
2055 
2056 	putback_movable_pages(movable_page_list);
2057 
2058 	return -EAGAIN;
2059 
2060 err:
2061 	for (i = 0; i < nr_pages; i++)
2062 		if (pages[i])
2063 			unpin_user_page(pages[i]);
2064 	putback_movable_pages(movable_page_list);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2071  * pages in the range are required to be pinned via FOLL_PIN, before calling
2072  * this routine.
2073  *
2074  * If any pages in the range are not allowed to be pinned, then this routine
2075  * will migrate those pages away, unpin all the pages in the range and return
2076  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2077  * call this routine again.
2078  *
2079  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2080  * The caller should give up, and propagate the error back up the call stack.
2081  *
2082  * If everything is OK and all pages in the range are allowed to be pinned, then
2083  * this routine leaves all pages pinned and returns zero for success.
2084  */
2085 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2086 					    struct page **pages)
2087 {
2088 	unsigned long collected;
2089 	LIST_HEAD(movable_page_list);
2090 
2091 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2092 						nr_pages, pages);
2093 	if (!collected)
2094 		return 0;
2095 
2096 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2097 						pages);
2098 }
2099 #else
2100 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2101 					    struct page **pages)
2102 {
2103 	return 0;
2104 }
2105 #endif /* CONFIG_MIGRATION */
2106 
2107 /*
2108  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2109  * allows us to process the FOLL_LONGTERM flag.
2110  */
2111 static long __gup_longterm_locked(struct mm_struct *mm,
2112 				  unsigned long start,
2113 				  unsigned long nr_pages,
2114 				  struct page **pages,
2115 				  struct vm_area_struct **vmas,
2116 				  int *locked,
2117 				  unsigned int gup_flags)
2118 {
2119 	unsigned int flags;
2120 	long rc, nr_pinned_pages;
2121 
2122 	if (!(gup_flags & FOLL_LONGTERM))
2123 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2124 					       locked, gup_flags);
2125 
2126 	flags = memalloc_pin_save();
2127 	do {
2128 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2129 							  pages, vmas, locked,
2130 							  gup_flags);
2131 		if (nr_pinned_pages <= 0) {
2132 			rc = nr_pinned_pages;
2133 			break;
2134 		}
2135 
2136 		/* FOLL_LONGTERM implies FOLL_PIN */
2137 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2138 	} while (rc == -EAGAIN);
2139 	memalloc_pin_restore(flags);
2140 	return rc ? rc : nr_pinned_pages;
2141 }
2142 
2143 /*
2144  * Check that the given flags are valid for the exported gup/pup interface, and
2145  * update them with the required flags that the caller must have set.
2146  */
2147 static bool is_valid_gup_args(struct page **pages, struct vm_area_struct **vmas,
2148 			      int *locked, unsigned int *gup_flags_p,
2149 			      unsigned int to_set)
2150 {
2151 	unsigned int gup_flags = *gup_flags_p;
2152 
2153 	/*
2154 	 * These flags not allowed to be specified externally to the gup
2155 	 * interfaces:
2156 	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2157 	 * - FOLL_REMOTE is internal only and used on follow_page()
2158 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2159 	 */
2160 	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2161 				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2162 		return false;
2163 
2164 	gup_flags |= to_set;
2165 	if (locked) {
2166 		/* At the external interface locked must be set */
2167 		if (WARN_ON_ONCE(*locked != 1))
2168 			return false;
2169 
2170 		gup_flags |= FOLL_UNLOCKABLE;
2171 	}
2172 
2173 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2174 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2175 			 (FOLL_PIN | FOLL_GET)))
2176 		return false;
2177 
2178 	/* LONGTERM can only be specified when pinning */
2179 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2180 		return false;
2181 
2182 	/* Pages input must be given if using GET/PIN */
2183 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2184 		return false;
2185 
2186 	/* We want to allow the pgmap to be hot-unplugged at all times */
2187 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2188 			 (gup_flags & FOLL_PCI_P2PDMA)))
2189 		return false;
2190 
2191 	/*
2192 	 * Can't use VMAs with locked, as locked allows GUP to unlock
2193 	 * which invalidates the vmas array
2194 	 */
2195 	if (WARN_ON_ONCE(vmas && (gup_flags & FOLL_UNLOCKABLE)))
2196 		return false;
2197 
2198 	*gup_flags_p = gup_flags;
2199 	return true;
2200 }
2201 
2202 #ifdef CONFIG_MMU
2203 /**
2204  * get_user_pages_remote() - pin user pages in memory
2205  * @mm:		mm_struct of target mm
2206  * @start:	starting user address
2207  * @nr_pages:	number of pages from start to pin
2208  * @gup_flags:	flags modifying lookup behaviour
2209  * @pages:	array that receives pointers to the pages pinned.
2210  *		Should be at least nr_pages long. Or NULL, if caller
2211  *		only intends to ensure the pages are faulted in.
2212  * @vmas:	array of pointers to vmas corresponding to each page.
2213  *		Or NULL if the caller does not require them.
2214  * @locked:	pointer to lock flag indicating whether lock is held and
2215  *		subsequently whether VM_FAULT_RETRY functionality can be
2216  *		utilised. Lock must initially be held.
2217  *
2218  * Returns either number of pages pinned (which may be less than the
2219  * number requested), or an error. Details about the return value:
2220  *
2221  * -- If nr_pages is 0, returns 0.
2222  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2223  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2224  *    pages pinned. Again, this may be less than nr_pages.
2225  *
2226  * The caller is responsible for releasing returned @pages, via put_page().
2227  *
2228  * @vmas are valid only as long as mmap_lock is held.
2229  *
2230  * Must be called with mmap_lock held for read or write.
2231  *
2232  * get_user_pages_remote walks a process's page tables and takes a reference
2233  * to each struct page that each user address corresponds to at a given
2234  * instant. That is, it takes the page that would be accessed if a user
2235  * thread accesses the given user virtual address at that instant.
2236  *
2237  * This does not guarantee that the page exists in the user mappings when
2238  * get_user_pages_remote returns, and there may even be a completely different
2239  * page there in some cases (eg. if mmapped pagecache has been invalidated
2240  * and subsequently re-faulted). However it does guarantee that the page
2241  * won't be freed completely. And mostly callers simply care that the page
2242  * contains data that was valid *at some point in time*. Typically, an IO
2243  * or similar operation cannot guarantee anything stronger anyway because
2244  * locks can't be held over the syscall boundary.
2245  *
2246  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2247  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2248  * be called after the page is finished with, and before put_page is called.
2249  *
2250  * get_user_pages_remote is typically used for fewer-copy IO operations,
2251  * to get a handle on the memory by some means other than accesses
2252  * via the user virtual addresses. The pages may be submitted for
2253  * DMA to devices or accessed via their kernel linear mapping (via the
2254  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2255  *
2256  * See also get_user_pages_fast, for performance critical applications.
2257  *
2258  * get_user_pages_remote should be phased out in favor of
2259  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2260  * should use get_user_pages_remote because it cannot pass
2261  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2262  */
2263 long get_user_pages_remote(struct mm_struct *mm,
2264 		unsigned long start, unsigned long nr_pages,
2265 		unsigned int gup_flags, struct page **pages,
2266 		struct vm_area_struct **vmas, int *locked)
2267 {
2268 	int local_locked = 1;
2269 
2270 	if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
2271 			       FOLL_TOUCH | FOLL_REMOTE))
2272 		return -EINVAL;
2273 
2274 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2275 				       locked ? locked : &local_locked,
2276 				       gup_flags);
2277 }
2278 EXPORT_SYMBOL(get_user_pages_remote);
2279 
2280 #else /* CONFIG_MMU */
2281 long get_user_pages_remote(struct mm_struct *mm,
2282 			   unsigned long start, unsigned long nr_pages,
2283 			   unsigned int gup_flags, struct page **pages,
2284 			   struct vm_area_struct **vmas, int *locked)
2285 {
2286 	return 0;
2287 }
2288 #endif /* !CONFIG_MMU */
2289 
2290 /**
2291  * get_user_pages() - pin user pages in memory
2292  * @start:      starting user address
2293  * @nr_pages:   number of pages from start to pin
2294  * @gup_flags:  flags modifying lookup behaviour
2295  * @pages:      array that receives pointers to the pages pinned.
2296  *              Should be at least nr_pages long. Or NULL, if caller
2297  *              only intends to ensure the pages are faulted in.
2298  * @vmas:       array of pointers to vmas corresponding to each page.
2299  *              Or NULL if the caller does not require them.
2300  *
2301  * This is the same as get_user_pages_remote(), just with a less-flexible
2302  * calling convention where we assume that the mm being operated on belongs to
2303  * the current task, and doesn't allow passing of a locked parameter.  We also
2304  * obviously don't pass FOLL_REMOTE in here.
2305  */
2306 long get_user_pages(unsigned long start, unsigned long nr_pages,
2307 		unsigned int gup_flags, struct page **pages,
2308 		struct vm_area_struct **vmas)
2309 {
2310 	int locked = 1;
2311 
2312 	if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_TOUCH))
2313 		return -EINVAL;
2314 
2315 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2316 				       vmas, &locked, gup_flags);
2317 }
2318 EXPORT_SYMBOL(get_user_pages);
2319 
2320 /*
2321  * get_user_pages_unlocked() is suitable to replace the form:
2322  *
2323  *      mmap_read_lock(mm);
2324  *      get_user_pages(mm, ..., pages, NULL);
2325  *      mmap_read_unlock(mm);
2326  *
2327  *  with:
2328  *
2329  *      get_user_pages_unlocked(mm, ..., pages);
2330  *
2331  * It is functionally equivalent to get_user_pages_fast so
2332  * get_user_pages_fast should be used instead if specific gup_flags
2333  * (e.g. FOLL_FORCE) are not required.
2334  */
2335 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2336 			     struct page **pages, unsigned int gup_flags)
2337 {
2338 	int locked = 0;
2339 
2340 	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
2341 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2342 		return -EINVAL;
2343 
2344 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2345 				       NULL, &locked, gup_flags);
2346 }
2347 EXPORT_SYMBOL(get_user_pages_unlocked);
2348 
2349 /*
2350  * Fast GUP
2351  *
2352  * get_user_pages_fast attempts to pin user pages by walking the page
2353  * tables directly and avoids taking locks. Thus the walker needs to be
2354  * protected from page table pages being freed from under it, and should
2355  * block any THP splits.
2356  *
2357  * One way to achieve this is to have the walker disable interrupts, and
2358  * rely on IPIs from the TLB flushing code blocking before the page table
2359  * pages are freed. This is unsuitable for architectures that do not need
2360  * to broadcast an IPI when invalidating TLBs.
2361  *
2362  * Another way to achieve this is to batch up page table containing pages
2363  * belonging to more than one mm_user, then rcu_sched a callback to free those
2364  * pages. Disabling interrupts will allow the fast_gup walker to both block
2365  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2366  * (which is a relatively rare event). The code below adopts this strategy.
2367  *
2368  * Before activating this code, please be aware that the following assumptions
2369  * are currently made:
2370  *
2371  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2372  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2373  *
2374  *  *) ptes can be read atomically by the architecture.
2375  *
2376  *  *) access_ok is sufficient to validate userspace address ranges.
2377  *
2378  * The last two assumptions can be relaxed by the addition of helper functions.
2379  *
2380  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2381  */
2382 #ifdef CONFIG_HAVE_FAST_GUP
2383 
2384 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2385 					    unsigned int flags,
2386 					    struct page **pages)
2387 {
2388 	while ((*nr) - nr_start) {
2389 		struct page *page = pages[--(*nr)];
2390 
2391 		ClearPageReferenced(page);
2392 		if (flags & FOLL_PIN)
2393 			unpin_user_page(page);
2394 		else
2395 			put_page(page);
2396 	}
2397 }
2398 
2399 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2400 /*
2401  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2402  * operations.
2403  *
2404  * To pin the page, fast-gup needs to do below in order:
2405  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2406  *
2407  * For the rest of pgtable operations where pgtable updates can be racy
2408  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2409  * is pinned.
2410  *
2411  * Above will work for all pte-level operations, including THP split.
2412  *
2413  * For THP collapse, it's a bit more complicated because fast-gup may be
2414  * walking a pgtable page that is being freed (pte is still valid but pmd
2415  * can be cleared already).  To avoid race in such condition, we need to
2416  * also check pmd here to make sure pmd doesn't change (corresponds to
2417  * pmdp_collapse_flush() in the THP collapse code path).
2418  */
2419 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2420 			 unsigned long end, unsigned int flags,
2421 			 struct page **pages, int *nr)
2422 {
2423 	struct dev_pagemap *pgmap = NULL;
2424 	int nr_start = *nr, ret = 0;
2425 	pte_t *ptep, *ptem;
2426 
2427 	ptem = ptep = pte_offset_map(&pmd, addr);
2428 	do {
2429 		pte_t pte = ptep_get_lockless(ptep);
2430 		struct page *page;
2431 		struct folio *folio;
2432 
2433 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2434 			goto pte_unmap;
2435 
2436 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2437 			goto pte_unmap;
2438 
2439 		if (pte_devmap(pte)) {
2440 			if (unlikely(flags & FOLL_LONGTERM))
2441 				goto pte_unmap;
2442 
2443 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2444 			if (unlikely(!pgmap)) {
2445 				undo_dev_pagemap(nr, nr_start, flags, pages);
2446 				goto pte_unmap;
2447 			}
2448 		} else if (pte_special(pte))
2449 			goto pte_unmap;
2450 
2451 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2452 		page = pte_page(pte);
2453 
2454 		folio = try_grab_folio(page, 1, flags);
2455 		if (!folio)
2456 			goto pte_unmap;
2457 
2458 		if (unlikely(page_is_secretmem(page))) {
2459 			gup_put_folio(folio, 1, flags);
2460 			goto pte_unmap;
2461 		}
2462 
2463 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2464 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2465 			gup_put_folio(folio, 1, flags);
2466 			goto pte_unmap;
2467 		}
2468 
2469 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2470 			gup_put_folio(folio, 1, flags);
2471 			goto pte_unmap;
2472 		}
2473 
2474 		/*
2475 		 * We need to make the page accessible if and only if we are
2476 		 * going to access its content (the FOLL_PIN case).  Please
2477 		 * see Documentation/core-api/pin_user_pages.rst for
2478 		 * details.
2479 		 */
2480 		if (flags & FOLL_PIN) {
2481 			ret = arch_make_page_accessible(page);
2482 			if (ret) {
2483 				gup_put_folio(folio, 1, flags);
2484 				goto pte_unmap;
2485 			}
2486 		}
2487 		folio_set_referenced(folio);
2488 		pages[*nr] = page;
2489 		(*nr)++;
2490 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2491 
2492 	ret = 1;
2493 
2494 pte_unmap:
2495 	if (pgmap)
2496 		put_dev_pagemap(pgmap);
2497 	pte_unmap(ptem);
2498 	return ret;
2499 }
2500 #else
2501 
2502 /*
2503  * If we can't determine whether or not a pte is special, then fail immediately
2504  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2505  * to be special.
2506  *
2507  * For a futex to be placed on a THP tail page, get_futex_key requires a
2508  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2509  * useful to have gup_huge_pmd even if we can't operate on ptes.
2510  */
2511 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2512 			 unsigned long end, unsigned int flags,
2513 			 struct page **pages, int *nr)
2514 {
2515 	return 0;
2516 }
2517 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2518 
2519 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2520 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2521 			     unsigned long end, unsigned int flags,
2522 			     struct page **pages, int *nr)
2523 {
2524 	int nr_start = *nr;
2525 	struct dev_pagemap *pgmap = NULL;
2526 
2527 	do {
2528 		struct page *page = pfn_to_page(pfn);
2529 
2530 		pgmap = get_dev_pagemap(pfn, pgmap);
2531 		if (unlikely(!pgmap)) {
2532 			undo_dev_pagemap(nr, nr_start, flags, pages);
2533 			break;
2534 		}
2535 
2536 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2537 			undo_dev_pagemap(nr, nr_start, flags, pages);
2538 			break;
2539 		}
2540 
2541 		SetPageReferenced(page);
2542 		pages[*nr] = page;
2543 		if (unlikely(try_grab_page(page, flags))) {
2544 			undo_dev_pagemap(nr, nr_start, flags, pages);
2545 			break;
2546 		}
2547 		(*nr)++;
2548 		pfn++;
2549 	} while (addr += PAGE_SIZE, addr != end);
2550 
2551 	put_dev_pagemap(pgmap);
2552 	return addr == end;
2553 }
2554 
2555 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2556 				 unsigned long end, unsigned int flags,
2557 				 struct page **pages, int *nr)
2558 {
2559 	unsigned long fault_pfn;
2560 	int nr_start = *nr;
2561 
2562 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2563 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2564 		return 0;
2565 
2566 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2567 		undo_dev_pagemap(nr, nr_start, flags, pages);
2568 		return 0;
2569 	}
2570 	return 1;
2571 }
2572 
2573 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2574 				 unsigned long end, unsigned int flags,
2575 				 struct page **pages, int *nr)
2576 {
2577 	unsigned long fault_pfn;
2578 	int nr_start = *nr;
2579 
2580 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2581 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2582 		return 0;
2583 
2584 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2585 		undo_dev_pagemap(nr, nr_start, flags, pages);
2586 		return 0;
2587 	}
2588 	return 1;
2589 }
2590 #else
2591 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2592 				 unsigned long end, unsigned int flags,
2593 				 struct page **pages, int *nr)
2594 {
2595 	BUILD_BUG();
2596 	return 0;
2597 }
2598 
2599 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2600 				 unsigned long end, unsigned int flags,
2601 				 struct page **pages, int *nr)
2602 {
2603 	BUILD_BUG();
2604 	return 0;
2605 }
2606 #endif
2607 
2608 static int record_subpages(struct page *page, unsigned long addr,
2609 			   unsigned long end, struct page **pages)
2610 {
2611 	int nr;
2612 
2613 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2614 		pages[nr] = nth_page(page, nr);
2615 
2616 	return nr;
2617 }
2618 
2619 #ifdef CONFIG_ARCH_HAS_HUGEPD
2620 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2621 				      unsigned long sz)
2622 {
2623 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2624 	return (__boundary - 1 < end - 1) ? __boundary : end;
2625 }
2626 
2627 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2628 		       unsigned long end, unsigned int flags,
2629 		       struct page **pages, int *nr)
2630 {
2631 	unsigned long pte_end;
2632 	struct page *page;
2633 	struct folio *folio;
2634 	pte_t pte;
2635 	int refs;
2636 
2637 	pte_end = (addr + sz) & ~(sz-1);
2638 	if (pte_end < end)
2639 		end = pte_end;
2640 
2641 	pte = huge_ptep_get(ptep);
2642 
2643 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2644 		return 0;
2645 
2646 	/* hugepages are never "special" */
2647 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2648 
2649 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2650 	refs = record_subpages(page, addr, end, pages + *nr);
2651 
2652 	folio = try_grab_folio(page, refs, flags);
2653 	if (!folio)
2654 		return 0;
2655 
2656 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2657 		gup_put_folio(folio, refs, flags);
2658 		return 0;
2659 	}
2660 
2661 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2662 		gup_put_folio(folio, refs, flags);
2663 		return 0;
2664 	}
2665 
2666 	*nr += refs;
2667 	folio_set_referenced(folio);
2668 	return 1;
2669 }
2670 
2671 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2672 		unsigned int pdshift, unsigned long end, unsigned int flags,
2673 		struct page **pages, int *nr)
2674 {
2675 	pte_t *ptep;
2676 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2677 	unsigned long next;
2678 
2679 	ptep = hugepte_offset(hugepd, addr, pdshift);
2680 	do {
2681 		next = hugepte_addr_end(addr, end, sz);
2682 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2683 			return 0;
2684 	} while (ptep++, addr = next, addr != end);
2685 
2686 	return 1;
2687 }
2688 #else
2689 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2690 		unsigned int pdshift, unsigned long end, unsigned int flags,
2691 		struct page **pages, int *nr)
2692 {
2693 	return 0;
2694 }
2695 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2696 
2697 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2698 			unsigned long end, unsigned int flags,
2699 			struct page **pages, int *nr)
2700 {
2701 	struct page *page;
2702 	struct folio *folio;
2703 	int refs;
2704 
2705 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2706 		return 0;
2707 
2708 	if (pmd_devmap(orig)) {
2709 		if (unlikely(flags & FOLL_LONGTERM))
2710 			return 0;
2711 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2712 					     pages, nr);
2713 	}
2714 
2715 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2716 	refs = record_subpages(page, addr, end, pages + *nr);
2717 
2718 	folio = try_grab_folio(page, refs, flags);
2719 	if (!folio)
2720 		return 0;
2721 
2722 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2723 		gup_put_folio(folio, refs, flags);
2724 		return 0;
2725 	}
2726 
2727 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2728 		gup_put_folio(folio, refs, flags);
2729 		return 0;
2730 	}
2731 
2732 	*nr += refs;
2733 	folio_set_referenced(folio);
2734 	return 1;
2735 }
2736 
2737 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2738 			unsigned long end, unsigned int flags,
2739 			struct page **pages, int *nr)
2740 {
2741 	struct page *page;
2742 	struct folio *folio;
2743 	int refs;
2744 
2745 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2746 		return 0;
2747 
2748 	if (pud_devmap(orig)) {
2749 		if (unlikely(flags & FOLL_LONGTERM))
2750 			return 0;
2751 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2752 					     pages, nr);
2753 	}
2754 
2755 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2756 	refs = record_subpages(page, addr, end, pages + *nr);
2757 
2758 	folio = try_grab_folio(page, refs, flags);
2759 	if (!folio)
2760 		return 0;
2761 
2762 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2763 		gup_put_folio(folio, refs, flags);
2764 		return 0;
2765 	}
2766 
2767 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2768 		gup_put_folio(folio, refs, flags);
2769 		return 0;
2770 	}
2771 
2772 	*nr += refs;
2773 	folio_set_referenced(folio);
2774 	return 1;
2775 }
2776 
2777 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2778 			unsigned long end, unsigned int flags,
2779 			struct page **pages, int *nr)
2780 {
2781 	int refs;
2782 	struct page *page;
2783 	struct folio *folio;
2784 
2785 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2786 		return 0;
2787 
2788 	BUILD_BUG_ON(pgd_devmap(orig));
2789 
2790 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2791 	refs = record_subpages(page, addr, end, pages + *nr);
2792 
2793 	folio = try_grab_folio(page, refs, flags);
2794 	if (!folio)
2795 		return 0;
2796 
2797 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2798 		gup_put_folio(folio, refs, flags);
2799 		return 0;
2800 	}
2801 
2802 	*nr += refs;
2803 	folio_set_referenced(folio);
2804 	return 1;
2805 }
2806 
2807 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2808 		unsigned int flags, struct page **pages, int *nr)
2809 {
2810 	unsigned long next;
2811 	pmd_t *pmdp;
2812 
2813 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2814 	do {
2815 		pmd_t pmd = pmdp_get_lockless(pmdp);
2816 
2817 		next = pmd_addr_end(addr, end);
2818 		if (!pmd_present(pmd))
2819 			return 0;
2820 
2821 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2822 			     pmd_devmap(pmd))) {
2823 			if (pmd_protnone(pmd) &&
2824 			    !gup_can_follow_protnone(flags))
2825 				return 0;
2826 
2827 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2828 				pages, nr))
2829 				return 0;
2830 
2831 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2832 			/*
2833 			 * architecture have different format for hugetlbfs
2834 			 * pmd format and THP pmd format
2835 			 */
2836 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2837 					 PMD_SHIFT, next, flags, pages, nr))
2838 				return 0;
2839 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2840 			return 0;
2841 	} while (pmdp++, addr = next, addr != end);
2842 
2843 	return 1;
2844 }
2845 
2846 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2847 			 unsigned int flags, struct page **pages, int *nr)
2848 {
2849 	unsigned long next;
2850 	pud_t *pudp;
2851 
2852 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2853 	do {
2854 		pud_t pud = READ_ONCE(*pudp);
2855 
2856 		next = pud_addr_end(addr, end);
2857 		if (unlikely(!pud_present(pud)))
2858 			return 0;
2859 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2860 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2861 					  pages, nr))
2862 				return 0;
2863 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2864 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2865 					 PUD_SHIFT, next, flags, pages, nr))
2866 				return 0;
2867 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2868 			return 0;
2869 	} while (pudp++, addr = next, addr != end);
2870 
2871 	return 1;
2872 }
2873 
2874 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2875 			 unsigned int flags, struct page **pages, int *nr)
2876 {
2877 	unsigned long next;
2878 	p4d_t *p4dp;
2879 
2880 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2881 	do {
2882 		p4d_t p4d = READ_ONCE(*p4dp);
2883 
2884 		next = p4d_addr_end(addr, end);
2885 		if (p4d_none(p4d))
2886 			return 0;
2887 		BUILD_BUG_ON(p4d_huge(p4d));
2888 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2889 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2890 					 P4D_SHIFT, next, flags, pages, nr))
2891 				return 0;
2892 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2893 			return 0;
2894 	} while (p4dp++, addr = next, addr != end);
2895 
2896 	return 1;
2897 }
2898 
2899 static void gup_pgd_range(unsigned long addr, unsigned long end,
2900 		unsigned int flags, struct page **pages, int *nr)
2901 {
2902 	unsigned long next;
2903 	pgd_t *pgdp;
2904 
2905 	pgdp = pgd_offset(current->mm, addr);
2906 	do {
2907 		pgd_t pgd = READ_ONCE(*pgdp);
2908 
2909 		next = pgd_addr_end(addr, end);
2910 		if (pgd_none(pgd))
2911 			return;
2912 		if (unlikely(pgd_huge(pgd))) {
2913 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2914 					  pages, nr))
2915 				return;
2916 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2917 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2918 					 PGDIR_SHIFT, next, flags, pages, nr))
2919 				return;
2920 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2921 			return;
2922 	} while (pgdp++, addr = next, addr != end);
2923 }
2924 #else
2925 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2926 		unsigned int flags, struct page **pages, int *nr)
2927 {
2928 }
2929 #endif /* CONFIG_HAVE_FAST_GUP */
2930 
2931 #ifndef gup_fast_permitted
2932 /*
2933  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2934  * we need to fall back to the slow version:
2935  */
2936 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2937 {
2938 	return true;
2939 }
2940 #endif
2941 
2942 static unsigned long lockless_pages_from_mm(unsigned long start,
2943 					    unsigned long end,
2944 					    unsigned int gup_flags,
2945 					    struct page **pages)
2946 {
2947 	unsigned long flags;
2948 	int nr_pinned = 0;
2949 	unsigned seq;
2950 
2951 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2952 	    !gup_fast_permitted(start, end))
2953 		return 0;
2954 
2955 	if (gup_flags & FOLL_PIN) {
2956 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2957 		if (seq & 1)
2958 			return 0;
2959 	}
2960 
2961 	/*
2962 	 * Disable interrupts. The nested form is used, in order to allow full,
2963 	 * general purpose use of this routine.
2964 	 *
2965 	 * With interrupts disabled, we block page table pages from being freed
2966 	 * from under us. See struct mmu_table_batch comments in
2967 	 * include/asm-generic/tlb.h for more details.
2968 	 *
2969 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2970 	 * that come from THPs splitting.
2971 	 */
2972 	local_irq_save(flags);
2973 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2974 	local_irq_restore(flags);
2975 
2976 	/*
2977 	 * When pinning pages for DMA there could be a concurrent write protect
2978 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2979 	 */
2980 	if (gup_flags & FOLL_PIN) {
2981 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2982 			unpin_user_pages_lockless(pages, nr_pinned);
2983 			return 0;
2984 		} else {
2985 			sanity_check_pinned_pages(pages, nr_pinned);
2986 		}
2987 	}
2988 	return nr_pinned;
2989 }
2990 
2991 static int internal_get_user_pages_fast(unsigned long start,
2992 					unsigned long nr_pages,
2993 					unsigned int gup_flags,
2994 					struct page **pages)
2995 {
2996 	unsigned long len, end;
2997 	unsigned long nr_pinned;
2998 	int locked = 0;
2999 	int ret;
3000 
3001 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3002 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3003 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3004 				       FOLL_PCI_P2PDMA)))
3005 		return -EINVAL;
3006 
3007 	if (gup_flags & FOLL_PIN)
3008 		mm_set_has_pinned_flag(&current->mm->flags);
3009 
3010 	if (!(gup_flags & FOLL_FAST_ONLY))
3011 		might_lock_read(&current->mm->mmap_lock);
3012 
3013 	start = untagged_addr(start) & PAGE_MASK;
3014 	len = nr_pages << PAGE_SHIFT;
3015 	if (check_add_overflow(start, len, &end))
3016 		return 0;
3017 	if (end > TASK_SIZE_MAX)
3018 		return -EFAULT;
3019 	if (unlikely(!access_ok((void __user *)start, len)))
3020 		return -EFAULT;
3021 
3022 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3023 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3024 		return nr_pinned;
3025 
3026 	/* Slow path: try to get the remaining pages with get_user_pages */
3027 	start += nr_pinned << PAGE_SHIFT;
3028 	pages += nr_pinned;
3029 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3030 				    pages, NULL, &locked,
3031 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3032 	if (ret < 0) {
3033 		/*
3034 		 * The caller has to unpin the pages we already pinned so
3035 		 * returning -errno is not an option
3036 		 */
3037 		if (nr_pinned)
3038 			return nr_pinned;
3039 		return ret;
3040 	}
3041 	return ret + nr_pinned;
3042 }
3043 
3044 /**
3045  * get_user_pages_fast_only() - pin user pages in memory
3046  * @start:      starting user address
3047  * @nr_pages:   number of pages from start to pin
3048  * @gup_flags:  flags modifying pin behaviour
3049  * @pages:      array that receives pointers to the pages pinned.
3050  *              Should be at least nr_pages long.
3051  *
3052  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3053  * the regular GUP.
3054  *
3055  * If the architecture does not support this function, simply return with no
3056  * pages pinned.
3057  *
3058  * Careful, careful! COW breaking can go either way, so a non-write
3059  * access can get ambiguous page results. If you call this function without
3060  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3061  */
3062 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3063 			     unsigned int gup_flags, struct page **pages)
3064 {
3065 	/*
3066 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3067 	 * because gup fast is always a "pin with a +1 page refcount" request.
3068 	 *
3069 	 * FOLL_FAST_ONLY is required in order to match the API description of
3070 	 * this routine: no fall back to regular ("slow") GUP.
3071 	 */
3072 	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3073 			       FOLL_GET | FOLL_FAST_ONLY))
3074 		return -EINVAL;
3075 
3076 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3077 }
3078 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3079 
3080 /**
3081  * get_user_pages_fast() - pin user pages in memory
3082  * @start:      starting user address
3083  * @nr_pages:   number of pages from start to pin
3084  * @gup_flags:  flags modifying pin behaviour
3085  * @pages:      array that receives pointers to the pages pinned.
3086  *              Should be at least nr_pages long.
3087  *
3088  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3089  * If not successful, it will fall back to taking the lock and
3090  * calling get_user_pages().
3091  *
3092  * Returns number of pages pinned. This may be fewer than the number requested.
3093  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3094  * -errno.
3095  */
3096 int get_user_pages_fast(unsigned long start, int nr_pages,
3097 			unsigned int gup_flags, struct page **pages)
3098 {
3099 	/*
3100 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3101 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3102 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3103 	 * request.
3104 	 */
3105 	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_GET))
3106 		return -EINVAL;
3107 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3108 }
3109 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3110 
3111 /**
3112  * pin_user_pages_fast() - pin user pages in memory without taking locks
3113  *
3114  * @start:      starting user address
3115  * @nr_pages:   number of pages from start to pin
3116  * @gup_flags:  flags modifying pin behaviour
3117  * @pages:      array that receives pointers to the pages pinned.
3118  *              Should be at least nr_pages long.
3119  *
3120  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3121  * get_user_pages_fast() for documentation on the function arguments, because
3122  * the arguments here are identical.
3123  *
3124  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3125  * see Documentation/core-api/pin_user_pages.rst for further details.
3126  *
3127  * Note that if a zero_page is amongst the returned pages, it will not have
3128  * pins in it and unpin_user_page() will not remove pins from it.
3129  */
3130 int pin_user_pages_fast(unsigned long start, int nr_pages,
3131 			unsigned int gup_flags, struct page **pages)
3132 {
3133 	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags, FOLL_PIN))
3134 		return -EINVAL;
3135 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3136 }
3137 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3138 
3139 /**
3140  * pin_user_pages_remote() - pin pages of a remote process
3141  *
3142  * @mm:		mm_struct of target mm
3143  * @start:	starting user address
3144  * @nr_pages:	number of pages from start to pin
3145  * @gup_flags:	flags modifying lookup behaviour
3146  * @pages:	array that receives pointers to the pages pinned.
3147  *		Should be at least nr_pages long.
3148  * @vmas:	array of pointers to vmas corresponding to each page.
3149  *		Or NULL if the caller does not require them.
3150  * @locked:	pointer to lock flag indicating whether lock is held and
3151  *		subsequently whether VM_FAULT_RETRY functionality can be
3152  *		utilised. Lock must initially be held.
3153  *
3154  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3155  * get_user_pages_remote() for documentation on the function arguments, because
3156  * the arguments here are identical.
3157  *
3158  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3159  * see Documentation/core-api/pin_user_pages.rst for details.
3160  *
3161  * Note that if a zero_page is amongst the returned pages, it will not have
3162  * pins in it and unpin_user_page*() will not remove pins from it.
3163  */
3164 long pin_user_pages_remote(struct mm_struct *mm,
3165 			   unsigned long start, unsigned long nr_pages,
3166 			   unsigned int gup_flags, struct page **pages,
3167 			   struct vm_area_struct **vmas, int *locked)
3168 {
3169 	int local_locked = 1;
3170 
3171 	if (!is_valid_gup_args(pages, vmas, locked, &gup_flags,
3172 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3173 		return 0;
3174 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas,
3175 				     locked ? locked : &local_locked,
3176 				     gup_flags);
3177 }
3178 EXPORT_SYMBOL(pin_user_pages_remote);
3179 
3180 /**
3181  * pin_user_pages() - pin user pages in memory for use by other devices
3182  *
3183  * @start:	starting user address
3184  * @nr_pages:	number of pages from start to pin
3185  * @gup_flags:	flags modifying lookup behaviour
3186  * @pages:	array that receives pointers to the pages pinned.
3187  *		Should be at least nr_pages long.
3188  * @vmas:	array of pointers to vmas corresponding to each page.
3189  *		Or NULL if the caller does not require them.
3190  *
3191  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3192  * FOLL_PIN is set.
3193  *
3194  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3195  * see Documentation/core-api/pin_user_pages.rst for details.
3196  *
3197  * Note that if a zero_page is amongst the returned pages, it will not have
3198  * pins in it and unpin_user_page*() will not remove pins from it.
3199  */
3200 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3201 		    unsigned int gup_flags, struct page **pages,
3202 		    struct vm_area_struct **vmas)
3203 {
3204 	int locked = 1;
3205 
3206 	if (!is_valid_gup_args(pages, vmas, NULL, &gup_flags, FOLL_PIN))
3207 		return 0;
3208 	return __gup_longterm_locked(current->mm, start, nr_pages,
3209 				     pages, vmas, &locked, gup_flags);
3210 }
3211 EXPORT_SYMBOL(pin_user_pages);
3212 
3213 /*
3214  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3215  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3216  * FOLL_PIN and rejects FOLL_GET.
3217  *
3218  * Note that if a zero_page is amongst the returned pages, it will not have
3219  * pins in it and unpin_user_page*() will not remove pins from it.
3220  */
3221 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3222 			     struct page **pages, unsigned int gup_flags)
3223 {
3224 	int locked = 0;
3225 
3226 	if (!is_valid_gup_args(pages, NULL, NULL, &gup_flags,
3227 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3228 		return 0;
3229 
3230 	return __gup_longterm_locked(current->mm, start, nr_pages, pages, NULL,
3231 				     &locked, gup_flags);
3232 }
3233 EXPORT_SYMBOL(pin_user_pages_unlocked);
3234