1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 struct follow_page_context { 24 struct dev_pagemap *pgmap; 25 unsigned int page_mask; 26 }; 27 28 static struct page *no_page_table(struct vm_area_struct *vma, 29 unsigned int flags) 30 { 31 /* 32 * When core dumping an enormous anonymous area that nobody 33 * has touched so far, we don't want to allocate unnecessary pages or 34 * page tables. Return error instead of NULL to skip handle_mm_fault, 35 * then get_dump_page() will return NULL to leave a hole in the dump. 36 * But we can only make this optimization where a hole would surely 37 * be zero-filled if handle_mm_fault() actually did handle it. 38 */ 39 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 40 return ERR_PTR(-EFAULT); 41 return NULL; 42 } 43 44 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 45 pte_t *pte, unsigned int flags) 46 { 47 /* No page to get reference */ 48 if (flags & FOLL_GET) 49 return -EFAULT; 50 51 if (flags & FOLL_TOUCH) { 52 pte_t entry = *pte; 53 54 if (flags & FOLL_WRITE) 55 entry = pte_mkdirty(entry); 56 entry = pte_mkyoung(entry); 57 58 if (!pte_same(*pte, entry)) { 59 set_pte_at(vma->vm_mm, address, pte, entry); 60 update_mmu_cache(vma, address, pte); 61 } 62 } 63 64 /* Proper page table entry exists, but no corresponding struct page */ 65 return -EEXIST; 66 } 67 68 /* 69 * FOLL_FORCE can write to even unwritable pte's, but only 70 * after we've gone through a COW cycle and they are dirty. 71 */ 72 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 73 { 74 return pte_write(pte) || 75 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 76 } 77 78 static struct page *follow_page_pte(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmd, unsigned int flags, 80 struct dev_pagemap **pgmap) 81 { 82 struct mm_struct *mm = vma->vm_mm; 83 struct page *page; 84 spinlock_t *ptl; 85 pte_t *ptep, pte; 86 87 retry: 88 if (unlikely(pmd_bad(*pmd))) 89 return no_page_table(vma, flags); 90 91 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 92 pte = *ptep; 93 if (!pte_present(pte)) { 94 swp_entry_t entry; 95 /* 96 * KSM's break_ksm() relies upon recognizing a ksm page 97 * even while it is being migrated, so for that case we 98 * need migration_entry_wait(). 99 */ 100 if (likely(!(flags & FOLL_MIGRATION))) 101 goto no_page; 102 if (pte_none(pte)) 103 goto no_page; 104 entry = pte_to_swp_entry(pte); 105 if (!is_migration_entry(entry)) 106 goto no_page; 107 pte_unmap_unlock(ptep, ptl); 108 migration_entry_wait(mm, pmd, address); 109 goto retry; 110 } 111 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 112 goto no_page; 113 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 114 pte_unmap_unlock(ptep, ptl); 115 return NULL; 116 } 117 118 page = vm_normal_page(vma, address, pte); 119 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 120 /* 121 * Only return device mapping pages in the FOLL_GET case since 122 * they are only valid while holding the pgmap reference. 123 */ 124 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 125 if (*pgmap) 126 page = pte_page(pte); 127 else 128 goto no_page; 129 } else if (unlikely(!page)) { 130 if (flags & FOLL_DUMP) { 131 /* Avoid special (like zero) pages in core dumps */ 132 page = ERR_PTR(-EFAULT); 133 goto out; 134 } 135 136 if (is_zero_pfn(pte_pfn(pte))) { 137 page = pte_page(pte); 138 } else { 139 int ret; 140 141 ret = follow_pfn_pte(vma, address, ptep, flags); 142 page = ERR_PTR(ret); 143 goto out; 144 } 145 } 146 147 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 148 int ret; 149 get_page(page); 150 pte_unmap_unlock(ptep, ptl); 151 lock_page(page); 152 ret = split_huge_page(page); 153 unlock_page(page); 154 put_page(page); 155 if (ret) 156 return ERR_PTR(ret); 157 goto retry; 158 } 159 160 if (flags & FOLL_GET) 161 get_page(page); 162 if (flags & FOLL_TOUCH) { 163 if ((flags & FOLL_WRITE) && 164 !pte_dirty(pte) && !PageDirty(page)) 165 set_page_dirty(page); 166 /* 167 * pte_mkyoung() would be more correct here, but atomic care 168 * is needed to avoid losing the dirty bit: it is easier to use 169 * mark_page_accessed(). 170 */ 171 mark_page_accessed(page); 172 } 173 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 174 /* Do not mlock pte-mapped THP */ 175 if (PageTransCompound(page)) 176 goto out; 177 178 /* 179 * The preliminary mapping check is mainly to avoid the 180 * pointless overhead of lock_page on the ZERO_PAGE 181 * which might bounce very badly if there is contention. 182 * 183 * If the page is already locked, we don't need to 184 * handle it now - vmscan will handle it later if and 185 * when it attempts to reclaim the page. 186 */ 187 if (page->mapping && trylock_page(page)) { 188 lru_add_drain(); /* push cached pages to LRU */ 189 /* 190 * Because we lock page here, and migration is 191 * blocked by the pte's page reference, and we 192 * know the page is still mapped, we don't even 193 * need to check for file-cache page truncation. 194 */ 195 mlock_vma_page(page); 196 unlock_page(page); 197 } 198 } 199 out: 200 pte_unmap_unlock(ptep, ptl); 201 return page; 202 no_page: 203 pte_unmap_unlock(ptep, ptl); 204 if (!pte_none(pte)) 205 return NULL; 206 return no_page_table(vma, flags); 207 } 208 209 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 210 unsigned long address, pud_t *pudp, 211 unsigned int flags, 212 struct follow_page_context *ctx) 213 { 214 pmd_t *pmd, pmdval; 215 spinlock_t *ptl; 216 struct page *page; 217 struct mm_struct *mm = vma->vm_mm; 218 219 pmd = pmd_offset(pudp, address); 220 /* 221 * The READ_ONCE() will stabilize the pmdval in a register or 222 * on the stack so that it will stop changing under the code. 223 */ 224 pmdval = READ_ONCE(*pmd); 225 if (pmd_none(pmdval)) 226 return no_page_table(vma, flags); 227 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 228 page = follow_huge_pmd(mm, address, pmd, flags); 229 if (page) 230 return page; 231 return no_page_table(vma, flags); 232 } 233 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 234 page = follow_huge_pd(vma, address, 235 __hugepd(pmd_val(pmdval)), flags, 236 PMD_SHIFT); 237 if (page) 238 return page; 239 return no_page_table(vma, flags); 240 } 241 retry: 242 if (!pmd_present(pmdval)) { 243 if (likely(!(flags & FOLL_MIGRATION))) 244 return no_page_table(vma, flags); 245 VM_BUG_ON(thp_migration_supported() && 246 !is_pmd_migration_entry(pmdval)); 247 if (is_pmd_migration_entry(pmdval)) 248 pmd_migration_entry_wait(mm, pmd); 249 pmdval = READ_ONCE(*pmd); 250 /* 251 * MADV_DONTNEED may convert the pmd to null because 252 * mmap_sem is held in read mode 253 */ 254 if (pmd_none(pmdval)) 255 return no_page_table(vma, flags); 256 goto retry; 257 } 258 if (pmd_devmap(pmdval)) { 259 ptl = pmd_lock(mm, pmd); 260 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 261 spin_unlock(ptl); 262 if (page) 263 return page; 264 } 265 if (likely(!pmd_trans_huge(pmdval))) 266 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 267 268 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 269 return no_page_table(vma, flags); 270 271 retry_locked: 272 ptl = pmd_lock(mm, pmd); 273 if (unlikely(pmd_none(*pmd))) { 274 spin_unlock(ptl); 275 return no_page_table(vma, flags); 276 } 277 if (unlikely(!pmd_present(*pmd))) { 278 spin_unlock(ptl); 279 if (likely(!(flags & FOLL_MIGRATION))) 280 return no_page_table(vma, flags); 281 pmd_migration_entry_wait(mm, pmd); 282 goto retry_locked; 283 } 284 if (unlikely(!pmd_trans_huge(*pmd))) { 285 spin_unlock(ptl); 286 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 287 } 288 if (flags & FOLL_SPLIT) { 289 int ret; 290 page = pmd_page(*pmd); 291 if (is_huge_zero_page(page)) { 292 spin_unlock(ptl); 293 ret = 0; 294 split_huge_pmd(vma, pmd, address); 295 if (pmd_trans_unstable(pmd)) 296 ret = -EBUSY; 297 } else { 298 get_page(page); 299 spin_unlock(ptl); 300 lock_page(page); 301 ret = split_huge_page(page); 302 unlock_page(page); 303 put_page(page); 304 if (pmd_none(*pmd)) 305 return no_page_table(vma, flags); 306 } 307 308 return ret ? ERR_PTR(ret) : 309 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 310 } 311 page = follow_trans_huge_pmd(vma, address, pmd, flags); 312 spin_unlock(ptl); 313 ctx->page_mask = HPAGE_PMD_NR - 1; 314 return page; 315 } 316 317 static struct page *follow_pud_mask(struct vm_area_struct *vma, 318 unsigned long address, p4d_t *p4dp, 319 unsigned int flags, 320 struct follow_page_context *ctx) 321 { 322 pud_t *pud; 323 spinlock_t *ptl; 324 struct page *page; 325 struct mm_struct *mm = vma->vm_mm; 326 327 pud = pud_offset(p4dp, address); 328 if (pud_none(*pud)) 329 return no_page_table(vma, flags); 330 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 331 page = follow_huge_pud(mm, address, pud, flags); 332 if (page) 333 return page; 334 return no_page_table(vma, flags); 335 } 336 if (is_hugepd(__hugepd(pud_val(*pud)))) { 337 page = follow_huge_pd(vma, address, 338 __hugepd(pud_val(*pud)), flags, 339 PUD_SHIFT); 340 if (page) 341 return page; 342 return no_page_table(vma, flags); 343 } 344 if (pud_devmap(*pud)) { 345 ptl = pud_lock(mm, pud); 346 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 347 spin_unlock(ptl); 348 if (page) 349 return page; 350 } 351 if (unlikely(pud_bad(*pud))) 352 return no_page_table(vma, flags); 353 354 return follow_pmd_mask(vma, address, pud, flags, ctx); 355 } 356 357 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 358 unsigned long address, pgd_t *pgdp, 359 unsigned int flags, 360 struct follow_page_context *ctx) 361 { 362 p4d_t *p4d; 363 struct page *page; 364 365 p4d = p4d_offset(pgdp, address); 366 if (p4d_none(*p4d)) 367 return no_page_table(vma, flags); 368 BUILD_BUG_ON(p4d_huge(*p4d)); 369 if (unlikely(p4d_bad(*p4d))) 370 return no_page_table(vma, flags); 371 372 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 373 page = follow_huge_pd(vma, address, 374 __hugepd(p4d_val(*p4d)), flags, 375 P4D_SHIFT); 376 if (page) 377 return page; 378 return no_page_table(vma, flags); 379 } 380 return follow_pud_mask(vma, address, p4d, flags, ctx); 381 } 382 383 /** 384 * follow_page_mask - look up a page descriptor from a user-virtual address 385 * @vma: vm_area_struct mapping @address 386 * @address: virtual address to look up 387 * @flags: flags modifying lookup behaviour 388 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 389 * pointer to output page_mask 390 * 391 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 392 * 393 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 394 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 395 * 396 * On output, the @ctx->page_mask is set according to the size of the page. 397 * 398 * Return: the mapped (struct page *), %NULL if no mapping exists, or 399 * an error pointer if there is a mapping to something not represented 400 * by a page descriptor (see also vm_normal_page()). 401 */ 402 struct page *follow_page_mask(struct vm_area_struct *vma, 403 unsigned long address, unsigned int flags, 404 struct follow_page_context *ctx) 405 { 406 pgd_t *pgd; 407 struct page *page; 408 struct mm_struct *mm = vma->vm_mm; 409 410 ctx->page_mask = 0; 411 412 /* make this handle hugepd */ 413 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 414 if (!IS_ERR(page)) { 415 BUG_ON(flags & FOLL_GET); 416 return page; 417 } 418 419 pgd = pgd_offset(mm, address); 420 421 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 422 return no_page_table(vma, flags); 423 424 if (pgd_huge(*pgd)) { 425 page = follow_huge_pgd(mm, address, pgd, flags); 426 if (page) 427 return page; 428 return no_page_table(vma, flags); 429 } 430 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 431 page = follow_huge_pd(vma, address, 432 __hugepd(pgd_val(*pgd)), flags, 433 PGDIR_SHIFT); 434 if (page) 435 return page; 436 return no_page_table(vma, flags); 437 } 438 439 return follow_p4d_mask(vma, address, pgd, flags, ctx); 440 } 441 442 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 443 unsigned int foll_flags) 444 { 445 struct follow_page_context ctx = { NULL }; 446 struct page *page; 447 448 page = follow_page_mask(vma, address, foll_flags, &ctx); 449 if (ctx.pgmap) 450 put_dev_pagemap(ctx.pgmap); 451 return page; 452 } 453 454 static int get_gate_page(struct mm_struct *mm, unsigned long address, 455 unsigned int gup_flags, struct vm_area_struct **vma, 456 struct page **page) 457 { 458 pgd_t *pgd; 459 p4d_t *p4d; 460 pud_t *pud; 461 pmd_t *pmd; 462 pte_t *pte; 463 int ret = -EFAULT; 464 465 /* user gate pages are read-only */ 466 if (gup_flags & FOLL_WRITE) 467 return -EFAULT; 468 if (address > TASK_SIZE) 469 pgd = pgd_offset_k(address); 470 else 471 pgd = pgd_offset_gate(mm, address); 472 BUG_ON(pgd_none(*pgd)); 473 p4d = p4d_offset(pgd, address); 474 BUG_ON(p4d_none(*p4d)); 475 pud = pud_offset(p4d, address); 476 BUG_ON(pud_none(*pud)); 477 pmd = pmd_offset(pud, address); 478 if (!pmd_present(*pmd)) 479 return -EFAULT; 480 VM_BUG_ON(pmd_trans_huge(*pmd)); 481 pte = pte_offset_map(pmd, address); 482 if (pte_none(*pte)) 483 goto unmap; 484 *vma = get_gate_vma(mm); 485 if (!page) 486 goto out; 487 *page = vm_normal_page(*vma, address, *pte); 488 if (!*page) { 489 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 490 goto unmap; 491 *page = pte_page(*pte); 492 493 /* 494 * This should never happen (a device public page in the gate 495 * area). 496 */ 497 if (is_device_public_page(*page)) 498 goto unmap; 499 } 500 get_page(*page); 501 out: 502 ret = 0; 503 unmap: 504 pte_unmap(pte); 505 return ret; 506 } 507 508 /* 509 * mmap_sem must be held on entry. If @nonblocking != NULL and 510 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 511 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 512 */ 513 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 514 unsigned long address, unsigned int *flags, int *nonblocking) 515 { 516 unsigned int fault_flags = 0; 517 vm_fault_t ret; 518 519 /* mlock all present pages, but do not fault in new pages */ 520 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 521 return -ENOENT; 522 if (*flags & FOLL_WRITE) 523 fault_flags |= FAULT_FLAG_WRITE; 524 if (*flags & FOLL_REMOTE) 525 fault_flags |= FAULT_FLAG_REMOTE; 526 if (nonblocking) 527 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 528 if (*flags & FOLL_NOWAIT) 529 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 530 if (*flags & FOLL_TRIED) { 531 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 532 fault_flags |= FAULT_FLAG_TRIED; 533 } 534 535 ret = handle_mm_fault(vma, address, fault_flags); 536 if (ret & VM_FAULT_ERROR) { 537 int err = vm_fault_to_errno(ret, *flags); 538 539 if (err) 540 return err; 541 BUG(); 542 } 543 544 if (tsk) { 545 if (ret & VM_FAULT_MAJOR) 546 tsk->maj_flt++; 547 else 548 tsk->min_flt++; 549 } 550 551 if (ret & VM_FAULT_RETRY) { 552 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 553 *nonblocking = 0; 554 return -EBUSY; 555 } 556 557 /* 558 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 559 * necessary, even if maybe_mkwrite decided not to set pte_write. We 560 * can thus safely do subsequent page lookups as if they were reads. 561 * But only do so when looping for pte_write is futile: in some cases 562 * userspace may also be wanting to write to the gotten user page, 563 * which a read fault here might prevent (a readonly page might get 564 * reCOWed by userspace write). 565 */ 566 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 567 *flags |= FOLL_COW; 568 return 0; 569 } 570 571 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 572 { 573 vm_flags_t vm_flags = vma->vm_flags; 574 int write = (gup_flags & FOLL_WRITE); 575 int foreign = (gup_flags & FOLL_REMOTE); 576 577 if (vm_flags & (VM_IO | VM_PFNMAP)) 578 return -EFAULT; 579 580 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 581 return -EFAULT; 582 583 if (write) { 584 if (!(vm_flags & VM_WRITE)) { 585 if (!(gup_flags & FOLL_FORCE)) 586 return -EFAULT; 587 /* 588 * We used to let the write,force case do COW in a 589 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 590 * set a breakpoint in a read-only mapping of an 591 * executable, without corrupting the file (yet only 592 * when that file had been opened for writing!). 593 * Anon pages in shared mappings are surprising: now 594 * just reject it. 595 */ 596 if (!is_cow_mapping(vm_flags)) 597 return -EFAULT; 598 } 599 } else if (!(vm_flags & VM_READ)) { 600 if (!(gup_flags & FOLL_FORCE)) 601 return -EFAULT; 602 /* 603 * Is there actually any vma we can reach here which does not 604 * have VM_MAYREAD set? 605 */ 606 if (!(vm_flags & VM_MAYREAD)) 607 return -EFAULT; 608 } 609 /* 610 * gups are always data accesses, not instruction 611 * fetches, so execute=false here 612 */ 613 if (!arch_vma_access_permitted(vma, write, false, foreign)) 614 return -EFAULT; 615 return 0; 616 } 617 618 /** 619 * __get_user_pages() - pin user pages in memory 620 * @tsk: task_struct of target task 621 * @mm: mm_struct of target mm 622 * @start: starting user address 623 * @nr_pages: number of pages from start to pin 624 * @gup_flags: flags modifying pin behaviour 625 * @pages: array that receives pointers to the pages pinned. 626 * Should be at least nr_pages long. Or NULL, if caller 627 * only intends to ensure the pages are faulted in. 628 * @vmas: array of pointers to vmas corresponding to each page. 629 * Or NULL if the caller does not require them. 630 * @nonblocking: whether waiting for disk IO or mmap_sem contention 631 * 632 * Returns number of pages pinned. This may be fewer than the number 633 * requested. If nr_pages is 0 or negative, returns 0. If no pages 634 * were pinned, returns -errno. Each page returned must be released 635 * with a put_page() call when it is finished with. vmas will only 636 * remain valid while mmap_sem is held. 637 * 638 * Must be called with mmap_sem held. It may be released. See below. 639 * 640 * __get_user_pages walks a process's page tables and takes a reference to 641 * each struct page that each user address corresponds to at a given 642 * instant. That is, it takes the page that would be accessed if a user 643 * thread accesses the given user virtual address at that instant. 644 * 645 * This does not guarantee that the page exists in the user mappings when 646 * __get_user_pages returns, and there may even be a completely different 647 * page there in some cases (eg. if mmapped pagecache has been invalidated 648 * and subsequently re faulted). However it does guarantee that the page 649 * won't be freed completely. And mostly callers simply care that the page 650 * contains data that was valid *at some point in time*. Typically, an IO 651 * or similar operation cannot guarantee anything stronger anyway because 652 * locks can't be held over the syscall boundary. 653 * 654 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 655 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 656 * appropriate) must be called after the page is finished with, and 657 * before put_page is called. 658 * 659 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 660 * or mmap_sem contention, and if waiting is needed to pin all pages, 661 * *@nonblocking will be set to 0. Further, if @gup_flags does not 662 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 663 * this case. 664 * 665 * A caller using such a combination of @nonblocking and @gup_flags 666 * must therefore hold the mmap_sem for reading only, and recognize 667 * when it's been released. Otherwise, it must be held for either 668 * reading or writing and will not be released. 669 * 670 * In most cases, get_user_pages or get_user_pages_fast should be used 671 * instead of __get_user_pages. __get_user_pages should be used only if 672 * you need some special @gup_flags. 673 */ 674 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 675 unsigned long start, unsigned long nr_pages, 676 unsigned int gup_flags, struct page **pages, 677 struct vm_area_struct **vmas, int *nonblocking) 678 { 679 long ret = 0, i = 0; 680 struct vm_area_struct *vma = NULL; 681 struct follow_page_context ctx = { NULL }; 682 683 if (!nr_pages) 684 return 0; 685 686 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 687 688 /* 689 * If FOLL_FORCE is set then do not force a full fault as the hinting 690 * fault information is unrelated to the reference behaviour of a task 691 * using the address space 692 */ 693 if (!(gup_flags & FOLL_FORCE)) 694 gup_flags |= FOLL_NUMA; 695 696 do { 697 struct page *page; 698 unsigned int foll_flags = gup_flags; 699 unsigned int page_increm; 700 701 /* first iteration or cross vma bound */ 702 if (!vma || start >= vma->vm_end) { 703 vma = find_extend_vma(mm, start); 704 if (!vma && in_gate_area(mm, start)) { 705 int ret; 706 ret = get_gate_page(mm, start & PAGE_MASK, 707 gup_flags, &vma, 708 pages ? &pages[i] : NULL); 709 if (ret) 710 return i ? : ret; 711 ctx.page_mask = 0; 712 goto next_page; 713 } 714 715 if (!vma || check_vma_flags(vma, gup_flags)) { 716 ret = -EFAULT; 717 goto out; 718 } 719 if (is_vm_hugetlb_page(vma)) { 720 i = follow_hugetlb_page(mm, vma, pages, vmas, 721 &start, &nr_pages, i, 722 gup_flags, nonblocking); 723 continue; 724 } 725 } 726 retry: 727 /* 728 * If we have a pending SIGKILL, don't keep faulting pages and 729 * potentially allocating memory. 730 */ 731 if (unlikely(fatal_signal_pending(current))) { 732 ret = -ERESTARTSYS; 733 goto out; 734 } 735 cond_resched(); 736 737 page = follow_page_mask(vma, start, foll_flags, &ctx); 738 if (!page) { 739 ret = faultin_page(tsk, vma, start, &foll_flags, 740 nonblocking); 741 switch (ret) { 742 case 0: 743 goto retry; 744 case -EBUSY: 745 ret = 0; 746 /* FALLTHRU */ 747 case -EFAULT: 748 case -ENOMEM: 749 case -EHWPOISON: 750 goto out; 751 case -ENOENT: 752 goto next_page; 753 } 754 BUG(); 755 } else if (PTR_ERR(page) == -EEXIST) { 756 /* 757 * Proper page table entry exists, but no corresponding 758 * struct page. 759 */ 760 goto next_page; 761 } else if (IS_ERR(page)) { 762 ret = PTR_ERR(page); 763 goto out; 764 } 765 if (pages) { 766 pages[i] = page; 767 flush_anon_page(vma, page, start); 768 flush_dcache_page(page); 769 ctx.page_mask = 0; 770 } 771 next_page: 772 if (vmas) { 773 vmas[i] = vma; 774 ctx.page_mask = 0; 775 } 776 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 777 if (page_increm > nr_pages) 778 page_increm = nr_pages; 779 i += page_increm; 780 start += page_increm * PAGE_SIZE; 781 nr_pages -= page_increm; 782 } while (nr_pages); 783 out: 784 if (ctx.pgmap) 785 put_dev_pagemap(ctx.pgmap); 786 return i ? i : ret; 787 } 788 789 static bool vma_permits_fault(struct vm_area_struct *vma, 790 unsigned int fault_flags) 791 { 792 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 793 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 794 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 795 796 if (!(vm_flags & vma->vm_flags)) 797 return false; 798 799 /* 800 * The architecture might have a hardware protection 801 * mechanism other than read/write that can deny access. 802 * 803 * gup always represents data access, not instruction 804 * fetches, so execute=false here: 805 */ 806 if (!arch_vma_access_permitted(vma, write, false, foreign)) 807 return false; 808 809 return true; 810 } 811 812 /* 813 * fixup_user_fault() - manually resolve a user page fault 814 * @tsk: the task_struct to use for page fault accounting, or 815 * NULL if faults are not to be recorded. 816 * @mm: mm_struct of target mm 817 * @address: user address 818 * @fault_flags:flags to pass down to handle_mm_fault() 819 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 820 * does not allow retry 821 * 822 * This is meant to be called in the specific scenario where for locking reasons 823 * we try to access user memory in atomic context (within a pagefault_disable() 824 * section), this returns -EFAULT, and we want to resolve the user fault before 825 * trying again. 826 * 827 * Typically this is meant to be used by the futex code. 828 * 829 * The main difference with get_user_pages() is that this function will 830 * unconditionally call handle_mm_fault() which will in turn perform all the 831 * necessary SW fixup of the dirty and young bits in the PTE, while 832 * get_user_pages() only guarantees to update these in the struct page. 833 * 834 * This is important for some architectures where those bits also gate the 835 * access permission to the page because they are maintained in software. On 836 * such architectures, gup() will not be enough to make a subsequent access 837 * succeed. 838 * 839 * This function will not return with an unlocked mmap_sem. So it has not the 840 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 841 */ 842 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 843 unsigned long address, unsigned int fault_flags, 844 bool *unlocked) 845 { 846 struct vm_area_struct *vma; 847 vm_fault_t ret, major = 0; 848 849 if (unlocked) 850 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 851 852 retry: 853 vma = find_extend_vma(mm, address); 854 if (!vma || address < vma->vm_start) 855 return -EFAULT; 856 857 if (!vma_permits_fault(vma, fault_flags)) 858 return -EFAULT; 859 860 ret = handle_mm_fault(vma, address, fault_flags); 861 major |= ret & VM_FAULT_MAJOR; 862 if (ret & VM_FAULT_ERROR) { 863 int err = vm_fault_to_errno(ret, 0); 864 865 if (err) 866 return err; 867 BUG(); 868 } 869 870 if (ret & VM_FAULT_RETRY) { 871 down_read(&mm->mmap_sem); 872 if (!(fault_flags & FAULT_FLAG_TRIED)) { 873 *unlocked = true; 874 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 875 fault_flags |= FAULT_FLAG_TRIED; 876 goto retry; 877 } 878 } 879 880 if (tsk) { 881 if (major) 882 tsk->maj_flt++; 883 else 884 tsk->min_flt++; 885 } 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(fixup_user_fault); 889 890 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 891 struct mm_struct *mm, 892 unsigned long start, 893 unsigned long nr_pages, 894 struct page **pages, 895 struct vm_area_struct **vmas, 896 int *locked, 897 unsigned int flags) 898 { 899 long ret, pages_done; 900 bool lock_dropped; 901 902 if (locked) { 903 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 904 BUG_ON(vmas); 905 /* check caller initialized locked */ 906 BUG_ON(*locked != 1); 907 } 908 909 if (pages) 910 flags |= FOLL_GET; 911 912 pages_done = 0; 913 lock_dropped = false; 914 for (;;) { 915 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 916 vmas, locked); 917 if (!locked) 918 /* VM_FAULT_RETRY couldn't trigger, bypass */ 919 return ret; 920 921 /* VM_FAULT_RETRY cannot return errors */ 922 if (!*locked) { 923 BUG_ON(ret < 0); 924 BUG_ON(ret >= nr_pages); 925 } 926 927 if (!pages) 928 /* If it's a prefault don't insist harder */ 929 return ret; 930 931 if (ret > 0) { 932 nr_pages -= ret; 933 pages_done += ret; 934 if (!nr_pages) 935 break; 936 } 937 if (*locked) { 938 /* 939 * VM_FAULT_RETRY didn't trigger or it was a 940 * FOLL_NOWAIT. 941 */ 942 if (!pages_done) 943 pages_done = ret; 944 break; 945 } 946 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 947 pages += ret; 948 start += ret << PAGE_SHIFT; 949 950 /* 951 * Repeat on the address that fired VM_FAULT_RETRY 952 * without FAULT_FLAG_ALLOW_RETRY but with 953 * FAULT_FLAG_TRIED. 954 */ 955 *locked = 1; 956 lock_dropped = true; 957 down_read(&mm->mmap_sem); 958 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 959 pages, NULL, NULL); 960 if (ret != 1) { 961 BUG_ON(ret > 1); 962 if (!pages_done) 963 pages_done = ret; 964 break; 965 } 966 nr_pages--; 967 pages_done++; 968 if (!nr_pages) 969 break; 970 pages++; 971 start += PAGE_SIZE; 972 } 973 if (lock_dropped && *locked) { 974 /* 975 * We must let the caller know we temporarily dropped the lock 976 * and so the critical section protected by it was lost. 977 */ 978 up_read(&mm->mmap_sem); 979 *locked = 0; 980 } 981 return pages_done; 982 } 983 984 /* 985 * We can leverage the VM_FAULT_RETRY functionality in the page fault 986 * paths better by using either get_user_pages_locked() or 987 * get_user_pages_unlocked(). 988 * 989 * get_user_pages_locked() is suitable to replace the form: 990 * 991 * down_read(&mm->mmap_sem); 992 * do_something() 993 * get_user_pages(tsk, mm, ..., pages, NULL); 994 * up_read(&mm->mmap_sem); 995 * 996 * to: 997 * 998 * int locked = 1; 999 * down_read(&mm->mmap_sem); 1000 * do_something() 1001 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1002 * if (locked) 1003 * up_read(&mm->mmap_sem); 1004 */ 1005 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1006 unsigned int gup_flags, struct page **pages, 1007 int *locked) 1008 { 1009 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1010 pages, NULL, locked, 1011 gup_flags | FOLL_TOUCH); 1012 } 1013 EXPORT_SYMBOL(get_user_pages_locked); 1014 1015 /* 1016 * get_user_pages_unlocked() is suitable to replace the form: 1017 * 1018 * down_read(&mm->mmap_sem); 1019 * get_user_pages(tsk, mm, ..., pages, NULL); 1020 * up_read(&mm->mmap_sem); 1021 * 1022 * with: 1023 * 1024 * get_user_pages_unlocked(tsk, mm, ..., pages); 1025 * 1026 * It is functionally equivalent to get_user_pages_fast so 1027 * get_user_pages_fast should be used instead if specific gup_flags 1028 * (e.g. FOLL_FORCE) are not required. 1029 */ 1030 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1031 struct page **pages, unsigned int gup_flags) 1032 { 1033 struct mm_struct *mm = current->mm; 1034 int locked = 1; 1035 long ret; 1036 1037 down_read(&mm->mmap_sem); 1038 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1039 &locked, gup_flags | FOLL_TOUCH); 1040 if (locked) 1041 up_read(&mm->mmap_sem); 1042 return ret; 1043 } 1044 EXPORT_SYMBOL(get_user_pages_unlocked); 1045 1046 /* 1047 * get_user_pages_remote() - pin user pages in memory 1048 * @tsk: the task_struct to use for page fault accounting, or 1049 * NULL if faults are not to be recorded. 1050 * @mm: mm_struct of target mm 1051 * @start: starting user address 1052 * @nr_pages: number of pages from start to pin 1053 * @gup_flags: flags modifying lookup behaviour 1054 * @pages: array that receives pointers to the pages pinned. 1055 * Should be at least nr_pages long. Or NULL, if caller 1056 * only intends to ensure the pages are faulted in. 1057 * @vmas: array of pointers to vmas corresponding to each page. 1058 * Or NULL if the caller does not require them. 1059 * @locked: pointer to lock flag indicating whether lock is held and 1060 * subsequently whether VM_FAULT_RETRY functionality can be 1061 * utilised. Lock must initially be held. 1062 * 1063 * Returns number of pages pinned. This may be fewer than the number 1064 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1065 * were pinned, returns -errno. Each page returned must be released 1066 * with a put_page() call when it is finished with. vmas will only 1067 * remain valid while mmap_sem is held. 1068 * 1069 * Must be called with mmap_sem held for read or write. 1070 * 1071 * get_user_pages walks a process's page tables and takes a reference to 1072 * each struct page that each user address corresponds to at a given 1073 * instant. That is, it takes the page that would be accessed if a user 1074 * thread accesses the given user virtual address at that instant. 1075 * 1076 * This does not guarantee that the page exists in the user mappings when 1077 * get_user_pages returns, and there may even be a completely different 1078 * page there in some cases (eg. if mmapped pagecache has been invalidated 1079 * and subsequently re faulted). However it does guarantee that the page 1080 * won't be freed completely. And mostly callers simply care that the page 1081 * contains data that was valid *at some point in time*. Typically, an IO 1082 * or similar operation cannot guarantee anything stronger anyway because 1083 * locks can't be held over the syscall boundary. 1084 * 1085 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1086 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1087 * be called after the page is finished with, and before put_page is called. 1088 * 1089 * get_user_pages is typically used for fewer-copy IO operations, to get a 1090 * handle on the memory by some means other than accesses via the user virtual 1091 * addresses. The pages may be submitted for DMA to devices or accessed via 1092 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1093 * use the correct cache flushing APIs. 1094 * 1095 * See also get_user_pages_fast, for performance critical applications. 1096 * 1097 * get_user_pages should be phased out in favor of 1098 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1099 * should use get_user_pages because it cannot pass 1100 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1101 */ 1102 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1103 unsigned long start, unsigned long nr_pages, 1104 unsigned int gup_flags, struct page **pages, 1105 struct vm_area_struct **vmas, int *locked) 1106 { 1107 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1108 locked, 1109 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1110 } 1111 EXPORT_SYMBOL(get_user_pages_remote); 1112 1113 /* 1114 * This is the same as get_user_pages_remote(), just with a 1115 * less-flexible calling convention where we assume that the task 1116 * and mm being operated on are the current task's and don't allow 1117 * passing of a locked parameter. We also obviously don't pass 1118 * FOLL_REMOTE in here. 1119 */ 1120 long get_user_pages(unsigned long start, unsigned long nr_pages, 1121 unsigned int gup_flags, struct page **pages, 1122 struct vm_area_struct **vmas) 1123 { 1124 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1125 pages, vmas, NULL, 1126 gup_flags | FOLL_TOUCH); 1127 } 1128 EXPORT_SYMBOL(get_user_pages); 1129 1130 #ifdef CONFIG_FS_DAX 1131 /* 1132 * This is the same as get_user_pages() in that it assumes we are 1133 * operating on the current task's mm, but it goes further to validate 1134 * that the vmas associated with the address range are suitable for 1135 * longterm elevated page reference counts. For example, filesystem-dax 1136 * mappings are subject to the lifetime enforced by the filesystem and 1137 * we need guarantees that longterm users like RDMA and V4L2 only 1138 * establish mappings that have a kernel enforced revocation mechanism. 1139 * 1140 * "longterm" == userspace controlled elevated page count lifetime. 1141 * Contrast this to iov_iter_get_pages() usages which are transient. 1142 */ 1143 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1144 unsigned int gup_flags, struct page **pages, 1145 struct vm_area_struct **vmas_arg) 1146 { 1147 struct vm_area_struct **vmas = vmas_arg; 1148 struct vm_area_struct *vma_prev = NULL; 1149 long rc, i; 1150 1151 if (!pages) 1152 return -EINVAL; 1153 1154 if (!vmas) { 1155 vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *), 1156 GFP_KERNEL); 1157 if (!vmas) 1158 return -ENOMEM; 1159 } 1160 1161 rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1162 1163 for (i = 0; i < rc; i++) { 1164 struct vm_area_struct *vma = vmas[i]; 1165 1166 if (vma == vma_prev) 1167 continue; 1168 1169 vma_prev = vma; 1170 1171 if (vma_is_fsdax(vma)) 1172 break; 1173 } 1174 1175 /* 1176 * Either get_user_pages() failed, or the vma validation 1177 * succeeded, in either case we don't need to put_page() before 1178 * returning. 1179 */ 1180 if (i >= rc) 1181 goto out; 1182 1183 for (i = 0; i < rc; i++) 1184 put_page(pages[i]); 1185 rc = -EOPNOTSUPP; 1186 out: 1187 if (vmas != vmas_arg) 1188 kfree(vmas); 1189 return rc; 1190 } 1191 EXPORT_SYMBOL(get_user_pages_longterm); 1192 #endif /* CONFIG_FS_DAX */ 1193 1194 /** 1195 * populate_vma_page_range() - populate a range of pages in the vma. 1196 * @vma: target vma 1197 * @start: start address 1198 * @end: end address 1199 * @nonblocking: 1200 * 1201 * This takes care of mlocking the pages too if VM_LOCKED is set. 1202 * 1203 * return 0 on success, negative error code on error. 1204 * 1205 * vma->vm_mm->mmap_sem must be held. 1206 * 1207 * If @nonblocking is NULL, it may be held for read or write and will 1208 * be unperturbed. 1209 * 1210 * If @nonblocking is non-NULL, it must held for read only and may be 1211 * released. If it's released, *@nonblocking will be set to 0. 1212 */ 1213 long populate_vma_page_range(struct vm_area_struct *vma, 1214 unsigned long start, unsigned long end, int *nonblocking) 1215 { 1216 struct mm_struct *mm = vma->vm_mm; 1217 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1218 int gup_flags; 1219 1220 VM_BUG_ON(start & ~PAGE_MASK); 1221 VM_BUG_ON(end & ~PAGE_MASK); 1222 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1223 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1224 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1225 1226 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1227 if (vma->vm_flags & VM_LOCKONFAULT) 1228 gup_flags &= ~FOLL_POPULATE; 1229 /* 1230 * We want to touch writable mappings with a write fault in order 1231 * to break COW, except for shared mappings because these don't COW 1232 * and we would not want to dirty them for nothing. 1233 */ 1234 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1235 gup_flags |= FOLL_WRITE; 1236 1237 /* 1238 * We want mlock to succeed for regions that have any permissions 1239 * other than PROT_NONE. 1240 */ 1241 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1242 gup_flags |= FOLL_FORCE; 1243 1244 /* 1245 * We made sure addr is within a VMA, so the following will 1246 * not result in a stack expansion that recurses back here. 1247 */ 1248 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1249 NULL, NULL, nonblocking); 1250 } 1251 1252 /* 1253 * __mm_populate - populate and/or mlock pages within a range of address space. 1254 * 1255 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1256 * flags. VMAs must be already marked with the desired vm_flags, and 1257 * mmap_sem must not be held. 1258 */ 1259 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1260 { 1261 struct mm_struct *mm = current->mm; 1262 unsigned long end, nstart, nend; 1263 struct vm_area_struct *vma = NULL; 1264 int locked = 0; 1265 long ret = 0; 1266 1267 end = start + len; 1268 1269 for (nstart = start; nstart < end; nstart = nend) { 1270 /* 1271 * We want to fault in pages for [nstart; end) address range. 1272 * Find first corresponding VMA. 1273 */ 1274 if (!locked) { 1275 locked = 1; 1276 down_read(&mm->mmap_sem); 1277 vma = find_vma(mm, nstart); 1278 } else if (nstart >= vma->vm_end) 1279 vma = vma->vm_next; 1280 if (!vma || vma->vm_start >= end) 1281 break; 1282 /* 1283 * Set [nstart; nend) to intersection of desired address 1284 * range with the first VMA. Also, skip undesirable VMA types. 1285 */ 1286 nend = min(end, vma->vm_end); 1287 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1288 continue; 1289 if (nstart < vma->vm_start) 1290 nstart = vma->vm_start; 1291 /* 1292 * Now fault in a range of pages. populate_vma_page_range() 1293 * double checks the vma flags, so that it won't mlock pages 1294 * if the vma was already munlocked. 1295 */ 1296 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1297 if (ret < 0) { 1298 if (ignore_errors) { 1299 ret = 0; 1300 continue; /* continue at next VMA */ 1301 } 1302 break; 1303 } 1304 nend = nstart + ret * PAGE_SIZE; 1305 ret = 0; 1306 } 1307 if (locked) 1308 up_read(&mm->mmap_sem); 1309 return ret; /* 0 or negative error code */ 1310 } 1311 1312 /** 1313 * get_dump_page() - pin user page in memory while writing it to core dump 1314 * @addr: user address 1315 * 1316 * Returns struct page pointer of user page pinned for dump, 1317 * to be freed afterwards by put_page(). 1318 * 1319 * Returns NULL on any kind of failure - a hole must then be inserted into 1320 * the corefile, to preserve alignment with its headers; and also returns 1321 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1322 * allowing a hole to be left in the corefile to save diskspace. 1323 * 1324 * Called without mmap_sem, but after all other threads have been killed. 1325 */ 1326 #ifdef CONFIG_ELF_CORE 1327 struct page *get_dump_page(unsigned long addr) 1328 { 1329 struct vm_area_struct *vma; 1330 struct page *page; 1331 1332 if (__get_user_pages(current, current->mm, addr, 1, 1333 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1334 NULL) < 1) 1335 return NULL; 1336 flush_cache_page(vma, addr, page_to_pfn(page)); 1337 return page; 1338 } 1339 #endif /* CONFIG_ELF_CORE */ 1340 1341 /* 1342 * Generic Fast GUP 1343 * 1344 * get_user_pages_fast attempts to pin user pages by walking the page 1345 * tables directly and avoids taking locks. Thus the walker needs to be 1346 * protected from page table pages being freed from under it, and should 1347 * block any THP splits. 1348 * 1349 * One way to achieve this is to have the walker disable interrupts, and 1350 * rely on IPIs from the TLB flushing code blocking before the page table 1351 * pages are freed. This is unsuitable for architectures that do not need 1352 * to broadcast an IPI when invalidating TLBs. 1353 * 1354 * Another way to achieve this is to batch up page table containing pages 1355 * belonging to more than one mm_user, then rcu_sched a callback to free those 1356 * pages. Disabling interrupts will allow the fast_gup walker to both block 1357 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1358 * (which is a relatively rare event). The code below adopts this strategy. 1359 * 1360 * Before activating this code, please be aware that the following assumptions 1361 * are currently made: 1362 * 1363 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1364 * free pages containing page tables or TLB flushing requires IPI broadcast. 1365 * 1366 * *) ptes can be read atomically by the architecture. 1367 * 1368 * *) access_ok is sufficient to validate userspace address ranges. 1369 * 1370 * The last two assumptions can be relaxed by the addition of helper functions. 1371 * 1372 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1373 */ 1374 #ifdef CONFIG_HAVE_GENERIC_GUP 1375 1376 #ifndef gup_get_pte 1377 /* 1378 * We assume that the PTE can be read atomically. If this is not the case for 1379 * your architecture, please provide the helper. 1380 */ 1381 static inline pte_t gup_get_pte(pte_t *ptep) 1382 { 1383 return READ_ONCE(*ptep); 1384 } 1385 #endif 1386 1387 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1388 { 1389 while ((*nr) - nr_start) { 1390 struct page *page = pages[--(*nr)]; 1391 1392 ClearPageReferenced(page); 1393 put_page(page); 1394 } 1395 } 1396 1397 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1398 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1399 int write, struct page **pages, int *nr) 1400 { 1401 struct dev_pagemap *pgmap = NULL; 1402 int nr_start = *nr, ret = 0; 1403 pte_t *ptep, *ptem; 1404 1405 ptem = ptep = pte_offset_map(&pmd, addr); 1406 do { 1407 pte_t pte = gup_get_pte(ptep); 1408 struct page *head, *page; 1409 1410 /* 1411 * Similar to the PMD case below, NUMA hinting must take slow 1412 * path using the pte_protnone check. 1413 */ 1414 if (pte_protnone(pte)) 1415 goto pte_unmap; 1416 1417 if (!pte_access_permitted(pte, write)) 1418 goto pte_unmap; 1419 1420 if (pte_devmap(pte)) { 1421 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1422 if (unlikely(!pgmap)) { 1423 undo_dev_pagemap(nr, nr_start, pages); 1424 goto pte_unmap; 1425 } 1426 } else if (pte_special(pte)) 1427 goto pte_unmap; 1428 1429 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1430 page = pte_page(pte); 1431 head = compound_head(page); 1432 1433 if (!page_cache_get_speculative(head)) 1434 goto pte_unmap; 1435 1436 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1437 put_page(head); 1438 goto pte_unmap; 1439 } 1440 1441 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1442 1443 SetPageReferenced(page); 1444 pages[*nr] = page; 1445 (*nr)++; 1446 1447 } while (ptep++, addr += PAGE_SIZE, addr != end); 1448 1449 ret = 1; 1450 1451 pte_unmap: 1452 if (pgmap) 1453 put_dev_pagemap(pgmap); 1454 pte_unmap(ptem); 1455 return ret; 1456 } 1457 #else 1458 1459 /* 1460 * If we can't determine whether or not a pte is special, then fail immediately 1461 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1462 * to be special. 1463 * 1464 * For a futex to be placed on a THP tail page, get_futex_key requires a 1465 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1466 * useful to have gup_huge_pmd even if we can't operate on ptes. 1467 */ 1468 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1469 int write, struct page **pages, int *nr) 1470 { 1471 return 0; 1472 } 1473 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1474 1475 #if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1476 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1477 unsigned long end, struct page **pages, int *nr) 1478 { 1479 int nr_start = *nr; 1480 struct dev_pagemap *pgmap = NULL; 1481 1482 do { 1483 struct page *page = pfn_to_page(pfn); 1484 1485 pgmap = get_dev_pagemap(pfn, pgmap); 1486 if (unlikely(!pgmap)) { 1487 undo_dev_pagemap(nr, nr_start, pages); 1488 return 0; 1489 } 1490 SetPageReferenced(page); 1491 pages[*nr] = page; 1492 get_page(page); 1493 (*nr)++; 1494 pfn++; 1495 } while (addr += PAGE_SIZE, addr != end); 1496 1497 if (pgmap) 1498 put_dev_pagemap(pgmap); 1499 return 1; 1500 } 1501 1502 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1503 unsigned long end, struct page **pages, int *nr) 1504 { 1505 unsigned long fault_pfn; 1506 int nr_start = *nr; 1507 1508 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1509 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1510 return 0; 1511 1512 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1513 undo_dev_pagemap(nr, nr_start, pages); 1514 return 0; 1515 } 1516 return 1; 1517 } 1518 1519 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1520 unsigned long end, struct page **pages, int *nr) 1521 { 1522 unsigned long fault_pfn; 1523 int nr_start = *nr; 1524 1525 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1526 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1527 return 0; 1528 1529 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1530 undo_dev_pagemap(nr, nr_start, pages); 1531 return 0; 1532 } 1533 return 1; 1534 } 1535 #else 1536 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1537 unsigned long end, struct page **pages, int *nr) 1538 { 1539 BUILD_BUG(); 1540 return 0; 1541 } 1542 1543 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1544 unsigned long end, struct page **pages, int *nr) 1545 { 1546 BUILD_BUG(); 1547 return 0; 1548 } 1549 #endif 1550 1551 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1552 unsigned long end, int write, struct page **pages, int *nr) 1553 { 1554 struct page *head, *page; 1555 int refs; 1556 1557 if (!pmd_access_permitted(orig, write)) 1558 return 0; 1559 1560 if (pmd_devmap(orig)) 1561 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 1562 1563 refs = 0; 1564 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1565 do { 1566 pages[*nr] = page; 1567 (*nr)++; 1568 page++; 1569 refs++; 1570 } while (addr += PAGE_SIZE, addr != end); 1571 1572 head = compound_head(pmd_page(orig)); 1573 if (!page_cache_add_speculative(head, refs)) { 1574 *nr -= refs; 1575 return 0; 1576 } 1577 1578 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1579 *nr -= refs; 1580 while (refs--) 1581 put_page(head); 1582 return 0; 1583 } 1584 1585 SetPageReferenced(head); 1586 return 1; 1587 } 1588 1589 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1590 unsigned long end, int write, struct page **pages, int *nr) 1591 { 1592 struct page *head, *page; 1593 int refs; 1594 1595 if (!pud_access_permitted(orig, write)) 1596 return 0; 1597 1598 if (pud_devmap(orig)) 1599 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 1600 1601 refs = 0; 1602 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1603 do { 1604 pages[*nr] = page; 1605 (*nr)++; 1606 page++; 1607 refs++; 1608 } while (addr += PAGE_SIZE, addr != end); 1609 1610 head = compound_head(pud_page(orig)); 1611 if (!page_cache_add_speculative(head, refs)) { 1612 *nr -= refs; 1613 return 0; 1614 } 1615 1616 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1617 *nr -= refs; 1618 while (refs--) 1619 put_page(head); 1620 return 0; 1621 } 1622 1623 SetPageReferenced(head); 1624 return 1; 1625 } 1626 1627 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1628 unsigned long end, int write, 1629 struct page **pages, int *nr) 1630 { 1631 int refs; 1632 struct page *head, *page; 1633 1634 if (!pgd_access_permitted(orig, write)) 1635 return 0; 1636 1637 BUILD_BUG_ON(pgd_devmap(orig)); 1638 refs = 0; 1639 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1640 do { 1641 pages[*nr] = page; 1642 (*nr)++; 1643 page++; 1644 refs++; 1645 } while (addr += PAGE_SIZE, addr != end); 1646 1647 head = compound_head(pgd_page(orig)); 1648 if (!page_cache_add_speculative(head, refs)) { 1649 *nr -= refs; 1650 return 0; 1651 } 1652 1653 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1654 *nr -= refs; 1655 while (refs--) 1656 put_page(head); 1657 return 0; 1658 } 1659 1660 SetPageReferenced(head); 1661 return 1; 1662 } 1663 1664 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1665 int write, struct page **pages, int *nr) 1666 { 1667 unsigned long next; 1668 pmd_t *pmdp; 1669 1670 pmdp = pmd_offset(&pud, addr); 1671 do { 1672 pmd_t pmd = READ_ONCE(*pmdp); 1673 1674 next = pmd_addr_end(addr, end); 1675 if (!pmd_present(pmd)) 1676 return 0; 1677 1678 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1679 /* 1680 * NUMA hinting faults need to be handled in the GUP 1681 * slowpath for accounting purposes and so that they 1682 * can be serialised against THP migration. 1683 */ 1684 if (pmd_protnone(pmd)) 1685 return 0; 1686 1687 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1688 pages, nr)) 1689 return 0; 1690 1691 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1692 /* 1693 * architecture have different format for hugetlbfs 1694 * pmd format and THP pmd format 1695 */ 1696 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1697 PMD_SHIFT, next, write, pages, nr)) 1698 return 0; 1699 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1700 return 0; 1701 } while (pmdp++, addr = next, addr != end); 1702 1703 return 1; 1704 } 1705 1706 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1707 int write, struct page **pages, int *nr) 1708 { 1709 unsigned long next; 1710 pud_t *pudp; 1711 1712 pudp = pud_offset(&p4d, addr); 1713 do { 1714 pud_t pud = READ_ONCE(*pudp); 1715 1716 next = pud_addr_end(addr, end); 1717 if (pud_none(pud)) 1718 return 0; 1719 if (unlikely(pud_huge(pud))) { 1720 if (!gup_huge_pud(pud, pudp, addr, next, write, 1721 pages, nr)) 1722 return 0; 1723 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1724 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1725 PUD_SHIFT, next, write, pages, nr)) 1726 return 0; 1727 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1728 return 0; 1729 } while (pudp++, addr = next, addr != end); 1730 1731 return 1; 1732 } 1733 1734 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1735 int write, struct page **pages, int *nr) 1736 { 1737 unsigned long next; 1738 p4d_t *p4dp; 1739 1740 p4dp = p4d_offset(&pgd, addr); 1741 do { 1742 p4d_t p4d = READ_ONCE(*p4dp); 1743 1744 next = p4d_addr_end(addr, end); 1745 if (p4d_none(p4d)) 1746 return 0; 1747 BUILD_BUG_ON(p4d_huge(p4d)); 1748 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1749 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1750 P4D_SHIFT, next, write, pages, nr)) 1751 return 0; 1752 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1753 return 0; 1754 } while (p4dp++, addr = next, addr != end); 1755 1756 return 1; 1757 } 1758 1759 static void gup_pgd_range(unsigned long addr, unsigned long end, 1760 int write, struct page **pages, int *nr) 1761 { 1762 unsigned long next; 1763 pgd_t *pgdp; 1764 1765 pgdp = pgd_offset(current->mm, addr); 1766 do { 1767 pgd_t pgd = READ_ONCE(*pgdp); 1768 1769 next = pgd_addr_end(addr, end); 1770 if (pgd_none(pgd)) 1771 return; 1772 if (unlikely(pgd_huge(pgd))) { 1773 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1774 pages, nr)) 1775 return; 1776 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1777 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1778 PGDIR_SHIFT, next, write, pages, nr)) 1779 return; 1780 } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr)) 1781 return; 1782 } while (pgdp++, addr = next, addr != end); 1783 } 1784 1785 #ifndef gup_fast_permitted 1786 /* 1787 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1788 * we need to fall back to the slow version: 1789 */ 1790 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1791 { 1792 unsigned long len, end; 1793 1794 len = (unsigned long) nr_pages << PAGE_SHIFT; 1795 end = start + len; 1796 return end >= start; 1797 } 1798 #endif 1799 1800 /* 1801 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1802 * the regular GUP. 1803 * Note a difference with get_user_pages_fast: this always returns the 1804 * number of pages pinned, 0 if no pages were pinned. 1805 */ 1806 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1807 struct page **pages) 1808 { 1809 unsigned long len, end; 1810 unsigned long flags; 1811 int nr = 0; 1812 1813 start &= PAGE_MASK; 1814 len = (unsigned long) nr_pages << PAGE_SHIFT; 1815 end = start + len; 1816 1817 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1818 (void __user *)start, len))) 1819 return 0; 1820 1821 /* 1822 * Disable interrupts. We use the nested form as we can already have 1823 * interrupts disabled by get_futex_key. 1824 * 1825 * With interrupts disabled, we block page table pages from being 1826 * freed from under us. See struct mmu_table_batch comments in 1827 * include/asm-generic/tlb.h for more details. 1828 * 1829 * We do not adopt an rcu_read_lock(.) here as we also want to 1830 * block IPIs that come from THPs splitting. 1831 */ 1832 1833 if (gup_fast_permitted(start, nr_pages, write)) { 1834 local_irq_save(flags); 1835 gup_pgd_range(start, end, write, pages, &nr); 1836 local_irq_restore(flags); 1837 } 1838 1839 return nr; 1840 } 1841 1842 /** 1843 * get_user_pages_fast() - pin user pages in memory 1844 * @start: starting user address 1845 * @nr_pages: number of pages from start to pin 1846 * @write: whether pages will be written to 1847 * @pages: array that receives pointers to the pages pinned. 1848 * Should be at least nr_pages long. 1849 * 1850 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1851 * If not successful, it will fall back to taking the lock and 1852 * calling get_user_pages(). 1853 * 1854 * Returns number of pages pinned. This may be fewer than the number 1855 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1856 * were pinned, returns -errno. 1857 */ 1858 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1859 struct page **pages) 1860 { 1861 unsigned long addr, len, end; 1862 int nr = 0, ret = 0; 1863 1864 start &= PAGE_MASK; 1865 addr = start; 1866 len = (unsigned long) nr_pages << PAGE_SHIFT; 1867 end = start + len; 1868 1869 if (nr_pages <= 0) 1870 return 0; 1871 1872 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1873 (void __user *)start, len))) 1874 return -EFAULT; 1875 1876 if (gup_fast_permitted(start, nr_pages, write)) { 1877 local_irq_disable(); 1878 gup_pgd_range(addr, end, write, pages, &nr); 1879 local_irq_enable(); 1880 ret = nr; 1881 } 1882 1883 if (nr < nr_pages) { 1884 /* Try to get the remaining pages with get_user_pages */ 1885 start += nr << PAGE_SHIFT; 1886 pages += nr; 1887 1888 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1889 write ? FOLL_WRITE : 0); 1890 1891 /* Have to be a bit careful with return values */ 1892 if (nr > 0) { 1893 if (ret < 0) 1894 ret = nr; 1895 else 1896 ret += nr; 1897 } 1898 } 1899 1900 return ret; 1901 } 1902 1903 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1904